J/ψ photoproduction in Pb-Pb peripheral collisions at $\sqrt{s_{NN}} = 5$ TeV

R. Aaij et al.*
(LHCb Collaboration)

(Received 9 August 2021; accepted 14 February 2022; published 3 March 2022)

The photoproduction of J/ψ mesons at low transverse momentum is studied in peripheral lead-lead collisions collected by the LHCb Collaboration at a center-of-mass energy per nucleon pair of 5 TeV, corresponding to an integrated luminosity of 210 μb$^{-1}$. The J/ψ candidates are reconstructed through the prompt decay into two muons of opposite charge in the rapidity region of $2.0 < y < 4.5$. The results significantly improve previous measurements and are compared to the latest theoretical prediction.

DOI: 10.1103/PhysRevC.105.L032201

One of the main open subjects in ultrarelativistic heavy-ion physics is the study of the quark-gluon plasma (QGP), an exotic state of hadronic matter predicted by quantum chromodynamics (QCD). Quantitative predictions of QGP properties are obtained from lattice computations [1]. Experimentally, one of the signatures of the QGP formation inside heavy-nuclei collisions is the suppression of heavy quarkonia production, such as the J/ψ particle [2]. The suppression is expected to depend on both the temperature of the medium and the binding energy of the state [3]. Cold nuclear matter effects [4] seem to influence the measurements in nuclei collisions. These effects must be understood prior to providing a sound interpretation in the QGP framework of the hadronically produced (through the interaction of two partons) quarkonia suppression observed at the BNL Relativistic Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC) [5–10].

The ALICE [11] and STAR [12] Collaborations measured an excess with respect to expectations from purely hadronic production of J/ψ mesons at very low p_T (below 300 MeV/c), where p_T is the component of the J/ψ momentum transverse to the beam, in hadronic lead-lead (Pb-Pb) collisions at the center-of-mass energy per nucleon pair $\sqrt{s_{NN}} = 2.76$ TeV and gold-gold (uranium-uranium) collisions at $\sqrt{s_{NN}} = 200$ GeV (193 GeV). It was posited that this excess is due to photoproduced J/ψ mesons, caused by the coherent interaction of the large electromagnetic fields generated by the projectile with the target nucleus [13]. These types of interactions were primarily expected to only occur in ultraperipheral collisions (UPCs) [14], in which the impact parameter, b, is larger than the sum of the radii R_a and R_b of the two colliding nuclei, hence without nuclear breakup of the target or the projectile.

In hadronic collisions, the nucleus breaks up, so no coherent production was expected. A precise measurement of the postulated coherent J/ψ production in hadronic collisions would shed light on the coherence of the interaction and on the profile of the photon flux in peripheral Pb-Pb collisions [15–17].

In this Letter, a measurement of prompt J/ψ production at very-low p_T in Pb-Pb collisions at a center-of-mass energy per nucleon pair $\sqrt{s_{NN}} = 5$ TeV is reported. For the first time at the LHC, the production yield is measured versus p_T and rapidity, y. The data were recorded by the LHCb detector in 2018 and correspond to an integrated luminosity of about 210 μb$^{-1}$.

The LHCb detector [18,19] is a single-arm forward spectrometer covering the pseudorapidity range $2 < \eta < 5$, designed for the study of particles containing b or c quarks. The detector includes a high-precision tracking system consisting of a silicon-strip vertex detector surrounding the Pb-Pb interaction region [20], a large-area silicon-strip detector located upstream of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip detectors and straw drift tubes [21] placed downstream of the magnet. The tracking system provides a measurement of the momentum of charged particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at 200 GeV/c. The minimum distance of a track to a primary Pb-Pb collision vertex (PV), the impact parameter (IP), is measured with a resolution of $(15 + 29/|p_T|) \mu m$, where p_T is the component of the momentum transverse to the beam, in GeV/c. Different types of charged hadrons are distinguished using information from two ring-imaging Cherenkov detectors [22]. Photons, electrons, and hadrons are identified by a calorimeter system consisting of scintillating-pad and preshower detectors, an electromagnetic, and a hadronic calorimeter. Muons are identified by a system composed of alternating layers of iron and multiwire proportional chambers [23].
The trigger consists of a hardware stage, using information from the calorimeter and muon systems, followed by a software stage, which applies selections on the fully reconstructed event.

At the hardware trigger stage, events are required to have a muon with high p_T or a hadron, photon, or electron with high transverse energy in the calorimeters. Two samples are selected for this analysis, a signal sample and a sample of minimum bias events used to normalize through the total number of inelastic events. They have different trigger strategies. Signal events are selected if the number of clusters in the VErtex LOcator (VELO), and only events with two muons with $p_T > 400$ MeV/c are reconstructed.

The hardware trigger for the minimum bias (MB) events requires a minimum energy deposit in one of the subdetectors (VELO, calorimeters, muon chambers), and only events with $N_c < 10,000$ are kept. To improve the signal purity, events passing the software trigger are selected if the muon candidates have a $p_T > 700$ MeV/c, the particles are consistent with originating from a primary Pb-Pb collision vertex (PV) and are identified as muons. The prompt J/ψ candidates, which include feed-down from excited charmonium states originating from b-hadron decays, are separated from the non-prompt candidates using the requirement $t_c < 0.3$ ps, where t_c is the pseudodecay time defined as $(z_{J/\psi} - z_{PV})m_{J/\psi}/p_z$. Here, $(z_{J/\psi} - z_{PV})$ and p_z are the distances between the J/ψ candidate decay vertex and the PV, and the candidate momentum along the beam axis, respectively, and $m_{J/\psi}$ is the known J/ψ mass [24].

During data taking, neon (Ne) gas was injected into the beam pipe near the interaction point using LHCb’s SMOG (System to Measure the Overlap integral with Gas) [25] to record fixed-target collisions simultaneously with the Pb-Pb collisions. These fixed-target PbNe collisions are rejected by placing requirements on the position of the PV. In order to remove potential contamination from UPCs, which may bias the measurement especially for very low event activity, a minimal energy deposit in the electromagnetic calorimeter (ECAL) is also required ($E_{\text{tot}} > 585$ GeV).

The Pb-Pb sample is divided into intervals of N_c which correspond to different numbers of participating nucleons, N_{part}. This quantity is related to the centrality, defined as the percentile of the total inelastic hadronic Pb-Pb cross section as a function of the released collision energy, which can be approximated by the total energy deposit in ECAL (E_{tot}). The more central is the collision, the larger E_{tot} is and the larger N_{part} is. The percentiles are determined using the Glauber Monte Carlo (GMC) model [26,27]. The model is used to perform a binned fit to the E_{tot} distribution of the MB data sample, collected with the same detector conditions as the signal sample. The quantity N_{part} is estimated for each collision and the mean value, $\langle N_{\text{part}} \rangle$, is derived from events within a given N_c range. Results for each N_c interval are summarized in Table I. The distribution of N_{part} in the three N_c intervals is shown in Fig. 1. More details on the centrality determination in LHCb can be found in Ref. [28] and in the Supplemental Material [29].

Table I. Average number of participant nucleons, $\langle N_{\text{part}} \rangle$, along with the corresponding standard deviation of the N_{part} distribution, σ_{part}, for each of the selected N_c intervals.

<table>
<thead>
<tr>
<th>N_c</th>
<th>$\langle N_{\text{part}} \rangle$</th>
<th>σ_{part}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000–4000</td>
<td>10.6</td>
<td>2.9</td>
</tr>
<tr>
<td>4000–6000</td>
<td>15.7</td>
<td>4.1</td>
</tr>
<tr>
<td>6000–10000</td>
<td>27.8</td>
<td>7.2</td>
</tr>
<tr>
<td>1000–10000</td>
<td>19.7</td>
<td>9.2</td>
</tr>
</tbody>
</table>

In this Letter, the J/ψ photoproduction differential yield is measured, defined as

\[
\frac{dY_{J/\psi}}{dy} = \frac{N_{J/\psi}}{\mathcal{B} N_{\text{MB}} \varepsilon_{\text{tot}} \Delta y},
\]

\[
\frac{d^2Y_{J/\psi}}{d^2p_T dy} = \frac{dY_{J/\psi}}{dy} \frac{1}{\Delta p_T},
\]

where i indicates the N_c range, $N_{J/\psi}$ is the number of photoproduced J/ψ meson candidates reconstructed through the $J/\psi \rightarrow \mu^+\mu^-$ decay channel in the (p_T, y) interval of width $(\Delta p_T, \Delta y)$, $\mathcal{B} = (5.961 \pm 0.033)\%$ [24] is the branching fraction of the decay $J/\psi \rightarrow \mu^+\mu^-$, N_{MB} is the total number of MB events, and ε_{tot} is the efficiency to reconstruct and select the J/ψ candidates. The dimuon invariant mass, $m(\mu^+\mu^-)$, of the selected candidates is shown in Fig. 2 for a representative centrality interval for J/ψ candidates with $p_T < 15.0$ GeV/c and $2.0 < y < 4.5$. An unbinned fit of these candidates is performed using a Crystal Ball (CB) function for the signal and a first-order polynomial for the background.

Photoproduced J/ψ mesons and hadronically produced J/ψ mesons are then disentangled through an unbinned maximum likelihood fit to the dimuon p_T spectrum. The fit is performed after subtracting correlated background, i.e., arising from $\gamma\gamma \rightarrow \mu^+\mu^-$ or the Drell-Yan process, and combinatorial background from uncorrelated muon pairs which is the dominant source, using the sPlot method [30] with...
\(m(\mu^+\mu^-) \) as discriminating variable. To cross-check the validity of the sPlot method, the kinematic distributions \((p_T, y, N_c) \) of the estimated background are compared to the same (normalized) distributions in two invariant mass ranges below and above the resonance peak. A very good agreement is found. The empirical fit model comprises a double-sided Crystal Ball function [31] expressed in \(\ln(\rho^2) \) for the photoproduction contribution and a function for the hadronic component that typically has a larger \(p_T \),

\[
f(p_T) = \frac{p_T^{n_2}}{1 + (p_T/p_0)^{n_3}},
\]

where \(n_1, n_2, n_3 \), and \(p_0 \) are parameters free to vary in the fit. The projections of the fits in the centrality interval \(\langle N_{\text{part}} \rangle = 10.6 \pm 2.9 \) are shown in Fig. 2, overlaid on the data distributions. A good description of the data is observed in all centrality intervals. The photoproduced \(J/\psi \) candidates are visible in the range \(0 < p_T < 250 \text{ MeV}/c \). The \(p_T \) distribution of the photoproduced \(J/\psi \) candidates does not rise towards vanishing \(p_T \) due to the interference caused by the negative parity of the photon as explained in Ref. [17].

Simulation is required to model the effects of the detector acceptance and of the selection requirements on the signal. The Pb-Pb collisions are generated using EPOS [32] and the hard process is generated with PYTHIA [33] with a specific LHCb configuration [34].

An additional signal sample where the \(J/\psi \) is transversely polarised was produced using the STARLIGHT [35] generator to study the acceptance assuming the coherent photoproduction scenario. The interactions of the generated particles with the detector, and its response, are implemented using the Geant4 toolkit [36] as described in Ref. [37]. The total efficiency is determined independently in each interval of centrality, and it includes the effects of the geometrical acceptance \((\epsilon_{\text{acc}}) \), the trigger efficiency \((\epsilon_{\text{trg}}) \), the reconstruction and selection efficiency \((\epsilon_{\text{rec&sel}}) \), and the efficiency of the particle identification (PID) criteria \((\epsilon_{\text{PID}}) \). The acceptance is determined using the STARLIGHT sample in the kinematic range of the analysis. The efficiency \(\epsilon_{\text{rec&sel}} \) is estimated using simulation and data calibration techniques. The main component of the reconstruction inefficiency is due to the tracking algorithms, as the performance is affected by the high occupancy in Pb-Pb collisions. The relative reconstruction efficiency between data and simulation is evaluated using two \(D^0 \) meson decay channels \((D^0 \rightarrow K^-\pi^+ \) and \(D^0 \rightarrow K^-\pi^0\pi^+ \)). The yields are evaluated in Pb-Pb data and simulation and the difference of their ratio to unity is encoded in a factor \(k(N_c) \). This factor depends on the event multiplicity with \(k \) ranging from 0.97 to 0.91 with increasing \(N_c \), assuming \(k(N_c) \) is the same for the \(\pi \) and \(\mu \) tracks. The latter factor is used to correct the reconstructed \(J/\psi \) candidates in simulation. An additional correction is applied to correct discrepancies between reconstructed \(J/\psi \) kinematic distributions by weighting the variables \(N_c \), \(p_T \), and \(y \) of the \(J/\psi \) in simulation to match the data. The PID efficiency \(\epsilon_{\text{PID}} \) is evaluated using a tag-and-probe approach with \(J/\psi \rightarrow \mu\mu \) decays reconstructed in proton-proton collisions that provide PID efficiency tables for single muons. Those efficiencies are used to perform a two-dimensional \((p_T, N_c)\) extrapolation, using first- and second-order polynomial functions, to estimate the decrease of the efficiencies for higher multiplicities seen in Pb-Pb collisions. No extrapolation is performed based on the rapidity as no correlation is seen between \(N_c \) and \(y \).

Several sources of systematic uncertainties are considered. The uncertainty associated with the fit model used to evaluate the signal yields is determined by testing alternative fit functions. The \(p_T \) of the hadronically produced \(J/\psi \) candidates is modeled by a Tsallis function [38]. The background shape is also modified to account for incoherent photoproduced \(J/\psi \), defined as the interaction between one photon and a single nucleon implying the destruction of the nucleus. This contribution typically produces \(J/\psi \) mesons at higher \(p_T \) than the coherent photoproduction source. Therefore, another double CB function is added to model this potential contribution. The incoherent contribution shares the shape parameters of the coherent contribution with the mean \(p_T \) and width shifted according to the differences obtained in the STARLIGHT simulations. By computing the difference to the reference fit, a total uncertainty of about 1.3% averaged over all centrality intervals is obtained.

FIG. 2. Left: Invariant mass distribution of \(J/\psi \) candidates with \(\langle N_{\text{part}} \rangle = 10.6 \pm 2.9 \), for \(p_T < 15.0 \text{ GeV}/c \) and \(2.0 < y < 4.5 \). Right: Distribution of \(\ln(p_T^2) \) of the \(J/\psi \) candidates for \(\langle N_{\text{part}} \rangle = 10.6 \pm 2.9 \) after background subtraction. The projections of the fit to disentangle the coherently photoproduced and hadronically produced \(J/\psi \) mesons are overlaid.
The systematic uncertainty associated with the evaluation of the efficiencies is divided into uncertainties due to the $\epsilon_{\text{rec&sel}}$, ϵ_{PID}, and $\epsilon_{\text{trigger}}$. Three systematic effects are considered for the measurement of $\epsilon_{\text{rec&sel}}$: The uncertainty on the weighting procedure, the uncertainty associated with the evaluation of the factor k, and the correlation between the variables p_T and y. The uncertainty on the weighting procedure is estimated by comparing p_T, y, and N_c of the weighted distributions of the J/ψ mesons in simulation with those in data after background subtraction. The difference between the two leads to a global uncertainty of 2%. The uncertainty on the factor k is evaluated by varying its value within its uncertainty and propagating it to the tracking efficiency. An uncertainty from 2.9% to 7.4% is found depending on the considered multiplicity interval. The uncertainty on the correlation between the variables p_T and y is estimated to be 1% using calibration samples from proton-proton collisions.

The uncertainty coming from the muon PID efficiency tables is evaluated with a smearing technique. The J/ψ PID efficiency is computed using efficiency PID tables with the values in each interval varied within their uncertainty. This procedure is repeated several times and the largest difference is taken as systematic uncertainty; the effect is smaller than 1% and considered negligible compared to the uncertainty given by the difference of the two functions used for the extrapolation.

The uncertainty on $\epsilon_{\text{trigger}}$ is estimated by comparing the trigger efficiency measurement with another method based on data. The method consists of evaluating the efficiency using a sample selected by the same trigger algorithms but independent from those used in the selection of the signal. The difference of 3% between the two methods is taken as systematic uncertainty on the trigger efficiency. The total systematic uncertainties are obtained by summing in quadrature the different sources of uncertainties.

The differential J/ψ photoproduction yields, Eq. (1), as a function of the rapidity for $\langle N_{\text{part}} \rangle = 19.7 \pm 9.2$ and as a function of $\langle N_{\text{part}} \rangle$ are shown in Fig. 3 (top). The double-differential J/ψ photoproduction yields, Eq. (2), as a function of the transverse momentum are as well shown in Fig. 3 (bottom). The mean p_T of the coherent J/ψ is found to be $\langle p_T \rangle = 64.9 \pm 2.4$ MeV/c. The results are compared to the theoretical prediction [17,39] and detailed results are presented in the Supplemental Material [29]. The model assumes two scenarios in which the coherence of the J/ψ production is (overlap effect) or is not (no overlap effect) affected by interactions with the overlap region of the two colliding nuclei. Little difference is observed between the two theory scenarios. The divergence is important in more central collisions due to the increase of the photon flux with a decrease of the impact parameter. In the overlapping scenario, this effect is balanced by excluding the overlapping region from the interaction.
The measured yield of the coherent J/ψ production is higher at low rapidity than at high rapidity and it is consistent with being constant with respect to $\langle N_{\text{part}} \rangle$ for the region considered in the analysis.

In summary, the yield of coherently photoproduced prompt J/ψ mesons at very low p_T in peripheral Pb-Pb collisions collected at $\sqrt{s_{\text{NN}}} = 5$ TeV is measured with the LHCb experiment. The yields are studied as a function of rapidity and transverse momentum of the J/ψ meson in intervals of the number of participant nucleons (N_{part}). These results are the most precise to date, and support the hypothesis of coherent J/ψ photoproduction in peripheral hadronic collisions suggested by the other experiments [11,12]. The shape of the results is qualitatively described by the theoretical prediction [17,39], although a normalization discrepancy is observed which could hide a possible additional contribution.

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the following national agencies: CAPES, CNPq, FAPERJ, and FINEP(Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG, and MPG (Germany); INFN (Italy); NWO (Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MSHE (Russia); MICINN (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); DOE NP and NSF (USA). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland), and NERSC (USA). We are indebted to the communities behind the multiple open-source software packages on which we depend. Individual groups or members have received support from ARC and ARDC (Australia); AvH Foundation (Germany); EPLANET, Marie Skłodowska-Curie Actions, and ERC (European Union); A*MIDEX, ANR, IPHU and Labex P2IO, and Région Auvergne-Rhône-Alpes (France); Key Research Program of Frontier Sciences of CAS, CAS PIFI, CAS CCEPP, Fundamental Research Funds for the Central Universities, and Sci. & Tech. Program of Guangzhou (China); RFBR, RSF, and Yandex LLC (Russia); GVA, XuntaGal, and GENCAT (Spain); the Leverhulme Trust, the Royal Society, and UKRI (United Kingdom).

[6] V. Khachatryan et al. (CMS Collaboration), Suppression of $\Upsilon(1S), \Upsilon(2S)$ and $\Upsilon(3S)$ quarkonium states in PbPb collisions at $\sqrt{s_{\text{NN}}} = 2.76$ TeV, Phys. Rev. D 77, 072005 (2013).
[9] A. M. Sirunyan et al. (CMS Collaboration), Suppression of Excited Υ States Relative to the Ground State in Pb-Pb Collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV, Phys. Rev. Lett. 120, 142301 (2018).
[10] B. B. Abelev et al. (ALICE Collaboration), Production of inclusive $\Upsilon(1S)$ and $\Upsilon(2S)$ in Pb-Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV, Phys. Lett. B 740, 105 (2015).

[34] I. Belyaev et al., Handling of the generation of primary events in Gauss, the LHCb simulation framework, J. Phys.: Conf. Ser. 331, 032047 (2011).

