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A B S T R A C T

Binary Polar Codes (BPCs) have advantages of high-efficiency and capacity-achieving but suffer from large latency
due to the Successive-Cancellation List (SCL) decoding. Non-Binary Polar Codes (NBPCs) have been investigated
to obtain the performance gains and reduce latency under the implementation of parallel architectures for multi-
bit decoding. However, most of the existing works only focus on the Reed-Solomon matrix-based NBPCs and the
probability domain-based non-binary polar decoding, which lack flexible structure and have a large computation
amount in the decoding process, while little attention has been paid to general non-binary kernel-based NBPCs
and Log-Likelihood Ratio (LLR) based decoding methods. In this paper, we consider a scheme of NBPCs with a
general structure over GF(2m). Specifically, we pursue a detailed Monte-Carlo simulation implementation to
determine the construction for proposed NBPCs. For non-binary polar decoding, an SCL decoding based on LLRs is
proposed for NBPCs, which can be implemented with non-binary kernels of arbitrary size. Moreover, we propose a
Perfect Polarization-Based SCL (PPB-SCL) algorithm based on LLRs to reduce decoding complexity by deriving a
new update function of path metric for NBPCs and eliminating the path splitting process at perfect polarized (i.e.,
highly reliable) positions. Simulation results show that the bit error rate of the proposed NBPCs significantly
outperforms that of BPCs. In addition, the proposed PPB-SCL decoding obtains about a 40% complexity reduction
of SCL decoding for NBPCs.
1. Introduction

Polar codes originally proposed by E.Arikan can provably achieve the
symmetric capacity of binary-input discrete memoryless channels [1].
Due to the high data rates and spectrum efficiency [2–4], polar codes
have been adopted by 5G new radio technology. However, considering
the suboptimality and seriality of Successive Cancellation (SC) decoding
[5,6], the BER performance of Binary Polar Codes (BPCs) is inferior to
that of Low-Density Parity-Check (LDPC) codes, especially for long code
length.

For further improvement, SC-List (SCL) decoding proposed by Tal and
Vardy has shown the comparable performance of maximum-likelihood
decoding with the increase of list size [7], which has been widely used
in the hardware implementation of polar codes [8,9]. Particularly, the Bit
Error Rate (BER) performance of polar codes can be further improved by
Cyclic Redundancy Check (CRC) aided SCL decoding [10], which makes
a better BER performance than that of LDPC codes [11]. The future
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wireless communication system has an urgent call for low latency
[12–14]. However, updating and sorting Path Metrics (PMs) of the SCL
decoding is complicated for parallel implementation leading to a high
latency especially when the list size is large. As a development, the
parallel output-based SCL decoding with the multi-bit decision has
shown a considerable latency gain [15–17] and an excellent performance
for practical systems [18].

As a promising technology, Non-Binary Polar Codes (NBPCs) were
studied to improve the latency and BER performance of BPCs. It was
proved that when the input alphabet size q is a prime number, a similar
construction of binary counterparts leads to polarization [19]. Especially,
sufficient conditions for channel polarization on kernel were derived in
Ref. [20]. In Refs. [21,22], channel polarization provably holds when q is
not a prime number, which shows that polar codes could be transmitted
reliably with q-ary inputs [23]. In Refs. [24–28], several constructions of
NBPCs were proposed. To be more specific, the performance of
Reed-Solomon (RS) matrix based NBPCs outperform the BPCs over
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Binary Input Additive White Gaussian Noise (BI-AWGN) channels [24,
25]. Importantly, multiple bits of NBPCs are decoded together as one
symbol due to the nature of SC decoding, which leads to a latency gain
[26]. In Ref. [27], a probability domain-based decoding is proposed for
NBPCs with the non-binary kernel over GF(q). Moreover, NBPCs for
high-order modulation schemes were designed to further enhance the
performance contrast to BPCs [28].

While most of the existing works focus on the RS matrix-based NBPCs
and probability domain-based non-binary polar decoding, there are still
some challenges that need to be well addressed before fully enjoying the
advantages of NBPCs. First, the encoding and decoding structures of RS-
based NBPCs lack flexibility and universality since the size of the non-
binary kernel increases with the field size. Second, the probability
domain-based decoding leads to a high computation and memory in the
decoding process [29], which is not friendly to hardware implementa-
tion. Third, the trade-off between the decoding complexity and BER
performance of NBPCs needs to find an optimal balance for applications
[30,31].

To address the above challenges, in this paper, we design an NBPC
with a general structure over GF(2m), where the popular Log-Likelihood
Ratio (LLR) based SCL decoding can be employed flexibly with no
constraint on the field size. The set of frozen positions is found by the
Monte-Carlo simulation. As a further development, the LLR-based SCL
decoding algorithm is presented by using a generalized LLR recursive
function for NBPCs. Moreover, a Perfect Polarization Based-SCL (PPB-
SCL) algorithm based on LLRs is proposed to reduce the complexity of
original non-binary SCL decoding. Simulation results show that the
proposed NBPCs with PPB-SCL decoding obtain a 0.3 dB–0.5 dB gain
compared to BPCs, where the additional complexity cost is reduced from
120% to 35%. The proposed scheme provides an appropriate trade-off
between computational complexity and reliability.

Specifically, the main contributions of this paper are summarized as
follows:

1) A CRC-aided NBPC based on general non-binary kernels over GF(2m)
is proposed, which is not limited by the structure of RS kernels and
thus can be implemented flexibly. Specifically, based on the binary
kernel and the polarization conditions, we present the generalized
non-binary polarization kernel, which can be easily extended to a
large scale. For the channel polarization of NBPCs, the Monte-Carlo
simulation method with Genie-aided SC decoding algorithm is
considered to select the frozen symbols and information symbols.

2) For the universality of the NBPC decoding structure, the LLR-based
SCL decoding algorithm for proposed NBPCs is considered. Accord-
ing to the partial distances of the kernel and the probability domain-
based decoding of NBPCs, the LLR recursive function of proposed
NBPCs is generally presented for the arbitrary kernel size. Particu-
larly, we directly give the LLR for the common 2� 2 kernel by
employing the general functions. Furthermore, the LLR-based PM for
proposed NBPCs is introduced by analyzing the penalty value of PMs
for BPCs.

3) To trade-off between the decoding complexity and BER performance,
PPB-SCL decoding is proposed for NBPCs. There are two main im-
provements over original non-binary SCL decoding. First, an opti-
mized update function of PMs is derived to reduce the computational
complexity, where only one class of LLR calculation is required just
like BPCs. Then, inspired by the hybrid decoder, the redundant split
paths are pruned in the decoding process if the current channel po-
sition shows high reliability in the Monte-Carlo simulation.

The rest of this paper is organized as follows. In Section 2, the system
model of the proposed NBPCs is given. Section 3 and Section 4 describe
the encoding and decoding schemes respectively. In Section 5, the per-
formance of NBPCs we constructed is evaluated by numerical simula-
tions. Finally, the conclusions and future research ideas are drawn in
Section 6.
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Notations: Let uN1 and uji denote row vectors (u1, …, uN) of length N
and its sub-vectors (ui,…,uj), 1� i� j�N. Let uN1;o and uN1;e denote odd

and even index vectors of uN1 , respectively. The estimate of uN1 is defined

as buN
1 . LetAc and jAj denote the complement set and the cardinality ofA,

respectively. A \ B represents the subtraction between A and B. GT rep-
resents a kernel matrix with size T, where GT(r) is the r-th column vector
of GT. Let Gi,j, i, j 2 {1,…, T} correspond to the element at position (i, j) in
GT. Let � refer to the Kronecker product of a matrix with the recursive
formula F�n ¼ F� F�ðn�1Þ; n � 1. In this paper, we consider the Galois
field GF(q), q¼ 2m, i.e., the extension field of GF(2). Binary and decimal
numbers are employed to map elements over Galois field. Each element
can be represented by binarym-tuples or decimal numbers between 0 and
q � 1.

2. System model

Similar to that in Ref. [27], the system we established is shown in
Fig. 1, where frozen symbols are added via Monte Carlo simulation after
the bit-to-symbol converter while frozen bits are added after the addition
of CRC bits in Ref. [27]. Besides, the soft information converter is
removed since we employ the polar decoder based on LLRs instead of
probability domain.

For NBPCs, Ns and Ks denote code length and information code length
in symbols respectively, then Nb and Kb denote them in bits respectively.
Obviously, we have Nb¼mNs.

First, we transform the element of GF(2m) in the symbol vector

hKs�lCRC=m
1 into a binary m-tuple to obtain the binary vector with a length

of Kb� lCRC, where lCRC denotes the CRC bit length. After adding lCRC CRC
bits, we get the vector hKs

1 by bit-to-symbol conversion. Then, according
to frozen symbol position set from the Monte-Carlo simulation, we add
frozen symbols to hKs

1 and send it to the encoder. All frozen symbols are
set to 0. Finally, the output encoding vector xNs

1 is obtained. Since we use
lCRC CRC bits in NBPCs, the size jAj of information symbol position set A
is fixed as Ks in order to keep the code rate unchanged. The last lCRC/m
positions in A will transmit CRC bits of original information bits. Note
that CRC bits are also regarded as information bits. As a result, the code
rate is R¼ Ks/Ns¼ Kb/Nb, and the effective information rate is
(Kb� lCRC)/Nb. The calculation and Monte-Carlo simulation of the
encoder will be described in Section 3.

In the transmission stage, we choose the BI-AWGN channels. Thus we
need to convert the encoding vector xNs

1 into a binary vector xNb
1 . After

BPSK modulation, the obtained vector wNb
1 will be sent into the BI-AWGN

channels. The channel model can be described as Vj¼Wj þ Zj(j¼ 1,…,
Nb) with the random variables of input and output, where Z1;…; ZNb are
Nb independent and identically distributed Gaussian random variables
with a mean of 0 and a variance of σ2. The Gaussian noise variance σ2 is
calculated from the Signal-to-Noise Ratio (SNR), namely

σ2 ¼ 1

2� 10SNR
10 � R

(1)

Finally, the vector vNb
1 output from the BI-AWGN channels is obtained.

In the decoding stage, the initial LLR value used for the recursive
operation in the decoder will first be derived from vNb

1 . The estimated

sequence buNs
1 without operation of the encoder is obtained by the

decoder. Before entering the CRC check, we should remove the frozen

symbol (the element 0 in all frozen positions) in buNs
1 and convert it into a

binary vector bhKb

1 . The L decoding paths from the decoder perform the
above operations sequentially in the ascending order of the PMs. Finally,

the vector bhKb�lCRC
1 first passing CRC will be transformed into the esti-

mated information symbol vector bhKs�lCRC=m
1 by bit-to-symbol conversion.

BER performance is analyzed by comparing hKs�lCRC=m
1 and bhKs�lCRC=m

1 .



Fig. 1. System model of NBPCs over BI-AWGN channels.

Table 2
Symbol addition over GF(4).

Addition 0 1 2 3

0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

Table 3
Symbol multiplication over GF(4).

Multiplication 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 3 1
3 0 3 1 2
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The calculation of the initial LLR value and the operation of the decoder
will be further explained in Section 4.

3. Encoding of Non-Binary Polar Codes

3.1. Galois field elements

Let α be the primitive element of Galois field GF(q) with q¼ pm, where
p is a prime number andm is a positive integer. Then all the elements over
GF(q) can be expressed as α�∞¼ 0, α0¼ 1, α, α2,…, αq�2 with the power
of α. These q elements can be generated by primitive polynomial f ðαÞ ¼
a0 þ a1αþ ⋯þ am�1αm�1 þ amαm, where α, α2, …, αm 2GF(p). Thus, the
addition operation between elements can be expressed as the coefficient
sum of polynomials, while the multiplication operation can be trans-
formed into power addition. In this paper, we consider the NBPC based
on the finite field of characteristic 2, i.e., GF(2m).

Similar to non-binary LDPC codes, the multiple bits of NBPCs are
mapped into a symbol through the Galois field elements, which improves
the resistance to burst errors. Importantly, latency is also reduced since
the multiple bits are decoded jointly as a symbol.

Suppose a q-ary element αi can be transformed into an m-bit binary
sequence ym1 ¼ fy1;…ymg by mapping function ξðy1;…; ymÞ ¼Pm

k¼1ykα
k�1. Taking GF(4) as an example, the mapping relationship

among field elements, bits and symbols is shown in Table 1. Note that it is
common to convert the mapping between decimal and binary to bits and
symbols for convenience.

According to the mapping relationship of Table 1 and operations of
the Galois field, we get the addition and multiplication rules of symbols
in Table 2 and Table 3, where p(x)¼ x2 þ x þ 1 is adopted as the
primitive polynomial.
Table 1
The mapping among GF(4) elements, bits and symbols.

Element Bit (Binary m-tuples) Symbol (Decimal)

0 f0;0g 0
1 f0;1g 1
α f1;0g 2
α2 f1;1g 3
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In general, given the m of GF(2m), we first formulate the mapping
relationship. Then, the addition and multiplication rules of symbols are
identified according to the operation over GF(2m). In this way, all oper-
ations involving vectors and matrices over GF(2m) can be realized by
looking up tables, which avoids round-trip mapping for each operation.
3.2. Kernel structure and GF(2m) encoder

The traditional Arikan's kernel G2 ¼
�
1 0
1 1

�
for BPCs can be regar-

ded as the operation over GF(2). For NBPCs, we generalize the concept of
Arikan's kernel to GF(q). In order to give a q-ary kernel that satisfies the
polarization condition, we have the following definition.

Definition 1. For matrix GT, T� 2, εk, k 2 {1,…, T} represents the number
of non-zero elements in the k-th row of GT. Let t ¼ arg max

k2f1;…;Tg
εk, and then we

call Gt,t the tag -element of the kernel GT.

Obviously, the tag-element must be located on the diagonal of the
matrix. In Ref. [20], it is set to 1. In this paper, let Gt,t 2GF(q) and
Gt,t 6¼ 0 for the generality of the definition. Next, we use the notation for



Fig. 3. The basic unit of NBPC encoder over GF(2m).

S. Li et al. Digital Communications and Networks 8 (2022) 359–372
the q-ary channel polarization theory in Ref. [20] and the tag-element in
Definition 1 to illustrate the kernel's selection conditions.

Corollary 1. Let Gt,t be the tag-element of kernel GT, T� 2. If there is a
primitive element Gt,j for 8j 2 {1, …, T � 1}, then P(I∞ 2 {0, 1})¼ 1.

Corollary 1 shows that at least one primitive element in the row
where the kernel's tag-element is located can satisfy the channel polari-
zation theory. The specific proof process can be seen in Ref. [20].

In order to distinguish it from Arikan's binary 2� 2 kernel G2, we use
H2 to represent the non-binary 2� 2 kernel we built. At the same time,
since this work mainly discusses NBPCs constructed by H2, it can be
known from Corollary 1 that H2,2 must be a tag-element and H1,2 is a
primitive element. Then H2 can be expressed as

H2 ¼
�
γ 0
α δ

�
ðγ; δ 2 GFðqÞ; γ; δ 6¼ 0; q ¼ 2mÞ (2)

where α is the primitive element over GF(q), that is, the element set over
GF(q) can be expressed as {0, 1, α, α2,…, αq�2}.

The process of GF(q) polar encoder in Fig. 1 can be described by

xNs
1 ¼ uNs

1 BNsH2
�n (3)

where BNs is a permutation matrix and n¼ log 2Ns. All the addition and
multiplication operations are defined over GF(q).

The kernel can be represented by the basic unit, where the binary
kernel constructed by Arikan can be expressed as (u þ v, v) kernel shown
in Fig. 2. The relationship between input and output of the basic unit of
the binary version is written as�
x1 ¼ u1 þ u2
x2 ¼ u2

(4)

Fig. 3 shows the basic unit corresponding to the kernelH2 of proposed
NBPCs, where the relationship between input and output is described as
follows�
x1 ¼ γu1 þ αu2
x2 ¼ δu2

(5)

In Fig. 4, we take Ns¼ 8 as an example to show equation (3)
completed by the encoder with a Tanner graph. There are n stages in the
Tanner graph, which includes Ns/2 boxes at each stage. Each box rep-
resents the basic unit shown in Fig. 3. The dotted box between every two
stages represents the “reverse shuffle” operator, which can be repre-
sented by RNs . The function of R8 shown in Fig. 4 is expressed as

ðv000; v001; v010; v011; v100; v101; v110; v111Þ � R8

¼ ðv000; v010; v100; v110; v001; v011; v101; v111Þ (6)

The relation between permutation matrix BNs and reverse shuffle
operator RNs can be written as

BNs ¼ RNs ðI2 �BNs=2Þ (7)

where I2 is a two-dimensional identity matrix.
Fig. 2. The basic unit of BPC encoder.
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3.3. Monte-Carlo Simulation for NBPCs

Motivated by Ref. [25], the implementation steps of the Monte-Carlo
simulation are detailed for the design of NBPCs. The Monte-Carlo
simulation block diagram for proposed NBPCs is shown in Fig. 5.

For each Monte-Carlo simulation, all symbol values in the informa-
tion vector uNs

1 are randomly generated from the elements over the Galois
field, which guarantees the fairness of the results. The encoding and
transmission procedures are similar to that in Fig. 1, where the operation
of adding CRC bits and frozen symbols is removed. Especially, the Genie-
aided SC decoder is performed for Monte-Carlo simulation, which is a
special SC decoder with ui�1

1 in advance. The decoder ensures that the
estimated result of the previous symbol is correct. Thus, the Genie-aided

SC decoder is not affected by the previous decoding result bui�1
1 . Note that

the process of Genie-aided SC decoding is detailed in Section 4.1.
Suppose thatM simulations are performed, whereM should be at least

103 for the accuracy of the results. Note that for the universality of the
construction, SNR should not be set too high or low in the Monte-Carlo
simulation, where SNR2 [� 3, 3] in the unit of dB is adopted in this
paper. To evaluate the polarized channel reliability, let Ei (i¼ 1, 2,…, Ns)
denote the error number of decoded symbol bui, and ei¼ Ei/M denote the
symbol error rate. Given a bit code length Nb, the NbRm channel indexes
with a lower ei are selected as information symbol positions according to
the sorting of ei, while the remaining positions are placed with frozen
symbols, i.e., typically 0. As such,NbR information bits, namely payloads,
are transformed into the field symbol by the bit-to-symbol converter,
which will then be placed at the selected information symbol positions.
Thus, the flexible configuration of code rate R or payload size Kb is
available in the Monte-Carlo simulation. Note that the sorting results of ei
for the same Nb and different R are not identical since the Gaussian noise
variance σ2 varies with R according to equation (1).

In this paper, Monte-Carlo simulations with M¼ 104 are fixed to
construct NBPCs, which are typically chosen in the literature as an
appropriate trade-off of construction complexity and accuracy. Fig. 6
describes the polarized channel performance results of Ns¼ 128 and
Ns¼ 512 by 10,000 Monte-Carlo simulations at SNR¼ 2 dB. The kernel's
relevant parameters are set to γ ¼ 1, δ¼ 1, and m¼ 2. It can be seen that
the so-called pure noise channels have a high ei of about 0.75. Besides,
polarized channels with ei¼ 0 cannot be found in Fig. 6 due to the log
plot, which is regarded as noiseless channels approximately. Intuitively,
we can estimate channel performance and pick out the good channels and
bad channels through the Monte-Carlo simulation, where information
symbols and frozen symbols are placed respectively. The impact of this
process on the performance of the constructed NBPCs is very critical. The
results of the Monte-Carlo simulation are also employed in PPB-SCL
decoding, which is detailed in Section 4.3.

4. Decoding of Non-Binary Polar Codes

In this paper, we focus on the SCL decoding algorithm for NBPCs.
Since the decoder of NBPCs is a parallel process with multi-bit decoded
simultaneously, we take the filed symbol as the main unit for the con-
venience of expression in the following description. Specifically, the



Fig. 4. Tanner graph of NBPC encoder with code length Ns¼ 8.

Fig. 5. System model of Monte-Carlo simulation.
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proposed LLR recursive function for NBPCs is illustrated in Section 4.1,
while the SCL and PPB-SCL decoding algorithms based on LLRs are
presented in Section 4.2 and Section 4.3, respectively.
4.1. LLR recursive function for NBPCs

In the process of channel polarization, the transition probability of the

i-th synthetic channel is defined as W ðiÞ
Ns

�
yNs
1 ; bui�1

1 jui
�
, where yNs

1 is the
channel output sequence. The LLR corresponding to the symbol ui with λ
can be defined as

LðiÞ
Ns
ðyNs

1 ; bui�1
1 Þλ ¼ ln

W ðiÞ
Ns

�
yNs
1 ; bui�1

1 j0�
W ðiÞ

Ns

�
yNs
1 ; bui�1

1 jλ� (8)

where λ2GF(2m).
For BPCs, λ in equation (8) is taken as 0 or 1, i.e., two LLRs for each

symbol ui. However, when λ¼ 0, the value of LLRs is always equal to 0.
Hence, only the case of λ¼ 1 needs to be discussed for BPCs. bui, the esti-
mated value of ui, can be obtained by comparing LLRs with 0. For NBPCs, λ
in equation (8) can be taken as 0, 1,…, and q� 1. Similarly, when λ¼ 0, we

have LðiÞNs
ðyNs

1 ; bui�1
1 Þ0 � 0. We need to calculate the remaining (q-1) LLRs in

each decoding stage, and then compare all the LLR values to get the
decoding result. According to the definition of equation (8), in order to

obtain the results when the transition probability W ðiÞ
Ns

�
yNs
1 ; bui�1

1 jλ� takes
the maximum value, the hard decision function for bui can be expressed as
363
bu ¼
8<arg min

λ2GFð2mÞ
LðiÞ
Ns
ðyNs

1 ; bui�1
1 Þλ i 2 A

(9)
i :
ui i 2 Ac

For NBPCs, the recursive function in Ref. [1] is not applicable. Ac-
cording to the partial distances of the kernel [20] and the probability
domain-based decoding of NBPCs [27], we generally provide the LLR
recursive function for the proposed NBPCs with arbitrary kernel size,
which can be described as

bRðiÞ
t;λ ¼ ln

P
ωT
tþ1
exp
�
�PT

r¼1 R
ðiÞ
r;x1r

�
P

ωT
tþ1
exp
�
�PT

r¼1 R
ðiÞ
r;x2r

� (10)

where bRðiÞ
t;λ is the updated LLR with the symbol value λ and Rr,x represents

the input LLR with the symbol value x. Note that we have bRt;0 ¼ 0. To be

specific, bRðiÞ
t;λ and Rr,x can be expressed as

bRðiÞ
t;λ ¼ LðTi�ðT�tÞÞ

Ns

	
yNs
1 ; buTi�ðT�tÞ�1

1



λ

(11)

RðiÞ
r;x ¼

8><>:
LðiÞ
Ns=T

	
yNs=T
1 ; g1ðbuÞ


x
; r ¼ 1

LðiÞ
Ns=T

	
yrNs=T
ðr�1ÞNs=Tþ1; grðbuÞ
x; r > 1

(12)

where t 2 {1, 2,…, T}, i2 {1, 2, …, Ns/T}.
Equation (11) shows that NBPCs constructed by kernel GT have a total

of T LLR update functions, where bRðiÞ
1;λ is calculated to obtain Lð1ÞNs

;Lð1þTÞ
Ns

;…;

Lð1þNs�TÞ
Ns

, and bRðiÞ
2;λ is calculated to obtain Lð2ÞNs

;Lð2þTÞ
Ns

;…;Lð2þNs�TÞ
Ns

, and so
on. The values of symbol x1,r and x2,r of the input LLRs can be obtained by

ðx11; x12;…; x1T Þ ¼ gðbμt�1
1 ; 0;ωT

tþ1Þ (13.a)

ðx21; x22;…; x2T Þ ¼ gðbμt�1
1 ; λ;ωT

tþ1Þ (13.b)

where g(⋅) refers to the kernel function with gðuT1 Þ ¼ uT1GT and bμt�1
1

represents (t-1) symbol feedback from the decoder, which can be indi-

cated explicitly as bμt�1
1 ¼ buTi�ðTþ1�tÞ

Ti�ðT�1Þ . The calculation of bRðiÞ
t;λ requires not

only the input LLRs but also the previous (t-1) decision feedback. ωT
tþ1 is

an arbitrary vector over GF(q), which represents all possible symbol
values that have not been decoded.

Equations (12)-(13) show that the input LLRs in equation (10) also
have T forms, and each one contains 2m different symbol values. In other
words, if we want to calculate the LLRs of length Ns with all symbol
values, we need to input T groups of “LLR families”of lengthNs/T, each of
which contains 2m LLRs with different estimated symbol values, namely,
a total of T ⋅ 2m input LLRs are considered. As λ goes through all possible
symbol values, each x calculated by g(⋅) also traverses all values, thus the
input LLRs with every symbol value are needed.

Additionally, grðbuÞ in equation (12) represents an update to the

feedback buTi�T
1 , which can be expressed as

grðbuÞ ¼ buGTðrÞ; r 2 f1; 2;…; Tg (14)

where bu ¼ ðbuTi�T
1;1 ;buTi�T

1;2 ;…; buTi�T
1;T�1;buTi�T

1;0 Þ.
Let buTi�T

1;z denote a sub-vector composed of all elements whose index

in vector buTi�T
1 is equal to z after a mod-T operation. In particular, when T

is equal to 2, we use bu2i�2
1;o and bu2i�2

1;e to represent bu2i�2
1;1 and bu2i�2

1;0 ,



Fig. 6. The performance of each channel under Genie-aided SC decoding
with SNR¼ 2 dB.
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respectively, that is, the odd index sub-vector and the even index sub-
vector. Note that bu is just a vector symbol here to be involved in the

calculation of grðbuÞ and has no practical meaning. buTi�T
1;z is treated as an

independent element in the vector bu. In short, they only have a symbolic
meaning in the operation of grðbuÞ and do not represent vectors.

The termination condition for recursion is Ns¼ 1. The LLRs at this
time can be expressed as

Lð1Þ
1 ðyjÞλ ¼ ln

W
�
yj
��0 �

W
�
yj
��λ � (15)

Unfortunately, equation (15) is not operational in practice because
the transition probability W is unknown. Due to the BPSK modulation
and BI-AWGN channels are considered in this paper, we extend the
Gaussian approximation calculation method of the initial LLR value for
BPCs in Refs. [32,33] under the same transmission mode to this work. As

a result, Lð1Þ1 ðyjÞλ can be calculated by
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Lð1Þ
1 ðyjÞλ ¼

2� f ðvjm�mþ1;…; vjmÞ
σ2

(16)
Before applying equation (16), we need to write the symbol λ into a
form of m-bit binary number according to the conversion relationship
established in advance, i.e., there is a transformation λ → {λ1,λ2, …,λm}.
The function f is defined as

f ðvjm�mþ1;…; vjmÞ ¼ λ1vjm�mþ1 þ λ2vjm�mþ2

þ⋯þ λmvjm
(17)

The detailed steps of Genie-aided SC decoding are given in Algorithm

1. Note that ui�1
1 is substituted into bui�1

1 before calculating LLRs in order
to eliminate the impact of previous decoding results on subsequent de-
cisions.

The operation of equations (16) and (17) is used to calculate the LLR
initial value for the proposed system model. Until now, we have sum-
marized the whole process of LLR recursive operation. However, the
exponential and logarithmic calculations of equation (10) are difficult to
be implemented for hardware in practice. Therefore, we give an
improved function based on a hardware-friendly version. By the defined
hardware-friendly equation (18), we rewrite equation (10) into equation
(19) to obtain the hardware-friendly LLR update function.

ln

(X
i

exp½ψ ið � Þ	
)


 max½ψ ið � Þ	 (18)

bRðiÞ
t;λ ¼ max

ωT
tþ1

 
�
XT

r¼1
RðiÞ
r;x1r

!
�max

ωT
tþ1

 
�
XT

r¼1
RðiÞ
r;x2r

!
(19)

Especially, for 8i 2 {1, 2, …, Ns/2} and λ, ω 2GF(2m), the LLR update
function of NBPCs with 2� 2 non-binary kernel H2 can be written as8><>:
bRðiÞ
1;λ ¼ max

ω
ð�RðiÞ

1;ωα�RðiÞ
2;ωδÞ�max

ω
ð�RðiÞ

1;λγ�ωα�RðiÞ
2;ωδÞbRðiÞ

2;λ ¼ ðRðiÞ
1;γû2i�1�λαþRðiÞ

2;λδÞ�ðRðiÞ
1;γû2i�1

þRðiÞ
2;0Þ

(20)

where LLRs on the left side of the equation represent bRðiÞ
1;λ ¼

Lð2i�1Þ
Ns

ðyNs
1 ; bu2i�2

1 Þλ, bRðiÞ
2;λ ¼ Lð2iÞNs

ðyNs
1 ; bu2i�1

1 Þλ, respectively and LLRs on the

right side of the equation are RðiÞ
1;x ¼ LðiÞNs=2

ðyNs=2
1 ; γbu2i�2

1;o � αbu2i�2
1;e Þx, RðiÞ

2;x ¼
LðiÞNs=2

ðyNs
Ns=2þ1; δbu2i�2

1;e Þx, respectively. Both addition and multiplication for

symbols are defined over GF(2m).

Form¼ 2, there is Lð1Þ1 ðyjÞλ ¼ 2�ðλ1v2j�1þλ2v2jÞ
σ2 at the end of the recursion,

where λ → {λ1,λ2} represents the binary transformation of λ. The deri-
vation process is illustrated below.

Here, we have the global variable T¼ 2. Then, the following equation
is obtained by substituting t¼ 1 into equation (19)

bRðiÞ
1;λ¼max

ω2
2

ð�RðiÞ
1;x11�RðiÞ

2;x12 Þ�max
ω2
2

ð�RðiÞ
1;x21�RðiÞ

2;x22 Þ (21)

We use ω to replace the only element in ω2
2, and substitute t¼ 1 into

equations (13.a) and (13.b), then
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ðx11; x12Þ ¼ gð0;ωÞ ¼ ð0;ωÞ γ 0
α δ

¼ ðωα;ωδÞ (22.a)

� �

ðx21; x22Þ ¼ gðλ;ωÞ ¼ ðλ;ωÞ
�
γ 0
α δ

�
¼ ðλγ�ωα;ωδÞ (22.b)

When t¼ 1, it is not necessary to input the previous decoding feed-
back. By substituting the above results into equation (21) and using
equations (11-12) to express the updated LLRs and input LLRs respec-
tively, the first update function can be written as equation (23). Similarly,
we put t¼ 2 into equation (19) and repeat the above steps. The second
update function can be obtained from equation (24).

bRðiÞ
1;λ ¼ Lð2i�1Þ

Ns
ðyNs

1 ; bu2i�2
1 Þλ

¼ max
ω

ð�RðiÞ
1;ωα � RðiÞ

2;ωδÞ �max
ω

ð�RðiÞ
1;λγ�ωα � RðiÞ

2;ωδÞ

¼ max
ω

h
� LðiÞ

Ns=2
ðyNs=2

1 ; γbu2i�2
1;o � αbu2i�2

1;e Þωα � LðiÞ
Ns=2

ðyNs
Ns=2þ1; δbu2i�2

1;e Þωδ
i

�max
ω

�
� LðiÞ

Ns=2
ðyNs=2

1 ;γbu2i�2
1;o �αbu2i�2

1;e Þλγ�ωα � LðiÞ
Ns=2

ðyNs
Ns=2þ1; δbu2i�2

1;e Þωδ
�
(23)

bRðiÞ
2;λ ¼ Lð2iÞ

Ns
ðyNs

1 ; bu2i�1
1 Þλ

¼ ðRðiÞ
1;γû2i�1�λα þ RðiÞ

2;λδÞ � ðRðiÞ
1;γû2i�1

þ RðiÞ
2;0Þ

¼
�
LðiÞ
Ns=2

ðyNs=2
1 ; γbu2i�2

1;o � αbu2i�2
1;e Þγû2i�1�λα þ LðiÞ

Ns=2
ðyNs

Ns=2þ1; δbu2i�2
1;e Þλδ

�
�
�
LðiÞ
Ns=2

ðyNs=2
1 ; γbu2i�2

1;o � αbu2i�2
1;e Þγû2i�1

þ LðiÞ
Ns=2

ðyNs
Ns=2þ1; δbu2i�2

1;e Þ0
�

(24)

Note that ωT
tþ1 is an empty vector when t¼ 2, hence the maximum

function can be removed. Moreover, the decoding feedback bu2i�1 needs to
be input into equations (13.a) and (13.b), which leads to the second
update function with two input LLRs and an estimate of the previous
symbol.

If m¼ 2, Lð1Þ1 ðyjÞλ ¼ 2�ðλ1v2j�1þλ2v2jÞ
σ2 can be easily obtained from equa-

tions (16-17). The above has proved the conclusion.
Fig. 7 shows a general example of SC decoding for NBPCs over GF(4)

with Ns¼ 8. The whole decoding process is carried out from the right to
the left. The preparation stage is the calculation process of the LLR initial
values in the system model. Stages 1–3 are LLR recursive processes, and

stage 4 is the decision part using equation (9). In stages 1–3, bRðiÞ
1;λ and bRðiÞ

2;λ

are computed by the first and second update function, which are repre-
ΩðiÞ
λ ¼ max

ω

n
� Lððiþ1Þ=2Þ

Ns=2
ðyNs=2

1 ; γbu2i�2
1;o � αbu2i�2

1;e ½j	Þλγ�ωα� Lððiþ1Þ=2Þ
Ns=2

ðyNs
Ns=2þ1; δbu2i�2

1;e ½j	Þωδ
o

�max
ω;θ

n
� Lððiþ1Þ=2Þ

Ns=2
ðyNs=2

1 ; γbu2i�2
1;o � αbu2i�2

1;e ½j	Þθγ�ωα� Lððiþ1Þ=2Þ
Ns=2

ðyNs
Ns=2þ1; δbu2i�2

1;e ½j	Þωδ
o (28.a)
sented in gray andwhite, respectively. It can be seen that the update of all
white nodes requires additional input of feedback from the previous
decoding. Besides, the symbol value λ of each LLR is not specifically given
in the figure. In fact, each node stores the LLR value with λ2 {0, 1, 2, 3}.
In other words, each update needs to calculate the LLR with four symbol
values in the calculation process from the right to the left.
4.2. SCL decoding based on LLR

For SCL decoding, the maximum width of search paths is termed as
the list size L. After completing the path splitting, we select the L paths
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with the smallest PMs, which are saved in a list for the next stage. Ac-
cording to Ref. [29], if the estimated value of ui is not identical to the
decision result of SC, the PMs of this level add a “penalty value” to the
result of the previous level.

Corollary 2. For BPCs, the LLR-based penalty value ϕ for any bit ui in the
j-th path can be expressed as

ϕ ¼
�����lnW

ðiÞ
N

�
yN1 ; bui�1

1 ½ j	jbui½ j	 ¼ λ
�

W ðiÞ
N ðyN1 ; bui�1

1 ½ j	jbui½ j	 ¼ tÞ

����� (25)

where t 2 I \ fλg and I ¼ f0;1g are the symbol alphabet.
Proof: When λ¼ 1, we have t¼ 0

and ϕ ¼
����lnW ðiÞ

N ðyN1 ;bu i�1

1 ½ j	j1Þ
W ðiÞ

N ðyN1 ;bu i�1

1 ½ j	j0Þ

���� ¼ ���� LðiÞN ½ j	
��� ¼ ���LðiÞN ½ j	

���;
then when λ¼ 0, we have t¼ 1

and ϕ ¼
����lnW ðiÞ

N ðyN1 ;bu i�1

1 ½ j	j0Þ
W ðiÞ

N ðyN1 ;bu i�1

1 ½ j	j1Þ

���� ¼ ���LðiÞN ½ j	
���, where LðiÞN ½ j	 represents the LLR of a

given channel output yN1 and the past trajectory of the path bui�1
1 ½ j	 for the

bit ui.

From Corollary 2, ϕ is determined by the LLR between the current
estimated value and other possible values. Based on this, then we get the
following Corollary 3 for NBPCs.

Corollary 3. For NBPCs, the LLR-based penalty value ϕλ that takes the
estimated value λ for any symbol ui in the j-th path can be expressed as

ϕλ ¼
�����lnW

ðiÞ
Ns

�
yNs
1 ; bui�1

1 ½j	jbui½j	 ¼ λ
�

W ðiÞ
Ns

�
yNs
1 ; bui�1

1 ½j	bui½j	 2 Λ
� ����� (26)

where Λ ¼ I \ fλg and I ¼ f0;1;…; q�1g are the symbol alphabet.

Theorem 1. For NBPCs generated by the kernel H2, the PM pðiÞj corre-
sponding to any path j2 {1, 2, …, L} and any symbol ui is defined as

pðiÞj ¼

8>><>>:
pði�1Þ
j ; if bui½j	¼arg min

λ2GFð2mÞ
LðiÞ
Ns
ðyNs

1 ; bui�1
1 ½j	Þλ

pði�1Þ
j þ

���ΩðiÞ
λ

���; otherwise (27)

where
���ΩðiÞ

λ

��� represents the penalty value ϕλ of NBPCs and the initial value of

pð0Þj ¼ 0. ΩðiÞ
λ is defined by equation (28.a) for an odd i or equation (28.b) for

an even i, where θ 2Λ.
ΩðiÞ
λ ¼ max

θ

n
Lði=2Þ
Ns=2

ðyNs=2
1 ;γbu2i�2

1;o �αbu2i�2
1;e ½j	Þ

γbu2i�1�θα
þLði=2Þ

Ns=2
ðyNs

Ns=2þ1;δbu2i�2
1;e ½j	Þθδ

o
�
n
Lði=2Þ
Ns=2

ðyNs=2
1 ;γbu2i�2

1;o �αbu2i�2
1;e ½j	Þ

γbu2i�1�λα
þLði=2Þ

Ns=2
ðyNs

Ns=2þ1;δbu2i�2
1;e ½j	Þλδ

o
(28.b)

Proof: From Corollary 3 and the definition of LLRs, ϕλ can be rewritten

as (29). Here LðiÞNs

�
yNs
1 ; bui�1

1 ½j	�x is the LLR of the given channel output yNs
1

and the past trajectory of the path bui�1
1 ½j	, which takes the symbol value x.

By using equation (20), we can further get the results of equations (28.a)



S. Li et al. Digital Communications and Networks 8 (2022) 359–372
and (28.b).

ϕλ ¼
�����lnW

ðiÞ
Ns

�
yNs
1 ; bui�1

1 ½j	jbui½j	 ¼ λ
�

W ðiÞ
Ns

�
yNs
1 ; bui�1

1 ½j	bui½j	 2 Λ
� �����

¼
�����ln W ðiÞ

Ns

�
yNs
1 ; bui�1

1 ½j	j0�
W ðiÞ

Ns

�
yNs
1 ; bui�1

1 ½j	jbui½j	 2 Λ
�� ln

W ðiÞ
Ns

�
yNs
1 ; bui�1

1 ½j	0�
W ðiÞ

Ns

�
yNs
1 ; bui�1

1 ½j	bui½j	 2 λ
� �����

¼
���LðiÞ

Ns

�
yNs
1 ; bui�1

1 ½j	�Λ � LðiÞ
Ns

�
yNs
1 ; bui�1

1 ½j	�
λ

���
(29)

Fig. 8 shows an example of an SCL decoding tree over GF(4), where
information symbol position set is A ¼ f1;3;4g. The number adjacent to
the visited node indicates the PMwhile the red line indicates the reserved
paths so far. The decoding tree of NBPCs over GF(q) with a length of Ns is
a q-ary tree with a depth Ns. The root node indicates an empty state while
the child nodes at the i-th level represent symbol values over GF(q) of bui.

Thus, the complete decoding path is represented by the vector buNs
1 from

the root node to the leaf node. The steps of SCL decoding for NBPCs are
detailed in Algorithm 2. The decoding process shown in Fig. 8 can be
embodied in Algorithm 2.
4.3. PPB-SCL decoding based on LLR

From equation (27), two types of LLRs, i.e., ΩðiÞ
λ and LðiÞNs

ðyNs
1 ; bui�1

1 ½j	Þλ,
are required for calculations, which lead to the high complexity for

hardware implementation. Moreover, the calculation of ΩðiÞ
λ is different

from the general equation (20), which includes at least q(q� 2) more
cases. Enlightened by the hybrid decoder [34,35], we propose an
LLR-based PPB-SCL decoding to reduce decoding complexity of NBPCs,
which SC performs decoding at highly reliable positions and SCL
decoding at less reliable positions.
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For PPB-SCL decoding, we first divide the information sub-channels
into perfect polarized (i.e., highly reliable) channels and imperfect
polarized (i.e., less reliable) channels based on the results of channel
reliability in the Monte-Carlo simulation. The definition of the perfect
polarized channel position set is detailed as follows.

Definition 2. Sort the symbol error rate ei of each channel in the Monte-
Carlo simulation and select τ (1� τ� Ks) channels with lower ei. We term
the set B composed of the indexes of highly reliable channels as the perfect
polarized channel position set, where τ ¼ jBj and B � A. Then, the perfect
polarization ratio is defined as β¼ τ/Ks. If only τ0 channels with ei¼ 0 are
selected for B, let β0¼ τ0/Ks denote the strictly perfect polarization ratio.
Then, we have the range of β, i.e., β0 � β< 1.

Note that the perfect polarized channel position set B is not fixed for
different code lengths and code rates. Given a code lengthNs, code rate R,
and appropriate perfect polarization ratio β, the information symbol
position set A and perfect polarized channel position set B ðB� AÞ are
uniquely determined via Monte-Carlo simulations. As shown in Table 4,
when the code length is fixed, β0 varies with different code rates, where
GF(4) based-NBPCs are considered. Thus, the available set B is different
according to β0 � β< 1. Even though let β¼ β0, the selected perfect
polarized channel positions are not identical for different code rates.
Moreover, the larger the code length and the code rate, the larger τ0 and
β0. For a large β0, it is beneficial to adjust β to a larger value to achieve a
higher reduction in complexity.

In the proposed PPB-SCL decoding, only one class of LLR calculation
is required just like BPCs. In other words, the calculation method in the
decoding process is unified when the path is updated. Next, we derive the
proposed PM for the PPB-SCL algorithm.

Lemma 1. If Ui is uniformly distributed in GF(q), then

W ðiÞ
Ns

�
yNs
1 ; ui�1

1 ui
�

P
�
Ui

1 ¼ ui1Y ¼ yNs
1

� ¼ qP
�
Y ¼ yNs

1

�
(30)

Proof: For 8ui2GF(q), we have PðUi ¼ uiÞ ¼ 1
q . Then

W ðiÞ
Ns

�
yNs
1 ; u

i�1
1 jui

�
P
�
Ui

1 ¼ ui1jY ¼ yNs
1

� ¼P
�
Y ¼ yNs

1 ;U
i�1
1 ¼ ui�1

1 ;Ui ¼ ui
�

PðUi ¼ uiÞP
�
Ui

1 ¼ ui1jY ¼ yNs
1

�
¼ P

�
Y ¼ yNs

1 ;U
i
1 ¼ ui1

�
PðUi ¼ uiÞP

�
Ui

1 ¼ ui1jY ¼ yNs
1

�
¼ P
�
Y ¼ yNs

1

�
P
�
Ui

1 ¼ ui1jY ¼ yNs
1

�
PðUi ¼ uiÞP

�
Ui

1 ¼ ui1jY ¼ yNs
1

�
¼qP�Y ¼ yNs

1

�
(31)

Thus, we complete the proof of Lemma 1.
Lemma 1 can be understood as a q-ary generalization of the binary

case in Ref. [29].

Theorem 2. For PPB-SCL decoding, the PM pðiÞj corresponding to any path
j 2 {1, 2, …, L} and any symbol ui can be calculated as

pðiÞj ¼ pði�1Þ
j þLðiÞ

Ns

�
yNs
1 ; bui�1

1 ½j	�
η

�min
λ2GFðqÞ

LðiÞ
Ns
ðyNs

1 ; bui�1
1 ½j	Þλ

(32)

where η 2GF(q) refers to the estimation of the current path for the i-th symbol.
Proof: Let us change the recursive form of equation (32) to another

direct one, which can be described as

pðiÞj ¼
Xi

k¼1

�
LðkÞ
Ns
ðyNs

1 ;buk�1
1 ½j	Þη�min

λ2GFðqÞ
LðkÞ
Ns
ðyNs

1 ; buk�1
1 ½j	Þλ

�
(33)

Suppose ∂ ¼ arg min
λ2GFðqÞ

LðkÞNs
ðyNs

1 ; buk�1
1 ½j	Þλ, and then the above equation



Fig. 8. SCL decoding tree over GF(4) with Ns¼ 4, Ks¼ 3, L¼ 2, where the first three levels are considered.

Fig. 7. Butterfly computation graph of SC decoding for a NBPC over GF(4) with Ns¼ 8.
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can continue to be simplified to

pðiÞj ¼Pi
k¼1

h
LðkÞ
Ns
ðyNs

1 ; buk�1
1 ½ j	Þη � LðkÞ

Ns
ðyNs

1 ; buk�1
1 ½ j	Þ

∂

i
¼
Xi

k¼1

"
ln
W ðiÞ

Ns

�
yNs
1 ; bui�1

1 ½ j	jbui½ j	 ¼ ∂
�

W ðiÞ
Ns

�
yNs
1 ; bui�1

1 ½ j	jbui½ j	 ¼ η
� # (34)

Obviously, ln
W ðiÞ

Ns ðyNs1 ;û i�1
1 ½ j	jûi ½ j	¼∂Þ

W ðiÞ
Ns ðyNs1 ;û i�1

1 ½ j	jûi ½ j	¼ηÞ � 0 always holds in equation (34).

Since x� 0, there is an approximate formula x 
 ln(1 þ ex), we can
further get
Table 4
Strictly Perfect Polarized Ratio β0 with Different Code Lengths and Code Rates.

Ns¼ 16 Ns¼ 64

R 1/3 1/2 2/3 1/3 1/2 2/3
τ0 1 1 2 8 14 21
β0 0.200 0.125 0.182 0.381 0.438 0.488
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pðiÞj 

Xi

k¼1
ln 1þexp ln

W ðiÞ
Ns

�
yNs
1 ; bui�1

1 ½ j	jbui½ j	 ¼ ∂
�

ðiÞ� Ns i�1 � (35)
( "
WNs

y1 ; bu1 ½ j	jbui½ j	 ¼ η

#)

Let MðiÞ
Ns
½ j	 denote the reciprocal of the ratio between the likelihood

information and the maximum likelihood information of the estimated
value η for the i-th symbol under the j-th candidate path (the last equation
holds if u is uniformly distributed in GF(q)), which is defined as

MðiÞ
Ns
½ j	¼

"
W ðiÞ

Ns

�
yNs
1 ; bui�1

1 ½ j	jbui½ j	 ¼ η
�

W ðiÞ
Ns

�
yNs
1 ; bui�1

1 ½ j	jbui½ j	 ¼ ∂
� #�1

¼ P
�
Y ¼ yNs

1 ;Ui�1
1 ¼ bui�1

1 ½ j	;Ui ¼ ∂
�

P
�
Y ¼ yNs

1 ;Ui�1
1 ¼ bui�1

1 ½ j	;Ui ¼ η
�

(36)
Ns¼ 256 Ns¼ 1024

1/3 1/2 2/3 1/3 1/2 2/3
53 82 112 280 423 567
0.624 0.641 0.655 0.821 0.826 0.830
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If we simplify equation (35) by employing equation (36), we get the
following result:

pðiÞj ¼Pi
k¼1 ln

n
1þ exp

h
ln MðkÞ

Ns
½j	
io

¼
Xi

k¼1
ln
	
1þMðkÞ

Ns
½j	

 (37)

According to Ref. [29], the PM can be expressed by the logarithm of
the posterior probability, namely

pðiÞj ¼ �ln
�
PðUi

1 ¼ bui
1½j	jY ¼ yNs

1 Þ� (38)

By comparing equations (37) and (38), it is not difficult to find that
showing (33) is equivalent to proving

PðUi
1 ¼ bui

1½j	jY ¼ yNs
1 Þ ¼

Yi

k¼1

	
1þMðkÞ

Ns
½j	

�1

(39)

Since we have

PðY ¼ yNs
1 ;Ui�1

1 ¼ bui�1
1 ½j	Þ

¼
X
bui2GFðqÞPðY ¼ yNs

1 ;Ui
1 ¼ bui

1½j	Þ

¼ PðY ¼ yNs
1 ;Ui

1 ¼ bui
1½j	Þ

�
(
1þ
X

λ2GFðqÞ

PðY ¼ yNs
1 ;Ui�1

1 ¼ bui�1
1 ½j	;Ui ¼ λÞ

PðY ¼ yNs
1 ;Ui�1

1 ¼ bui�1
1 ½j	;Ui ¼ ηÞ

)


 PðY ¼ yNs
1 ;Ui

1 ¼ bui
1½j	Þ

	
1þMðkÞ

Ns
½j	



(40)

the following result is obtained by repeatedly applying the recursive
equation (40).

PðY ¼ yNs
1 ;U

i
1 ¼ bui

1½j	Þ ¼ PðY ¼ yNs
1 Þ
Yi

k¼1

	
1þMðkÞ

Ns
½j	

�1

(41)

Divide both sides of the equation by PðY ¼ yNs
1 Þ. Equation (39) then

can be obtained. Thus, Theorem 2 has been proved.
In Theorem 2, the penalty value of PMs is

ϕ ¼ LðiÞ
Ns

�
yNs
1 ; bui�1

1 ½j	�
η
� min

λ2GFðqÞ
LðiÞ
Ns
ðyNs

1 ; bui�1
1 ½j	Þλ (42)

which reflects the result of the SC decision.
For any two candidate paths j1 and j2, assuming that

W ðiÞ
Ns

�
yNs
1 ; bui�1

1 ½ j1	jbui½ j1	
�
<W ðiÞ

Ns

�
yNs
1 ;bui�1

1 ½ j2	jbui½ j2	
�

(43)

then P ⋅
�
Ui
1 ¼ bui

1½ j1	jY ¼ yNs
1

�
< P ⋅

�
Ui
1 ¼ bui

1½ j2	jY ¼ yNs
1

�
can be ob-
Fig. 9. PPB-SCL decoding tree over GF(4) with Ns¼ 4, Ks
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tained according to Lemma 1. Thus, pðiÞj1 > pðiÞj2 is obtained by the definition

of equation (38). Thus, a path with a smaller pðiÞj still shows higher reli-
ability.

Algorithm 3 details the process of LLR-based PPB-SCL decoding for
NBPCs. The main steps are similar to Algorithm 2, where the calculation

of ΩðiÞ
λ is discarded. In PPB-SCL decoding, if the current decoding symbol

position i 2 A \ B, the path list is enlarged and the PMs are determined by
the penalty value in Theorem 2. Otherwise, namely i 2 B or i 2 Ac, the
¼ 3, L¼ 2, where the first three levels are considered.
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redundant split paths are pruned and PMs keep unchanged without
calculating the penalty value.

Fig. 9 shows an example of the first three levels of the PPB-SCL
decoding tree with Ns¼ 4, Ks¼ 3, L¼ 2. NBPCs over GF(4) are con-
structed by kernel H2. In this case, we have A ¼ f1; 3;4g and B ¼ f1g.
Due to B ¼ f1g, the subtree is pruned at the first level, leaving only one
subtree that conforms to the SC decision path. Comparing Fig. 9 with
Fig. 8, it is found that the number of visited nodes has been reduced from
14 to 6 only for the first three levels (except for the root node at level 0).
Moreover, the survived paths up to the first three levels include the same
optimal path.

5. Results and discussions

In this section, the performance of the proposed NBPCs is evaluated.
In the simulations, the frozen symbol positions of NBPCs are designed by
the Monte-Carlo method with M¼ 104 and SNR¼ 2 dB to trade-off the
accuracy and complexity of the construction. Considering the impact of
CRC length on SCL decoding performance under different code lengths,
we choose two kinds of CRC lengths for medium short code lengths and
long code lengths [36], respectively, where the generator polynomials of
length lCRC¼ 8 and lCRC¼ 16 are represented as

gðxÞ ¼ x8 þ x7 þ x6 þ x4 þ x2 þ 1 (44)

gðxÞ ¼ x16 þ x15 þ x2 þ 1 (45)

To be specific, the BER performance and computational complexity
are analyzed in Sections 5.1 and 5.2, respectively.
Fig. 10. Comparison of BER performance among BPCs, RS4-based NBPCs in
Ref. [25] and proposed NBPCs over GF(4) with different L, where R¼ 0.5
is considered.
5.1. BER performance

First, we examine the BER performance of proposed NBPCs compared
with the RS4-based NBPCs proposed in Ref. [25] and the traditional
BPCs. Fig. 10(a) and Fig. 10(b) show the numerical simulation results of
the proposed NBPCs over GF(4) and their counterparts with different list
sizes, where Nb¼ 512 and Nb¼ 1024 are considered, respectively. The
kernel parameters for the proposed NBPCs are set to γ ¼ 1 and δ¼ 1.

From Fig. 10, we find that the BER performance of NBPCs over GF(4)
outperforms the BPCs when the bit code length and list size are identical.
For Nb¼ 512 and L¼ 16, a 0.36 dB gain can be observed at a BER of 10�4

when proposed 4-ary NBPCs are employed, compared with that of BPCs.
Note that when Nb¼ 1024, the proposed NBPCs over GF(4) with L¼ 4
achieve the performance of the BPCs with L¼ 8. Moreover, it can be
observed that the proposed 4-ary NBPCs have a slight performance loss of
0.06 dB–0.09 dB compared with that of RS4-based NBPCs. This is
because RS4-based NBPCs have a large kernel exponent by employing a
high-order kernel matrix, which leads to the performance gains [24].
However, the encoding and decoding structures of RS-based NBPCs vary
with the field size q, i.e., the kernel size, which cannot be implemented as
easily as BPCs. With the fixed structure of non-binary 2� 2 kernel, the
proposed NBPCs can further obtain performance gains by increasing q,
which improves flexibility and universality.

To better describe the performance potential of the proposed NBPCs,
the influence of q on NBPCs is discussed, where GF(2m)-based NBPCs
withm¼ 2, 3, 4 are considered and CRC-8 is employed for SCL decoding.
For a fair comparison, the symbol code length for GF(4), GF(8), and
GF(16) are set to 128, 64, and 64, respectively, thus the bit lengths are
256, 192, and 256, respectively. Here, the results with different values of
tag element δ are exhibited, where γ is all set to 1.

As shown in Fig. 11, NBPCs have lower BER for larger m regardless
of the tag element δ, especially in the high SNR area (SNR � 2.5 dB).
Thus, a superior BER performance can be obtained for the proposed
NBPC scheme by a higher field order q. It can be also seen that the
BER performance of δ¼ α2 is very close to that of δ¼ 1 while the
performance of δ¼ α is quite slightly lower than that of δ¼ 1. It can be
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said that the kernel H2 we constructed is still polarized according to
the results.

Before comparing PPB-SCL decoding with SCL decoding, we analyze
the performance of PPB-SCL decoding with different code rates since a
higher β is available with the increase of R according to Table 4. Simu-
lation parameters for PPB-SCL decoding are shown in Table 5, where a
reasonable β is selected on the basis of β0. Fig. 12 exhibits the decoding
performance of PPB-SCL with different R, where a GF(4)-based NBPC
with Ns¼ 256 and 8-bit CRC is considered. It can be observed that the
increase of the code rate leads to the degradation of performance. A
higher code rate may achieve a higher complexity reduction since a
larger β can be selected. However, PPB-SCL decoding performance with a
high R is poorer than the counterpart with a low R. Therefore, a trade-off
between complexity and performance is required.

Fig. 13 and Fig. 14 show the comparisons between SCL decoding and
PPB-SCL decoding, where a GF(4)-based NBPC with Ns¼ 256 and
Ns¼ 1024 is considered, respectively. All parameters for PPB-SCL
decoding are set according to Table 5. Note that the result of L¼ 1



Fig. 11. Comparison of BER performance for NBPCs over GF(2m) with R¼ 1/2,
where m¼ 2, 3, 4.

Table 5
Parameter settings.

lC R C R τ0 β0 τ β

Ns¼ 256 8 1/3 53 0.624 62 0.729
1/2 82 0.641 95 0.742
2/3 112 0.655 128 0.749

Ns¼ 1024 16 1/3 280 0.821 305 0.894
1/2 423 0.826 462 0.902
2/3 567 0.830 611 0.895

Fig. 12. BER performance of PPB-SCL decoding with different code rates,
where L¼ 4.
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(i.e., PPB-SCL with β¼ 1) is also presented as a control to facilitate the
analysis.

It can be seen that no matter how the code length and code rate
change, the performance of PPB-SCL with β¼ β0 is at the same level as
that of traditional SCL. When Ns¼ 256, the BER of the two is exactly the
same, as shown in Fig. 13. Especially in Fig. 14, we also compare the
370
results of probability domain-based non-binary SCL decoding with L¼ 8
in Ref. [27]. The result shows that the difference between the PPB-SCL
decoding with β¼ β0 and the SCL decoding used in Ref. [27] is negli-
gible. Hence we can conclude that the decoding performance of PPB-SCL
will not be affected if path splitting is no longer performed at positions
where ei¼ 0 in Monte-Carlo simulation.

Although the performance of PPB-SCL at β¼ β0 fluctuates slightly
with the increase of code length, we can still consider it to be equivalent
to the performance of SCL decoding. When β is greater than β0 and even
approaches 1, PPB-SCL decoding gradually shows a performance degra-
dation compared with SCL decoding. Especially when L is large, the
phenomenon is more pronounced. As L increases, the number of search
paths at each level of SCL decoding is more significant, which leads to
more pruned paths in PPB-SCL decoding. Fig. 13(a) shows that when
Ns¼ 256 and R¼ 1/2, the performance of PPB-SCL with L¼ 4 at
β¼ 0.742 is relatively close to that of SCL. As a consequence, it is
essential to choose a suitable β in the application of PPB-SCL decoding.

5.2. Computational complexity

Finally, we evaluate the decoding complexity of the proposed PPB-
SCL scheme. In hardware design, computational complexity is an
essential metric. In this paper, the computational complexity in the
decoding process is derived from the basic operations used by the
hardware technology. More specifically, addition, multiplication, exclu-
sive or, and comparison operations are considered, which are denoted as
ADD, MUL, XOR, and CMP, respectively.

The decoding complexity between polar codes and existing codes, e.g.,
LDPC codes, and turbo codes, have been compared and discussed in the
literature. Polar codes with list decoding have only 8%–16% of the
computational complexity of turbo codes and 22%–16% of LDPC codes
[37], which varies with code rate. Here, we focus on the complexity
analysis of list decoding for BPCs and the proposed NBPCs. The decoding
complexity of SCL scheme can be observed by two operation parts. On the



Fig. 13. PPB-SCL decoding performance of NBPCs over GF(4) with code length Ns¼ 256.

Fig. 14. PPB-SCL decoding performance of NBPCs over GF(4) with code length Ns¼ 1024.

Table 6
A comparison of decoding complexity in terms of basic operations.

ADD MUL XOR CMP

BPC with SCL 1
2
LNb log2Nb þ ℓ

LNb log 2Nb 1
2
LNb log2Nb

2LNb log 2Nb þ ℓ

NBPC with SCL 3qLNs log 2Ns þ ℓ – LNs log 2Ns 4ðq� 1ÞLNs log2Ns þ ℓq
NBPC with PPB-SCL ð2qþ 1ÞLNs log2Ns þ 2ℓ – 1

2
LNs log2Ns

2ðq� 1ÞLNs log2Ns þ ℓðq� 1Þ

Fig. 15. Comparison of computational complexity for different algorithms,
where L¼ 4 and R¼ 1/2 are exemplified.
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one hand, the basic operations of LLR computation in the basic unit shown
in Figs. 2 and 3 are counted. On the other hand, the basic operations of PM
calculation during path splitting are also considered. Table 6 presents a
comparisonof the computational complexity,whereℓdenotes thenumber
of visited nodes in the path splitting process for SCL decoding. Note that
MUL operations of field elements are tallied as ADD in Table 6 as they can
be represented as the addition of exponents. The LLR recursive calculation
of NBPCs is done by the maximum function instead of the f function of
BPCs, and thus MUL operation is not required for NBPCs.

Fig. 15 shows the decoding complexity for different schemes, where
GF(4)-based NBPCs are considered for comparison. Note that the statis-
tics are obtained by weighting ADD, MUL, XOR, and CMP, where MUL is
weighted by 2 while the rest are weighted by 1. It can be seen that the
proposed PPB-SCL scheme obtains about 40% complexity reduction of
SCL decoding for NBPCs. Moreover, the computational complexity of
NBPCs with SCL decoding is about 2.2 times that of BPCs. However, if the
PPB-SCL decoding is implemented, it can be observed that the complexity
increases by only 35%, which is a great improvement for the decoding
cost of NBPCs.
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Along with the BER performance analysis in Section 5.1, when GF(4)-
based NBPCs are considered, the PPB-SCL decoding obtains a
0.3 dB–0.5 dB gain with a 35% additional complexity cost compared to
BPCs. The proposed NBPC scheme with PPB-SCL decoding achieves a
reasonable trade-off between computational complexity and reliability.
Furthermore, NBPCs also yield significant latency gains since multiple bits
are decoded simultaneously as one symbol. Therefore, the proposed NBPC
shows high potential for applications in future wireless communication
systems, especially ultra-reliable low-latency communications.

6. Conclusion

In this paper, we design an NBPC scheme with a general structure
over GF(2m), where the popular LLR-based SCL decoding is employed
flexibly without considering the field size. Specifically, a general LLR
recursive function for NBPCs is presented for the arbitrary kernel size.
Then, we propose a non-binary SCL decoding based on LLRs, which can
be simply implemented as that of BPCs. Moreover, a PPB-SCL algorithm
based on LLRs is proposed to reduce the complexity of original non-
binary SCL decoding. Simulation results show that the BER perfor-
mance of the proposed NBPCs significantly outperforms BPCs and has a
slight loss than that of RS-based NBPCs but with high flexibility and low
implementation cost. In the future, we will consider the impact of high-
order non-binary kernels on performance and an adaptive Monte-Carlo
simulation to further reduce the computational complexity for the
construction.
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