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Abstract—Recently, mobile operators have been shifting to
an intelligent autonomous network paradigm, where the mobile
networks are automated in a plug-and-play manner to reduce
the manual intervention. Under this circumstance, serious inter-
cell interference becomes inevitable which may severely dete-
riorate system throughput performance and users’ quality of
service (QoS), especially for dense residential small base station
(SBS) deployment. This paper proposes an intelligent inter-cell
interference coordination (ICIC) scheme for autonomous hetero-
geneous networks (HetNets), where the SBSs agilely schedule
sub-channels to individual users at each Transmit Time Interval
(TTI) with aim of mitigating interferences and maximizing long-
term throughput by sensing the environment. Since the reward
function is inexplicit and only few samples can be used for prior-
training, we formulate the ICIC problem as a distributed inverse
reinforcement learning (IRL) problem following the POMDP
games. We propose a non-prior knowledge based self-imitating
learning (SIL) algorithm which incorporates Wasserstein Gen-
erative Adversarial Networks (WGANs) and Double Deep Q
Network (Double DQN) algorithms for performing behavior
imitation and few-shot learning in solving the IRL problem from
both the policy and value. Numerical results reveal that SIL is
able to implement TTI level’s decision-making to solve the ICIC
problem, and the overall network throughput of SIL can be
improved by up to 19.8% when compared with other known
benchmark algorithms.

Index Terms—Autonomous HetNets, Inter-Cell Interference
Coordination, POMDP, Wasserstein GANs, Double DQN.

1. INTRODUCTION

According to the Cisco Visual Networking Index [1], mobile
traffic has occupied a large portion of the big datasets, and
more than 70% of data traffic and 50% of voice calls occur
indoors. Mobile networks or cellular networks aiming at
improving the performance of the cell-edge users have been
impeded by the ever-increasing traffic demand. Driven by
the explosive growth of traffic demand, dense deployment
of HetNets which combines various cellular networks and
massive plug-and-play small-cell base stations (SBSs) have
been introduced as an effective architectural technology for
improving the spatial use and network capacity of 5G-and-
beyond cellular networks [2]-[6].

Dense deployment of plug-and-play SBSs may lead to
severe inter-cell interference (ICI), which significantly de-
teriorates both the network throughput and the quality of
service (QoS) of users. Thus inter-cell interference coordi-
nation (ICIC) is of vital importance for indoor coverage of
mobile communication systems. Recent researches aiming at

solving the ICIC problem for HetNets mainly focus on the
techniques of power allocation and subcarriers scheduling for
interference mitigation [7], [8]. While ICIC in HetNets has
been extensively studied [8]-[13], the research in decentralized
HetNets, where the SBSs make resource allocation decisions
independently without information sharing, is still far from
adequate, especially for the case of indoor deployment of plug-
and-play SBSs. In recent investigations [10]-[12], the authors
consider that the overall network information can be assembled
via a central controller, and the global optimum of resource
management for SBSs can be accomplished with the central
controller. However, frequent information exchange between
SBSs and decision making of central controller for large-scale
SBSs are very costly [14]. Especially when SBSs are managed
by different mobile operators, exchanging information between
SBSs and central control are even infeasible. In this case, the
SBSs can only perform decentralized resource scheduling by
exploiting partially observable network information.

In autonomous HetNets, the inter-cell interferences are usu-
ally time-varying due to the switch on/off of small plug-and-
play SBSs and mobility of users. Therefore, it is ineffective
to use static optimization based algorithms [7], [8] and other
heuristic algorithms such as game theory [11], [15] to solve
the ICIC problem in autonomous HetNets, due to the poor
adaptability and generalization for the dynamic environment.
This inspires us to exploit partially observable network in-
formation to schedule spectral resources of the HetNets to
individual users in an adaptive and intelligent way, with aim of
minimizing ICI. Fortunately, recent emerging machine learn-
ing algorithms such as deep reinforcement learning, which
continuously improves strategies by timely interacting with the
environment and evolves with the learning epochs, is able to
provide an effective tool to address this challenging problem.

This paper investigates the ICIC in autonomous HetNets,
where SBSs could be owned and operated by different Mo-
bile Network Operators (MNOs) and cannot exchange state
information due to the backhaul constraints [16]. We resort to
learning algorithms with strong adaptability and evolutionary
ability for performing ICIC in autonomous HetNets. Specifi-
cally, embedded with updatable neural networks, the proposed
learning algorithms can evolve with the training processes. By
modeling the sequential decision-making process as a Partially
Observable Markov Decision Process (POMDP), individual
SBSs implement resource scheduling in an autonomous man-
ner by sensing the surrounding environment at each TTI. For a



specific SBS, the reward function used for evaluating its strate-
gies is inexplicit and the policies of other SBSs are unknown.
In addition, the number of the samples used for training
the algorithm in advance is limited at the boot-up stage of
SBSs. For addressing these difficulties, we propose an inverse
reinforcement learning (IRL) based self-imitation learning
(SIL) framework, which consists of Wasserstein Generative
Adversarial Networks (W-GANs) [17] and Double Deep Q-
Network (Double DQN) [18], working in a collaborative way.
In more detail, there are two miniature neural networks in
W-GANSs: generative network model G and discriminative
network model D. G is used to capture the distribution of
the real dataset while D is used to estimate the probability
of a sample coming from the real dataset rather than from G.
The training procedure for GG is to maximize the probability
of D making a mistake [19]. Double DQN is improved based
on the Natural DQN [20] which can significantly eliminate
the overestimation problem where decisions are not accurately
estimated by the evaluation network. Based on that, we use
Double DQN for performing the resource scheduling of SBSs.
Furthermore, we combine the dataset generated by G and
the real dataset generated with the learning process and put
combined dataset into the replay buffer of the Double DQN,
in order to reduce the correlation between samples and the
probability of over-fitting.

The main contributions of this work can be summarized as
follows:

« To facilitate the ICIC in autonomous HetNets, we propose
to transfer the control and responsibility from the cen-
tralized controller to individual SBSs. The autonomous
control stimulates the SBSs’ abilities of self-learning and
self-configuring with reduced signaling interactions.

o To the best knowledge of the authors, thus far, there
is no priori work which collaboratively uses W-GANs
and Double DQN for solving the resource allocation
problem in decentralized HetNets. Particularly, W-GANs
and Double DQN work in a collaborative way for tackling
the problems of inexplicit reward function and few-shot
learning.

o We use the state-of-the-art W-GANSs for drawing policy
and generating adversarial training samples with the aim
of improving the sample diversity and reducing the cor-
relation between data samples. This can further improve
the generalization ability or robustness and accelerate the
convergence rate of the SIL.

« To overcome the overestimation problem existing in most
discrete decision-making processes, we adopt Double
DQN in SIL. This helps SIL make decisions more ac-
curate and reasonable. Moreover, in order to cater for the
plug-and-play manner of indoor SBSs, the Double DQN
is initialized according to the SINR, and a nested training
scheme is adopted to overcome the slow-start problem of
the learning process.

The rest of the paper is organized as follows. The system
model is presented in Section III. In Section IV, we model the
ICIC problem as non-cooperative Markov games which are
specifically formulated as the distributed inverse reinforcement

learning (IRL) to be solved. Next, in Section V, we design a
self-imitation learning framework for solving the IRL problem.
In Section VI, we present the numerical results as well as
discussions, and finally conclude the paper in Section VIIL.

II. RELATED WORK

ICIC problem in HetNets has recently spurred extensive
investigations from different perspectives with various design
objectives. ICIC can be accomplished in either decentralized
or centralized manner according to network configurations. In
addition, power control and subcarriers assignment are two
main techniques used in solving the ICIC. In the following, we
survey the main related work in the literatures from different
aspects.

Optimization of Power Allocation & Subcarrier Assignment
are widely used for ICIC with the aim of mitigating inter-
ferences and thus improving network performance. Particu-
larly, joint optimization of power allocation and subcarrier
assignment are recently studied in [21]-[24], in which spectral
efficiency or energy efficiency is considered as the optimiza-
tion objective. However, joint power allocation and subcarriers
assignment in centralized HetNets is a typical multiple choice
dimension knapsack problem which is known to be NP-
hard [25]-[27]. Moreover, the solution of power allocation
is continuous, while the solution of subcarrier assignment
is discrete, making it very hard to solve this cross-domain
optimization and achieve global optimality at TTI level. Thus
greedy-style heuristic algorithms are usually developed to
solve the challenging combinational problem in polynomial
time.

From another perspective, ICIC could be addressed in
either Centralized HetNets or Decentralized HetNets. Most
existing methods for solving ICIC [8], [21], [28] are based
on centralized HetNets, where a central controller is deployed
to collect global information (i.e., network information and
the policies of all BSs) and make decisions towards the
direction of improving the overall network performance. Since
the optimal joint power allocation and subcarrier assign-
ment problem in centralized HetNets is known to be NP-
hard, the computational efficiency of centralized decision-
making is substantially subject to the scale of the HetNets
(i.e., the number of users and subcarriers). Most researches
investigate the centralized decision-making process of ICIC
in small or even a single-cell network for achieving global
optimality. In addition, frequent information interactions are
quite resource-consuming. On the other hand, recent studies
[7], [10] focusing on ICIC in decentralized HetNets show
that distributed decision-making, where local decision makers
are responsible for a segment of the decision process, can
effectively decrease signaling overhead and performs well
in most scenarios. Distributed decision-making has attracted
much attention due to the rapid improvement of computing
and intelligent solutions. However, restricted by the lack of
information interactions, distributed decision-making is hard
to achieve the global optimal solution without knowing other
agents’ strategies. Moreover, distributed decision-making re-
sults in a free competitive environment where each individual
agent eventually achieves a Nash equilibrium [15].



Fortunately, recently emerging machine learning technolo-
gies provide a very promising tool for intelligent decision-
making in uncertain and time-varying network environments.
For solving resource allocation and power allocation in radio
access networks (RANSs), the authors of [26], [29], [30] model
the decision-making process as a Markov Decision Process
(MDP) and a central controller is used for collecting global
network information. Accordingly, appropriate decisions can
be readily made towards the direction of improving overall net-
work performance. In comparison, distributed decision-making
is more challenging because of the limited communication
capabilities caused by the back-haul constraints. Although
certain performance gain can be theoretically achieved in
centralized HetNets, it is usually inapplicable to large-scale
wireless networks due to its high computational complexity
and signaling overhead. Therefore, distributed learning for
autonomous decision-making is more appropriate for large-
scale wireless networks, and POMDP can be used for formu-
lating the decision-making process [31]. Besides, distributed
training in decentralized HetNets is another key problem due
to the implicit reward function and non prior-knowledge based
training. The recently emerging W-GANs [17] provides an
effective tool for coping with the problem of few training
samples, which performs the sample expansion by solving the
zero-sum game between the generator and discriminator with
historical samples. Moreover, the Double DQN [18] can be
used for addressing the problem of inexplicit reward function,
by establishing relationship between the input local network
information and the output performance through iteratively
training the neural network.

III. SYSTEM MODEL

This paper focuses on the orthogonal frequency division
multiple access (OFDMA) based downlink heterogeneous
networks (HetNets) consisting of a set of B = {1,---, B}
SBSs which are operated by a set of mobile operators Z =
{1,---,Z}, and a set of U = {1,---,U} user equipments
(UEs) (i.e., tablets, mobile phone, etc.). Define B,z as the
SBSs set belonging to operator z € Z and Uyep as the users
set underlying SBS b € B. Let T = {1,--- ,T} be the set of
decision intervals. In order to capture the network dynamics
at small time granularity, we consider to implement TTI-
level’s decision-making. Note that the resource block (RB)
is defined as the minimum transmission spectrum unit in
OFDMA systems, and let K, = {ay1, - ,au i} be the
index set of RBs allocated to user u, where a,, , represents a
indicator which equals to 1 if the kth RB is assigned to user
u, and O otherwise.

A. Network Capacity and Power Consumption

Let Ep ¢ = [€u,k]ju4,)x|Kc,| be the transmit power matrix of
SBS b at time ¢ where e,, j, denotes the transmit power received
by user u on the kth subcarrier, and let Gt = [gu, k)14, x| K|
be the channel gain matrix where g, ; denotes the channel
gain from SBS b to user u on the kth subcarrier. Let W, ; =
[Wu k14, x|Kc,| be the matrix of the assigned subcarriers’
bandwidth where w,, ; denotes bandwidth of subcarrier k

assigned to user u. Let additive white Gaussian noise (AWGN)
be denoted by matrix of Ny = [nu,k]jus|x k.| Where ny
denotes the AWGN on subcarrier k. Let T'y ¢ = [vu ] jus, | x K. |
be the matrix of SINR where +,, ;, denotes the SINR of user u
on subcarrier k. For considering the rate assigned to a given
user u, the SINR measures the signal quality and is defined as
the ratio of the received sum power of the desired signal over
the sum power of the interfering signals and the background
noise. Therefore, the SINR matrix of SBS b at time ¢ is given
by

_ Ept © Gy
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where the notation ® represents the Hardamard product (i.e.,
(A© B)ijk = (A)ijk(B)ijk)-

Let Yyt = [Yu,k)ju4,| x|k, | DE the matrix of transmission rate
of SBS b at time slot ¢ where y,, 1 is the transmission rate of
user w on subcarrier k, and I, be the |Uy| x |IC,| matrix
whose elements are all equal to 1. Shannon capacity formula
can be used to describe the transmission rate. Therefore, the
matrix of the transmission rate Y} is derived as

}/b,t = Wb,t ® IOgZ(Ib,t + Fbﬂg). (2)

B. User Association and Service Constraints

Let ap ., denote the association indicator which equals to 1
if user u is associated with BS b and 0 otherwise. Throughout
this paper, we assume that each UE can only be served by one
BS at any time slot, and the association rule is letting users
be associated with the nearest BS. Therefore we have

> apus=1,9>0. 3)
beB

For a given SBS b, define the the transmission rate of user
U as Yu = ) ek, Yuk- Let the threshold of the required
transmission rate for user u be j,,. Therefore, the transmission
rate constraint for user u associated with SBS b at time slot ¢
is given by

Yu 2 Yu, U € Upep. “4)

For a given BS b, the total amount of RBs can be used by
UE u should satisfy

Y aun < Kl u € Upes. 5)
ke,

In addition, the total transmit power consumed by SBS b
is given by > <10 D ek, €uk»> and the power constraint for
SBS b is represented as

Z Z ey <€, 6)

uEUy kEK,

where € is the maximum transmit power which can be man-
aged by each SBS. Note that power control is implemented
to keep the interference from other SBSs below a certain
threshold. Generally, we assume that the transmit power is
initially evenly allocated to each assigned subcarrier.



Then, we let 4, represent the SINR threshold of user u, and
the SINR constraint for a given user u is represented as

Yu,k > 'A}/u (7)

Define a widely used utility function I(-) = In(-) [32]
[33]. Then the rate utility function [(y,) leads to resource
allocation fairness for each SBS in terms of individual user
rate. Therefore, we set the objective of the long-term overall
utilities of an SBS as

U= Uyus)- ®)
teT uel,

Finally, for improving the clarity, we summarize the notations
and variables used in this paper in Table L.

TABLE I
MAIN PARAMETERS AND VARIABLES

Symbol
B SBSs set

Description

user equipments set

mobile operators set

assigned RBs set

white gaussian noise matrix
channel gain matrix

transmit power matrix
transmission rate matrix

SINR matrix

the assigned subcarriers’ bandwidth matrix
the long-term overall utilities
partially observable Markov model
partially observable network states

partially observable network state set

n X XZTETHXETQZAN

global observable network state set

T
—

joint policy set

PN

resource allocation strategies set

state-action value

< O

state value

IV. PROBLEM STATEMENT AND GAME-THEORETIC
SOLUTION

This work aims at improving the long-term performance
on system throughput while guaranteeing the QoS require-
ments (i.e., interferences and rate requirement) of UEs. In
this section, we first formulate the problem of interference
coordination among the non-cooperative SBSs across the time
horizon as a stochastic game and then discuss the best-
response solution from a game-theoretic perspective.

A. Model-Free based Partially Observable Markov Decision
Process (POMDP)

Due to the backhaul constraints in the autonomous HetNets,
the decision-making process of the interference coordination
at SBSs is defined as a POMDP as only local network

states can be observed in the autonomous HetNets. Fig. 1
shows the decision-making process of the POMDP on time
axis. Specifically, the POMDP M is modeled as a five-tuple
M = (X, A, F,Pr(X),~) which are respectively elaborated
as below.

o X, represents the partially observable network state of
SBSs. Let the observed information consist of the number
of UEs Uy, and the SINR I'y,(b € B). Let &, =
{Upt, Tty Xp 1}, where X;, _; represents the informa-
tion observed and saved by SBS b before time {.

o A, represents a set of actions made by SBSs at time ¢. In
the POMDP, the network states change with the actions
which is defined as the subcarrier allocation strategies in
this work.

o Fi: & x Ay x Xy — Ry is a family of reward functions
which maps the input action A; to the output reward R;
under a deterministic observed network state X;. More
specifically, the reward function is

o P(X,) represents the probability under a deterministic
network state X;. Moreover, we use 7;(7) to denote
the policy distribution map over a sequence of policy
trajectory 7 starting from time {.

e v (v € (0,1)) denotes the discount factor in the Markov
chain. Discount factors are important in infinite-horizon
MDPs, in which they determine how the reward is
counted.

Hidden

Observable

Observation Observation

Observation

Time t t+2

t+1

Fig. 1. Partially Observable Markov Decision Process

For a given BS b at time slot ¢, define V' (X) as the long-term
discounted throughput starting from the initial network state
X. We formulate V' (X, 7) which follows policy trajectory 7 as
a Bellman equation. For a given BS b at time slot ¢, V}, (X, )
is given by

o
Vot(X,7m) = Ex[Y 7" Ropnn| X = Xea],  9)
k=0

where the expectation E(-) is taken over decisions under
different local network states following the policy trajectory 7
across discrete decision epochs. Moreover, the reward function
is defined as Ry 441 = 1(7y,¢). Therefore, the objective
of (8) is rewritten as

ueUy

Up (X, 7) = Vou (X, ). (10)



B. Stochastic Game Formulation

Define S as the global network states, and there exists
X C &. Obviously, from a global optimization perspective,
the objective of the POMDP is to find policy trajectory 7. (7)
of SBSs which can minimize the absolute value of the error
between local optimum and global optimum. Based on least
squares method, the objective can be formulated as

77 (1) = arg min|Uy (X, m) — Uy (Sy, ) |2,

e (T)

Y

where U;(S;, 7*) denotes the long-term network throughput
derived by the best-response strategies.

By modeling the decision-making process as a POMDP, the
HetNet system performs as an open loop system where feed-
backs (i.e., strategies and states) from other BSs are impossible
to be known. This implies that the reward function cannot be
expressed explicitly because of the information gap. In other
words, an explicit reward function F(-) mapping the observed
local network state and the global network performance is
hard to be derived with limited information. Without informa-
tion sharing, it is hard to judge whether the global optimal
strategies are achieved in the partially observable network.
Therefore, Uy(X,7*(X)) # Uy(S,7*(S)) and obviously
Uy (X, 7*(X)) < Uy(S,7*(S)), which means that estimating
the global optimal strategies from a partially observable state
space can be arbitrarily bad. This also indicates that the global
optimal strategies are unknown and hard to be achieved in the
decentralized HetNets.

Remark 1. In decentralized HetNets, estimating the global
optimal strategies 7 from a partially observable state space
X can be arbitrarily bad. We then derive the best-response
solution from a multi-agent game-theoretic perspective.

The HetNet environment is time-varying with user behaviors
and channel conditions, resulting in a non-stationary and
competitive network environment. In order to model the non-
cooperative game between SBSs, we formulate a multi-agent
non-cooperative stochastic game SG := (B, M) following
the POMDP decision model M, where the SBSs of set B
are defined as game players or decision-making agents. Then,
we consider to solve the non-cooperative game SG over a
Nash Equilibrium (NE) game framework [34]. In detail, the
performance of resource allocation strategies among agents
is optimized towards the direction of Nash Equilibrium (NE)
[34].

Definition 1. In our formulated stochastic game, SG, an NE
is a tuple of control policies (7} : i € B), where each * of

an SBS 1 is the best response to the other SBSs’ 7* , i.e.,
(12)

Vi(X,wl, ) > Vi(X,m, ™), Vi € B.

More specifically, NE is a state of allocation of resources
from which it is impossible to reallocate so as to make any
one individual achieve better performance on the throughput
without making at least one individual worse off [34]. An NE
describes the rational behaviors of the SBSs in a stochastic
game. Any resource allocation strategy that provides an NE
improvement results in a non-decreasing change in individual
performance.

7

Theorem 1. For a multi-agent stochastic game with expected
long-term discounted payoffs, and finite actions space which is
visited infinitely often, there always exists an NE in stationary
control policies [35].

C. Best-Response Approach

The main objective of SG is to find resource allocation
strategies that can achieve NE by iteratively optimizing the
State-Value V (X, ) for all SBSs. Then, the long-term best-
response of SBS ¢ € B starting from partially observable
network state X can be derived as

V() =

e (B [3_ 7 Fipors (mi(X), 725(X)) |4 = X},
‘ k=0
(13)

where V;*(X') denotes the State-Value of SBS ¢ when the
agents adopt the best-response strategies set {m}, 7*,},Vi € B.

Note that in order to achieve the NE in the stochastic game,
all SBSs have to know the global network dynamics, which
is prohibited in our non-cooperative networking environment.
This paper assumes that each SBS can infer actions of other
SBSs by sensing the SINR condition I';,b € B of channels.
Intuitively, the SINR value of channels can indirectly reflect
the actions of other SBSs.

D. Decomposition of State Value: From an Inverse Reinforce-
ment Learning Perspective

Since decision-making is prior to result perception, the
reward function is inexplicit without the global decision in-
formation. Therefore, the distributed training process without
prior knowledges becomes challenging in achieving the best-
response strategies. Considering this, we decompose the State-
Value V' (X) from an inverse reinforcement learning (IRL) per-
spective, with the aim of optimizing the State-Value inversely
from the perception results.

To formulate the IRL problem, we redefine the variables
in (9) and associate them with trajectory 7. Let |S| be the
number of network states, and |.A| be the number of actions.
Then, we define an |S|-dimension vector R = [R;]|s|x1, an
|S|-dimension vector V = [V;]|sx1 and an |S|x|.A| sequential
policy matrix IT = [74),]|s|x|.4]» Where R, and V; respectively
denote the instantaneous reward and state-value at state s ~ T,
and 7, s denotes the probability of adopting action a at state s.
Since deterministic state transition is adopted in the POMDP,
(9) can be rewritten as V = II(R + ~V), then,

V = (T —~II)"'IR, (14)

where 7 is an identity matrix and Z — vII is invertible. This
is because the elements of Z — ~II are all in the interior of a
unit circle (i.e., m,s = 1), and v < 1 and thus it has no zero
eigenvalues and is not singular [36].

As previously defined, the policy distribution II is a long-
term variable to be optimized, while the reward R is an
instantaneous outcome. The key issue to improve the resource
allocation strategies is to minimize the difference between



the trained policies II and the optimal policies II*, and
simultaneously maximize the reward R. Then the objective
of a given SBS is derived as

max [min{(IT* — I)(Z — 4T) " R}]. (15)

Then we formulate an IRL based ICIC problem with the aim
of maximizing the long-term system throughput while meeting
the conditions of the NE. Specifically, for SBS b with starting
time ¢, the IRL based ICIC problem following the POMDP is
formulated as

max[min{(IT; , — Ty )(T = 1T,0) " R} = Al Roll2];

(16)
st (I, — Ty )(Z —p0) "Ry = 0, (17)
XoNX,=a,Vp#b (18)
((3),®),(5),(6), (D), (19)

where = represents vectorial inequality (e.g., (1,2,5) >
(1,1,3)), ||R||2 represents the £o-norm of R, and A||R||2 is
a weight decay-like penalty term (or regularization) used to
improve the over-fitting problem, and ) is an adjustable hyper-
parameter. (17) is used to guarantee that the optimal policy is
not worse than other policies.

As aforementioned, an explicit reward function is hard to be
derived and there are few expert trajectories (or samples) can
be used for pre-training in a decentralized network scenario,
resulting in that the non-prior knowledge objective of (16)
cannot be solved directly. Furthermore, the ICIC problem be-
comes more complex when considering the joint optimization
from both the Policy II and Value V of the IRL. Therefore,
we decompose the IRL problem into two sub-problems which
respectively implement the behavior cloning and reward func-
tion approximation, which are explained below.

o Behavior cloning: The objective of behavior cloning is
to draw the policy map by imitating the expert policy
trajectories which satisfies the condition that better reward
is assigned to the policy with larger probability and the
worse one is assigned to other policies with smaller
probabilities.

o Reward function approximation: With the RL process,
the reward function is approximated by neural networks
utilizing the labeled training samples, and the derived
reward function is used to optimize the decision-making
process of RL towards the direction of improving the
Value V.

Actually, there are few training samples available at the
boot-up stage of an SBS, and more training samples labeled
with input network states and feedback throughputs are col-
lected during the learning process. Therefore, the training
process of expert strategies is embedded in the training process
of the reward function approximation. This two subproblems
are trained separately, and the updated (neural) network infor-
mation is synchronized periodically.

In the next section, we propose a self-imitation learning
(SIL) framework which resort to machine learning tools (i.e.,
W-GANs and Double DQN) to collaboratively implement the
behavior cloning and zero-shot RL in a distributed manner.

V. SELF-IMITATION LEARNING FRAMEWORK FOR
DECENTRALIZED HETNETS

Fig. 2 shows the framework of the self-imitation learning
where W-GANs and Double DQN perform in a cooperative
way for implementing the zero-shot learning and the behavior
cloning to solve the IRL problem of (16) and thus improve
the performance of the resource allocation underlying the
autonomous HetNet. In more detail, Double DQN is used for
deriving the reward function by iterations and then optimizing
the discrete decision making process by maximizing the value
V. In addition, the basic idea of W-GANSs in SIL is learning
to perform a task directly from expert strategies, without
estimating the corresponding reward function. Specifically, W-
GANs in SIL are used to imitate the expert strategies and
generate adversarial training samples, and thus help Double
DQN make decisions more robust.

A. Behavior Cloning by Wasserstein-GANs

W-GANs are improved based on the conventional GANS,
which does not need to maintain a careful balance in training
of the discriminator and the generator, and thus an accurate
design of the network architecture either [19]. The dropping
phenomenon consistently happens in GANs is also signifi-
cantly reduced. One of the most attractive benefits of W-GANs
is the ability to continuously estimate the Earth-Mover (EM)
distance by training the discriminator to optimality.

Let the expert policy be denoted by m.. By implementing
the expert policy, the decision trajectory is improved towards
the direction of maximizing the network performance with
large probability. Moreover, the generated policy imitated by
the proposed W-GANs algorithm is denoted as m,. W-GANs
aim to optimize the EM distance or 1-Wasserstein distance
[17] between m, and 7., which is derived as
inf (20)

W(re, mg) =
( 9) Wen(ﬂ'evﬂg)

Bt yy~elllz =yl
where II(7., m,) denotes the set of joint distributions ¢(x,y)
whose marginals are respectively m. and m,. Intuitively,
(z,y) indicates how much “mass” must be transported from
2 to y in order to transform the distributions 7, into the
distribution .. The EM distance is then the ‘“cost” of the
optimal transport plan. Since the infimum in (20) is intractable,
by considering the Kantorovich-Rubinstein duality [37], (20)
is transformed to

W(me,mg) = sup Egyurn [D(2)] — Eyor, [D(y)], (21

IDl<1

where the supremum is over all the 1-Lipschitz functions D(-)
(i.e., the gradient of D(+) is not bigger than 1). Moreover, we
define Dy(-) and G4(-) as a discriminator and a generator
which are respectively represented by neural networks with
parameter ¢ and ¢. To learn the generator’s distribution
over real data x ~ 7., we define a generated policy on input
noise variables z ~ ., then represent a mapping to generated
data space as G4(z). Moreover, Dy(Gy4(z)) outputs a scalar
within [0, 1] which represents the probability that x comes



from the real data rather than 7,. Then, we consider solving
the problem

W(me,mg) = Einr [Do(7)] = Eonr. [Do(Gy(2))]-

(22)

max
0:|| Dol <1

In detail, parameters # and ¢ of the discriminator and
generator are respectively updated by implementing the m-
batchsize gradient descend, and we have

1 m

VoW (e, mg) E Z:

= Dy(Go(z)]]-

(23)

VoW (e, mg) = =Vg|—

ZD9G¢ ()

Obviously, (23) and (24) respectively update the parameters
of # and ¢ towards opposite directions. In particular, the objec-
tive of discriminator D is to discriminate the generated dataset
and the real one to the greatest extent, while the generator G
tends to minimize the possibility of being discriminated by the
discriminator D.

As shown in Fig. 2, an experience replay buffer is used
to store the training dataset. By mixing the real dataset and
the generated adversarial dataset into the replay buffer, the
correlation between the datasets can be decreased, which can
help Double DQN improve the generalization and robustness.
We summarize the process of W-GANs in Algorithm 1.

(24)

Algorithm 1 W-GANs for data sample expansion. All ex-
periments in the paper use the default values oy = 0.0005,
ag = 0.0005, ¢ = 0.01, m = 64.

Input: o, the learning rate of generator; cg, the learning rate
of discriminator. ¢, the clipping parameter; m, the batch
size; Ny, the number of training steps of the discriminator;
Ny, the number of training steps until convergence of
the generator; 6, initial parameters of the discriminator.
¢, initial parameters of the generator.

QOutput: Adversarial samples generated by the generator G

1: while ny, < N, do

22 forng=1,---,Ng do

3 Sample {z("}™  ~ m,  a batch from the expert
dataset.

4: Sample {2V} ~ 7, a batch from the prior noise
samples.

0 < Vo[ 7L, [Do(2) —
0 < 0 + aq - RMSProp(6, 0)
0 « clip(8, —c, c)

end for

Sample {z()17

samples.

0 b Vo[ ST, Dy(Gp(=0)

11: ¢ < ¢ —ay - RMSProp(¢, ¢)

122 ng=ng+1

13: end while

Dy (G ()]

R IR

~ T, a batch of the prior noise

B. Few-Shot RL Procedure by Double DON

Recently, many algorithms have been proposed to combine
reinforcement learning with deep learning (i.e., neural net-
work), such as Actor-Critic [38], Asynchronous Advantage
Actor-Critic [39], Deep Q-Network [40], Deep Determinis-
tic Policy Gradient [41], efc. We choose the Double DQN
algorithm which is improved based on the Natural DQN or
Conventional DQN to implement the discrete-decision making
process. The Double DQN is proposed to overcome the
disadvantages of Natural DQN which is known to overestimate
action values under certain conditions [18]. Generally, Double
DQN consists of two networks: evaluation network and target
network, which are parameterized by vectors of 7 and 0~
respectively, where the greedy policy is evaluated according
to the evaluation network, and the value is estimated by the
target network.

The RL procedure is employed in the distributed network
with a ~-discounted finite horizon setting, and follows the
deployment of POMDP in Section III. Let 7 denote the RL
procedure’s objective of SBS b, which is given by

J =Ex,~x ap~alf(Xp,e, Ap )]

Let ®(X) denote the feature vector, and the state-action
value () defined in (9) be parameterized by a vector n with
the same dimension. Assume that the RL procedure of SBS
b starts at network state X, and (9) turns into a state-
action value Q(X, A). The evaluated state-action value Q%
is approximated as Q°*(Xy 4, Apt) ~ Q(Xp4, Aps;n), and
the target state-action value (Q'®" is then approximated as
Q" (Xp s, Apt) =~ Q(Xpt,Aps;n~ ). In detail, we choose
the non-linear based neural network to approximate the two
networks in case of the non-linear characteristics of the state-
value functions. Thus, we have Q% (X, Aps;n) = nt -
(x). and Q" (Xp, Avin™) =17 - B(x).

Generally, there are two methods used to compute temporal
difference (TD): Specifically, the forward method combines
the future steps for joint optimization. As we pursue a fast
reinforcement learning iteration in this work, and the states in
the future two or more time steps may be observed in tens of
TTIs in this scenario, we implement an one-step backup (i.e.,
TD(0)) for adapting the time-varying network environment.
Therefore, in order to update the state-action value @, we let
the TD-error be calculated as below

(25)

0ty = Q" (Xyg, Apsn) — Q" (Xopu, Apiin™),  (26)
where the target network is updated by
Q""" (Xpu, Avsn~) = Ry + (27)

v-QNT (X441, arg max Qeml (Xp,t41, Aper15m)in ),
Ap iy
in which the parameters of the target network stays unchanged
from DQN, and remains a periodic copy of the online network.
Then, let the loss function for SBS b at time ¢ be denoted by
Ly, (n). During the learning procedure, we aim to minimize
the loss function below

argmin Ly ¢ (1)
n

=Ex,~x, 4,400, (28)
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Fig. 2. Self-imitation Learning Framework

Since the action space is discrete, we use Softmax layer
for selecting an action. The Softmax function is used as
a continuous, differentiable approximation to argmax, and
which is defined as Softmax(z;) = e®/3 . . Generally,
the discrete action can be sampled from a multinomial dis-
tribution with probabilities given by the output of a Softmax
function. Nevertheless, the resulted sampling process is not
differentiable. Thus we obtain a differentiable approximation
by sampling from the Gumbel-Softmax distribution [42] which
has been previously used to train variational auto-encoders
with discrete latent variables [43].

Since there are K RBs, the Softmax layer is designed
to have K outputs variables. Let the output probabilities of
Ap = k be denoted as 7. Then,

Apr = arg;nax(log(ﬂk) + Gi(u)), (29)
where the variables in vector G = [Gy(u), -, Gr(u)]T are
i.i.d samples drawn from Gumbel distribution. In detail, the
Gumbel distribution can be sampled using inverse transform
sampling by drawing u ~ U(0,1)¥ (let U(0,1)¥ be the K-
dimensional uniform distribution on the interval [0, 1]) and
computing G(u) = — log(— log(u)).

Moreover, we introduce ¢ as a controllable inverse temper-
ature hyper-parameter in the Softmax function. Then (29) is
rewritten as

log(m) + G (n)
S

When ¢ — 0, the Softmax layer acts like argmax (Soft-
max~argmax) resulting in low bias while the variance of the

Ap ¢ = softmax( ), k=1,--- K. (30)

Dataset generate:
by WGAN

gradient of the Softmax increases. On the other hand, when
¢ is set a little larger, the Softmax creates a smoothing effect
while the bias turns to be high (Softmax+# argmax). Therefore,
at the beginning of the training, we set ¢ to a large value, so
that the gradient flow is smoother. Later we let ¢ approach 0,
so that the vector obtained by Softmax is closer to the result
of argmax.

The SIL framework consists of WGANs and Double DQN
where the algorithm of WGANS is trained in the learning
process of the Double DQN. We elaborate the learning process
of the SIL in Algorithm 2 for ease of understanding.

C. Computational Complexity

For family SBSs (or Femto) equipped with low power and
low CPU frequency, an algorithm with low computational
complexity is essential. We analyze the computational com-
plexity of the proposed SIL algorithm. Specifically, according
to the learning process summarized in Algorithm 2, the com-
putational complexity of SIL denoted by Ogjy, is evaluated by
jointly considering the computational complexity of W-GANs

and Double DQN, which is given by
Osit = Owagans + Oppon 3D

According to Algorithm 1, we first give the computational
complexity of the WGANSs algorithm

Owgans = O(Ny - Ng).

Therefore, for one operation epoch, the computational com-
plexity of the SIL is derived as

Osi, = O(N, - (Ny - Ng+ N. + Nyp,)).

(32)

(33)



Algorithm 2 Self-imitation learning algorithm
Input: ap, the learning rate of the Double DQN; N,,, the
number of time steps to save policy trajectories into the
experience replay buffer; N, the overall operation epochs;
N,, the number of training steps to the convergence of
Double DQN. N, the number of training steps to replace
n~ by n.
Output: Optimal resource allocation strategies set A*
1: Initialize evaluated action-value function Q¢¥* with ran-
dom weights 7.
2: Initialize target action-value function Q'*" with weights

no=n.

3: Initialize sequence x = {X;} and feature vector ®(X;).

4: for n, =1,--- , N, do

5. forn,=1,---,N,, do

6: Execute action A, under the observable state X,.
Then feedback the instantaneous reward R;, state
X:+1 and the feature vector ®(X;y1).

7: Store the transition sequence
(P(X4), At, Ry, ®(Xt41)) in the replay buffer.

end for
Train the WGANS, and import the generated dataset to
the replay buffer after the convergence of WGANS.
10: forn.=1,---,N. do
11: Sample random mini-batches of
(@(Xj),Aj,Rj,‘p(Xj_;'_l)) from the
replay buffer.
12: Set

transitions
experience

Q { R;,if episode terminates
J= )

R; +ymaxy Q(P(X;11),A’;n™ ), otherwise

13: Perform a gradient descent step on Ly () with
respect to the evaluation network parameter 7.
nn—ap-VyLy(n)
14: if mod(N,, N,,) # 0 then

15: Reset Q' = Q°v% and let n~ = 1.
16: end if

17:  end for

18: end for

From (33), we can see that the SIL provides a polynomial
time solution for solving the problem (16). Moreover, from the
simulation results, we can see that the WGANs and Double
DQN can converge after thousands of iterations in the current
state. Therefore, SIL is able to provide an efficient solution
with low computational complexity for making TTI level
decisions.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
SIL by extensive simulations. We use the Multi-Wall-and-
Floor (MWF) model [44] as the propagation and penetration
loss model between SBS and UE in our indoor scenario.
MWEF takes into account the decreasing penetration loss of
walls and floors of the same category as the number of tra-
versed walls/floors increase, which is given by PL(d)[dB] =
Lo[dB]+2010g,((d) 4 1w L., where L is the reference loss

[dB] taken at one meter of distance between the transmitter
and the receiver, d is the distance between SBS and UE in
meters, L,, = 6dB is the penetration loss of the concrete
wall, n,, is the number of walls. Other parameters used are
listed in TABLE II.

TABLE I
SIMULATION PARAMETERS

Parameter Description Value
System Bandwidth 20 MHz
Number of Smart BSs 20
Number of Normal BSs 30
Number of UEs under a BS 10
RB Bandwidth 180 KHz
Noise power spectral density -174 dBm/Hz
Maximum SBS Transmit Power 23 dBm
Number of RBs 100
Resource allocation interval 1 TTI (1ms)
Reward Discount 0.99
Replay Buffer 10000

A. Comparison References in the Simulation

We use the following algorithms as the comparison refer-

ences in our performance evaluation:

1) Natural DON based ICIC: Since the action space of the
POMDP is discrete, we use Double DQN for implement-
ing the discrete decision-making process of the ICIC.
Particularly, there is no target network in the Natural
DQN, and the evaluated state-action value () is updated
without latency.

2) Double DQN based ICIC: Double DQN consists of two
networks: evaluation network and target network, where
the greedy policy is evaluated according to the evalu-
ation network, and the evaluated Q value is estimated
by the target network. By this way, it can overcome the
overestimation problem in the discrete decision-making
process.

3) MaxSINR based ICIC: MaxSINR chooses actions (i.e.,
subcarrier) with the largest SINR, which is a greedy pol-
icy without focusing on long-term network performance.

4) SIL based ICIC: SIL is the proposed self-imitation
learning algorithm in this work.

B. Numerical Results and Discussion

We first examine the convergence and the performance of
the generator and discriminator of WGANSs. Fig. 3 shows
the Wasserstein estimation varying with the training epochs.
From the simulation results, we can see that the discriminator
and generator are trained in the opposite direction. This is
because the discriminator and the generator are respectively
updated according to (23) and (24) which have the opposite
objectives. We can see that both the two training curves
converge after about 2000 epochs. The Wasserstein estimation
of the generator converges to 1, which means the adversarial



dataset generated by the generator G cannot be discriminated
by the discriminator . Moreover, the Wasserstein estimation
of the discriminator finally converges to 0, which means D is
impossible to distinguish between the generated dataset and
the real dataset correctly.
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o 4 o
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Wasserstein estimation

e
N
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Generator I

2000 3000 4000 5000
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Fig. 3. Training process of WGANs

Next, we compare the ability of the Natural DQN and
the Double DQN in solving the overestimation problem in
the discrete decision-making process. Fig. 4 shows that the
evaluated state-action value () changes with the increase of
the training steps. From the simulation results, we can see
that with the increase of the training steps, the changes of the
two curves gradually stabilized after about 5000 training steps.
This illustrates that the convergence of the two algorithms is
quite similar. Since the evaluated ) value converges around
75, the Natural DQN obviously overestimate the evaluated ¢
value before about 4000 training steps where the evaluated
@ value of the Natural DQN is always larger than 75. The
overestimation problem of the Natural DQN will result in a
significant error when estimating the evaluated @ value, which
makes the decision-making of the RL procedure inaccurate.
Moreover, we can see that the convergence area of the Double
DOQN is slightly larger than that of the Natural DQN, which
means the Double DQN can finally converge to better strate-
gies. Therefore, we choose Double DQN in the proposed SIL
framework for performing the resource allocation of ICIC.

Algorithms
200 —— Natural DQN
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e T —
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0 2000

Evaluated state-action value Q

4000 6000
Training steps

8000 10000

Fig. 4. The updating process of the evaluated state-action value @

Then, we illustrate the training process of SIL over time
steps. Fig. 5 shows the evaluated () value which changes with
the training steps. As shown in Fig. 5, the training process
has two continuous stages: buffer stage and training stage.
In particular, in the buffer stage, the training dataset shaped
with (state, action, action’, state’) are collected during the
operation period until the buffer size is full. Then, in the
training stage, the training dataset from the buffer is used
for implementing the batch-size policy gradient. After the
convergence of the training process, the derived strategies are
used for performing resource scheduling in the SIL.

In order to cater for the plug-and-play operation mode
of SBSs, we adopt a nested training scheme to reduce the
performance degradation occurring in the slow-start period and
thus to make the training process of SIL smoothy. Fig. 6 shows
the execution process of the proposed SIL algorithms, which
consists of two processes: a slow-start process and normal
execution process. Specifically, the slow-start process happens
at the boot-up stage of an SBS, where the SIL is unavailable
to be used since the replay buffer is in loading process and the
algorithm has not yet converged. After the completion of the
first slow-start process, the normal execution process begins,
where the next slow-start process and the normal execution
process work in a parallel way until the slow-start process
converges. By this way, SIL’s execution process is relatively
smoothy and the training time in the replay buffer can be
significantly reduced.
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Fig. 5. Training process: the slow start and convergence of SIL
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Fig. 6. Nested training in SIL

Next, we examine the performance of SIL framework on the
average throughput with and without the maxSINR initializa-



tion in the slow-start area. SIL with maxSINR initialization
means the index in the Softmax output layer is initialized
according to the value of SINR. Fig. 7 shows the average
throughput over time steps in the slow-start phase of the SIL.
From the simulation result, we can see that in the slow-
start phase, the performance on the average throughput of
SIL with maxSINR initialization is better than that of SIL
without maxSINR initialization. The average throughput is
significantly improved about 38.5%. Therefore, the design of
SIL with maxSINR initialization can effectively improve the
performance of SIL in the slow-start phase.

65 Algorithms
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Fig. 7. Performance comparison of SIL with and without maxSINR initial-
ization in the slow-start phase

Next, we extend the simulation to different network settings,
and examine the average throughput of the three algorithms
over time steps (TTIs). Specifically, we consider the coexis-
tence of smart SBSs and legacy SBSs running the maxSINR
ICIC in the HetNet, and fix the number of smart SBSs to
1 in this simulation. Two simulation settings are used for
comparison: 1) Simulation implemented in Fig. 9(a) consid-
ers 10 legacy SBSs in the environment, and 2) Simulation
implemented in Fig. 9(b) considers 50 legacy SBSs in the
environment. From Fig. 9(a) and Fig. 9(b), we can see that
the average throughput of SIL is higher than that of the
Double DQN and the maxSINR. In summarize, in Fig. 9(a),
the average throughput of SIL is improved about 0.6% and
4.8% when compared with Double DQN and maxSINR. In
Fig. 9(b), the improvement is about 6% and 18.5%. In the
simulation settings of Fig. 9(a), since the number of subcarriers
is adequate for a small number of SBSs, Double DQN and
maxSINR can easily find good strategies with great proba-
bility. Therefore, as the environment becomes more complex,
the improvement of the performance of SIL on the average
throughput becomes more significant when compared with that
of Double DQN and maxSINR.

In the last experiment, we compare the overall throughput of
the Double DQN, SIL and maxSINR under different number
of SBSs with fixed 50 environmental legacy SBSs. From
the simulation result of Fig. 9, we can see that the overall
throughput increases with the number of SBSs. In more detail,
when the number of the SBSs is less than 2, the difference
between the three algorithms is not obvious, which is because
the spectrum resources are adequate for a small number of
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SBSs. When the number of SBSs increases to larger than 2,
the performance improvement of the SIL becomes obvious
when compared with that of other algorithms. Specifically,
the average improvement of SIL on the overall throughput is
about 9.9% and 19.8% when compared with that of Double
DQN and maxSINR. Therefore, we can see that the SIL
can significantly improve the performance compared with
the reference algorithms especially in more complex network
environments.

VII. CONCLUSION

In this paper, we have proposed a self-imitating learning
(SIL) for solving the ICIC problem in decentralized HetNets.
The decision-making processes of the decentralized SBSs are
modeled as non-cooperative POMDP games, and the objective
of the decision-making process is formulated as a distributed
IRL problem aiming at improving the long-term performance
on system throughput while guaranteeing the QoS require-
ments. The main idea of SIL which consists of W-GANs and
Double DQN is used for performing behavior imitation and
few-shot learning with the aim of optimizing the IRL problem
from both the Policy and Value. In more detail, Double DQN
can significantly eliminate the overestimation and perform the
decentralized resource scheduling in this work, and W-GANs
in SIL are used to imitate the expert strategies and generate
adversarial training samples, and thus help Double DQN make
decisions more robust. Significant performance improvements
in terms of the average throughput and overall throughout
are achieved by SIL when compared with other benchmark
algorithms.
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