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and Xiang-Gen Xia, Fellow, IEEE

Abstract—Mobile edge caching/computing (MEC) has emerged
as a promising approach for addressing the drastic increasing
mobile data traffic by bringing high caching and computing
capabilities to the edge of networks. Under MEC architecture,
content providers (CPs) are allowed to lease some virtual
machines (VMs) at MEC servers to proactively cache popular
contents for improving users’ quality of experience. The scalable
cache resource model rises the challenge for determining the
ideal number of leased VMs for CPs to obtain the minimum
expected downloading delay of users at the lowest caching cost.
To address these challenges, in this paper, we propose an actor-
critic (AC) reinforcement learning based proactive caching policy
for mobile edge networks without the prior knowledge of users’
content demand. Specifically, we formulate the proactive caching
problem under dynamical users’ content demand as a Markov
decision process and propose a AC based caching algorithm to
minimize the caching cost and the expected downloading delay.
Particularly, to reduce the computational complexity, a branching
neural network is employed to approximate the policy function
in the actor part. Numerical results show that the proposed
caching algorithm can significantly reduce the total cost and the
average downloading delay when compared with other popular
algorithms.

Index Terms—Actor-critic algorithm, Branching neural net-
work, Reinforcement learning, Mobile edge caching.

I. INTRODUCTION

THE development of mobile internet applications is lead-
ing an explosive growth of mobile traffic. According

to the research from Cisco [1], global mobile data traffic
will rise nearly 7-fold from 2016 to 2021. The explosive
growth of mobile data traffic will be challenging for the
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design of next-generation mobile networks. Studies on traffic
explosion problem [2], [3] revealed that most data traffic is
due to the duplicate downloads of popular content items from
remote servers. Exploiting caching and distribution techniques,
popular content items are proactively cached in local servers
so that requests for the same content items can be fulfilled
locally without duplicate transmissions from remote servers
[4]. In this way, the redundant traffic can be eliminated and
in the meantime users’ quality of experience (QoE) can be
significantly improved [5].

Content distribution networks (CDN) have been widely used
to reduce redundant traffic in wired network paradigm [6].
However, the requested content items must travel through the
wireless carrier core network (CN) and radio access network
(RAN) before reaching the mobile users. Thus, the wired
links accessing to the Internet CDN nodes and the backhaul
links between the RAN and CN easily become the bottlenecks
that the CDN cannot cope with. To tackle these problems,
content items can be cached at the edge of the network rather
than CDN so that the content items can be directly delivered
to mobile devices, which can significantly offload the traffic
flowing to the CDN.

Currently, mobile edge caching/computing (MEC) archi-
tecture, which brings network functions and contents to the
network edge, has been proposed [7]. In this architecture,
mobile edge clouds (i.e., MEC servers) provide a strong
computational and storage capacity within RAN that can be
used to deploy applications and services as well as to cache
popular content items in close proximity to mobile devices [8].
Mobile edge clouds are implemented based on a virtualized
platform that leverages recent advancements in network func-
tions virtualization (NFV), information-centric networks (ICN)
and software-defined networks (SDN) [9]. Specifically, NFV
enables a single mobile edge cloud to create multiple virtual
machines (VMs) to provide elastic resource allocation for
content providers (CPs) [10]. Since caches in other domains
(such as hardware caches, web caches, etc.) are typically of a
fixed size, the scalable resource model of the cloud gives rise
to the challenge for determining the ideal cache size for a CP
to obtain maximum benefit (reduced end-to-end latency and
database load) at the lowest cost for resource use. Furthermore,
mobile edge clouds can perform specific tasks that cannot be
fulfilled with the traditional network infrastructure, such as
mobile big data analytics, context-aware service performance
optimization. Under this circumstance, mobile edge clouds can
acquire accurate cell information (such as users’ demands,
radio conditions, etc.) for dynamically performing optimal
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content caching [11].
To improve users’ QoE, CPs may be willing to lease some

VMs and proactively cache popular content items at mobile
edge clouds. Most existing studies on proactive caching as-
sume the content popularity or users’ content demand is known
in advance [12]–[16]. Although some studies assume that the
content popularity, which may reflect the average preferences
of a large group of users, can be known through statistics, it
cannot reflect the preference of each individual user. In reality,
the users’ preference and content demand are dynamically
varying in spatial and temporal domains [17]. This inspires
us to exploit machine learning methods to learn the users’
content demand and decide what to cache at mobile edge
clouds. Although some studies have used machine learning
methods to proactive caching [18]–[24], the number of leased
VMs is always assumed fixed. In fact, the number of leased
VMs will affect the performance of cache-enabled mobile edge
networks. Since the users’ content demand is dynamically
varying in spatial and temporal domains, CPs would like
to smartly change the number of leased VMs to save the
caching cost while guarantee the users’ QoE. Therefore, it
is meaningful to dynamically optimize the number of leased
VMs with the adjustment of the caching policy to realize the
tradeoff between the caching cost and the average downloading
delay under dynamical users’ content demand.

In this paper, we propose a novel proactive caching algorith-
m for mobile edge networks to minimize the caching cost as
well as the expected downloading delay of users. First, instead
of assuming a priori knowledge of users’ content demand,
which might be externally given in advance or estimated
in a separate training phase, our proposed algorithm learns
the users’ content demand online by observing the historical
content demand for cached content items in each mobile
edge cloud. Second, different from the existing works which
assume a fixed cache size, to the best of our knowledge,
our work is the first work to consider the scalable cache
resource model, which optimizes the number of leased VMs
with the adjustment of the caching policy to realize the trade-
off between the caching cost and the average downloading
delay under dynamical users’ content demand. Third, in order
to overcome the computationally intensive issue with large
action spaces in the action-value methods and high variance
issue of evaluating a policy in the policy gradient methods,
an actor-critic (AC) reinforcement learning based algorithm
is proposed to solve the proactive caching problem in a long
time period. Fourth, since the action space is too large and
thus the actor needs an exponential number of times to update
the policy function, a branching neural network is employed
to estimate the policy function, thus to effectively reduce the
computational complexity. Specifically, the main contributions
of this paper are summarized as follows:
• We investigate the proactive caching problem for mobile

edge networks without assuming the prior knowledge
of users’ content demand. Meanwhile, we consider a
scalable cache resource model and dynamically adjust
the number of leased VMs to match the dynamical users’
content demand, thus to realize the trade-off between the
caching cost and the average downloading delay of users.

• We model the proactive caching problem under dynam-
ical users’ content demand as a Markov decision pro-
cess (MDP) and propose an AC reinforcement learning
based caching algorithm to derive the caching solution
with aim of foresightedly minimizing the caching cost
as well as the expected downloading delay of users.
Neural networks (NNs) are employed to estimate the
state-value function and policy function in the critic and
actor, respectively. Particularly, in the actor part, as our
model has high-dimensional action space and the policy
update requires tackling the combinatorial increase of the
number of action dimensions, we employ a novel neural
architecture with multiple network branches, one for each
action dimension, to approximate the policy function.
This approach achieves a linear increase of the number
of network outputs by allowing a level of independence
for each individual action dimension.

• We conduct a series of experiments with different sys-
tem parameters and a real world dataset to verify the
effectiveness of our proposed AC based algorithm. It is
shown that the proposed AC based caching algorithm can
significantly reduce the total cost as well as the average
downloading delay of users and improve the cache hit
rate when compared with other state-of-the-art caching
algorithms.

The remainder of this paper is organized as follows. We
introduce the related work and the system model in Section
II and Section III, respectively. In Section IV, we present the
MDP model for formulating the proactive caching problem.
An actor-critic reinforcement learning based caching algorithm
is proposed to solve the problem in Section V. In Section VI,
we evaluate the performance of the proposed algorithm by
simulation. Finally, we conclude this paper in Section VII.

II. RELATED WORK

In recent years, the design of proactive caching policy for
mobile edge networks has attracted intensive research interest.
Existing mobile edge caching policies broadly fall into two
categories: those with perfect knowledge of users’ content
demand and those without.

A. Caching Policies with Perfect Knowledge of Users’ Content
Demand

Thus far, most relevant studies assume that either users’
instantaneous content demand or content popularity distribu-
tion are perfectly known in advance. K. Shanmugam et al.
[12] proposed a local caching policy for small cells aiming
to minimize the average download delay with known users’
content demand distribution. In [13], the authors proposed
a content popularity based caching scheme to maximize the
cache hit ratio, i.e., each base station (BS) caches the most
popular content items independently. In [14], a collaborative
edge caching strategy was studied for MEC networks to
improve caching resource utilization. The authors of [15]
proposed a joint content caching and delivering policy with
assuming the content popularity known in advance. In [16], the
authors investigated cooperative caching problem with aim of
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providing a global optimal caching solution for heterogeneous
networks by assuming the arrival intensity of users’ requests
and content popularity known a priori. However, these studies
are not suitable to be applied when the users’ content demand
or content popularity are time-varying.

B. Caching Policies without Perfect Knowledge of Users’
Content Demand

There is little research work in this category. A compari-
son of the characteristics of our proposed AC reinforcement
learning based proactive caching algorithm with other similar
learning approaches in the literature is summarised in Table
I. Driven by a proactive caching paradigm, in [18] and [19],
the authors proposed transfer learning based approaches to
estimate the content popularity by leveraging user content
correlations and users’ historical content demand. While those
transfer learning based approaches require training sets of
known content popularity, our proposed algorithm does not
need a training phase, but learns the users’ content demand
online, and thus adapts to a varying users’ content demand.

The authors of [20] proposed a multi-armed bandit (MAB)
algorithm to learn the content popularity distribution online
by refreshing the cached content and observing instantaneous
content demand for cached content items. Some extensions of
the MAB learning algorithm were proposed in [21] and [22].
The authors of [21] exploited the learned content popularity to
optimize the cache policy by taking the users’ connectivity to
the small base stations (SBSs) into consideration. In [22], the
authors investigated the content caching and sharing problem
from an MAB learning perspective, where the learning of the
content popularity distribution is incorporated with the content
caching and sharing process. The approaches in [21] and [22]
assume a specific type of content popularity distribution. The
assumption is restrictive as in practice the type of content
popularity distribution is unknown in advance. In contrast, our
proposed algorithm is model-free since it does not assume a
specific type of content popularity distribution. Moreover, in
[20]–[22], the MAB learning algorithm needs to estimate the
action values and find the action with the highest expected
reward. However, to achieve this, it needs to resort to an
optimization procedure in every state encountered to find the
action that leads to an optimal value. Therefore, those action-
value methods can be computationally intensive and may not
be suitable if the state space and action space are large.

The authors of [23] modelled the proactive caching problem
as a Markov decision process to minimize the expected long-
term average cost, and proposed low complexity parameterized
policy representations and used policy gradient reinforcement
learning to optimize the parameters. However, the policy
gradient methods suffer from high variance in the estimates
of the gradient, leading to slow learning. In [24], a deep
reinforcement learning framework was proposed for edge
caching to maximize the cache hit rate, when the content
popularity information is unknown and only the historical
users’ content demand can be observed. Deep reinforcement
learning based predictions are effective, but require huge
training data. Moreover, the cache size is typically fixed in

these studies. Taking the caching cost into consideration, it
is a necessary and challenging work to intelligently vary the
number of leased VMs with the dynamical users’ content
demand, thus to obtain the maximum cache benefit at the
lowest cost.

III. SYSTEM MODEL

The system model of proactive caching for mobile edge
networks is illustrated in Fig. 1. We consider a cache-enabled
mobile edge network with N mobile edge clouds which are
co-located in the BSs [9]. We denote MC = {1, 2, ..., N} as
the set of mobile edge clouds and CC = {1, 2, ..., N,N + 1}
as the set of clouds, where cloud N+1 is the central cloud. In
addition, we assume there exists a cloud operation controller,
which can timely know the content demands in these clouds
at current stage and deploy content items in any mobile edge
clouds at the next stage in a centralized way [25]. Operators
can open the mobile edge clouds to CPs, allowing them
to acquire the content demand information and lease some
resources (e.g., storage, bandwidth, computation capacity) of
the mobile edge clouds to improve users’ QoE [7].

Mobile edge cloud 1

Mobile edge cloud 2

Mobile edge cloud NUsers

.

.

.

Central cloud/Data center.

.

.

Fig. 1. System model of proactive caching for mobile edge networks.

We assume that there exists a set of users U = {1, 2, ..., U}
and each user is connected to one or more mobile edge clouds.
Let F = {1, 2, ..., F} be the set of content items provided by
the CP. Each content item f ∈ F is of size sf . We assume
that users’ content request occurs independently following
Poisson point processes with average arrival rate λu. The
user’s preference is defined as pu,f , i.e., the probability of
content item f requested by user u when the user has a content
request, and

∑
f∈F pu,f = 1.

Users can request content items from their connected clouds.
We define a binary variable yu,i,f ∈ {0, 1} as a user’s
content request association indicator to indicate whether user u
requests content item f from cloud i or not: yu,i,f = 1 if user u
requests content item f from cloud i and yu,i,f = 0 otherwise.
The users’ content request association matrix is denoted as
Y = [yu,i,f ]u∈U,f∈F,i∈CC . Hence, the users’ demand for
content item f in cloud i can be obtained, which is defined
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TABLE I
COMPARISON WITH RELATED WORK ON LEARNING-BASED PROACTIVE CACHING

Work [18], [19] [20] [21], [22] [23] [24] This Work
Model-Free Yes Yes No Yes Yes Yes

Online/Offline-Learning Offline Online Online Online Online Online
Free of Training Phase No Yes Yes Yes No Yes
Value Function-Based No Yes Yes No Yes Yes

Policy-Based No No No Yes Yes Yes
Scalable Cache Resource Model No No No No No Yes

as di,f =
∑
u∈U yu,i,f · λu · pu,f . The users’ content demand

matrix is denoted as S = [di,f ]i∈CC,f∈F .
Users’ content request association indicators are exception-

ally dependent of the caching decision. We define another
binary variable ai,f ∈ {0, 1} as a caching decision indicator
to indicate whether caching content item f in mobile edge
cloud i or not: ai,f = 1 if caching content item f in mobile
edge cloud i and ai,f = 0 otherwise. The caching decision
matrix is defined as A = [ai,f ]i∈MC,f∈F . User u can make
a request for content item f from cloud i only when content
item f is cached in cloud i. Therefore, we have yu,i,f ≤ ai,f .
We assume that the central cloud has all content items. This
assumption is justified by the fact that the central cloud can
retrieve any content item from the Internet.

Let the data transmission rate of cloud i to user u be denoted
as cu,i. The system load for a cloud can be defined as the
fraction of time required to deliver traffic loads from the cloud
to users. The system load for cloud i can be represented as
ρi =

∑
u∈U

∑
f∈F yu,i,f · λu · pu,f · sf/cu,i , and ρi < 1 for

system stability. Let ρ = [ρi]i∈CC be the system load vector.
On one hand, the more content items are cached in mobile

edge clouds, the more cache resources are needed, and the
larger caching cost is incurred. Hence, we define the caching
cost as the total number of cached content items, which is
given by Cc =

∑
i∈MC

∑
f∈F ai,f . On the other hand, in

order to minimize the average downloading delay of users,
we introduce a delay-optimal metric to demonstrate the down-
loading performance. We assume that the queuing model of
the system is M/G/s [26]. Thus, the number of downloading
flows in cloud i is ρi/(1− ρi). The delay-optimal performance
function can be formulated as Cd =

∑
i∈CC ρi/(1− ρi). Note

that Cd equals to the number of downloading flows in the
system. According to Little’s law, if we try to minimize Cd, it
is indeed equivalent to minimizing the average downloading
delay [27]. In order to minimize the caching cost as well as the
average downloading delay of users, in this paper, we define
the total cost function as:

C = Cc + ξCd, (1)

where ξ is a delay equivalent cost parameter indicating the
equivalent cost for one downloading flow waiting in the system
and reflecting the importance of the delay performance relative
to the caching cost. Here, we define a reward function as:

R = −C. (2)

Apparently, maximizing the expected reward equals to mini-
mizing the expected total cost.

To demonstrate the temporal users’ content demand varia-
tions, in this paper, we assume that time is slotted into periods.

The superscript k is used to represent the k-th time period. In
each time period, the CP makes a caching decision according
to the historical users’ content demand with aim to maximize
the expected reward, namely to minimize the expected total
cost. In the next section, we model the proactive caching
problem for mobile edge networks as an MDP.

IV. MDP FRAMEWORK FOR PROACTIVE CACHING IN
MOBILE EDGE NETWORKS

MDP is a classical formalization of sequential decision mak-
ing. In each time period, the agent observes the current state
and selects an action, and then interacts with the environment
to obtain certain reward and proceed to the next state. The
problem is to decide which action should be selected based
on the current information, so that the discounted accumulative
reward in a long-term can be maximized.

In the caching decision process for mobile edge clouds,
in time period k, when the users’ content demand matrix is
S(k), the CP selects caching decision matrix A(k) according
to a strategy π. The users correspondingly send their content
requests to the clouds according to users’ content request
association matrix Y(k), which can be determined by the
cached content items and the queuing delay in each cloud.
Thereafter, as the users’ content requests occur, the users’ con-
tent demand matrix transits into S(k+1), which is determined
by the varying number of users’ content requests associated to
each cloud in time period k. Meanwhile, the immediate reward
R(k)(S(k),A(k)) calculated by Eqs. (1) and (2) is fed back to
the CP. Apparently, the caching decision process for mobile
edge clouds is an MDP, where a caching decision matrix and
a users’ content demand matrix correspond to an action and a
state, respectively. The MDP framework for proactive caching
in mobile edge networks is illustrated in Fig. 2.

Formally, an MDP is defined as a tuple E =
〈S,A,P,R, γ〉. S = {s} is the state space, where element
s is a state; A = {a} is the action space, where element a
is an action; P = {P (s′|s, a)} is a state transition probability
function, where element P (s′|s, a) represents the probability
that state transits into s′ by taking action a under state s;
R = {R(s, a)} is a reward function, where element R(s, a)
represents the obtained reward by taking action a under state
s; γ ∈ (0, 1] is a discount factor which weighs the relative
contribution of current and future rewards.

In the MDP framework for proactive caching in mobile
edge clouds, the state space is denoted as S = {S},
which represents the set of users’ content demand matri-
ces. The action space is denoted as A = {A}, which
represents the set of caching decision matrices. In time
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Fig. 2. The MDP framework for proactive caching in mobile edge networks.

period k, action A(k) is selected in state S(k), and then
reward R(k)(S(k),A(k)) is obtained while the state transits
into S(k+1). The state transition probability is denoted as
P (S′|S,A) = Pr

{
S(k+1) = S′|S(k) = S,A(k) = A

}
. Note

that the state transition probabilities are unknown in our
proactive caching problem due to the dynamical users’ content
demand.

The agent selects an action in a state according to a
policy function π which refers to the mapping relationship
between state space and action space. For a stochastic policy,
represented as π(a|s), the probability of taking action a in state
s is π(a|s). The state value function is introduced to evaluate
the performance of a policy. The state value function V π(s)
is defined as the discounted accumulative reward obtained by
selecting actions according to policy π starting from state s,
namely:

V π(s) = Eπ

[ ∞∑
k=0

γkR(k)(s(k), a(k)|s(0) = s)

]
, (3)

where s(0) is the starting state; R(k)(s(k), a(k)) is the obtained
reward in time period k by taking action a(k) in state s(k).

In the MDP framework for proactive caching in mobile edge
clouds, the goal of the CP is to find a policy π, which maps a
state S to an action A with probability π(A|S) to maximize
the discounted accumulative reward starting from state S.
As mentioned before, this discounted accumulative reward is
called as a state value function, which can be represented by:

V π(S) = Eπ

[ ∞∑
k=0

γkR(k)(S(k),A(k)|S(0) = S)

]

=
∑
A∈A

π(A|S)

[
R(k)(S,A) + γ

∑
S′∈S

P (S′|S,A)V π(S′)

]
.

(4)

The optimal policy π∗ satisfies the Bellman equation [28]:

V ∗(S) = V π
∗
(S) = max{∑

A∈A

π∗(A|S)

[
R(k)(S,A) + γ

∑
S′∈S

P (S′|S,A)V π
∗
(S′)

]}
.

(5)

There are some well-known approaches to solve the MDP
problems such as dynamic programming [29]. Unfortunately,
these approaches depend on perfect knowledge of the dynamic
variation of environment to a great extent. However, it is
challenging to have the prior knowledge of the future users’
content demand. Hence, in the next section, we employ a
reinforcement learning approach to solve the MDP problem
without requiring the information of users’ content demand in
advance.

V. ACTOR-CRITIC REINFORCEMENT LEARNING BASED
CACHING POLICY

There are mainly three types of reinforcement learning
algorithms: actor-only, critic-only, and actor-critic, where actor
and critic correspond to the policy and value function re-
spectively [30]. Although actor-only methods (such as policy
gradient methods) can learn stochastic policies effectively for
the model with large action space and converge to a local
optimum asymptotically, they usually lead to high variance in
the estimates of expected rewards and learn slowly. Critic-only
methods (such as action-value methods) usually use temporal
difference (TD) iteration and thus have a lower variance in
the estimates of expected rewards, but they need to resort
to an optimization procedure in every state encountered for
finding the action with the highest expected reward, and thus
they usually cannot efficiently resolve the problems with large
action spaces, which is the case in our proposed problem. To
improve the learning performance, we thus employ the actor-
critic methods which combine the strong aspects of actor-only
and critic-only algorithms. The actor is capable of producing
discrete or continuous actions without the need for optimiza-
tion procedures on a value function. The critic provides the
estimated value function to the actor for updating the policy
parameters with lower variance [26]. These properties of actor-
critic algorithms have made them a preferred reinforcement
learning algorithm to solve the MDP problem in this paper.

Fig. 3 illustrates the actor-critic learning framework. The
agent can be divided into two entities: actor (policy) and critic
(value function). At a given state, the actor selects an action
according to the policy. After interacting with the environment,
the state transits into a new one while certain reward is
obtained. Then, the critic evaluates the quality of the current
policy and updates the value function by exploiting a TD
error. After that, the actor will update the policy by using the
information from the critic. The actor-critic algorithm repeats
the above process until it coverages.

Based on the actor-critic learning framework, in the follow-
ing, we propose an actor-critic based algorithm for solving the
proactive caching problem in mobile edge clouds. Specifically,
NNs are employed to estimate the state-value function and
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Fig. 3. Actor-critic learning framework.

policy function in the critic and actor, respectively. The illus-
tration of AC reinforcement learning framework for proactive
caching is shown in Fig. 4.

Action selection: We assume that the system is at the
beginning of time period k. Meanwhile, the current state is
S(k). Thereafter, the CP needs to select an action according
to a stochastic policy aiming at maximizing the accumulated
expected reward in a long-term. There is a well-known tradeoff
between exploration and exploitation: searching for a better
action (exploration) and achieving the highest empirical re-
wards (exploitation). One of the most common methodologies
is to employ a Boltzmann distribution as a stochastic policy.
The CP selects action A in state S(k) of time period k with
probability

π(A|S(k)) =
exp{h(S(k),A)/τ}∑

A′∈A
exp{h(S(k),A′)/τ}

. (6)

where τ is an adjustment parameter with a positive value, and
h(S(k),A) is an action selection preference function which
indicates the preference to select action A at state S(k).

User request and data transmission: In time period k, after
the CP caches some content items in mobile edge clouds
according to the selected action A(k), each mobile edge cloud
broadcasts the cached content items and current system load
ρ
(k)
i to users. When the users’ content requests occur, they

correspondingly send their content requests to the clouds

according to users’ content request association matrix Y(k),
which can be determined by the cached content items, system
loads and data transmission rates of each mobile edge cloud.
Formally, when user u has a content request for content item
f in time period k, the user’s content request association
indicator is defined as

y
(k)
u,i,f =

{
1, i = arg max

i∈CC
cu,i

(1−ρ(k)
i )
−2 · a(k)i,f ,

0, otherwise.
(7)

In [31], Eq. (7) has been proved to be the optimal to
achieve the minimum of the average download delay if the
caching decision matrix is determined. Note that when the
system loads of each cloud ρ

(k)
i , i ∈ CC are the same, the

users will send their content requests to the cloud which has
cached the requested content item while having the highest
data transmission rate.

State-value function update: Since the state-value function
cannot be calculated for infinite state problems with the Bell-
man equation, in this paper, we employ an NN for estimating
the state-value function. As shown in Fig. 5, we put the vector
Ψ(S) = (ψ1(S), ψ2(S), ..., ψd(S)), which is called feature
vector representing state S, into an NN, where d is the number
of features of state S. The output is the approximate state-value
function V (S,w), where w ∈ Rd is the parameter vector and
can be updated by using gradient descent method. Since the
performance of linear feature-based NN is sufficiently good
for our scenario with low complexity and it provides a good
convergence and stability, we apply a linear feature-based NN
to approximate the state-value function. As the linear feature-
based NN cannot take into account of any interactions between
features, it needs instead, or in addition, features for combina-
tions of all underlying states. Hence, in this paper, we employ
a polynomial method [32] to construct the features of state S as
the input of NN. Since the delay-optimal performance function
Cd (i.e., the number of downloading flows in the system) is
only related to the total numbers of users’ content requests in
every cloud, let x(S) = (x1(S), x2(S), ..., xN+1(S)) be the
basis feature vector, where xi(S) =

∑
f∈F si,f , i ∈ CC (i.e.,

the total numbers of users’ content requests in every cloud) are
the basis features. Then, each polynomial-basis feature ψi(S)
can be written as
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ψi(S) =

N+1∏
j=1

(xj(S))
ni,j , (8)

where each ni,j is an integer in the set {0, 1} . These
polynomial-basis features form the feature vector Ψ(S) which
contains d = 2N+1 different features. Then, the output
approximate state-value function V (S,w) can be represented
as

V (S,w) = wT ·Ψ(S) =

d∑
i=1

wi · ψi(S). (9)

 ( )f 

1w

2w

.

.

.

( )V ,S w

dw

1 ( ) S

2 ( ) S

( )d S

Fig. 5. A neural network for estimating the state-value function.

After the user request and data transmission phase in time
period k, the users’ content demand in each cloud may change,
and thus the system state transits into S(k+1). Meanwhile,
the reward R(k)(S(k),A(k)) of selecting action A(k) at state
S(k) in time period k can be calculated by Eqs. (1) and (2).
Consequently, the critic computes TD error δ(k)(S(k),A(k))
by exploiting the approximate state-value function and ob-
tained reward. Specifically, TD error δ(k)(S(k),A(k)) is the
difference between R(k)(S(k),A(k)) + γ · V (k)(S(k+1),w)
and the state-value function V (k)(S(k),w) estimated at the
preceding state, namely,

δ(k)(S(k),A(k)) =R(k)(S(k),A(k)) + γ · V (k)(S(k+1),w)

− V (k)(S(k),w).
(10)

Afterwards, the critic would feed the TD error back to the
actor. Meanwhile, the critic exploits the TD error to update the
parameter vector w by gradient descent method. Specifically,
the parameter vector w is updated by

w ← w + α(k)
w δ(k)(S(k),A(k))∇wV (S(k),w), (11)

where α(k)
w is a positive step-size parameter which affects the

convergence rate, and ∇wV (S(k),w) gives the direction of
the gradient. Since the NN is linear feature-based, according
to (9), we have ∇wV (S(k),w) = Ψ(k)(S).

Policy update: Similar to the estimation of the state-value
function, we use another NN to obtain the approximate policy
function π, as shown in Fig. 6. We put the feature vector

Φ(S,A) = (φ1(S,A), φ2(S,A), ..., φd′(S,A)) which repre-
sents state S and action A into the NN in Fig. 6, where
d′ represents the number of features of state S and action
A. The output is the approximate policy function π(A|S,θ),
represented by

π(A|S,θ) =
exp{h(S,A,θ)/τ}∑

A′∈A
exp{h(S,A′,θ)/τ}

, (12)

where θ ∈ Rd′ is the parameter vector of the NN, and the
action selection preference function is given as

h(S,A,θ) = θT · Φ(S,A) =

d′∑
i=1

θi · φi(S,A). (13)


.
.
.

1( , ) S A

2 ( , ) S A

' ( , )d S A

'd

2

1

( | ), A S θ( )g 

Fig. 6. A neural network for estimating the policy function.

At the end of time period k, the actor would use the TD
error to update the policy, i.e., updating the parameter vector
θ. The parameter vector θ is updated by

θ ← θ + α
(k)
θ δ(k)(S(k),A(k))∇θ lnπ(A(k)|S(k),θ), (14)

where α
(k)
θ is a positive step-size parameter that affects the

convergence rate, and ∇θ lnπ(A(k)|S(k),θ) gives the direc-
tion of the gradient. According to (12) and (13), we have

∇θ lnπ(A(k)|S(k),θ) = Φ(S(k),A(k))

−
∑
A′∈A

π(A′|S(k),θ) · Φ(S(k),A′).

(15)

However, the action space is too large (i.e., |A| = 2(N+1)·F )
and the computational complexity of policy update is exponen-
tial to the number of mobile edge clouds N+1 and the number
of content items F . These properties make policy update hard
to implement. In order to reduce the computational complexity,
in the following, we employ a novel neural architecture with
several network branches, which is called branching neural
network, to estimate the policy function. In a branching neural
network for the policy function estimation, action space can
be separated into several dimensions and each neural network
branch estimates a policy function on an action dimension. In
[33], A. Tavakoli et al. have proven the effectiveness of the
branching neural network model.
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As shown in Fig. 7, we separate action A into F dimen-
sions, i.e., A = (A1

T ,A2
T , ...,AF

T ) and Af = [ai,f ]i∈MC ,
f ∈ F . The action space of the f -th dimension is denoted as
Af = {Af}. Hence, we need F neural network branches
to estimate the policy function in each action dimension.
Specifically, the output of the f -th neural network branch is
represented by

π(Af |S,θf ) =
exp{h(S,Af ,θf )/τ}∑

Af
′∈Af

exp{h(S,Af
′,θf )/τ}

, (16)

where θf ∈ Rd′ is the parameter vector of the f -th neural
network branch, and the action selection preference function
of the f -th action dimension is given by

h(S,Af ,θf ) = θf
T · Φ(S,Af ) =

d′∑
i=1

θi,f · φi(S,Af ).

(17)

where Φ(S,Af ) = (φ1(S,Af ), φ2(S,Af ), ..., φd′(S,Af )) is
the feature vector which represents state S and action Af .
We also use the polynomial method [32] to construct the
features of state S and action Af . Each polynomial-basis
feature φi(S,Af ) is denoted as

φi(S,Af ) =
∑
i∈CC

si,f ·
N∏
j=1

(aj,f )
ni,j , (18)

where
∑
i∈CC si,f represents the total number of users’ content

requests for content item f . These polynomial-basis features
form the feature vector Φ(S,Af ) which contains d′ = 2N

different features.
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Fig. 7. A branching neural network for estimating the policy function.

At the end of time period k, the actor uses the TD error to
update the parameter vector of the branching neural network.
The parameter vector θf , f ∈ F is updated by

θf ← θf + α
(k)
θf
δ(k)(S(k),A(k))∇θf

lnπ(Af
(k)|S(k),θf ),

(19)

where α
(k)
θf

is a positive step-size parameter that affects
the convergence rate, and ∇θf

lnπ(Af
(k)|S(k),θf ) gives the

direction of the gradient. According to (16) and (17), we have

∇θf
lnπ(Af

(k)|S(k),θf ) = Φ(S(k),Af
(k))

−
∑

Af
′∈Af

π(Af
′|S(k),θf ) · Φ(S(k),Af

′). (20)

In policy update, the number of actions in each dimension
is |Af | = 2(N+1), f ∈ F and the computational complexity of
updating the parameter vector of the branching neural network
is exponential to the number of mobile edge clouds N+1 and
linear to the number of content items F . Although each neural
network branch ignores the influence of other action space
dimensions when learning the policy function in one action
dimension, it greatly reduces the computational complexity
of updating the parameter vector of the branching neural
network, making it feasible to use neural network estimating
policy function in the case of large action space. The AC
reinforcement learning based caching policy is summarized
in Algorithm 1.

Algorithm 1
1: Initialize vectors w, θf , f ∈ F .
2: for each time period k = 0, 1, 2, ... do
3: Action selection: Select action Af

(k) in state S(k)

according to policy π(Af |S, θf ), f ∈ F in (16).
4: User request and data transmission: When user u has a

content request for content item f , he/she send his/her
content request to the cloud according to the user’s
content request association indicator in (7).

5: State-value function update: (a) Observe the next state
S(k+1); (b) Calculate reward R(k)(S(k),A(k)) accord-
ing to (1) and (2); (c) Put feature vectors Ψ(S(k))
and Ψ(S(k+1)) into the NN to compute the state value
function V (S(k),w) and V (S(k+1),w) respectively; (d)
Calculate TD error δ(k)(S(k),A(k)) according to (10);
(e) Update parameter vector w by (11).

6: Policy update: (a) Put feature vector Φ(S,Af ) into the
branching neural network to compute policy function
π(Af |S,θf ), Af ∈ Af , f ∈ F ; (b) Update parameter
vector θf , f ∈ F by (19).

7: end for

Next, we analyze the convergence of Algorithm 1. In Algo-
rithm 1, state-value function parameter vector w is updated by
the critic, while policy parameter vector θf , f ∈ F is updated
by the actor according to the TD error from the critic feedback.
The optimal state-value function parameter vector and policy
parameter vector would be found when they converge to
an optimum state-value function and an optimum policy,
respectively. To guarantee the convergence theoretically, the
critic’s estimation should be at least asymptotically accurate,
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and thus the step-size parameters α
(k)
w and α

(k)
θf

should be
non-increasing, and typically satisfy the following conditions
[34]:

∞∑
k=0

α
(k)
w =∞,

∞∑
k=0

[α
(k)
w ]

2
<∞,

∞∑
k=0

α
(k)
θf

=∞,

∞∑
k=0

[α
(k)
θf

]
2
<∞, and lim

k→∞

α
(k)
θf

α
(k)
w

= 0.

The first four conditions guarantee that the learning process
will slow down gradually but never stop. The last condition
ensures that the update of the actor operates on a slower time-
scale compared to the critic so that the critic has enough time
to evaluate the current policy.

VI. PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of our proposed
AC based caching algorithm. The performance metrics we
employ include the total cost, the average downloading delay
and the cache hit rate. The total cost is defined as

∑
k C

(k),
where C(k) is calculated by Eq. (1). The average downloading
delay is defined as the average delay experienced by all users
for downloading requested content items, where the delay of
user u downloading content item f from cloud i is denoted by
(sf/cu,i )/(1− ρi) . The cache hit rate is defined as H/R ,
where H is the number of users’ content requests which are
satisfied by content retrieval from mobile edge clouds and R
is the total number of users’ content requests.

We conduct simulation experiments to compare the perfor-
mance of the proposed AC based caching algorithm with the
following four caching algorithms: 1) Informed upper bound
(IUB) caching algorithm [35], which assumes that the users’
content demand is perfectly known in advance and the CP
finds the optimal caching solution by greedily caching as
many as content items into mobile edge clouds. 2) ε-greedy
caching algorithm [26], which employs ε-greedy instead of
Boltzmann distribution as a stochastic policy. 3) State-of-the-
art (SOTA) caching algorithm [20], in which each mobile edge
cloud employs the modified combinatorial upper confidence
bound (MCUCB) algorithm to learn the users’ content demand
via a combinatorial multi-armed bandit (MAB) framework
and caches content items with a greedy approach. 4) Least
frequently used (LFU) caching algorithm [36], which assumes
that the users’ content demand is perfectly known in advance
and each mobile edge cloud always keeps the most frequently
requested content items in the cache. Modified least recently
used (MLRU) caching algorithm [36], which keeps all the
content items that have been requested within the last time
period and randomly replaces the rest of the content items. 4)
Randomized replacement (RR) caching algorithm [37], which
randomly caches content items in mobile edge clouds.

We consider a cache-enabled mobile edge network with five
mobile edge clouds which are co-located in the BSs [35].
There are 1000 users randomly connected to one or more
mobile edge clouds. The content set provided by the CP
has 1000 content items, and each content item is of size 10
units [16]. Each user generates content requests independently
following Poisson process with average rate 0.1 (arrivals/time
period) [17]. The content popularity generally follows ZipF

distribution [12], i.e., the probability that a request is for the
j-th most popular content item is j−β/

∑F
i=1 i

−β , where
the ZipF distribution parameter β is 0.56 [12]. We normalize
the data transmission rate from central cloud to users as 1
unit/s and assume the data transmission rate from mobile edge
clouds to users is 3 unit/s [38]–[40]. In reality, the transmission
rates from central cloud and mobile edge clouds to the end
users depend on the transmission distance (or transmission
hops) [41]. Due to the long transmission distance (two or
more transmission hops) between the central cloud and the
end users, it is a reasonable assumption. The delay equivalent
cost parameter ξ is 5000 [26]. The discount factor γ is 0.99
[30]. As for the proposed AC based caching algorithm, the
step-size parameters α(k)

w and α(k)
θf

are 1/k and 1/(k log k) ,
respectively [26]. In LFU, MLRU and RR caching algorithms,
we assume that the leased cache size of each mobile edge
cloud is fixed to 100 units. Note that the total leased cache
size in the cell is 5% of the total content size, which is a
realistic assumption [42]. For other caching algorithms, there
is no limitation on leased cache size, and the leased cache
sizes depend on the cache decisions. The duration of each
time period is normalized to one hour. For each experiment,
we run the simulation for 300 time periods [23], i.e., each
user generates 300 · λu content requests according to the Zipf
distribution. To examine the impact of some parameters on
the performance, we simulate by adjusting only one parameter
while configuring the others according to Table II.

TABLE II
SYSTEM PARAMETERS

Parameters Values
Number of mobile edge clouds (N ) 5
Number of users (U ) 1000
Number of content items (F ) 1000
Size of each content item (sf ) 10 units
Average arrival rate of users’ content requests (λu) 0.1
ZipF distribution parameter (β) 0.56
Data transmission rate of central cloud to users (cu,N+1) 1 unit/s
Data transmission rate of mobile edge cloud i to users (cu,i) 3 unit/s
Delay equivalent cost parameter (ξ) 5000
Discount factor (γ) 0.99

In the first experiment, we compare the total cost, the aver-
age downloading delay and the cache hit rate when the average
arrival rate of users’ content requests λu varies from 0.06 to
0.14 in Fig. 8. We can see that the total cost and the average
downloading delay increase with λu for the LFU, MLRU and
RR caching algorithms in Fig. 8 (a) and (b), respectively. This
is because that in the LFU, MLRU and RR caching algorithms,
the leased cache size of each mobile edge cloud is fixed. With
the increase of λu, the system load in each cloud increases,
and thus the average downloading delay and the total cost
increase accordingly. We can also observe that the total cost
and the cache hit rate increase with λu for the IUB, AC based,
ε-greedy and SOTA caching algorithms in Fig. 8 (a) and (c),
respectively, while the average downloading delay decreases
with λu for the IUB, AC based, ε-greedy and SOTA caching
algorithms in Fig. 8 (b), since the IUB, AC based, ε-greedy and
SOTA caching algorithms would like to cache more content
items in mobile edge clouds to offload the traffic of the central
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cloud when λu increases. As expected, IUB provides an upper
bound on the performance of the caching algorithms. Note
that since the users’ content demand is usually unknown in
practice, it is impossible to achieve such performance upper
bound. Among the other caching algorithms, the AC based,
ε-greedy and SOTA caching algorithms outperform the LFU,
MLRU and RR caching algorithms. This is due to the fact
that the AC based, ε-greedy and SOTA caching algorithms
learn from the historical users’ content demand to make the
caching decisions for different arrival rates of users’ content
requests, while RR ignores the history information of users’
content demand and MLRU learns the historical users’ content
demand only from one-step past. Although the LFU caching
algorithm utilizes the history information, i.e., the frequency,
it is also short of the benefits from cooperative caching. Note
that the AC based and ε-greedy caching algorithms outperform
SOTA since each mobile edge cloud learns the users’ content
demand from its own set of connected users without taking
into account the overall network connectivity in SOTA, and the
AC based caching algorithm outperforms the ε-greedy caching
algorithm because of the insufficient exploration issue in the
ε-greedy algorithm [32]. In Fig. 8 (a), the total cost of the AC
based caching algorithm is significantly lower than that of the
ε-greedy, SOTA, LFU, MLRU and RR caching algorithms. In
particular, compared with the ε-greedy, SOTA, LFU, MLRU
and RR caching algorithms, the gain of the AC based caching
algorithm in terms of the total cost is approximately 3%, 5%,
22%, 26% and 29%, respectively, when λu is up to 0.14.

Next, we compare the total cost, the average downloading
delay and the cache hit rate for different delay equivalent cost
parameters in Fig. 9. We can observe that the total cost and
the cache hit rate increase with ξ for the IUB, AC based, ε-
greedy and SOTA caching algorithms in Fig. 9 (a) and (c),
respectively, and the average downloading delay decreases
with ξ for the IUB, AC based, ε-greedy and SOTA caching
algorithms in Fig. 9 (b). The reasons are as follows. When
ξ is large, the delay equivalent cost ξCd is more significant
than caching cost Cc . Therefore, the IUB, AC based, ε-
greedy and SOTA caching algorithms would like to cache more
content items in mobile edge clouds to reduce the average
downloading delay. In Fig. 9 (a), it is shown that the AC based
caching algorithm outperforms the ε-greedy, SOTA, LFU,
MLRU and RR caching algorithms with the improvement on
the total cost approximately 3%, 4%, 16%, 19% and 21%,
respectively, when the delay equivalent cost parameter is 7000.

Fig. 10 shows the total cost, the average downloading delay
and the cache hit rate as a function of the total number of
content items. We can see that the total cost and the average
downloading delay increase with the number of content items
for all caching algorithms in Fig. 10 (a) and (b), respectively,
and the cache hit rate decreases with the number of content
items for all caching algorithms in Fig. 10 (c), since more
content requests have to be satisfied by central cloud with the
increase of F . In Fig. 10 (b), it is shown that the AC based
caching algorithm outperforms the ε-greedy, SOTA, LFU,
MLRU and RR caching algorithms with the improvement on
the average downloading delay approximately 2%, 4%, 12%,
15% and 17%, respectively, when the number of content items

is 2500.
Next, we compare the total cost, the average downloading

delay and the cache hit rate for varying number of mobile edge
clouds from 3 to 7 in Fig. 11. From Fig. 11 (b) and (c), we
can observe that the average downloading delay decreases and
the cache hit rate increases with N for all caching algorithms
since more users’ content requests can be served in mobile
edge clouds with the increase of N . In Fig. 11 (a), we can see
that the total cost decreases with N for the IUB, AC based,
ε-greedy, SOTA, LFU and MLRU caching algorithms, while
the total cost increases with N for RR. This is because that
the increase of caching cost Cc is greater that the decrease
of the delay cost with the number of mobile edge clouds
for the RR caching algorithm. In Fig. 11 (b), the average
downloading delay of the AC based caching algorithm is
significantly lower than that of the ε-greedy, SOTA, LFU,
MLRU and RR caching algorithms. Compared with the ε-
greedy, SOTA, LFU, MLRU and RR caching algorithms, the
gain of the AC based caching algorithm in terms of average
downloading delay is approximately 4%, 8%, 24%, 27% and
29%, respectively, when the number of mobile edge clouds is
7.

In the following, we examine the impact of the ZipF distri-
bution parameter β on the total cost, the average downloading
delay and the cache hit rate in Fig. 12. From Fig. 12, we
can see that when β ranges from 0.2 to 1, the total cost
as well as the average downloading delay decrease and the
cache hit rate increases for all caching algorithms. The reasons
are as follows. When β is large, the vast majority of user
requests are concentrated on a small number of content items.
Clearly, caching the most popular content items provides more
significant benefits.

Finally, we use a dataset of MovieLens from the real world
[43] to further evaluate the performance of our proposed
caching algorithm. The MovieLens 100K Dataset [44] records
943 MovieLens users’ rating data in the form of 〈User
ID, Movie ID, Rating, Timestamp〉, which contains 100,000
ratings of 1,682 movies during the seven-month period from
September 19, 1997 through April 22, 1998. We assume that
the movie rating process in the dataset is corresponding to the
content request process [45]. We divide the timestamp into
time periods of one hour each, and we run the simulation
for 300 time periods. Fig. 13 shows the number of content
requests in each time period.

We run all caching algorithms on the dataset and study
their results as a function of time. Fig. 14(a), 14(b) and 14(c)
show the cumulative total cost, the cumulative downloading
delay of users and the cumulative numbers of cache hits up to
time period t as a function of time, respectively. We can see
that for all caching algorithms, the cumulative total cost, the
cumulative downloading delay of users and the cumulative
numbers of cache hits are increasing abruptly, due to the
burstiness of the content request process. As expected, the
IUB gives an upper bound to the other caching algorithms.
However, since the users’ content demand is usually unknown
in practice, it is impossible to achieve such performance upper
bound. Among the other caching algorithms, our proposed
AC based caching algorithm clearly outperforms the ε-greedy,
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   (a) The total cost                                         (b)The average downloading delay                                    (c) The cache hit rate

Fig. 8. The total cost, the average downloading delay and the cache hit rate of the IUB, AC based, ε-greedy, SOTA, LFU, MLRU and RR caching algorithms
for different arrival rates of users’ content requests.

(a) The total cost                                           (b)The average downloading delay                                      (c) The cache hit rate

Fig. 9. The total cost, the average downloading delay and the cache hit rate of the IUB, AC based, ε-greedy, SOTA, LFU, MLRU and RR caching algorithms
for different balancing parameters.

(a) The total cost                                (b)The average downloading delay                                (c) The cache hit rate

Fig. 10. The total cost, the average downloading delay and the cache hit rate of the IUB, AC based, ε-greedy, SOTA, LFU, MLRU and RR caching algorithms
for different numbers of content items.
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(a) The total cost                                                       (b)The average downloading delay                                                  (c) The cache hit rate

Fig. 11. The total cost, the average downloading delay and the cache hit rate of the IUB, AC based, ε-greedy, SOTA, LFU, MLRU and RR caching algorithms
for different numbers of mobile edge clouds.

(a) The total cost                                 (b)The average downloading delay                                  (c) The cache hit rate

Fig. 12. The total cost, the average downloading delay and the cache hit rate of the IUB, AC based, ε-greedy, SOTA, LFU, MLRU and RR caching algorithms
for different ZipF distribution parameters.

Fig. 13. The number of content requests in each time period.

SOTA, LFU, MLRU and RR caching algorithms. This is due
to the fact that the AC based caching algorithm can efficiently
learn from the historical users’ content demand to make the
caching decisions. In particular, compared with the ε-greedy,
SOTA, LFU, MLRU and RR caching algorithms, the gain of
the AC based caching algorithm in terms of the cumulative
total cost up to time period 300 is approximately 1%, 2%,
7%, 9% and 10%, respectively, and the gain of the AC based
caching algorithm in terms of the cumulative downloading
delay of users up to time period 300 is approximately 3%,
4%, 15%, 18% and 19%, respectively.

VII. CONCLUSION

In this paper, we have addressed the proactive caching
problem for mobile edge networks from a reinforcement learn-
ing perspective when the prior information of users’ content
demand is unknown. Considering the scalable cache resource
model of the mobile edge clouds, we specifically formulate
the proactive caching problem under dynamical users’ content
demand as a Markov decision process. Afterwards, we propose



13

(a) The cumulative total cost                     (b)The  cumulative downloading delay of users                  (c) The  cumulative number of cache hits

Fig. 14. The cumulative total cost, the cumulative downloading delay of users and the cumulative numbers of cache hits of the IUB, AC based, ε-greedy,
SOTA, LFU, MLRU and RR caching algorithms in each time period.

an actor-critic (AC) reinforcement learning based algorithm
to give the caching solution to minimize the caching cost as
well as the expected downloading delay. Particularly, since the
action space is too large and thus the actor needs exponential
number of times to update the policy function, a branching
neural network is employed to estimate the policy function
thus to effectively reduce the computational complexity. Nu-
merical results show that the proposed AC based caching
algorithm outperforms other popular caching algorithms in
terms of the total cost, the average downloading delay and
the cache hit rate.
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