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A B S T R A C T

Pressurised cylindrical channels made of soft materials are ubiquitous in biological systems, soft robotics and
metamaterial designs. In this paper, we study large deformation and subsequent instability of a thick-walled
and compressible hyperelastic cylinder under internal pressure and external constraints. The applied pressure
can lead to elastic bifurcations along the axial or circumferential direction. Perturbation theory is used to
derive the partial differential equations that govern the bifurcation behaviour of the cylindrical channel. Two
cases of boundary conditions on the outer surface of the cylinder, namely, free and constrained are studied to
understand their influence on the instability behaviour. The derived equations are solved numerically using
the compound matrix method to evaluate the critical pressure for instability. The effects of the wall-thickness
of the cylinder and the compressibility of the material on the critical pressure is investigated for both the
boundary conditions. The results reveal that for an isotropic material, the bifurcation occurs along the axial
direction of the cylinder at lower critical pressure compared to circumferential direction for all cases considered
herein. Finally, the tuneability of the bifurcation behaviour of transversely isotropic cylinder is demonstrated
by considering reinforcements along the cylinder’s axis, triggering bifurcation in the circumferential direction
in certain cases. The findings of the study indicate that the instability-induced pattern formation will be useful
for designing shape changing material systems such as soft robotics and soft metamaterials.
. Introduction

Soft materials such as gels, soft tissues, and elastomers can undergo
arge deformation that can trigger elastic instabilities such as wrinkling
nd folding resulting in pattern formation [1,2]. The advantage of
uch materials is that they have high strength to modulus ratio and
herefore can sustain large strain. Typically, they possess low elas-
ic modulus which makes them prone to elastic instabilities such as
rinkling, creasing, and folding. A cylindrical channel made of soft
yperelastic material can undergo large deformation due to inflating
ressure and can exhibit wrinkle patterns either along the circumfer-
ntial or axial direction as shown in Fig. 1. These undulating surface
opographies are widely observed in biological systems such as skin,
ntestine, and mucus airways [3]. Bifurcation of thin incompressible
ylinder under inflating pressure is an extensively studied problem
4–6] in literature. Bifurcation analysis of compressible hyperelastic
ylindrical structure [7–9], and bilayer structures [10,11] under axial
ompression has also been conducted. Eversion of both compressible
nd incompressible elastic cylinder was studied by Chen and Haughton
12] and Haughton and Chen [13]. However, there is a lack of a
etailed bifurcation analysis of a pressurised compressible thick-walled
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cylinder. Thin-walled elastic tubes may experience bulging and bending
depending upon their length. On the contrary, a thick cylinder tends
to deform homogeneously, then bifurcates and undulates either along
the axial or the circumferential direction. By constraining the external
lateral boundary and the axial stretch to unity, we study the circumfer-
ential and axial bifurcation phenomena in a pressurised compressible
hyperelastic cylindrical channel as shown in Fig. 1. This avoids the
possibility of localised bulging as studied by Kyriakides and Yu-Chung
[14] and Fu et al. [15]. In their experimental work, Cheewaruangroj
et al. [16] also showed the formation of peristaltic modulation i.e., an
alternation of contraction and expansion of the cylinder radius. Fur-
thermore, we limit our discussion to only wrinkling instabilities and
have not considered creasing [17,18], and folding [19,20] phenomena
which are also possible in soft solids.

Pressurised soft thick cylindrical channels are common surrogates
to study biological systems such as blood flow through arteries [21],
soft tissue deformation [22], and have many clinical application such
as biocompatible chips (organs on chips) and medical implants [23,24].
Beyond these biomedical applications, soft channels also have impor-
tant application in metamaterials used for developing soft robotics [25]
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Fig. 1. A long thick compressible cylindrical tube with internal radius 𝐴, external radius 𝐵 and length 𝐿 in the reference configuration that deforms to a cylinder with internal
radius 𝑎 and external radius 𝑏 under an internal pressure and plane strain condition. The deformation can cause periodic patterns either (a) in the axial direction that maintains
axisymmetry, or (b) in the circumferential direction that maintains the plane strain condition.
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such as soft grippers [26]. Soft microfluidic channels made of elastomer
through soft lithography or rapid prototyping have been shown to be
advantageous as deformation of these channels are useful in actuating
the valves between the pumps [27]. In addition, soft channels are
encountered in polymeric hydrogels experiencing high strain and con-
fined in granular medium for use as water reservoir in agriculture [28].

Bifurcation analysis of incompressible thick-walled tube under com-
bined axial loading and external/internal pressure is discussed
by Haughton and Ogden [29]. They studied the effect of wall-thickness
which leads to non-homogeneous deformation. Sang et al. [30] per-
formed the stability analysis of incompressible rubber tube under
internal pressure using Gent’s strain energy function. Recently, Liu
[31] investigated the axial and circumferential modes of buckling in
constrained incompressible cylindrical tube under compression and de-
termine the critical thickness ratio for transition of mode types. Anani
and Rahimi [32] discussed the stability analysis of functionally graded
incompressible thick-walled cylindrical and spherical shells using ex-
tended version of Ogden’s strain energy function. The wall-thickness
has a significant influence on the stability of cylinder subjected to in-
ternal/external pressure. In particular, this motivates the investigation
of the effect of displacement constraints along the outer surface, wall-
thickness and material compressibility on critical pressure at which the
instability occurs in the cylinder.

In the current work, we study large deformation of pressurised
thick-walled hyperelastic compressible cylinder and investigate the
onset of instability under internal pressure. By incorporating the com-
pressible version of neo-Hookean constitutive model in the strain en-
ergy density function, the base state solutions are obtained for cylinders
along azimuthal as well as axial direction. Both constrained and free
boundary conditions are considered on the external surface of the
cylinder. The bifurcation solutions are then obtained by perturbing
the principal solutions with a small parameter (𝜖) using incremental
deformation theory [33] along the circumferential and axial direction
of the cylinder. The resulting incremental equations are solved numer-
ically using the compound matrix method for computing critical value
of inflating pressure. The buckling modes corresponding to the critical
pressure along the axial and circumferential directions are investigated.
Finally, the influence of stiffening the cylindrical tube along the axial
direction with fibre reinforcement and its role on the elastic instabilities
is studied.
 t
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1.1. Organisation of this manuscript

The remainder of this paper is organised as follows. In Section 2,
we discuss the base state solution for the cylinder subjected to internal
pressure under free as well as constrained boundary conditions on
the outer surface. In Section 3, we derive the incremental differential
equations by perturbation in the circumferential and axial direction. In
Section 4, we derive the non-dimensional ordinary differential equa-
tions (ODEs) and evaluate the critical pressure that causes instability
in circumferential as well as axial direction using compound matrix
method and shooting method. Later in this section, we present a
detailed discussion of numerical results also including the comparison
of bifurcation solution in axial and circumferential direction. Finally,
we conclude the work in Section 5 with the scope for potential future
extensions. Supplementary mathematical derivations are given in the
Appendix.

1.2. Notation used in this manuscript

Brackets: Two types of brackets are used. Round brackets () are used
o define the functions applied on parameters or variables. Square
rackets [ ] are used to clarify the order of operations in an algebraic
xpression.
ymbols: A variable typeset in a normal weight font represents a scalar.

A lower-case bold weight font denotes a vector and bold weight upper-
case font denotes a tensor. Matrix of a tensor is depicted by enclosing
the tensor in square brackets. Tensor product of two second order
tensors 𝐀 and 𝐁 is defined as either [𝐀 ⊗ 𝐁]𝑖𝑗𝑘𝑙 = [𝐀]𝑖𝑗 [𝐁]𝑘𝑙 or [𝐀 ⊠
𝐁]𝑖𝑗𝑘𝑙 = [𝐀]𝑖𝑘[𝐁]𝑗𝑙. Higher order tensors are written in bold calligraphic
ont with a superscript as (𝑖), where superscript ‘𝑖’ indicates that the

function is differentiated 𝑖 + 1 times. For example, (1) = 𝜕2𝛺
𝜕𝐅𝜕𝐅

is a
fourth order tensor. Operation of a fourth order tensor on a second
order tensor is denoted as [(1) ∶ 𝐀]𝑖𝑗 = [(1)]𝑖𝑗𝑘𝑙[𝐀]𝑘𝑙. Inner product is
efined as 𝐀⋅𝐁 = [𝐀]𝑖𝑗 [𝐁]𝑖𝑗 . We use the word ‘Div’ to denote divergence
n three dimensions. The term 𝛿𝐅 is used to represent the increment in
.
unctions: det(𝐅) denote the determinant of a tensor 𝐅. tr(𝐅) denote the
race of a tensor 𝐅.
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Fig. 2. Cross-section of the cylinder in the reference and deformed configurations
corresponding to the two boundary conditions considered. The inner and outer radii
are 𝐴 and 𝐵 that transform to 𝑎 and 𝑏, respectively, due to an internal pressure 𝑃𝑟. (a)

he outer surface is constrained forcing 𝑏 = 𝐵. (b) The outer surface is free to expand.

. Kinematics and principal solution

Consider an infinitely long thick cylinder with an internal radius
and external radius 𝐵 in its stress-free reference configuration. The

ylinder is deformed by an internal pressure 𝑃𝑟 as shown in Fig. 2 under
wo types of boundary conditions (free and constrained) on the outer
urface. Let the cylindrical coordinates in the reference configuration be
enoted by (𝑅,𝛩,𝑍) and in the deformed configuration by (𝑟, 𝜃, 𝑧). In its
eformed configuration, the internal radius of the cylinder is given by
and the external radius is 𝑏. For the constrained boundary condition

n the outer surface, 𝑏 = 𝐵. A plane strain problem is considered
nd therefore no dependence on the 𝑍 coordinate is considered. We
lso assume axisymmetry that removes any dependence on the 𝛩
oordinate. We denote the deformation gradient by 𝐅 and the right
auchy–Green deformation tensor as 𝑪 = 𝐅𝑇𝐅. For the current case
f axisymmetric deformation, we can write the components of 𝐅 in
he cylindrical coordinate system as [𝐅] = diag(𝜆𝑟, 𝜆𝜃 , 𝜆𝑧) where the
rincipal stretch ratios can be written as

𝑟 =
𝜕𝑟
𝜕𝑅

, 𝜆𝜃 = 𝑟
𝑅
, 𝜆𝑧 = 1. (2.1)

The deformation function in the radial direction 𝑟(𝑅) is an unknown.

2.1. Equilibrium and boundary conditions

The balance of linear momentum

Div𝐏 = 𝟎, (2.2)

can be written in cylindrical coordinates for this axisymmetric case with
no dependence of variables along the 𝑍 coordinate as

𝑃 ′
𝑅𝑟 +

1
𝑅

[

𝑃𝑅𝑟 − 𝑃𝛩𝜃
]

= 0. (2.3)

Here, 𝐏 is the first Piola–Kirchhoff stress tensor with components 𝑃𝑖𝑗 ∶=
[𝐏]𝑖𝑗 and a prime denotes derivatives with respect to 𝑅. There are no
shear components of stress because of isotropy and 𝐅 being diagonal
3

(axisymmetric deformation). For simplicity we use a compressible neo-
Hookean energy density function for the hyperelastic material [34]

𝛺(𝐼1, 𝐼3) =
𝜇
2
[

𝐼1 − 3 − log 𝐼3
]

+ 𝜅
4
[

log 𝐼3
]2, (2.4)

where the scalar invariants are defined as 𝐼1 = tr(𝑪), 𝐼3 = 𝐽 2 =
[det(𝐅)]2, 𝜇 is the ground state shear modulus, and 𝜅 is a material
arameter that relates to the ground state bulk modulus 𝐾 as 𝜅 =

𝐾∕2 − 𝜇∕3. Using (2.4), the equilibrium Eq. (2.3) is rewritten as (with
detailed derivations in Appendix A)

𝜕
𝜕𝑅

(

𝛼
[

𝑟′ − 1
𝑟′

]

+ 2
𝑟′

log
(

𝑟𝑟′

𝑅

)

)

= 𝛼
𝑅

[

𝑟
𝑅

− 𝑟′
]

+ 1
𝑅

[

𝛼 − 2log
(

𝑟𝑟′

𝑅

)]

[ 1
𝑟′

− 𝑅
𝑟

]

.

(2.5)

This is a second order ODE for the unknown 𝑟(𝑅) with 𝑅 ∈ [𝐴,𝐵].
Note that here we have defined a dimensionless parameter 𝛼 = 𝜇∕𝜅. In
the linear elastic regime (𝐅 ≈ 𝐈), the parameter 𝛼 is written in terms of
the Poisson’s ratio 𝜈 as 𝛼 = (1 − 2𝜈)∕𝜈 which implies that for 𝛼 = 0, the
cylinder is incompressible. In order to assess the mechanical response
for compressible cylinders, we perform computations for 𝛼 > 0.

2.1.1. Constrained boundary conditions
If the outer boundary of the cylinder is constrained as shown in

Fig. 2a, then the displacement boundary condition over the external
surface is

𝑟 = 𝐵, at 𝑅 = 𝐵, (2.6)

and the traction boundary condition over the inner surface is

−𝑃𝑟 = 𝑃𝑅𝑟, at 𝑅 = 𝐴, (2.7)

where 𝑃𝑟 is internal pressure.

2.1.2. Free boundary conditions
If the outer boundary of the cylinder is free as shown in Fig. 2b,

then the required traction boundary conditions are

−𝑃𝑟 = 𝑃𝑅𝑟, at 𝑅 = 𝐴, and 𝑃𝑅𝑟 = 0 at 𝑅 = 𝐵. (2.8)

2.2. Numerical pre-buckling solution

The second order ODE (2.5) can be rewritten as a system of two first
order ODEs by defining 𝑦1 = 𝑟 and 𝑦2 = 𝑟′ as
[

1 0
0 1

] [

𝑦′1
𝑦′2

]

=
[

𝑦2
2

]

, (2.9)

where the coefficients 1 and 2 in (2.9) are

1 = 𝛼
[

1 + 1
𝑦22

]

+ 2
𝑦22

[

1 − log
( 𝑦1𝑦2

𝑅

)

]

,

2 =
𝛼
𝑅

[

𝑦1
𝑅

− 𝑦2

]

+ 1
𝑅

[

𝛼 − 2log
( 𝑦1𝑦2

𝑅

)]

[

1
𝑦2

− 𝑅
𝑦1

]

+ 2
[

1
𝑅𝑦2

− 1
𝑦1

]

.

(2.10)

he corresponding boundary conditions transform to
[

𝑦2 −
1
𝑦2

]

+ 2
𝑦2

log
( 𝑦1𝑦2

𝑅

)

+ 𝑃 = 0, at 𝑅 = 𝐴, (2.11)

𝑦1 = 𝐵, at 𝑅 = 𝐵, (2.12)

for the constrained outer surface and

𝛼
[

𝑦2 −
1
𝑦2

]

+ 2
𝑦2

log
( 𝑦1𝑦2

𝑅

)

+ 𝑃 = 0, at 𝑅 = 𝐴, (2.13)

𝛼
[

𝑦2 −
1
]

+ 2 log
( 𝑦1𝑦2 ) = 0, at 𝑅 = 𝐵, (2.14)
𝑦2 𝑦2 𝑅
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Fig. 3. The deformed dimensionless internal radius 𝑎∕𝐴 (dilation) as a function of the
dimensionless applied internal pressure 𝑃𝑟∕𝜇 for a range of cylinder thickness (𝐵∕𝐴)
for a nearly incompressible cylinder (𝛼 = 0.02 → 𝜈 = 0.495). The plots are very close to
those presented by Cheewaruangroj et al. [16] (Figure 2) for incompressible cylinders.

for the free outer surface of the cylinder. Here 𝑃 = 𝑃𝑟∕𝜅 is the
dimensionless internal pressure.

In order to validate our current model, we compare the predictions
with existing results for inflation of an incompressible cylinder with
free boundary. Eqs. (2.9)–(2.14) are solved using the bvp4c solver
based on residual control in Matlab R2018a for 𝛼 = 0.02 (or 𝜈 = 0.495),
and for various cylinder thickness values, 𝐵∕𝐴 = 1.1, 1.5,… , 50.
These results are presented in Fig. 3 and are in good agreement with
the results reported by Cheewaruangroj et al. [16] for incompressible
cylinders (𝜈 = 0.5). The plots show the variation of the deformed inner
radius 𝑎∕𝐴 (dilation) with respect to the normalised internal pressure.
The contribution of 𝜅 term in (2.4) is very small as 𝐽 → 1 or log(𝐽 ) → 0
for the parameter, 𝛼 = 0.02. We note the existence of a critical limiting
pressure, 𝑃𝑟 = 𝜇 log(𝐵∕𝐴) at which the divergence happens leading to
massive changes in the radius for a minor change in the pressure (blue
dotted line in Fig. 3). The critical limit of pressure is not observed as
𝐵∕𝐴 tends to infinity.

Results for the deformation of compressible cylinders with free and
constrained external boundaries are shown in Figs. 4 and 5, respec-
tively. The plots show the variation of the deformed inner radius 𝑎∕𝐴
with the internal applied pressure 𝑃 for different values of the material
parameter 𝛼.

Results of constrained and unconstrained cases show that the max-
imum dilation for any value of 𝐵∕𝐴 decreases with increasing value of
𝛼. In the constrained case, the inner radius deforms less for smaller
value of radius ratio (𝐵∕𝐴) and this is due to the fixed boundary
which causes resistance to dilation. As the wall-thickness increases, the
deformation of inner radius increases due to less dilation resistance
from the boundary constraints. For the constrained case, the variation
of 𝑎∕𝐴 with respect to internal pressure is nonlinear for lower values
of 𝛼 and becomes linear for higher values of 𝛼. This trend is markedly
opposite in the unconstrained case shown in Fig. 4 due to the stress
free boundary and the variation of 𝑎∕𝐴 is almost linear for all values of
𝛼. This behaviour is in contrast to the nonlinear variation observed for
the nearly incompressible case results shown in Fig. 3. Here, the thick
cylinder deforms less as compared to thin cylinder for same amount of
pressure and material/geometrical parameters.

When the limit 𝐵∕𝐴 → ∞, it corresponds to a cylindrical channel in
an infinite space for which the influence of boundary is negligible and
the deformation in the cylinder is identical for both constrained and
unconstrained cases. We demonstrate this by choosing 𝐵∕𝐴 = 50 in the
simulations and it is observed that these results corresponding to lower
4

bound for unconstrained cases and upper bound for constrained cases
converge in Figs. 4 and 5.

3. Incremental equations

In this section, we derive the partial differential equations that
govern the instability behaviour of cylindrical channels subjected to
internal pressure based on incremental theory. We follow the general
framework of Haughton and Ogden [35] restricting our discussion
to the compressible neo-Hookean model of Eq. (2.4). Consider small
perturbations to the primary deformation (𝑟, 𝜃, 𝑧) scaled by a parameter
0 < 𝜖 ≪ 1 such that the total deformation is

𝑟̂ = 𝑟 + 𝜖𝑢, 𝜃̂ = 𝜃 + 𝜖𝑣, and 𝑧̂ = 𝑧 + 𝜖𝑤, (3.1)

nd the associated first Piola–Kirchhoff stress tensor [33] is

𝐏 = (1)𝛿𝐅 + 1
2
(2)[𝛿𝐅, 𝛿𝐅] +⋯ , (3.2)

here 𝛿𝐅, 𝛿𝐏, and (𝑖) = 𝜕𝑖+1𝛺
𝜕𝐅𝑖+1

are the incremental deformation
gradient tensor, incremental first Piola–Kirchhoff tensor, and elastic
moduli of the material, respectively. Upon ignoring the higher order
terms in (3.2), the incremental first Piola–Kirchhoff stress tensor is
given as

𝛿𝐏 = 𝜇
[

𝛿𝐅+[𝐅−1[𝛿𝐅] 𝐅−1]𝑇
]

+2𝜅
[

𝐅−𝑇 tr(𝐅−1[𝛿𝐅])−log 𝐽 [𝐅−1[𝛿𝐅] 𝐅−1]𝑇
]

.

(3.3)

he incremental equilibrium equation and the associated incremental
oundary conditions are

iv(𝛿𝐏) = 𝟎, (3.4a)

[𝛿𝐏]𝐍 = 𝐽𝑃𝑟𝐅−𝑇 [𝛿𝐅]𝑇𝐅−𝑇𝐍 − 𝐽𝑃𝑟tr
(

𝐅−1[𝛿𝐅]
)

𝐅−𝑇𝐍. (3.4b)

he expression of 𝛿𝐅, (𝑖), and detailed mathematical derivations asso-
iated with Eqs. (3.3)–(3.4) are presented in Appendix A. In this work,
e seek two types of bifurcation from the primary solution. The first
ne is a solution that satisfies the plane strain condition (𝑤 = 0) and
auses perturbations in the radial–circumferential direction (i.e., 𝑟, 𝜃
oordinates). The second bifurcation problem is the perturbation of
he solution along the radial–axial direction (i.e., 𝑟, 𝑧 coordinates) and
o variation along the circumferential coordinate, that is, 𝑣 = 0. The
ifurcation along the axial direction is also possible by perturbing the
rimary solution only along radial component of the cylinder i.e., 𝑣 =
= 0 in contrast to the latter case of bifurcation.

.1. Perturbation along the circumferential direction

We first apply small perturbations to the principal solution by
hoosing 0 < 𝜖 ≪ 1 which satisfy the plane strain condition by
onsidering 𝑤 = 0 in Eq. (3.1). The functions 𝑢 and 𝑣 depend only
n the coordinates (𝑅,𝛩). The associated two-dimensional deformation
radient is given by 𝐅 = diag(𝜆𝑟, 𝜆𝛩), where 𝜆𝑟 and 𝜆𝜃 are the principal
tretches of prescribed deformation. Consider a sinusoidal perturbation
s an ansatz

(𝑅,𝛩) = 𝛥𝑓 (𝑅) cos(𝑛𝛩), and 𝑣(𝑅,𝛩) = 𝛥𝑔(𝑅) sin(𝑛𝛩), (3.5)

here ‘𝑛’ denotes the wave number in circumferential direction. On
ubstituting (3.5) in the equilibrium Eq. (3.4a) and collecting only
(𝜖) terms, we obtain the incremental differential equations for the

unctions 𝛥𝑓 and 𝛥𝑔 as

𝑓 ′′ = − 1
𝑎̃1

[

𝑎̃2𝛥𝑓
′ + 𝑎̃3𝛥𝑓 + 𝑎̃4𝛥𝑔

′ + 𝑎̃5𝛥𝑔
]

, (3.6a)

𝛥𝑔′′ = − 1
𝑏̃1

[

𝑏̃2𝛥𝑔
′ + 𝑏̃3𝛥𝑔 + 𝑏̃4𝛥𝑓

′ + 𝑏̃5𝛥𝑓
]

. (3.6b)
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The inner and outer boundary conditions for constrained cylinder
re derived by making use of (3.4b), and collecting the linear order
erms in 𝜖

𝑎̃11𝛥𝑓 + 𝑎̃22𝛥𝑓
′ + 𝑎̃33𝛥𝑔 = 0,

𝑏̃11𝛥𝑓 + 𝑏̃22𝛥𝑔
′ = 0,

}

at 𝑅 = 𝐴, (3.7a)

𝑓 = 𝛥𝑔 = 0, at 𝑅 = 𝐵. (3.7b)

he coefficients 𝑎̃1 − 𝑎̃5, 𝑏̃1 − 𝑏̃5 in (3.6) and 𝑎̃11 − 𝑎̃33, 𝑏̃11 − 𝑏̃22 in the
oundary conditions (3.7) are given in Appendix B.

.2. Perturbation along the axial direction

In this section, we apply small increments (0 < 𝜖 ≪ 1) to the
rincipal solution with perturbations along the axial direction satisfying
xisymmetry by considering 𝑣 = 0 in Eq. (3.1). The functions 𝑢 and

depend only on the coordinates (𝑅,𝑍). The associated deformation
radient in terms of principal stretches is given as 𝐅 = diag(𝜆𝑟, 𝜆𝜃 , 1).

We consider the following ansatz

𝑢(𝑅,𝑍) = 𝛥𝑓 (𝑅) cos
(

2𝜋𝑚𝑍
𝐿

)

, and 𝑤(𝑅,𝑍) = 𝛥ℎ̄(𝑅) sin
(

2𝜋𝑚𝑍
𝐿

)

.

(3.8)

Here, ‘𝑚’ represents the wavenumber along the axial direction. We take
the analysis domain in Z direction as 0 ≤ 𝑍 ≤ 𝐿, where 𝐿 is the length
of the cylinder. Upon substituting (3.8) in the equilibrium Eq. (3.4a)
and collecting 𝑂(𝜖) terms, we obtain the incremental ODEs for 𝛥𝑓 and
 m

5

𝛥ℎ̄ as

𝛥𝑓 ′′ = − 1
𝑐1

[

𝑐2𝛥𝑓
′ + 𝑐3𝛥𝑓 + 𝑐4𝛥ℎ̄

′ + 𝑐5𝛥ℎ̄
]

,

𝛥ℎ̄′′ = − 1
𝑑1

[

𝑑2𝛥ℎ̄
′ + 𝑑3𝛥ℎ̄ + 𝑑4𝛥𝑓

′ + 𝑑5𝛥𝑓
]

.
(3.9)

he boundary condition (3.4b) for constrained cylinder is given by

𝑐11𝛥𝑓 + 𝑐22𝛥𝑓
′ + 𝑐33𝛥ℎ̄ = 0,

𝑑11𝛥𝑓 + 𝑑44𝛥ℎ̄
′ = 0,

}

at 𝑅 = 𝐴, (3.10a)

𝑓 = 𝛥ℎ̄ = 0, at 𝑅 = 𝐵, (3.10b)

here the coefficients 𝑐1−𝑐5, 𝑑1−𝑑5 associated with (3.9) and 𝑐11−𝑐33,
11 − 𝑑44 associated with (3.10) are given in Appendix B.

As a special case, we perform the bifurcation analysis in the axial
irection of cylinder by perturbing only radial component. For this, we
onsider 𝑣 = 𝑤 = 0 in Eq. (3.1) and consider the perturbation 𝑟̃(𝑅,𝑍) =
(𝑅) + 𝜖𝛥𝑓 (𝑅) cos

(

𝑚̃2𝜋𝑍∕𝐿
)

. This is attributed to the presence of only
adial strain that resists the applied pressure. The radial perturbation
lone results in second order incremental ODE i.e., function of 𝛥𝑓
hich is obtained by substituting 𝑎̃4 = 𝑎̃5 = 0 in (3.6a). The inner
nd outer boundary condition associated with this case is obtained by
ubstituting 𝛥ℎ̄ = 𝛥ℎ̄′ = 0 in (3.10). The mathematical equations are
rovided in Appendix B.5

. Numerical solution and discussion

The ODEs derived in Sections 3.1–3.2 are reformulated in Ap-
endix B for ease of numerical solution. We compute the numer-
cal solution using the classical shooting method (or determinantal
ethod) [29,36] as well as the compound matrix method [37–39].
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Fig. 6. Dependence of the critical dimensionless pressure on the compressibility factor 𝛼 for bifurcation in the circumferential direction with mode number 𝑛 of a constrained
cylinder at (a) 𝐵∕𝐴 = 2, and (b) 𝐵∕𝐴 = 5.
d
c
(
b
d

c
c
f
h
s

i
b
t
c
t

.1. Comparison of the numerical schemes

Shooting method and the compound matrix method are imple-
ented in the Matlab 2018a programming environment. The ode45
DE solver that implements an explicit Runge–Kutta method and
minsearchbnd optimisation subroutine [40] based on Nelder–Mead
implex algorithm is used. A tolerance value of 10−8 is chosen to
ompute the bifurcation solution. Both the methods compute the same
esults, but the compound matrix method is approximately four times
aster than the shooting method. As an example, on a computer with an
core, 2.10 GHz processor and 48 GB of RAM, computation of the curve
orresponding to 𝐵∕𝐴 = 2, 𝑛 = 1 in Fig. 6a takes 142 seconds using the
ompound matrix method and 666 seconds using the standard shooting
ethod.

.2. Bifurcation of solution for a constrained cylinder

The dimensionless critical pressure (defined as 𝑃𝑐𝑟) to induce bi-
urcation in the circumferential direction is computed numerically by
olving the Eqs. (B.2) and (B.3) subjected to the boundary condi-
ions (B.4) and (B.5). Variation of the critical pressure with respect
o material parameter 𝛼 for fixed radius ratio is shown in Fig. 6. The
𝑐𝑟 monotonically increases with 𝛼 and its magnitude decreases with
he increase in wall-thickness. The imposed boundary conditions cause
hicker channel to experience instability at a lower critical pressure
han the thin cylindrical channel. For thin cylinder case (𝐵∕𝐴 = 2),
he bifurcation solution of 𝑛 = 1 requires higher pressure than the
ther modes suggesting that a bifurcation with higher mode number is
nergetically preferred to induce the instability. For thick cylinder case
𝐵∕𝐴 = 5), all the modes are close to each other. The higher modes
re preferred for low values of 𝛼 and the first mode is preferred for
igher values of 𝛼 as shown in Fig. 6b. We are able to compute the
olutions for value of 𝛼 as low as 0.02 which correspond to a ground
tate Poisson’s ratio of 0.495 and is comparable to an incompressible
aterial. The stable region for all the modes with 𝐵∕𝐴 = 2, and 𝛼 = 1

s shown in Fig. 7 which indicates the absence of bifurcation below the
ritical pressure, 𝑃𝑐𝑟 ≈ 4.

The critical pressure to induce bifurcation in the axial direction
s computed by the numerical solution of Eqs. (B.9) subjected to the
oundary conditions (B.10). Here, 𝑘 = 2𝜋𝑚(𝐵∕𝐿) is a dimensionless
avenumber (see Appendix B) and can take any positive real value as
pposed to 𝑛 that needs to be an integer. Fig. 8 shows the variation of
he critical pressure against the material parameter 𝛼. Again, the higher
odes are energetically preferred over lower modes and the bifurcation

olution is shown up to 𝑘 = 10 beyond which there is not much
6

ifference in the higher mode solutions. The red solid pressure curve
orresponds to the critical pressure obtained by numerical solution of
B.12) subjected to the boundary conditions (B.13) and (B.14). This
ifurcation is obtained for the mode 𝑘̃ = 10 for 𝐵∕𝐴 = 2, 5. The non-
imensional number 𝑘̃ is a rescaled parameter defined as 𝑘̃ = 2𝜋𝑚̃(𝐵∕𝐿)

corresponding to the special case described in Section 3.2. In this case,
only an incremental radial strain is induced by the critical pressure
which results in the bifurcation solution that corresponds to 𝑘̃ = 10.
The critical pressure evaluated in the radial perturbation case is higher
than the value obtained for the radial and axial perturbation. Thus, the
bifurcation solution that corresponds to 𝑘 = 10 is energetically pre-
ferred over the bifurcation solution of 𝑘̃ = 10 to induce the instability
along the axial direction.

The variation of critical pressure with 𝛼, 𝐵∕𝐴 and 𝑘 is similar to that
seen for the circumferential bifurcation case. However, the magnitude
of the critical pressure obtained is smaller for all the values of the
parameters chosen. For the same parameters of 𝐵∕𝐴 = 2 and 𝛼 = 1 with
constrained boundary condition (B.10), the pressure curve converge to
limiting value of 𝑃𝑐𝑟 ≈ 3.3 when plotted against 𝑘. Thus, a cylinder
with constrained boundary subjected to an internal pressure is likely
to develop instabilities along the axial direction.

4.3. Bifurcation of solution for cylinder with a free external boundary

The critical pressure to induce bifurcation in the circumferential
direction is computed numerically by solving Eqs. (B.2) and (B.3)
subjected to stress free boundary conditions (B.6) and (B.7). Variation
of 𝑃𝑐𝑟 with respect to the material parameter 𝛼 for different modes
is shown in Fig. 9. The critical pressure rises with the increase in
compressibility factor 𝛼 and tend to converge when 𝛼(= 0.02) become
too small. The behaviour of bifurcation curves in this case is different
from constrained case when compared in terms of mode numbers. For
the thin cylinders 𝐵∕𝐴 = 2, no solution is obtained for 𝑛 = 1 and,
the mode 𝑛 = 2 requires less energy in inducing instability when
ompared to higher modes as evident from Fig. 9a. For the thick
ylinders, instability appears only for 𝑛 ≥ 3 as no solution is obtained
or 𝑛 = 1, 2. The value of critical pressure for all the modes converges for
igher value of 𝐵∕𝐴 and there is not much difference in the bifurcation
olution.

The critical pressure to induce bifurcation in the axial direction
s computed by the numerical solution of Eqs. (B.9) along with the
oundary conditions (B.10a) and (B.11). Variation of 𝑃𝑐𝑟 versus ma-
erial parameter 𝛼 is shown in Fig. 10. Similar to the constrained
ylinder case, increasing the value of 𝛼 leads to rise in the value of
he critical pressure. The dependence of critical pressure on radius
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Fig. 7. Variation of the critical dimensionless pressure for circumferential bifurcation
of a constrained cylinder with respect to mode number 𝑛. It is seen that the curve
asymptotically converges to a certain critical pressure value for all higher modes.

ratio 𝐵∕𝐴 is opposite to that observed in the case of constrained axial
cylinder. The magnitude of 𝑃𝑐𝑟 increases with the value of 𝐵∕𝐴 as
shown in Fig. 10b. This shows that thick cylinders have more stable
behaviour at high inflation pressure and attain wrinkled configuration
at a higher value of critical pressure due to large material resistance
as compared to thin cylinders. Again, we have shown the onset of
axial instability by perturbing only the radial component in (3.8) as
discussed in Section 4.2. The red solid pressure curve shown in Fig. 10
is the lowest critical pressure curve obtained by the numerical solution
of (B.12) subjected to unconstrained boundary condition (B.13) and
(B.15) and corresponds to the mode number 𝑘̃ = 0.1. This pressure is
much higher due to resistance only from the radial strain as compared
to the bifurcation solution of 𝑘 = 0.1 for 𝐵∕𝐴 = 2, 5. Here, the lowest
wavenumber corresponds to 𝑘 = 0.1 is energetically preferred over
the other modes for inducing instability along the axial direction of
the cylinder. Note that bifurcation solution exist for 𝑘 < 0.1, however
the bifurcation curves are very close to each other for lower values
of 𝑘. Furthermore, bifurcation for lower modes along axial direction
requires less critical pressure than that for circumferential direction
suggesting that buckling in axial direction is energetically preferred.
Similar trends for threshold pressure with wave length and material
stiffness (𝜇) for incompressible cylinder with unconstrained boundary
are reported by Cheewaruangroj et al. [16]. They estimated numeri-
cally and experimentally the critical pressure for incompressible thick
cylinders (𝐵∕𝐴 = 1000) to be (𝑃∕𝜇)𝑐𝑟 = 2.05. Using the same geometric
parameters, we have calculated the critical value of pressure for axial
cylinder made up of neo-Hookean compressible material subjected
to unconstrained boundary conditions. The critical pressure for thick
cylinders 𝐵∕𝐴 = 1000 at lowest mode 𝑘 = 0.1 with lowest material
parameter value 𝛼 = 0.02 (slightly incompressible) is calculated as
(𝑃∕𝜅)𝑐𝑟 or 𝑃𝑐𝑟 = 0.057 which is equivalent to (𝑃∕𝜇)𝑐𝑟 = 2.53.

4.4. Comparison of the bifurcation in the axial and circumferential direc-
tions

For both the constrained and free cylinders, it is observed that the
critical bifurcation pressure in the axial direction is lower than the
circumferential direction (see Figs. 6–10). In order to design cylindrical
systems that can lead to pattern formation (bifurcation) upon inflation
in the circumferential direction, one needs to increase the stiffness in

the axial direction.

7

4.4.1. Stiffening of the axial direction
Consider the cylinder to be made of an anisotropic (transversely

isotropic) material with an additional stiffness along a vector 𝐚 in the
reference configuration (for example, by introduction of continuously
distributed fibres orientated along the vector 𝐚). For this case, we use
the elastic strain energy density function [41]

𝛺∗(𝐼1, 𝐼3, 𝐼4) =
𝜇
2
[

𝐼1 − 3 − log 𝐼3
]

+ 𝜅
4
[

log 𝐼3
]2 +𝛺𝑓 (𝐼4), (4.1)

here 𝛺𝑓 (𝐼4) =
𝑘1
2𝑘2

[

exp[𝑘2[𝐼4 − 1]2] − 1
]

is the energy due to fibre
reinforcement, 𝑘1 > 0 is a parameter with units of stress, and 𝑘2 > 0
is dimensionless parameter. The invariant 𝐼4 = 𝐚 ⋅ 𝐂𝐚 represents the
square of stretch in direction of anisotropy. In this case, the incremental
dimensionless first Piola–Kirchhoff stress tensor is obtained as
𝛿𝐏
𝜅

=𝛼
[

𝛿𝐅 + [𝐅−1[𝛿𝐅]𝐅−1]𝑇
]

+ 2
[

𝐅−𝑇 tr(𝐅−1[𝛿𝐅]) − log 𝐽 [𝐅−1[𝛿𝐅]𝐅−1]𝑇
]

+ 2𝑘̄1 exp
[

𝑘2[𝐼4 − 1]2
]

[

1 + 2𝑘2[𝐼4 − 1]
]

[

𝐚⊗ 𝐅𝐚
]

[

tr
(

𝛿𝐅𝑇 [𝐚⊗ 𝐅𝐚]
)]

+ 2𝑘̄1[𝐼4 − 1] exp
[

𝑘2[𝐼4 − 1]2
]

[𝐚⊗ 𝐚] tr(𝛿𝐅𝑇 ), (4.2)

here 𝑘̄1 = 𝑘1∕𝜅 is a dimensionless parameter. In our problem, we
ssume plane strain and that the anisotropy is orientated along the axis
f the cylinder that results in 𝐼4 = 𝜆2𝑍 = 1 and we obtain

𝛿𝐏
𝜅

= 𝛼
[

𝛿𝐅 + [𝐅−1[𝛿𝐅] 𝐅−1]𝑇
]

+ 2
[

𝐅−𝑇 tr
(

𝐅−1[𝛿𝐅]
)

− log 𝐽 [𝐅−1[𝛿𝐅] 𝐅−1]𝑇
]

+ 2𝑘̄1
[

𝐚⊗ 𝐅𝐚
]

[

tr
(

𝛿𝐅𝑇 [𝐚⊗ 𝐅𝐚]
)]

. (4.3)

uxiliary calculations to arrive at the above equations are provided in
ppendix C.

The stress at a material point not only depends on the deformation
radient 𝐅 but also the fibre direction 𝐚. For the cylinder with unit axial
tretch (𝜆𝑍 = 1), the incremental stress corresponding to fibre term is
ndependent of the dimensionless parameter 𝑘2. The influence of stiff-
ning along the axial coordinate on the critical pressure is studied for
onstrained and unconstrained boundary conditions. Table 1 shows the
ritical pressure results of constrained case of axially stiffened cylinder
or different values of 𝛼 and cylinder radius ratio. We note that the
owest mode is sensitive to geometry of the cylinder and changes with
∕𝐴. Table 1 also compares the 𝑃𝑐𝑟 values of axial stiffened cylinder
ith the regular cylinder results. The stiffening in axial direction has
o effect on the critical pressure 𝑃𝑐𝑟 (hoop) which is responsible for
ircumferential bifurcation. For the constrained cylinder case, the fibre
einforcement in axial direction results in the increase of 𝑃𝑐𝑟 (fibre
xial) which is higher than the 𝑃𝑐𝑟 (hoop). The stiffening of axial
irection leads to the bifurcation along the circumferential direction
nd provides an approach for tailoring the bifurcation characteristics
f such systems. Results also show that as 𝛼 increases, we need higher
tiffening (a higher 𝑘̄1 value) to enhance the critical pressure. However,
n unconstrained cylinder, the stiffening along axial coordinate has no
ignificant effect on critical pressure even for very high stiffening value
𝑘̄1 = 100) as shown in Table 2. We present representative results for
= 1 but similar results are obtained for other 𝛼 values. The bifurcation

lways occurs at lower value of critical pressure in axial direction when
ompared to circumferential direction for unconstrained cylinder as
iscussed in the previous Section 4.4.

. Conclusion

In summary, we have studied large deformation in internally pres-
urised thick-walled compressible cylinders made up of soft material
ue to their widespread applications in biomedical implants, additively
anufactured metamaterials, highly flexible/stretchable electronics,

oft microfluidic channels and soft robotics.
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Fig. 8. Dependence of the critical dimensionless pressure on the compressibility factor 𝛼 for bifurcation in the axial direction of a constrained cylinder at (a) 𝐵∕𝐴 = 2, and (b)
𝐵∕𝐴 = 5. The pressure curve associated with higher modes are energetically preferred.
Fig. 9. Critical dimensionless pressure variation against compressibility factor for unconstrained cylinder perturbed along circumferential direction at (a) 𝐵∕𝐴 = 2, and (b) 𝐵∕𝐴 = 5.
Fig. 10. Critical dimensionless pressure variation against compressibility factor for axially perturbed unconstrained cylinder at (a) 𝐵∕𝐴 = 2, and (b) 𝐵∕𝐴 = 5. The pressure curve
ssociated with 𝑘 = 0.1 is energetically preferred.
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The internal pressure leads to elastic instability in thick-walled com-
ressible cylindrical channels along the circumferential or axial direc-
ion. Incremental deformation theory is applied to derive the governing
DEs for the cylindrical channel. Two types of boundary conditions for
he external surface of the cylinder are studied, namely, constrained
nd unconstrained to comprehend the bifurcation phenomena in the
 a

8

ircumferential and axial direction. The resulting incremental differen-
ial equations are obtained by perturbing the primary solution along the
adial–circumferential as well as radial–axial direction. These equations
re numerically solved for both the boundary conditions using com-
ound matrix method and shooting method (or determinant method) to
btain the critical internal pressure which induces instability. We have
lso investigated the elastic instability in axial direction by perturbing
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Table 1
Comparison of critical dimensionless bifurcation pressure values for isotropic and
anisotropic constrained cylinders. 𝑃𝑐𝑟 for circumferential bifurcation remains unchanged
ut 𝑃𝑐𝑟 for axial bifurcation changes on the introduction of anisotropy.

𝛼 = 1 𝛼 = 5

𝐵∕𝐴 𝑃𝑐𝑟
(hoop)

𝑃𝑐𝑟
(axial)
isotropic

𝑃𝑐𝑟
(axial)
fibres

𝑃𝑐𝑟
(hoop)

𝑃𝑐𝑟
(axial)
isotropic

𝑃𝑐𝑟
(axial)
fibres

1.5 5.81
(𝑛 = 25)

4.90
(𝑘 = 25)

6.70 (𝑘̄1 = 2)
(𝑘 = 25)

18.20
(𝑛 = 25)

16.87
(𝑘 = 20)

20.30 (𝑘̄1 = 15)
(𝑘 = 20)

2 3.97
(𝑛 = 20)

3.34
(𝑘 = 10)

4.17 (𝑘̄1 = 2)
(𝑘 = 10)

13.22
(𝑛 = 15)

12.03
(𝑘 = 10)

13.94 (𝑘̄1 = 25)
(𝑘 = 10)

5 2.56
(𝑛 = 5)

1.98
(𝑘 = 5)

2.61 (𝑘̄1 = 15)
(𝑘 = 5)

9.28
(𝑛 = 5)

8.41
(𝑘 = 5)

9.02 (𝑘̄1 = 50)
(𝑘 = 5)

Table 2
Comparison of critical dimensionless bifurcation pressure values
for isotropic and anisotropic unconstrained cylinders. 𝑃𝑐𝑟 for
circumferential bifurcation remains unchanged but 𝑃𝑐𝑟 for axial
bifurcation changes on the introduction of anisotropy. The
compressibility factor is chosen to be 𝛼 = 1.
𝐵∕𝐴 𝑃𝑐𝑟

(hoop)
𝑃𝑐𝑟
(isotropic, axial)

𝑃𝑐𝑟 (𝑘̄1 = 100)
(fibres, axial)

1.5 1.17
(𝑛 = 2)

0.51
(𝑘 = 0.1)

0.64
(𝑘 = 0.1)

2 2.04
(𝑛 = 1)

0.84
(𝑘 = 0.1)

1.002
(𝑘 = 0.1)

5 2.22
(𝑛 = 1)

1.58
(𝑘 = 0.1)

1.67
(𝑘 = 0.1)

the primary solution only along the radial component of the cylinder.
This results in higher critical pressure as compared to the critical pres-
sure obtained through generalised radial–axial perturbation for both
the boundaries considered. The effect of radius ratio (wall-thickness),
compressibility factor and boundary conditions on the critical inflating
pressure are systematically studied.

We also demonstrate that the numerical solutions of the resulting
ODEs can be computed almost four times faster using the compound
matrix method as compared to the standard shooting method. We
observe that the pressure curves associated with constrained external
surface have shown opposite behaviour than stress free external sur-
face. The magnitude of critical pressure decreases with the increase of
radius ratio due to the fixed boundary conditions in the constrained
cylinder which causes thicker channels to experience instability at
lower critical pressure than thin cylinders. Whereas, the critical pres-
sure increases with the radius ratio in the unconstrained boundary
condition case. The pressure curves monotonically increase with the
increase in the value of material parameter 𝛼 for all considered cases.
For constrained cylinder, the pressure curves corresponds to higher
wavenumber are energetically preferred. The explicit value of critical
pressure is difficult to be obtained as the pressure curves associated
with higher wavenumber are very close to each other, thus the stable
region for the optimised working pressure is provided in which bifur-
cation is absent. The opposite behaviour is shown by unconstrained
cylinder case where the lower modes are energetically preferred. Our
computations reveal that for the lowest stable mode, the critical pres-
sure that causes bifurcation in the axial direction is always lower
than the critical pressure that causes bifurcation in the circumferential
direction. However, this observation does not hold when the axial
direction is stiffened with the fibres. The reinforcement of fibres in axial
direction causes the bifurcation along the circumferential direction is
more preferable in constrained cylinders whereas reinforcement have
very less effect on bifurcation solution for unconstrained cylinders.
We have restricted ourselves to determine the threshold pressure, but
a post-bifurcation analysis may provide insights on the amplitude of
wrinkles and stability of wrinkled solution. These avenues are currently
under investigation.
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Appendix A. Incremental stress and traction condition

The incremental stress (3.2) is rewritten in index notation as

[𝛿𝐏]𝑖𝑗 = (1)
𝑖𝑗𝑘𝑙 [𝛿𝐅]𝑘𝑙 , (A.1)

here (1)
𝑖𝑗𝑘𝑙 is the first order elastic moduli given by

(1)
𝑖𝑗𝑘𝑙 = 𝜇

[

𝛿𝑖𝑘𝛿𝑗𝑙 −
[

T[−𝐅−1 ⊠ 𝐅−𝑇 ]
]

𝑖𝑗𝑘𝑙

]

+ 2𝜅
[

[𝐅−𝑇 ]𝑖𝑗 [𝐅−𝑇 ]𝑘𝑙

+ log 𝐽
[

T[−𝐅−1 ⊠ 𝐅−𝑇 ]
]

𝑖𝑗𝑘𝑙

]

,

= 𝜇
[

𝛿𝑖𝑘𝛿𝑗𝑙 + 𝐹−1
𝑗𝑘 𝐹−𝑇

𝑖𝑙

]

+ 2𝜅
[

𝐹−𝑇
𝑖𝑗 𝐹−𝑇

𝑘𝑙 − log 𝐽 [𝐹−1
𝑗𝑘 𝐹−𝑇

𝑖𝑙 ]
]

,

(A.2)

and the associated deformation gradient is defined by using (3.1) as

𝐅 + 𝛿𝐅 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝑟̂
𝜕𝑅

1
𝑅

𝜕𝑟̂
𝜕𝛩

𝜕 𝑟̂
𝜕 𝑍

𝑟̂ 𝜕𝜃̂
𝜕𝑅

𝑟̂
𝑅

𝜕𝜃̂
𝜕𝛩

𝑟̂ 𝜕 𝜃̂
𝜕 𝑍

𝜕 𝑧̂
𝜕𝑅

1
𝑅

𝜕𝑧̂
𝜕𝛩

𝜕 𝑧̂
𝜕 𝑍

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (A.3)

Using (A.1), the Piola Kirchhoff stress is obtain as

[𝛿𝐏]𝑖𝑗 =
[

𝜇
[

𝛿𝑖𝑘𝛿𝑗𝑙 + 𝐹−1
𝑗𝑘 𝐹−𝑇

𝑖𝑙

]

+ 2𝜅
[

𝐹−𝑇
𝑖𝑗 𝐹−𝑇

𝑘𝑙 − log 𝐽 [𝐹−1
𝑗𝑘 𝐹−𝑇

𝑖𝑙 ]
]

]

[𝛿𝐅]𝑘𝑙 ,

= 𝜇
[

[𝛿𝐅]𝑖𝑗 + [𝐅−1[𝛿𝐅]𝐅−1]𝑗𝑖

]

+ 2𝜅
[

𝐹−𝑇
𝑖𝑗 [𝐹−𝑇

𝑘𝑙 [𝛿𝐅]𝑘𝑙]

− log 𝐽 [𝐅−1[𝛿𝐅]𝐅−1]𝑗𝑖

]

,

= 𝜇
[

[𝛿𝐅]𝑖𝑗 + [𝐅−1[𝛿𝐅]𝐅−1]𝑇 𝑖𝑗

]

+ 2𝜅
[

𝐹−𝑇
𝑖𝑗 [𝐅−1[𝛿𝐅]]𝑘𝑘 − log 𝐽 [𝐅−1[𝛿𝐅]𝐅−1]𝑇 𝑖𝑗

]

. (A.4)

sing (A.4), the Piola stress in direct notation is

𝐏 = 𝜇
[

𝛿𝐅+[𝐅−1[𝛿𝐅] 𝐅−1]𝑇
]

+2𝜅
[

𝐅−𝑇 tr
(

𝐅−1[𝛿𝐅]
)

−log 𝐽 [𝐅−1[𝛿𝐅] 𝐅−1]𝑇
]

.

(A.5)

alance of traction in the current configuration subjected to internal
ressure is

𝐧 = −𝑃𝑟𝐧, (A.6)

here 𝜎𝜎𝜎 is the Cauchy stress tensor, 𝑃𝑟 is the internal pressure and 𝐧
s the unit outward normal in the current configuration. This can be
ewritten in the reference configuration as

𝐍 = −𝐽𝑃𝑟𝐅−𝑇𝐍, (A.7)

here 𝐍 is the unit outward normal in the reference configuration.
sing transformation (A.7), the incremental traction condition for in-

lating cylinder is given as

𝐏 + 𝛿𝐏]𝐍 = −
[

𝐽 + 𝜕𝐽
⋅ 𝛿𝐅

][

𝑃𝑟 + 𝑑𝑃𝑟

][

𝐅−𝑇 + 𝜕𝐅−𝑇
⋅ 𝛿𝐅

]

𝐍,

𝜕𝐅 𝜕𝐅
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[

𝑎

𝑎

[

𝑛

w

𝑐

𝑐

= −
[

𝐽𝑃𝑟 + 𝐽𝑑𝑃𝑟 + 𝑃𝑟

[

𝜕𝐽
𝜕𝐅

⋅ 𝛿𝐅
]][

𝐅−𝑇 + 𝜕𝐅−𝑇

𝜕𝐅
⋅ 𝛿𝐅

]

𝐍,

= −
[

𝐽𝑃𝑟𝐅−𝑇𝐍 + 𝐽𝑑𝑃𝑟𝐅−𝑇𝐍 + 𝐽𝑃𝑟

[

𝜕𝐅−𝑇

𝜕𝐅
⋅ 𝛿𝐅

]

𝐍

+ 𝑃𝑟

[

𝜕𝐽
𝜕𝐅

⋅ 𝛿𝐅
]

𝐅−𝑇𝐍
]

, (A.8)

where (⋅) represent the inner product. Eq. (A.8) results in

𝛿𝐏]𝐍 = −𝐽𝑃𝑟

[

−T
[

𝐅−1 ⊠ 𝐅−𝑇 ] ⋅ [𝛿𝐅]
]

𝐍 − 𝐽𝑑𝑃𝑟𝐅−𝑇𝐍

− 𝑃𝑟
[

det(𝐅)𝐅−𝑇 ⋅ [𝛿𝐅]
]

𝐅−𝑇𝐍,

= −𝐽𝑃𝑟

[

−
[

𝐹−1
𝑗𝑘 𝐹−𝑇

𝑖𝑙
]

[𝛿𝐅]𝑘𝑙
]

𝑁𝑗 − 𝐽𝑑𝑃𝑟𝐹
−𝑇
𝑖𝑗 𝑁𝑗

− 𝐽𝑃𝑟 tr(𝐅−1[𝛿𝐅])𝐹−𝑇
𝑖𝑗 𝑁𝑗 ,

= 𝐽𝑃𝑟
[

𝐹−𝑇
𝑖𝑙 [𝛿𝐅]𝑇𝑙𝑘 𝐹−𝑇

𝑘𝑗
]

𝑁𝑗 − 𝐽𝑑𝑃𝑟𝐹
−𝑇
𝑖𝑗 𝑁𝑗

− 𝐽𝑃𝑟 tr(𝐅−1[𝛿𝐅])𝐹−𝑇
𝑖𝑗 𝑁𝑗 . (A.9)

Eq. (A.9) can be written in direct notation as

[𝛿𝐏]𝐍 = 𝐽𝑃𝑟𝐅−𝑇 [𝛿𝐅]𝑇 𝐅−𝑇𝐍 − 𝐽 𝑑𝑃𝑟𝐅−𝑇𝐍 − 𝐽𝑃𝑟 tr(𝐅−1[𝛿𝐅])𝐅𝐍. (A.10)

Appendix B. Reformulation of equations and numerical solution

B.1. Case 1: Circumferential perturbations with constrained boundary

In order to perform efficient numerical computations, we define the
dimensionless parameters

𝜌 = 𝑅
𝐵
, 𝜌1 =

𝑟
𝐵
, 𝑓 =

𝛥𝑓
𝐵

, 𝑔 = 𝛥𝑔, (B.1)

where 𝐵 is the outer radius of constrained cylinder. On substitution of
(B.1) in the governing Eqs. (3.6a) and (3.6b), we obtain the incremental
differential equations in terms of dimensionless displacements 𝑓 and 𝑔
as

𝑓 ′′ = − 1
𝑎1

[

𝑎2𝑓
′ + 𝑎3𝑓 + 𝑎4𝑔

′ + 𝑎5𝑔
]

, (B.2)

𝑔′′ = − 1
𝑏1

[

𝑏2𝑔
′ + 𝑏3𝑔 + 𝑏4𝑓

′ + 𝑏5𝑦1

]

, (B.3)

where

𝑎1 = 𝜌′1𝜌
2
1𝜌

2
[

𝛼𝜌′21 − 2 log

(

𝜌1𝜌′1
𝜌

)

+ 2 + 𝛼
]

𝑓 ′′,

2 = 𝜌1𝜌
[

[

2𝜌′′1 𝜌1𝜌 − 𝜌′1𝜌1
]

2 log

(

𝜌1𝜌′1
𝜌

)

+ 𝜌′31 𝜌1𝛼 − 6𝜌′′1 𝜌1𝜌 − 2𝜌′′1 𝜌1𝜌𝛼

− 2𝜌′21 𝜌 + 4𝜌′1𝜌1 + 𝜌′1𝜌1𝛼
]

,

𝑎3 = 𝜌′1

[

−𝜌′21 𝜌
2
1𝛼𝑛

2 + 𝜌′21 𝜌
22 log

(

𝜌1𝜌′1
𝜌

)

− 2𝜌′′1 𝜌1𝜌
2 − 𝜌′21 𝜌

2
1𝛼 − 4𝜌′21 𝜌

2

− 𝜌′21 𝜌
2𝛼 + 2𝜌′1𝜌1𝜌

]

,

𝑎4 = −𝜌′21 𝜌
2
1𝜌

2𝑛
[

2 log

(

𝜌1𝜌′1
𝜌

)

− 2 − 𝛼
]

,

5 = 𝜌′1𝜌1𝑛
[

2 log

(

𝜌1𝜌′1
𝜌

)

𝜌′21 𝜌
2 − 2𝜌′′1 𝜌1𝜌

2 − 𝜌′21 𝜌
2
1𝛼 − 2𝜌′21 𝜌

2

− 𝜌′21 𝜌
2𝛼 + 2𝜌′1𝜌1𝜌

]

,

and

𝑏1 =
[

𝜌′21 𝜌
2
1𝜌

2𝛼
]

, 𝑏2 = −𝜌′1𝜌1𝜌
[

−𝜌′21 𝜌𝛼 + 2 log

(

𝜌1𝜌′1
𝜌

)

𝜌 − 𝜌′1𝜌1𝛼 − 𝜌𝛼
]

,

𝑏3 = 𝜌′21 𝑛
2
[

2 log

(

𝜌1𝜌′1
)

𝜌2 − 𝜌21𝛼 − 2𝜌2 − 𝜌2𝛼
]

,

𝜌

10
𝑏4 = 𝜌′1𝜌
2𝑛
[

2 log

(

𝜌1𝜌′1
𝜌

)

− 2 − 𝛼
]

,

𝑏5 = −𝑛
[

[

𝜌′′1 𝜌
2 − 𝜌′1𝜌

]

2 log

(

𝜌1𝜌′1
𝜌

)

− 2𝜌′′1 𝜌
2 − 𝜌′′1 𝜌

2𝛼

+ 2𝜌′21 𝜌1𝛼 + 2𝜌′1𝜌 + 𝜌′1𝜌𝛼
]

,

subjected to non-dimensionalised boundary conditions at the inner
surface of cylinder (at 𝜌 = 𝐴∕𝐵 = 𝐴∗)

2𝜌′1𝐴
∗]𝑓 − 𝜌1

[

−𝜌′21 𝐴
∗𝛼 + 𝐴∗

[

2 log

(

𝜌1𝜌′1
𝐴∗

)]

+ 𝜌1𝜌
′
1𝑃 − 2𝐴∗ −𝐴∗𝛼

]

𝑓 ′

+ [2𝜌1𝜌′1𝐴
∗𝑛]𝑔 = 0, (B.4a)

[

𝐴∗

[

2 log

(

𝜌1𝜌′1
𝐴∗

)]

+ 𝜌1𝜌
′
1𝑃 − 𝐴∗𝛼

]

𝑓 + [𝐴∗𝜌21𝜌
′
1𝛼]𝑔

′ = 0, (B.4b)

where 𝑃 = 𝑃𝑟∕𝜅 and 𝐴∗ = 𝜌|at𝐴∕𝐵 . The constrained outer boundary at
𝜌 = 1 leads to the condition

𝑓 (1) = 𝑔(1) = 0. (B.5)

B.2. Case 2: Circumferential perturbations with free boundary

In this case, the incremental ODEs is given by (B.2)–(B.3). The
boundary conditions are obtained by using Eq. (3.4b) and the dimen-
sionless parameters (B.1). The inner boundary, 𝜌 = 𝐴∗ for free cylinder
is given by

[2𝜌′1𝐴
∗]𝑓 − 𝜌1

[

−𝜌′21 𝐴
∗𝛼 + 𝐴∗

[

2 log

(

𝜌1𝜌′1
𝐴∗

)]

+ 𝜌1𝜌
′
1𝑃 − 2𝐴∗ − 𝐴∗𝛼

]

𝑓 ′

+ [2𝜌1𝜌′1𝐴
∗𝑛]𝑔 = 0, (B.6a)

𝑛
[

𝐴∗

[

2 log

(

𝜌1𝜌′1
𝐴∗

)]

+ 𝜌1𝜌
′
1𝑃 − 𝐴∗𝛼

]

𝑓 + [𝐴∗𝜌21𝜌
′
1𝛼]𝑔

′ = 0, (B.6b)

and at the outer boundary, 𝜌 = 1 is

[2𝜌′1]𝑓 − 𝜌1

[

−𝜌′21 𝛼 +

[

2 log

(

𝜌1𝜌′1
1

)]

− 2 − 𝛼

]

𝑓 ′ + [2𝜌1𝜌′1𝑛]𝑔 = 0,

(B.7a)

𝑛
[

[

2 log

(

𝜌1𝜌′1
1

)]

− 𝛼
]

𝑓 + [𝜌21𝜌
′
1𝛼]𝑔

′ = 0. (B.7b)

B.3. Case 3: Axial perturbations with constrained boundary

We define the dimensionless parameters

𝜌 = 𝑅
𝐵
, 𝜌1 =

𝑟
𝐵
, 𝑓 =

𝛥𝑓
𝐵

, ℎ̄ = 𝛥ℎ̄
𝐵

, 𝑘 = 𝑚2𝜋
𝐿

𝐵, (B.8)

that lead to reformulation of the governing Eqs. (3.9) as

𝑓 ′′ = − 1
𝑐∗1

[

𝑐∗2𝑓
′ + 𝑐∗3𝑓 + 𝑐∗4 ℎ̄

′ + 𝑐∗5 ℎ̄
]

,

ℎ̄′′ = − 1
𝑑∗1

[

𝑑∗2 ℎ̄
′ + 𝑑∗3 ℎ̄ + 𝑑∗4𝑓

′ + 𝑑∗5𝑓
]

,
(B.9)

here the dimensionless coefficients are given by

∗
1 = 𝜌1

′𝜌1
2𝜌2

[

𝜌′1
2𝛼 − 2 log

(

𝜌1𝜌′1
𝜌

)

+ 2 + 𝛼
]

,

𝑐∗2 = 𝜌1𝜌
[

𝜌′1
3𝜌1𝛼 + [2𝜌1𝜌′′1 𝜌 − 𝜌′1𝜌1] 2 log

(

𝜌1𝜌′1
𝜌

)

− 2𝜌′21 𝜌 − 6𝜌1𝜌′′1 𝜌

− 2𝜌1𝜌′′1 𝜌𝛼 + 4𝜌′1𝜌1 + 𝜌′1𝜌1𝛼
]

,

∗
3 = −𝜌′1

[

𝜌′21 𝜌
2
1𝜌

2𝛼𝑘2 − 2 log

(

𝜌1𝜌′1
)

𝜌′21 𝜌
2 + 𝜌′1

2𝜌21𝛼 + 4𝜌′1
2𝜌2 + 𝜌′1

2𝜌2𝛼

𝜌
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𝑐

𝑑

h

[
w



U



T

𝛿

+ 2𝜌1𝜌′′1 𝜌
2 − 2𝜌′1𝜌1𝜌

]

,

𝑐∗4 = −𝜌′21 𝜌
2
1𝜌

2𝑘
[

2 log

(

𝜌1𝜌′1
𝜌

)

− 2 − 𝛼
]

,

∗
5 = −2𝜌′1𝜌1𝜌𝑘

[

𝜌′21 𝜌 + 𝜌1𝜌
′′
1 𝜌 − 𝜌′1𝜌1

]

,

𝑑∗1 = 𝜌′21 𝜌𝛼, 𝑑∗2 = 𝜌′21 𝛼, 𝑑∗3 = 𝑘2𝜌𝜌′21

[

2 log

(

𝜌1𝜌′1
𝜌

)

− 2 − 2𝛼
]

,

𝑑∗4 = 𝜌′1𝜌𝑘
[

2 log

(

𝜌1𝜌′1
𝜌

)

− 2 − 𝛼
]

,

∗
5 = 𝑘

[

[𝜌′1 − 𝜌′′1 𝜌] 2 log

(

𝜌1𝜌′1
𝜌

)

+ 2𝜌′′1 𝜌 + 𝜌′′1 𝜌𝛼 − 2𝜌′1 − 𝜌′1𝛼
]

,

subjected to constrained boundary conditions

𝑐∗11𝑓 + 𝑐∗22𝑓
′ + 𝑐∗33ℎ̄ = 0,

𝑑∗11𝑓 + 𝑑∗44ℎ̄
′ = 0,

}

at 𝜌 = 𝐴
𝐵
, (B.10a)

𝑓 (1) = ℎ̄(1) = 0, at 𝜌 = 1, (B.10b)

and

𝑐∗11 = 2𝜌′1𝐴
∗,

𝑐∗22 = −𝜌1

[

−𝜌′21 𝐴
∗𝛼 + 2 log

(

𝜌1𝜌′1
𝐴∗

)

𝐴∗ + 𝜌1𝑃𝜌
′
1 − 2𝐴∗ − 𝐴∗𝛼

]

,

𝑐∗33 = 2𝜌1𝜌′1𝐴
∗𝑘,

𝑑∗11 = 𝑘
[

2 log

(

𝜌1𝜌′1
𝐴∗

)

𝐴∗ + 𝜌1𝑃𝜌
′
1 − 𝐴∗𝛼

]

, 𝑑∗44 = 𝛼𝜌′1𝐴
∗,

ere 𝐴∗ = 𝜌|at𝐴∕𝐵 .

B.4. Case 4: Axial perturbations with free boundary

The incremental differential equations for cylindrical channels with
unconstrained boundary is same as (B.9) and the inner boundary (𝜌 =
𝐴∕𝐵) subjected to internal pressure is same as (B.10a). The boundary
condition at the outer boundary at 𝜌 = 1 is given by

2𝜌′1]𝑓 − 𝜌1

[

−𝜌′21 𝛼 + 2 log
(

𝜌1𝜌
′
1
)

𝐴∗ − 2 − 𝛼
]

𝑓 ′ + 2𝜌1𝜌′1𝑘ℎ̄ = 0, (B.11a)

𝑘
[

2 log
(

𝜌1𝜌
′
1
)

− 𝛼
]

𝑓 + 𝛼𝜌′1ℎ̄
′ = 0. (B.11b)

B.5. Perturbation along radial component of cylinder for axial bifurcation

In this section, we discuss the special case for axial bifurcation
where the radial component of cylinder is perturbed alone as discussed
in Section 3.2. This type of perturbation result in second order incre-
mental ODE which is obtained by setting the coefficients 𝑐∗4 = 𝑐∗5 = 𝑑∗1 =
𝑑∗2 = 𝑑∗3 = 𝑑∗4 = 𝑑∗5 = 0 in (B.9) and is given by

𝜌1
′𝜌1

2𝜌2
[

𝜌′1
2𝛼 − 2 log

(

𝜌1𝜌′1
𝜌

)

+ 2 + 𝛼
]

𝑓 ′′

+ 𝜌1𝜌
[

𝜌′1
3𝜌1𝛼 + [2𝜌1𝜌′′1 𝜌 − 𝜌′1𝜌1] 2 log

(

𝜌1𝜌′1
𝜌

)

− 2𝜌′21 𝜌 − 6𝜌1𝜌′′1 𝜌

− 2𝜌1𝜌′′1 𝜌𝛼 + 4𝜌′1𝜌1 + 𝜌′1𝜌1𝛼
]

𝑓 ′ − 𝜌′1

[

𝜌′21 𝜌
2
1𝜌

2𝛼𝑘̃2 − 2 log

(

𝜌1𝜌′1
𝜌

)

𝜌′21 𝜌
2

+ 𝜌′1
2𝜌21𝛼 + 4𝜌′1

2𝜌2 + 𝜌′1
2𝜌2𝛼 + 2𝜌1𝜌′′1 𝜌

2 − 2𝜌′1𝜌1𝜌
]

𝑓 = 0, (B.12)

where we use the non-dimensional parameter, 𝑘̃ = 𝑚̃2𝜋𝐵∕𝐿. Eq. (B.12)
is subjected to internal pressure at inner boundary (at 𝜌 = 𝐴∗) which is
11
given as

[2𝜌′1𝐴
∗]𝑓 − 𝜌1

[

−𝜌′21 𝐴
∗𝛼 + 2 log

(

𝜌1𝜌′1
𝐴∗

)

𝐴∗ + 𝜌1𝑃𝜌
′
1 − 2𝐴∗ − 𝐴∗𝛼

]

𝑓 ′ = 0.

(B.13)

The boundary condition for the external constrained boundary (at 𝜌 =
1) is

𝑓 (1) = 0, (B.14)

and for unconstrained external boundary is given by

[2𝜌′1]𝑓 − 𝜌1

[

−𝜌′21 𝛼 + 2 log
(

𝜌1𝜌
′
1
)

− 2 − 𝛼
]

𝑓 ′ = 0. (B.15)

Appendix C. Fibres in axial direction

The soft hyperelastic cylinder is made anisotropic by a reinforce-
ment of fibres orientated along the vector 𝐚. To account for this
reinforcement, the strain energy density function (2.4) has additional
fibre terms as

𝛺∗(𝐼1, 𝐼3, 𝐼4) =
𝜇
2
[

𝐼1 − 3 − log 𝐼3
]

+ 𝜅
4
[

log 𝐼3
]2 +𝛺𝑓 (𝐼4), (C.1)

where 𝛺𝑓 (𝐼4) =
𝑘1
2𝑘2

[

exp[𝑘2[𝐼4 − 1]2] − 1
]

is the energy due to fibre
reinforcement. The first Piola Kirchhoff stress corresponding to fibres
reinforcement in axial direction is

𝐏𝑓 =
𝜕𝛺𝑓

𝜕𝐅
=

𝜕𝛺𝑓

𝜕𝐼4

𝜕𝐼4
𝜕𝐅

=

[

𝑘1[𝐼4 − 1] exp
[

𝑘2[𝐼4 − 1]2
]

]

[

2𝐚⊗ 𝐅𝐚
]

,

(C.2)

where 𝐚 denote the unit vector which characterised the direction of
fibres. The elastic moduli corresponding to fibre term is given by

𝑓 =
𝜕𝐏𝑓

𝜕𝐅
= 𝑘1

[

𝜕𝐼4
𝜕𝐅

]

exp
[

𝑘2[𝐼4 − 1]2
]

[

2𝐚⊗ 𝐅𝐚
]

+ 𝑘1[𝐼4 − 1]

× 𝜕
𝜕𝐅

[

exp
[

𝑘2[𝐼4 − 1]2
]

][

2𝐚⊗ 𝐅𝐚
]

+ 𝑘1[𝐼4 − 1]

× exp
[

𝑘2[𝐼4 − 1]2
] 𝜕
𝜕𝐅

(2𝐚⊗ 𝐅𝐚) , (C.3)

hich is written in index notation as

𝑓
𝑖𝑗𝑘𝑙 = 2

[

𝑘1 exp
[

𝑘2[𝐼4 − 1]2
]

[

[

𝐚⊗ 𝐅𝐚
]

𝑖𝑗
[

𝐚⊗ 𝐅𝐚
]

𝑘𝑙

]

+ 2𝑘1[𝐼4 − 1] exp
[

𝑘2[𝐼4 − 1]2
]

2𝑘2[𝐼4 − 1]
[

[

𝐚⊗ 𝐅𝐚
]

𝑖𝑗
[

𝐚⊗ 𝐅𝐚
]

𝑘𝑙

]

+ 2𝑘1[𝐼4 − 1] exp
[

𝑘2[𝐼4 − 1]2
]

𝑎𝑖𝑎𝑗𝛿𝑘𝑙

]

. (C.4)

pon simplifying (C.4) we obtain

𝑓
𝑖𝑗𝑘𝑙 = 2𝑘1 exp

[

𝑘2[𝐼4 − 1]2
]

[

[

1 + 2𝑘2[𝐼4 − 1]
]

[

𝐚⊗ 𝐅𝐚
]

𝑖𝑗
[

𝐚⊗ 𝐅𝐚
]

𝑘𝑙

+ [𝐼4 − 1]𝑎𝑖𝑎𝑗𝛿𝑘𝑙

]

.

(C.5)

The incremental stress associated with the fibre term is

𝛿𝐏𝑓 = 𝑓 𝛿𝐅 = 𝑓
𝑖𝑗𝑘𝑙[𝛿𝐅]𝑘𝑙 . (C.6)

his can be expanded by substituting (C.5) in (C.6) to get

𝐏𝑓 = 2𝑘1 exp
[

𝑘2[𝐼4 − 1]2
]

[

1 + 2𝑘2[𝐼4 − 1]
]

[

𝐚⊗ 𝐅𝐚
]

[

tr
(

𝛿𝐅𝑇 [𝐚⊗ 𝐅𝐚]
)]

[ 2] 𝑇
+ 2𝑘1[𝐼4 − 1] exp 𝑘2[𝐼4 − 1] [𝐚⊗ 𝐚] tr(𝛿𝐅 ). (C.7)
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