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Abstract

The ability to perform computation on devices present in the Internet of Things (IoT) and Edge Computing (EC) environments leads
to bandwidth, storage, and energy constraints, as most of these devices are limited with resources. Using such device computational
capacity, coined as Edge Devices (EDs), in performing locally Machine Learning (ML) and analytics tasks enables accurate and
real-time predictions at the network edge. The locally generated data in EDs is contextual and, for resource efficiency reasons,
should not be distributed over the network. In such context, the local trained models need to adapt to occurring concept drifts
and potential data distribution changes to guarantee a high prediction accuracy. We address the importance of personalization and
generalization in EDs to adapt to data distribution over evolving environments. In the following work, we propose a methodology
that relies on Federated Learning (FL) principles to ensure the generalization capability of the locally trained ML models. Moreover,
we extend FL with Optimal Stopping Theory (OST) and adaptive weighting over personalized and generalized models to incorporate
optimal model selection decision making. We contribute with a personalized, efficient learning methodology in EC environments
that can swiftly select and switch models inside the EDs to provide accurate predictions towards changing environments. Theoretical
analysis of the optimality and uniqueness of the proposed solution is provided. Additionally, comprehensive comparative and
performance evaluation over real contextual data streams testing our methodology against current approaches in the literature for
FL and centralized learning are provided concerning information loss and prediction accuracy metrics. We showcase improvement
of the prediction quality towards FL-based approaches by at least 50% using our methodology.

Keywords: Federated Learning, Quality-Aware analytics, Local Learning, Personalization, Optimal Stopping Theory.

1. Introduction

1.1. Motivation & Challenges
Measurements of the surrounding environment and the con-

tinuous creation of contextual data are becoming pervasive in
our daily lives. Most sensing and computing devices are con-
nected over the internet to transfer the data to a Central Loca-
tion (CL), e.g., the Cloud, for further analysis and processing.
Sometimes, such collected data might also contain user and per-
sonal information that needs protection. Privacy has exhibited
increased importance over the recent years with regulations de-
fined for such purposes, such as General Data Protection Regu-
lation (GDPR) [1] or California Consumer Privacy Act (CCPA)
[2]. Applications have started to consider collecting fewer and
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processing less sensitive data of users. Consequently, shar-
ing raw data over the network to train and deploy high-quality
Machine Learning (ML) algorithms is constrained by privacy-
preserving regulations and the concerns of users to share the
data. In addition, the tremendous increase of computing devices
raises bottlenecks of transmission and data collection due to
limited bandwidth, storage, and connectivity losses. The Inter-
net of Things (IoT) environments extend over time from simple
sensors into small computers with the ability to perform com-
putation at the source of the data, thus, overcoming the bottle-
necks of legacy centralized architectures. The developing Edge
Computing (EC) paradigm exploits such computational capac-
ity of the Edge Devices (EDs) to enable ML raising, thus the
possibility to achieve real-time local predictive analytics and
actuation due to significantly reduced latency. However, most
EC environments deploy the training and management of ML
models in centralized locations, while inference is performed at
the network edge. During the centralized model training, raw
data are transferred from EDs to central collection points. This
raw data transfer results in privacy concerns and issues towards
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the collected and transferred data.
By pushing intelligence and computation to the EDs, cop-

ing with privacy and dealing with bottlenecks of bandwidth and
real-time decision making, Federated Learning (FL) is intro-
duced as an upcoming methodology that generates knowledge
from data without sharing the actual raw data [3]. FL aims to
build a global model by performing the learning (training) at
EDs and transferring only the locally updated ML model pa-
rameters over the network. This method allows distributing the
training process to the device level only. FL enables to build
general knowledge at a CL without revealing individual device
information, data, or context. FL also provides a solution to
overcome the introduced constraints by transmitting only mod-
els over the network, which reduces the bandwidth. Further-
more, FL enables the EDs to perform analytics locally and au-
tonomously decide on updating their local models. Without the
involvement of a centralized decision-making process, the ex-
pected latency of analytics tasks is evidently reduced.

From the predictive analytics side, a major challenge is that
many applications rely on contextual data streams and evolv-
ing data to support prediction and analysis tasks. Such data,
by nature, change over time and usually involve irregular and
unpredictable updates (a.k.a. concept drifts) in the underlying
distribution. Concept drifts require continuous re-training of
the developed ML model. Centralized online model learning
techniques have been presented by mainly adopting the Gradi-
ent Descent mechanism to build a generalized model incremen-
tally over evolving data. Primarily, sliding window method-
ologies have been used to consider qualitative analysis over
evolving data streams. However, as highlighted earlier, trans-
ferring the data to a CL is not feasible and efficient for analyt-
ics. Aiming to generate a global model that can be deployed
in new EDs and represent the users’ behavior is of most in-
terest. In this context, FL has been used for converging ML
algorithms without considering the need for continuous updat-
ing under these dynamically changing cases. This indicates
the weakness of the FL paradigm to follow the progress of the
model building phases during their training period. As high-
lighted, such weakness of not continuously monitoring and,
thus, adapting to the specific user behavior leads to potential
inaccuracies, user dissatisfaction and degradation of the antic-
ipated QoS. The challenge already occurring in FL with the
communication overhead of transferring updated models and/or
merged models over the network is increasing within EC envi-
ronments of constant learning, given that online monitoring and
adaptation to the stationary/non-stationary trends of data is re-
quired. Even though FL is developed for non-independent and
identically distributed (non-i.i.d.) data, deploying a generalized
global model into EDs for prediction and actuating results in
lower accuracy than having a local personalized model. The
concept of personalized models in FL has been investigated in
additional work and highlighted as an essential research ques-
tion in [4]. We refer the interested reader to Section 2; how-
ever, we summarize here that the presented work of person-
alized FL primarily considers model convergence without the
need for constant retraining and adapting due to possible under-
lying changes of contextual data or assumes a fully decentral-

ized architecture without a central coordinator. In this context,
we emphasize that personalized models are expected to overfit
the local data and, evidently, produce poor prediction results in
sudden changing environments compared to generalized mod-
els. The challenge and, evidently, the motivation lies in locally
selecting the best and most accurate model to perform analytics
tasks within the EDs monitoring in parallel the progression of
the prediction capability of the models.

Overcoming these issues, sophisticated mechanisms that can
optimally and swiftly decide on fusing and/or swapping be-
tween a generalized (federated) model and a personalized (lo-
cal) model are deemed appropriate and critical to guarantee
qualitative predictive analytics at the network edge. This deci-
sion making needs to be efficient in terms of computation, com-
munication, and resource consumption as EDs are resource-
constrained. And, this is the novelty in our paper, where we in-
troduce two efficient mechanisms that cope with the aforemen-
tioned challenges: (i) an adaptive federated-personalized model
weighting (aggregation) mechanism and (ii) a time-optimized
federated-personalized model selection/swapping mechanism at
the network edge. Both mechanisms achieve a relatively low
memory footprint by introducing low computation and communication-
aware algorithms for predictive analytics at the edge. These
mechanisms support model learning and inference by combin-
ing a personalized FL methodology with traditional FL, thus,
adapting to local data distribution shifts and providing highly
accurate predictions over contextual data streams.

1.2. Use-Cases & Applications

We elaborate on the importance of personalized and gener-
alized learning paradigms on certain application domains, no-
tably on the automotive domain. The adoption of such learning
paradigms are essential for predictive maintenance and driver
behavior identification services. The management of vehicle
fleets can benefit from the combination of personalized and FL
paradigms, given the contextual ‘health’ information generated
by certain monitored components in each vehicle. Real-time
maintenance platforms cater to just-in-time supply chains, re-
ducing stocking costs and lowering maintenance times by ag-
gregating localized trained ML models from vehicle fleets. Es-
timation of State-of-Health and Remaining Useful Lifetime of
individual components, e.g., HGV Batteries or combustion en-
gines [5], [6], can be initially predicted in-vehicle and fused in
a CL for further predictive maintenance analytics for the entire
fleet. Moreover, localized fault diagnosis for detecting abnor-
mal data merged with global outlier detection models has the
potential of reducing maintenance expenditure of complex fail-
ures.

The automotive domain has seen emerging interest in the
classification of driving behavior and driver identity recogni-
tion [7]. The latter has seen commercial adoption by automo-
tive manufacturers (e.g., Subaru’s Driver Monitoring System1),
by employing driver-facing cameras for distraction and drowsi-
ness warning or driver personalization [8]. Local ML models

1https://www.subaru.com.au/driver-monitoring-system
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provide facial identification under different lighting conditions
and driver positions and gaze estimation to determine driver at-
tentiveness, which enables proactive safety mechanisms within
vehicles. Applications based on classification of general driv-
ing behavior using ML have gained significant attention in the
last few years, benefiting from enhanced personalized local ML
models utilizing the vehicular sensor data with significant fea-
tures extracted in a CL after merging local ML models. By pro-
viding accurate driver identification via behavioral patterns, ve-
hicles can provide customized experiences for drivers but also
infer further knowledge, e.g., theft detection [9]. The classi-
fication of the local environment, e.g., identification of road
complexity [10], can be used to optimize vehicle performance
and provide adaptive safety systems tuned for different condi-
tions by aggregating local models from different vehicles in
a FL context. Using this federated and tailored/personalized
knowledge, vehicles can become proactive elements in provid-
ing traffic safety mechanisms (e.g., alerting the driver of their
performance) or used by authorities and/or insurance compa-
nies to assess the risks involved in driving styles. By intel-
ligently combining local models in light of building powerful
federated models, which in turn can be tailored to, e.g., vehi-
cles, is the key for high quality and accurate applications. Per-
sonalized models that provide a unique driving experience are
essential. However, with changes occurring in the environment
(e.g., car-sharing with multiple drivers, weather change, per-
sonal emotion) that the personalized model never experienced,
the prediction accuracy decreases, and the quality is not guar-
anteed. Generalized model learning across all drivers via local
models aggregation can increase quality and accuracy, as it is
equipped with more situations and data and fits even towards
unseen data well. Therefore, predictive analytics at the edge
enhanced with federated-personalized model selection strate-
gies is essential to provide quality-aware services.

1.3. Contribution & Organization

To the best of our knowledge, we are among the first to pro-
pose personalized edge-centric analytics mechanisms fusing the
principles of FL for generalization with adaptive model weight-
ing and the principles of Optimal Stopping Theory (OST) to
achieve localized, efficient and time-optimized model selection.
We summarize our contributions as follows:

• A local adaptive model re-training scheme for evolving
contextual data streams in EDs aggregating the FL model
towards global knowledge generation for high prediction
accuracy;

• A novel, lightweight, and adaptive model weighting mech-
anism (coined Adaptive Selection Model-ASM) of the
personalized local model and FL model across EDs, which
improves the quality, accuracy, and robustness for data
concept drifts;

• A novel and lightweight (computation and communica-
tion efficient) time-optimized model selection mechanism

(coined Time-optimized Model Selection-TOSM) swap-
ping between personalized local and federated general-
ized models over continuously evolving data streams us-
ing the principles of OST;

• We provide a theoretical analysis of the TOSM, proving
its optimality and uniqueness of solution along with in-
cremental algorithms for optimal decision making. We
also provide computational, communication and storage
complexity of the models showcasing their suitability for
EDs;

• We perform a comprehensive evaluation and compara-
tive assessment against baseline models, approaches, and
mechanisms found in the literature [11], [12], [13], [14]
using real-data sets.

The rest of the paper is structured as follows: Section 2
discusses related work in the field of personalized FL, while
Section 3 elaborates on the rationale and problem fundamentals
in personalized learning of EC environments. We introduce our
personalized learning mechanisms in Section 4 and the time-
optimized model selection in Section 5. Comprehensive com-
parative assessment with approaches and methods found in the
literature is provided in Section 6. Section 7 concludes the arti-
cle with a summary and our future research agenda.

2. Related Work

FL has engaged the EDs to locally learn over their local
data a global ML model, without revealing and/or transferring
any data towards a CL. The overarching aim is to train a global
function placed at CL by pushing the training towards the EDs.
FL has been extensively studied in scenarios where numerous
IoT devices are present (e.g., smartphones). The CL aggregates
the gradients of the locally trained models together into a new
global function (coined as FedAvg) introduced in [11, 15].

This kind of distributed learning provides the possibility
to use the computational capacity of EDs and access to local
data achieving privacy, real-time actuation, and robustness. FL
can perform a fast convergence of the global trained model
on massively distributed, non-IID, and unbalanced data. In
many applications, generating a global model, which gener-
alizes the data is of utter importance. However, in many EC
environments, the generated data are non-IID. In such a case,
the non-IID provokes personalized and local models to outper-
form the generalized global model mostly. This effect has been
evidenced in [16, 12] by performing localized edge-learning to
increase the quality of predictive analytics. Additionally, the
authors in [4] argue an open research question is on when to
choose the global model, providing generalization, over the lo-
cal one, providing individuality. Personalization and FL has re-
cently attracted the attention of the research community. Specif-
ically, [17] summarizes the combination of personalized pro-
cessing and FL. The approaches in [18, 19, 20, 21] show the
impact of personalization in FL environments and its signifi-
cant improvement towards prediction accuracy. The methods
in [18, 19, 20, 21] cope with a fully decentralized architecture
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in which no global server coordinates the communication nor
has knowledge about the model gradients or the overall gener-
ated global model. EDs collaborate to share information and
improve their model through other EDs. The idea of decen-
tralized and personalized FL assumes complete connectivity
among EDs, which is hard to achieve even with current net-
work communication channels such as 5G. Additional network
traffic is needed for synchronizing. This communication is due
to connectivity issues, failures, and communication costs, a dis-
advantage compared to architectures with a central coordinator.
Therefore, a fully decentralized approach will be hard to im-
plement in many domains. Moreover, the methods mentioned
above do not explicitly deal with evolving contextual data and
concept drifts. Methods proposed for personalized learning by
using FL rely on a hierarchical system involving a central co-
ordinator performing the model merging as introduced in [14].
We depart from [14] by proposing a variant being less compu-
tationally complex, which adapts the relation between global
generalized and local personalized models. Our adaptive pol-
icy is performed on a discrepancy-aware process that considers
rewards of historical accuracy and difference in the global and
local model parameters.

Meta-learning for FL, as a possibility to overcome the issue
of heterogeneous data, has been introduced in [22, 23]. These
methods achieve improvement in accuracy using personalized
models in non-IID environments. The model in [24] introduces
a FL optimization technique that merges locally trained mod-
els to a global model providing a specialized gradient update
procedure. Moreover, the approach in [25] combines a globally
trained model and a locally fine-tuned model adopting an adap-
tive parameter in controlling the relationship between the global
and the local model. Continuous efficient model selection and
updating due to the underlying data changes are essential in EC
dynamic environments, which are not explicitly considered in
the mentioned literature.

Besides the personalization aspect of FL, we adopt the prin-
ciples of FL over contextual data with evolving nature. Per-
forming FL on developing data is still an open question where
a few research methods have been proposed. The work in [26]
introduces an online asynchronous version of FL. It suggests
a convergence strategy of locally updating the FL model using
feature representation learning at the CL. However, the model
in [26] does not consider efficiency and resource-constrained
environments. This aspect is considered in [27] which shows
the importance of local distributed learning in resource con-
strained edge networks. The implementation of FL in a re-
source constrained environment presented in [28] provides a
communication efficient compression technique. The recent
work in [29] considers the essential requirement of using effi-
cient communication in resource-constrained environments and
the importance of personalization in a combined implementa-
tion. Yet, these methods assume the global convergence of a
model without concept drifts and potential changes in the un-
derlying data, which renders the necessity of deciding on the
best model selection for predictive analytics. Finally, local and
global models update and decision making on forwarding local
models have been proposed in [16, 30]. Such methods consider

model updates based on either accuracy discrepancy or the dif-
ference between the current and past versions. We depart from
this strategy by introducing an optimal model selection mech-
anism based on the principles of the OST by updating the CL
with continuously trained local models. In Table 1 we summa-
rize the related work and its limitations for a better overview.

3. Rationale & Problem Fundamentals

3.1. Rationale
FL can be seen as a distributed ML optimization problem in

a network of EDs. The aim is to locally optimize an objective
function J over distributed datasets. Consider a network of
K EDs indexed by k ∈ {1, . . . ,K}, where each ED contains a
local subset of data Dk from the set D = ∪K

k=1{Dk}. A dataset
Dk is generated through Sensing and Actuating Nodes (SANs)
sensing continuously d-dimensional contextual data vectors xt

with x ∈ Rd and discrete time domain t ∈ T = {1, . . . ,T } with
T ∈ T. At time instance t, a new contextual vector xt is received
at ED k, which is stored locally in the dataset Dk. In centralized
learning, this data vector is forwarded to a CL that minimizes
the objective function J over the entire dataset D.

A loss function L(x, y; w) of a parametric ML model can
be approximated by adopting the Empirical Risk Minimiza-
tion (ERM) instead of the expected loss over all training data.
Specifically, an approximation of Ĵ over a training set D with
N training input-output pairs {(xi, yi)}Ni=1 using a set of paramet-
ric ML models f (x; w) ∈ F with parameters w ∈ Rd can find
the optimal solution for the ERM. This is expressed as follows:

arg min
w∈F
J(w) ≈ ĴN(w) =

1
N

N∑
i=1

L(xi, yi; w). (1)

In FL, the optimization of J is performed by locally opti-
mizing the objective function Jk in the kth ED over Dk with nk

data vectors, so that
∑K

k=1 nk = N. The CL is, then, aggregating
the locally obtained objective functions Jk:

J(w) =

K∑
k=1

nk

N
Jk(w) =

K∑
k=1

nk

N
1
nk

∑
i∈Dk

Lk(xi, yi,w). (2)

The kth loss function Lk(x, y,w) corresponds to the kth local
optimization function Jk(w). A widely adopted incremental
method to solve the optimization problem in Equation (2) is
Stochastic Gradient Descent (SGD). Specifically, at each itera-
tion (step) t, the kth ED aims to converge towards the minimum
function Jk over its local data Dk given a new incoming train-
ing pair (xt, yt). This is achieved by adjusting the local ML
model parameters wt

k with a given learning rate η ∈ (0, 1) and
the gradient of the previous model parameter ∇Jk(wk) at step
t − 1. The kth ED is then performing the following update on
its parameter at t:

wt+1
k ← wt

k − η∇Jk(wt
k). (3)

After multiple iterations, the updated model parameter wk of
the kth ED is sent to the CL for aggregation. The FedAVG
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Reference Proposed Methodology Limitation
[17] Survey of personalization and FL
[18, 19, 20, 21] Decentralized personalized FL Communication overhead due to synchronization, assumption of convergence
[14] Local Representation Model in ED with global features No consideration of adapting the model in changing environments
[22, 23] Meta-Learning with FL No consideration of adapting the model in changing environments
[24] Personalized models are aggregated to a global model Loosing the generalization of a global model for controlling unseen events
[25] Adaptive weighting of local and global model Convergence assumption, weighting fixed on gradient difference
[26] Online asynchronized FL through feature representation No consideration of resource constraint environment or continous learning
[27] Adaptive FL under resource constrains No consideration of personalization or continuous updating
[28] Resource efficient FL compression No consideration of personalization or continuous updating
[29] Communication efficient personalized FL Computationally complex, convergence assumption
[16, 30] Local model forwarding mechanism in edge environments Meta-data sharing, accuracy discrepancy forwarding

Table 1: Summary of related work

algorithm introduced in [11] aggregates the received model pa-
rameters from all the EDs in a central coordinator towards a
new generalized ML model. This aggregation is provided by
the following weighted average:

wt+1 =

K∑
k=1

nk

N
wt+1

k . (4)

After merging the local gradients of the kth ED at the CL,
the final federated ML model, hereinafter notated as fFL is then
distributed back to the EDs, which can be used locally for in-
ference/prediction. The kth ED is selected at a random time to
update the distributed federated model fFL with its local data
stored in a sliding window of the most recent M data vectors
Wt

k = {xt−M+1, . . . , xt}. Then, the newly updated model param-
eter wk is sent back to the CL.

3.2. Problem Definition
As highlighted in Section 2, the basic implementation of FL

introduces two fundamental challenges. Challenge 1: the first
challenge is the adaptation of the generalized model to con-
stantly changing environments (where the underlying data over
the EDs might be changing), in which the assumption of con-
verging to a global minimization of the objective function J
does not always hold. This implies that the minimization of
J needs to be revised if, for instance, the underlying data dis-
tribution changes, which is not so rare especially in contextual
data streams (e.g., concept drifts). Challenge 2: The second
issue arises as the EDs are about to use, for further training,
the newly received generalized model fFL from the CL. This,
evidently, renders the locally adapted model f̂FL obsolete, since
this knowledge cannot be re-used in the future. This means that,
the very local statistical parameters learned and captured from
the local data of the EDs are aggregated with other EDs’ pa-
rameters, via the aggregation principle of the FL (refer to Equa-
tion (4)). This, potentially results in losing the local statistical
dependencies of the local data, since all the local parameters
are aggregated in light of concluding on a generalized model,
which lacks of the individual statistical dependencies across all
the EDs. This fundamentally derives from the generalization
of the models over non-IID data, as highlighted in Section 2,
showcasing the importance of keeping also the local learned
statistical dependencies of each individual ED, coined as ‘per-
sonalization’ for the predictive analytics tasks at CLs.

In order to cope with the Challenges 1 and 2, i.e., deal-
ing with concept drifts and keeping and transferring local data
dependencies to future updated models, we introduce a dual
model deployment mechanism inside EDs. Specifically, the kth
ED develops an evolving personalized (local) model fk(x) in
parallel to the generalized federated model fFL(x). An overview
of the envisaged EC architecture is provided in Figure 1. The
major challenge, therefore, of each ED with the deployed dual
model mechanism is to efficiently and effectively decide on the
correct ML model for predicting ŷ with either ŷ = fFL(x) or
ŷ = fk(x) upon receiving a new incoming input x at time t. In
addition, EDs are limited with their resources, which does not
allow complex algorithms to be implemented for timely deci-
sion making locally; recall that this decision should be taken
at every time t, when a new input x is coming to the ED for
prediction. Furthermore, the timely decision making of effi-
ciently selecting and/or aggregating personalized and federated
models is influenced by the nature of many applications like au-
tonomous cars and smart homes involving supervised learning
models (e.g., classification tasks for driver identification behav-
ior). In this context, checking the performance of the (super-
vised) learning models cannot always be achieved since labeled
data are not always provided nor being available at the time of
prediction. Hence, we are in need of introducing computation-
ally lightweight methods for fusing the personalized and gen-
eralized federated models inside each ED for predictive analyt-
ics tasks by exploiting both the local statistical features learned
from the personalized statistical learning and the generaliza-
tion/predictability capability of the federated model taking into
consideration the dynamical changes of the underlying data.

The idea of training personalized FL models inside EDs
has started to gain significant interest in the last years to over-
come issues related to heterogeneous non-IID data, continu-
ously changing data and concept drift adaptation. The authors
in [16, 12] highlighted the importance of ML models building
at EDs by adopting centralized ensemble learning over these
models at the CL for supporting predictive analytics. However,
the adoption of ensemble learning within EDs involving com-
plex pruning strategies per incoming input for timely prediction
is considered prohibitive due to evident restrictions of sharing
user-specific models and meta-data with the CL via the net-
work. On the other hand, the general FL method is purely based
on generating a global model on the CL being trained over dis-
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tributed datasets without accessing the raw data on each ED, so
achieving data privacy by design. The drawback of generalized
FL models, in the first place, can be overcome by building and
fusing local models. This, however, results in another problem
where by only having a local personal model at the ED, the
adaptation towards unseen data induced by concept drifts will
evidently generate inaccurate and wrong predictions.

Our work focuses on using the combined power of the in-
herent generalization of the FL-generated model via a group of
EDs and the advantage of the personalization local model in-
side each ED. This is showcased to provide qualitative predic-
tion over changing environments at the network edge, while be-
ing resource-efficient by reducing the computational complex-
ity per prediction request. By introducing our parallel model
deployment of the federated model fFL and the personalized
model fk inside each k ED deals with two fundamental chal-
lenges: (R1) definition of a mechanism that online chooses
to use either fFL or fk, or an aggregation over both models
for making prediction per request, and (R2) the definition of
a mechanism that determines how and when to decide on which
of both models each ED should choose to cope with changes in
the underlying data in dynamic environments.

Figure 1: Generating global knowledge fFLusing FL via distribution of local
models to the CL while keeping locally derived knowledge fk at the EDs.

4. Personalized Learning at the Edge

In this section, we contribute to the requirement R1, as
presented in Section 3.2, by introducing two strategies, coined
Evolving Federated Model (EFM) and Local Federated Model
(LFM), for personalized and efficient learning at the network
edge based on the fundamentals of FL. We then propose a method-
ology for aggregating the local and federated models in each
ED based on the statistically recent prediction capability of the
models.

4.1. Strategies for Personalized Learning at the Edge

Consider the ED k, which receives its d-dimensional con-
textual data vector xt from the SANs at each time t ∈ T. Data
vectors are stored in the local windowWk of fixed size M. Only
at a pre-defined selected epoch these data in the window will be

used to update the newly received model fFL from the CL, as it
will be explained later. Initially, the ED’s personalized model
fk is set to be equal to the centrally received federated model
fFL. The choice of using a pre-built model as a starting point
for prediction lies in accordance to the transfer learning the-
ory [31, 32]. Specifically, the principle of the transfer learning
highlights that using a baseline model for retraining achieves an
earlier convergence and higher accuracy than starting the learn-
ing process from scratch. If the ED k needs to perform a predic-
tion, it uses its current cached ML model. At each pre-defined
epoch, the ED k is selected to receive the most recently trained
generalized FL model fFL from the CL. Then, the ED k incre-
mentally calculates over its locally stored data in its window
Wk the model gradient updates using Equation (3). In this con-
text, the (asymptotic) computational complexity for these up-
dates requires O(Md) time, with M � nk with O(Md) storage.
Note: the interested reader could also refer to [16] for resource-
efficient SGD processes regarding local ML training, which are
beyond of the scope of this paper. The updated parameter wk is
then forwarded to the CL. The CL (FedAVG) can then use the
new parameters received only from the selected EDs to obtain
the new model fFL; refer to Equation (4). All the EDs in turn
receive the updated federated model fFL from CL, which can
be used in conjunction with the local fk model for performing
predictions locally on each ED k.

4.1.1. Evolving Federated Model
The Evolving Federated Model (EFM) incorporates person-

alization into an edge environment by advancing on the ba-
sic functionality of the FL paradigm. The EFM introduces
a communication-efficient strategy that discards the updating
communication from CL to the ED after generating the new
generalized model fFL. Specifically, the ED k instead of receiv-
ing the new updated federated model fFL, it keeps the updated
model as the fk and continuously evolves that model each time
a new input-output pair (xt, yt) is collected by the SANs. When
the ED k is selected at a specific update epoch, it sends to CL
the updated local model parameter wk and receives the recently
updated federated model fFL. Then, the model fk is replaced
with the fFL. Hence, in EFM the communication is reduced
and controlled by the update epoch frequency s. The ED can
adapt to the evolving data and concept drifts by continuously
learning and retraining the generalized model to its personal-
ized environment. The computational, storage and communica-
tion (number of messages sent between ED and CL) is provided
in Remark 1. The EFM process for the ED k is provided in Al-
gorithm 1.

4.1.2. Local Federated Model
The Local Federated Model (LFM) limits the communica-

tion further between EDs and the CL compared to EFM. The
idea is to initialize the local model fk with the received feder-
ated model, ie., fk = fFL for each ED k. Then, the ED k contin-
uously updates its model using SGD. Instead of the CL request-
ing each epoch the updates for the fFL, the ED k regularly sends
its local model fk to CL with update epoch s. Within the CL,
the parameters of each fk are merged into a global model fFL.
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The model aggregation part of the LFM process is based on
the method introduced in [14], where no distribution of merged
models is required. However, in our context, we enforce LFM
to distribute the federated model fFL only on those EDs, whose
local models fk are significantly deviated from the current fed-
erated model in CL, or, when a new ED joins the network.
Specifically, given a d-dimensional discrepancy model thresh-
old ξ ∈ Rd between the parameters of the fFL and fk models,
the CL sends the fFL model to the ED k, which replaces its lo-
cal model. With this selective model update, the EDs obtain the
generalizability of the federated model adapting, in turn, their
local models for personalization. The computational, storage
and communication (number of messages sent between ED and
CL) is provided in Remark 1. The LFM process for the ED k is
provided in Algorithm 2.

Algorithm 1 Evolving Federated Model (EFM)

1: receive federated model fFL from CL
2: fk ← fFL

3: for each time t = 1, . . . , do
4: receive input-output (xt, yt) from SANs
5: update local model fk using Equation (3)
6: updateWt ← {Wt−1 \ {(xt−M+1, yt−M+1)}} ∪ {(xt, yt)}
7: if ED k is selected by CL then
8: send updated wk to CL for aggregation
9: receive new federated model fFL from CL

10: replace fk ← fFL

11: end if
12: end for

Algorithm 2 Local Federated Model (LFM)

1: receive federated model fFL from CL; fk ← fFL

2: for each time t = 1, . . . , do
3: receive input-output (xt, yt) from SANs
4: update local model fk using Equation (3)
5: updateWt ← {Wt−1 \ {(xt−M+1, yt−M+1)}} ∪ {(xt, yt)}
6: if t mod s = 0 (update CL with frequency s−1) then
7: send updated wk to CL for aggregation
8: end if
9: if ED k is selected by CL for update then

10: receive new federated model fFL from CL
11: replace fk ← fFL

12: end if
13: end for

4.2. Adaptive Model Weighting
The personalization adoption of FL so far deals with the

use of a single model within a ED, which adapts to the data and
continuously evolves given new data. In the following, we pro-
pose an adaptive model selection methodology launched within
each ED. This methodology uses a statistical reward mecha-
nism over the recent historical prediction accuracy to weight
the relation between local and federated models. By consid-
ering the frequent appearance of concept drifts and distribution

shifts over contextual and evolving data, it is important to main-
tain, besides a personalized model, also another model which
represents a generalization of the data, especially when focus-
ing on the quality of the prediction. We propose a combination
of keeping the two models in parallel updated and selected in
the prediction tasks within each ED. As LFM and EFM only
store one model and, continuously, retrain it, the Adaptive Se-
lection Model (ASM) exploits both the generalized model fFL

and the local model fk inside each ED k. The importance of
keeping and maintaining both models up-to-date inside each
ED is mainly to overcome the issue of losing generalization
and adaption to unseen data by only deploying personal mod-
els. Moreover, previously unknown relationships within data in
EDs can be changing from IID to non-IID data relationships.
This cannot be identified at the start of the application deploy-
ment, which could have potentially achieved better prediction
accuracy from either the generalized or the personalized model.

The reward mechanism in ASM weighs the local and feder-
ated model into a combined predicted ŷ given an input x. The
predicted ŷ is calculated locally in ED k by using the local pre-
diction fk(x) and the federated prediction fFL(w) with an adap-
tive balancing weight α ∈ (0, 1). Firstly, when the ED k receives
from its SANs a new contextual vector xt at time t, the abso-
lute prediction error εk from the local model fk and the absolute
prediction error εFL for the federated model fFL w.r.t. actual
prediction yt are calculated, respectively:

εL = |yt − fk(xt)|, (5)

εFL = |yt − fFL(xt)|. (6)

Given these two errors in ED k, we introduce a binary reward
value θ ∈ {0, 1}, which is used as the factor for balancing the
two models. Specifically, in ED k at each time t, based on εFL

and εL, the reward θ = 0, if the local model is performing better
than the generalized one, and θ = 1 otherwise, i.e.,

θt =

0, εFL > εL

1 εFL ≤ εL.
(7)

As shown in Equation (7), a positive reward is given to the fed-
erated model fFL if the absolute error εFL is smaller than the
absolute error of the local mode fk noted as εL. The reward
mechanism deployed inside the ED k should not only incorpo-
rate the current performance of fk and fFL but, also, the histori-
cal performance, i.e., the most recent reward values θt stored in
a sliding windowUt

k = {θt−L+1, . . . , θt} of size L for the last t−L
predictions (time instances). Note: the use of the sliding win-
dow is chosen towards the adoption of lightweight processing
methods for handling continuous evolving data and adaptation
to changing environments able to act immediately on concept
drifts [33, 34]. As the window Ut

k consists of the most recent
rewards, at each time t, we can calculate a ratio that represents
the performance of both models over the time horizon t − L,
which refers to the adaptive weight α, i.e.,

α =
1
L

L∑
τ=1

θτ. (8)
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The α value represents the most recent prediction performance
of both models in ED k. Each time the ED k is performing
prediction, the two predictions of fk(x) and fFL(x) are weighted
to the final prediction ŷ = fAS M(x), i.e.,

fAS M(x) = α fFL(x) + (1 − α) fk(x). (9)

Algorithm 3 Adaptive Selection Model (ASM)

Central Location:
1: initialize federated parameter wFL

2: for each update epoch do
3: select a random subset K ⊂ {1, . . . ,K}
4: for each ED k ∈ K in parallel do
5: receive parameter wk from ED k
6: wFL ←

∑
k∈K

nk
N wk

7: end for
8: end for

Edge Device k:
9: receive federated model fFL from CL (t = 0)

10: for each time t = 1, . . . , do
11: receive input-output (xt, yt) from SANs
12: update local model fk using Equation (3)
13: calculate local error εL ← |yt − f t

k(xt)|
14: calculate federated error εFL ← |yt − f t

FL(xt)|
15: calculate reward θt using Equation (7)
16: update windowUt ← {Ut−1 \ {θt−L+1}} ∪ {θt}

17: calculate weight α using Equation (8)
18: if prediction of ŷt is requested then
19: ŷt = fAS M(xt) using Equation (9)
20: end if
21: if ED k is selected for updating then
22: update fk using Equation (3) given ((xt, yt))
23: return updated wk to CL.
24: end if
25: end for

The α value combines fFL and fk predictions towards ŷ for
every input x using exponential smoothing [35]. An α → 1
indicates that more influence comes from the federated model
fFL, whereas, α → 0 places more importance on the local
model fk predictions. Algorithm 3 shows the calculations in
the CL and the ED k towards the ASM mechanism.

Remark 1. We elaborate on the computational, storage and
communication complexity of the ASM, EFM, and LFM models
along with the base FL mechanism (FedAVG). The communi-
cation complexity is expressed in terms of the messages sent
from CL to ED and vice versa given a specific model. Firstly,
let us provide the communication complexity of FedAVG, which
involves all the m EDs at predefined epochs s < T for models
aggregation and updates during a specific time horizon T . This
indicates that the communication (messages sent) of CL and
EDs within T is O(m s

T ). Within two consecutive update epochs,
each ED updates its local model in O(Md) time based on SGD
storing the data vectors in a sliding window of size M. This also

requires O(Md) storage. In the EFM process provided in Algo-
rithm 1, the CL at time t selects a subset K of m EDs from all
the connected K EDs for being updated with the local models’
parameters and then distributing the updated federated model.
Let ED k be the ED selected to update CL with its local model
fk and then receive the updated federated model fFL at model
update epoch s. Given a finite time horizon T , with s < T
epochs, the probability that the ED k is selected P{k ∈ K}, i.e.,

the probability that k ∈ K of m EDs is (m−1
K−1)
(m

K) = m
K . Hence, the

communication (messages sent) of CL and ED k within horizon
T is O( m

K
s
T ). The EFM updates the local model fk in O(Md)

time adopting SGD over the sliding data windowW of size M,
which requires O(Md) storage.

In the LFM provided in Algorithm 2, the communication for
updating the CL with the local model fk is: O( s

T ) given a fixed
model update epoch s. The LFM updates the local model fk
in O(Md) time adopting SGD over the sliding data windowW
of size M with O(Md) storage. Moreover, given a discrepancy
threshold vector ξ = [ξ1, . . . , ξd]> between the federated model
parameter w and the local model parameter wk, under a Lp

norm: ‖w − wk‖p, the CL sends to ED k the federated model
fFL for replacing the local fk with probability: P{‖w − wk‖p ≥

ξ}. Based on the Markov inequality, this probability is bound
by E[‖w−wk‖]

ξ
= O( min

j=1,...,d
1
ξ j

). Hence, the overall communication

complexity (messages sent from CL to ED k regarding model
discrepancy and messages sent from ED k to CL for updating
regularly the federated model at every epoch s) given a fixed
time horizon T is O

( 1
T ( min

j=1,...,d
1
ξ j

+ s)
)
.

In the ASM process provided in Algorithm 3, the communi-
cation complexity is the same as EFM. Furthermore, the ASM
requires O(Md) time for local model update and storage O(Md+

L) for the data windowW and rewards window U, with sizes
M and L, respectively.

5. Time-Optimized Model Selection

In this section, we deal with the challenge R2, as presented
in Section 3.2, by introducing a time-optimized model selection
(TOSM) scheme for optimally determining when to use the lo-
cal fk model or the federated fFL model based on their predic-
tion performance and how the ED k can decide on selecting one
of them by maximizing an error-oriented reward, thus, securing
high quality of predictive analytics tasks. TOSM copes with a
time-based stochastic optimization problem whose optimal and
unique solution relies on the principles of the Optimal Stopping
Theory (OST).

The ASM model exploits the recent prediction performance
of the local and federated models via a reward mechanism to
swiftly determine on aggregating their predicted outcomes upon
a prediction request. This is processed timely in O(1) time (cal-
culating the α ratio) requiring O(L) storage (storing the recent θ
values). In this section, we further introduce a time-optimized
mechanism on finding when and which model should be used
per prediction request overcoming the problem of aggregating
the predictions of two models fk and fFL inside the ED. Such
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mechanism, coined hereinafter as Time-Optimized Selection
Model (TOSM) attempts to choose one of the two models re-
ducing the probability of losing potentially local statistical de-
pendencies learned from the local model and/or the general-
izability prediction capability of the federated model. TOSM
achieves an optimal scheduling of involving either fk or fFL

based on accumulating sequential prediction errors that reflect
the actual performance of each model individually. Hence, the
right model is scheduled to be used for prediction at any given
prediction request time. TOSM, instead of weighting the pre-
dictions, which potentially filters out with this aggregation the
inherent variance of the predicted outcome y, optimally selects
one of the two models for the prediction ŷ. This is achieved by
identifying the optimal model at prediction time t. TOSM cal-
culates locally in ED k at time t the prediction errors εL and εFL

of the local fk and federated model fFL, respectively. Initially,
at time t = 0, the chosen model is the fFL ensuring generaliz-
ability of the initial prediction. Given the two prediction errors
εL and εFL, TOSM decide when is the best time t∗ to switch from
the federated model fFL to the local model fL given cumulative
comparative error evaluations. Fundamentally, TOSM at time t
compares the prediction errors of fk and fFL transforming them
to a reward binary variable Z ∈ {0, 1} as follows:

Zt =

{
0 if εL > εFL,
1 if εL ≤ εFL.

(10)

Then, TOSM accumulates the rewards within an unknown fi-
nite time horizon to decide on switching to the fk ( fFL) models.
As past behavior and prediction quality are of high importance
to the applications and predictive analytics tasks, the cumula-
tive comparison of the predictability of both models, including
the history divergence of these two models, are exploited for
an optimal switching decision in TOSM. The history of the re-
warded prediction performance comparison is represented by
the cumulative sum of Zt values, defined as Rt:

Rt =

t∑
τ=0

Zτ. (11)

Evidently, an instantaneous decision at t only over the current
comparison between εFL and εL would not effectively demon-
strate a robust historical behavior. On the other hand, a fixed
time horizon observing the prediction behavior of both mod-
els cannot be determined beforehand, as proposed in the ASM
model by adopting a L fixed-size windowU).

Hence, the problem that arises here is to find which is the
optimal time horizon where TOSM can switch from fk ( fFL) to
fFL ( fk) such that we achieve the best prediction performance
of both models. In order to formally define this problem as a
stochastic optimization problem (recall that Z and R are random
variables), we introduce a delay factor β ∈ (0, 1) over the cumu-
lative sum of error comparisons in Rt, such that, our objective
function becomes:

Yt = βtRt = βt
t∑

τ=0

Zτ. (12)

Yt is a random variable whose maximization of its expectation
across the time domain t ∈ T = {1, 2, . . .} will indicate the op-
timal model switching time to decide when to switch from the
federated model fFL to the local model fk. The delay factor
β ∈ (0, 1) indicates a (delay) tolerance level in observing the
prediction performance of both models. If β→ 1, the tolerance
is increased. We then formulate our problem for the TSOM
model as follows:

Problem 1. Given the local model fk and federated model fFL

in an ED k, with prediction errors εL and εFL at time t, respec-
tively, find the optimal model switching time t∗, where ED k
switches from fFL to fk such that the following supremum of the
expectation of Yt is attained:

sup
t≥0

E[Yt]. (13)

In order to find the unique solution of the Problem 1, i.e., to
find the optimal model switching time t∗, we cast this problem
as an Optimal Stopping Time problem, which will be solved
based on the principles of the OST. Before elaborate on our
solution, we provide some preliminaries of the OST in Section
5.1 (the reader can skip this section should they be familiar with
the OST fundamentals).

5.1. Optimal Stopping Theory

The fundamentals of OST [36, 37] lay in choosing the best
time to take an action that maximizes an expected return or re-
ward. The optimal decision making rule of stopping at the best
time instance (a.k.a. optimal stopping rule) is determined over
a sequence of the realizations of the random variables Z1,Z2, . . .
and a sequence of the corresponding rewards that depend on the
observed value of Z until time t. Such sequence of return func-
tions can be defined as (Yt(Z1, . . . ,Zt))t>1. The decision maker
(in our case, the ED k), is observing the sequence of Yt, reflect-
ing the error comparison values, and decides to either stop and
switch the local/federated models, or continue. The ED k, by
determine an optimal stopping rule, can then decide to switch
the model between the federated and the local and vice versa
maximizing the expected return defined in Equation (12). Our
aim is to maximize the expected return or reward of the function
Yt when we decide to switch the models.

5.2. Optimal Model Selection based on OST

The ED k, by monitoring the prediction errors of both local
and federated models, evaluates the reward function Yt defined
in Equation (12) and seeks for an optimal stopping rule that
maximizes the expectation of Yt, E[Yt], given a fixed tolerance
β value. In order to proceed with an optimal solution of the
Problem 1, where the supremum of the expectation of Yt can be
attained, we need first to prove that the optimal stopping time
t∗ that maximizes (13) exists.

Theorem 1 (Optimal Model Switching Time Existence). The
optimal model switching time t∗ of the Problem 1 exists.
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Proof. We prove that the optimal model switching time exists,
thus, the ED k can optimally switch between the models for
achieve maximization of the expected reward. Based on the
principles of the OST, to prove its existence, two conditions
should be true: (C1) lim supt Yt ≤ Y∞ = 0 is surely true, and
(C2) E[supt Yt] < ∞.

The condition C1 implies that with the elapse of time (t →
∞), the reward should go to zero, i.e., Y∞ = 0. Since no change
of the model over an indefinite horizon is useless due to place-
ment in constantly changing environments, Y∞ = 0 represents
the reward of an endless non-model switch phase. The supre-
mum limit of Yt is notated by lim supt Yt, i.e., the limit of supt Yt

as t → ∞ or limt→∞(sup{Y j : j ≥ t}). As Zt is non-negative and
using the strong law of numbers ( 1

t
∑t

j=1 Z j) → E[Z], we can
derive that:

Yt = tβt(Rt/t) = tβt(1/t)
t∑

j=1

Z j ∼ tβtE[Z]
a.s.
→ 0. (14)

This results to limt→∞ supt Yt = 0. As Y∞ = 0 is by definition
true, we then declare that C1 is satisfied.

The condition C2 implies that the expected reward under
any policy (model switching rule) is finite. Therefore, C2 can
be shown as:

sup
t

Yt = sup
t
βt

t∑
j=1

Z j ≤ sup
t

t∑
j=1

β jZ j ≤

∞∑
j=1

β jZ j. (15)

This results into satisfying C2 with,

E[sup
t

Yt] ≤
∞∑
j=1

β jE[Z] = E[Z]
β

1 − β
< ∞. (16)

As both conditions C1 and C2 are satisfied, then the optimal
model switching time t∗ exists for the Problem 1.

The next step in finding now the optimal model switching
time is to prove that the existed t∗ is also unique. This will
guarantee the ED k that a unique optimal stopping rule can be
implemented locally and be swiftly used for deciding when to
switch the local to the federated model and vice verse.

Theorem 2 (Uniqueness of the Optimal Model Switching Time).
The existing optimal model switching time t∗ of the Problem 1
is unique.

Proof. By proving the existence of the optimal time t∗ in The-
orem 1, we desire to find that this optimal stopping time in
unique inside the ED k, which enables ED to decide on switch-
ing the models by maximizing the trade-off between their ac-
curacy. Since Yt is non-negative, the Equation (13) turn to be
monotone [37]. Hence, the optimal model switching time t∗ is
then obtained by the one-stage look-ahead optimal rule (1-sla):

t∗ = inf{t ≥ 1|Yt ≥ E[Yt+1]}. (17)

The adoption of 1-sla is optimal since supt Yt has a finite ex-
pectation (equal to E[Z] β

1−β ) and lim supt Yt = 0, as proved in
Equation (14). Consequently, t∗ is unique and can then be esti-
mated through the principle of optimality.

We have proved in Theorems 1 and 2 that the optimal model
switching time exists and is unique for the Problem 1. Now, we
elaborate on a methodology where ED k can define the optimal
stopping time to estimate the optimal time t∗.

Theorem 3 (Optimal Model Switching Rule). Given the re-
ward random variables Z1,Z2, . . . , observed in ED k, the ED
decides on switching the fFL model to the fk model at the first
time instance t∗ such that:

t∗ = inf{t ≥ 1|
t∑

i=1

Zi ≥
β

1 − β
E[Z]}. (18)

Proof. Assume that the cumulative reward Rt = r > 0, when
the ED k decides that it is optimal to switch the models. Then,
the current reward of βtr is at least as large as any expected
E[( β

1−β )t+τ(r+Rτ)]. This means that r(1−E[( β
1−β )τ]) ≥ E[( β

1−β )τRτ]
for all times τ. This must hold true for all r′ ≥ r, so that the op-
timal time t∗ for some r0 must be of the form t∗ = inf{t ≥ 1|Rt ≥

r0}. Especially when the ED switches the first time t for which
Rt ≥ r0, then the tolerance for forwarding r0 must be the same
as the tolerance for continuing using the 1-sla, therefore the sum
of tolerances is positive. That is, r0 must satisfy the equation

r0 = E[(
β

1 − β
)τ(r0 + Rτ)], (19)

with τ = inf{t ≥ 1|Rτ > 0}. Since Y is non-negative, it is
possible to obtain τ ≡ 1 and Rτ ≡ Y [37] and, then, replacing
with r0 =

β
1−βE[Y]. This will finally result in the definition of

the optimal time t∗ for switching from the federated model fFL

to the local model fk defined as:

t∗ = inf{t ≥ 1|
t∑

i=1

Zi ≥
β

1 − β
E[Z]}. (20)

As it can be observed from Equation (18), the ED k needs
to incrementally estimate the expectation E[Z] over the random
variables Zt in order to evaluate the optimal model switching
rule. Specifically, we can write the expectation of the reward
based on the conditional expectations given an event where the
local model performs better than the federated model and vice
versa. That is, we express the expectation E[Z] using the con-
ditional expectations E[Z|εL > εFL] and E[Z|εL ≤ εFL], i.e.,

E[Z] = E[Z|εL > εFL]P(εL > εFL) + (21)
E[Z|εL ≤ εFL]P(εL ≤ εFL).

The expectation of Z, given by Equation (10), is then E[Z|εL >
εFL] = 0 and E[Z|εL ≤ εFL] = 1, which is:

E[Z] = 1 − P(εL < εFL) = 1 − FεL (εFL), (22)

where FεL is the Cumulative Distribution Function (CDF) of the
εL prediction error FεL (e) = P(εL ≤ e). Upon an incremental
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estimation FεL over sequential εL errors (as will be discussed
later), the ED k is led to determine the optimal stopping time
t∗ switching the federated model fFL to the local model fk as
follows:

t∗ = inf{t ≥ 1|
t∑

τ=1

Zτ ≥
β

1 − β
(1 − FεL (ε t

FL)}. (23)

The ED k based on the Equation (23) switches the models at
the first time instance t such that the cumulative sum of the re-
wards up to t exceeds the current quantity (1− FεL (ε t

FL)), which
depends on the current prediction error of the federated model
ε t

FL scaled by the odds factor β(1 − β)−1.
The TOSM model further considers an optimal rule for the

reverse model switching, i.e., from the local model fk to the fed-
erated model fFL. Therefore, once the model is switched from
the federated model to the local one, the cumulative reward sum
R is set to 0. Then, the problem of finding the optimal model
switching time t∗ to switch back to the federated model is solved
as explained in the above-mentioned methodology. In a similar
way of solving the Problem 1, the optimal time to switch from
the local model fk to the federated model fFL is based on the re-
verse reward random variable Q, in which the prediction errors
ε for both models are monitored, i.e., similar to Zt, we define
Qt:

Qt =

{
0 if εFL > εL,
1 if εFL ≤ εL.

(24)

From Equation (24), the expectation of Q, E[Q] is then simi-
larly calculated via the two conditional expectations, i.e.,

E[Q] = E[Q|εFL > εL]P(εFL > εL) +

E[Q|εFL ≤ εL]P(εFL ≤ εL)
= 1 − FεFL (εL). (25)

From the expectation of Q in Equation (25), it is possible to
derive the optimal time t∗ to switch from the local fk back to
the generalized fFL.

For reasons of completeness, we provide the optimal time
t∗ for the reverse switch in Equation (26), which is analogously
determined as in Equation (23).

t∗ = inf{t ≥ 1|
t∑

τ=1

Qτ ≥
β

1 − β
(1 − FεFL (ε t

L)}. (26)

Once the model is switched back to the federated model fFL,
the reward summation Q is set to 0, and the Z-values accumula-
tion starts off. This method is performed until a new federated
model fFL is sent from the CL to the EDs, thus, replacing their
old one.

Note, the decision making at time t, which is based on the
optimal model switching rules in (23) and (26), is computation-
ally lightweight requiring only O(1) time (refer to Section 5.3).
Specifically, the ED k needs only the CDF of the error values ε
of the models fk and fFL, which can be incrementally estimated
as elaborated in the Section 5.3.

The Algorithm 4 illustrates the information flow of the TOSM
model regarding the optimal model switching decisions in the

ED k from State FL (from fFL to fk) to State L (from fk to fFL) in
lines 1 and 13, respectively, as long as the federated model fFL

has been updated and received locally. In Remark 2, we provide
the computational, storage and communication complexity for
the TOSM model in an ED k.

Algorithm 4 Time-Optimized Selection Model (TOSM)

1: reward sum R← 0; State = FL

2: while TRUE do
3: receive input-output (xt, yt) from SANs
4: update local model fk using (3)
5: calculate errors εL and εFL

6: calculate reward Zt using (10)
7: R← R + Zt

8: if criterion in (23) is TRUE then
9: switch fFL with fk

10: break
11: end if
12: end while
13: reward sum R← 0; State = L

14: while TRUE do
15: receive input-output (xt, yt) from SANs
16: update local model fk using (3)
17: calculate errors εL and εFL

18: calculate reward Qt using (24)
19: R← R + Qt

20: if criterion in (26) is TRUE then
21: switch fk with fFL

22: break
23: go to Line:1
24: end if
25: end while

5.3. Incremental Estimation of CDFs FεL and FεFL

The ED k incrementally estimates the probability density
functions (or densities) pL(ε) and pFL(ε) based on the error pre-
diction values εL and εFL, respectively. For simplicity of nota-
tion, we use ε for any prediction error (local or federated) in the
following analysis since the methodology for estimating both
CFDs FεL and FεFL is the same, thus, dropping the subscript
of the density p(ε). Let us focus on estimating in an incre-
mental way the CDF FεL ; the same holds true for FεFL . This is
achieved by adopting the non-parametric Kernel Density Esti-
mation (KDE) method over n > 0 recent error values {εt−n+τ}

τ=n
τ=1,

such that p(ε) is estimated as:

p̂(ε) =
1

n · h

n∑
τ=1

K
(
|ε − εt−n+τ|

h

)
, (27)

where h > 0 is the bandwidth of the symmetric kernel K (u)
(integrating to unity). One of the most frequent adopted kernel
function is the Gaussian, i.e., K (u) = 1

√
2π

e−
1
2 u2

. We rely on
an incremental estimation of p̂(ε; t) for τ = 1, . . ., by previous
estimate p̂(ε; t − 1) and the current value εt. We recursively
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obtain for t = 1, . . .:

p̂(ε; t) =
t − 1

th
p̂(ε; t − 1) +

1
th

K
(
|ε − εt |

h

)
(28)

Upon capturing εt at t, p̂(ε; t) is incrementally estimated by
p̂(ε; t − 1), thus, there is no need to store all the previous val-
ues for estimating p̂(ε; t). Hence, at time t, in order to examine
the criterion in the optimal model switching rules in Equations
(23) and (26), we obtain that F(εt) =

∫ εt

0 p̂(u; t) du) ≈ F̂(εt; t) =
t−1
th F̂(εt; t − 1) + Î(εt). That is, we obtain an incremental esti-

mation of the CDF F̂(ε) =
∫ ε

0 p̂(u) du, which requires at the
time instance t the calculation of the integral quantity over the
current error εt:

Î(εt) =
1
th

∫ εt

0
K(
|u − εt |

h
) du. (29)

The calculation of Î(εt) is O(1) time by adopting the Gaus-
sian kernel function. Such kernel function is mostly used due
to its convenient mathematical properties and especially when
dealing with estimation of a probability density function. It is
shown in B. W. Silverman2 that the optimal value of h for a
Gaussian kernel is:

h∗ = 1.06 min(σ̂,
r̂

1.34
)n−

1
5 , (30)

where σ̂ is the standard deviation of the error samples, r̂ is the
interquartile range, and n is the number of training prediction
error values.

Remark 2. We elaborate on the complexity of the TOSM pro-
cess provided in Algorithm 4. The TOSM updates the local
model in O(Md) time adopting SGD over the sliding data win-
dowW of size M, with storage O(Md). The calculation of the
optimal model switching rules in (23) and (26) is O(1) due to
incremental update of the KDE-based CDF in (28) and (29) of
the prediction errors of the local and federated models. The
communication complexity is the same as EFM given the model
updates to/from CL (refer to Remark 1).

6. Performance Evaluation

6.1. Experimental Setup
In order to assess the performance of our methods, we per-

formed experiments on a multivariate dataset (DS) that contains
415 weather stations around the United Kingdom (UK) measur-
ing sequential contextual data streams of the surrounding envi-
ronment. These data streams have been collected over the time
horizon of December 2017 until March 2018 using the API of
Wunderground [38]. Each weather station represents the kth
ED with k ∈ {1, . . . ,K} with K = 415. Each time t, EDs re-
ceived a d-dimensional input data vector xt. The DS provides
a 9-dimensional data streams in the form of {(xt, yt)} includ-
ing temperature, dew point, humidity, wind-speed, wind-gust,

2B. W. Silverman. 1986. Density Estimation for Statistics and Data Analy-
sis. Chapman and Hall, London, 1986.

wind direction, pressure, windchill, and precipitation. The out-
put yt is set with the DS’s measurement of temperature, while
the remaining measurements are used for the input xt. The func-
tion y = f (x) is a multivariate linear regression with f (x) =

wT x; w ∈ Rd+1 resulting in minimizing the objective of Equa-
tion (1) into:

J(w) = min
w∈Rd+1

1
T

T∑
t=1

(
yt − (xt)>w

)2
+ λ, ‖w‖2 (31)

where λ is the regularization parameter. The data collection fre-
quency is every 5 minutes over the time horizon of 100 days, re-
sulting in a dataset size of N = 9, 044, 683, assembling roughly
250 values measured per ED and per day. All data are nor-
malized and scaled, i.e., each dimension x ∈ R is mapped to
x−µ
σ

with mean value µ and variance σ and scaled in the unity
interval, thus, x ∈ [0, 1]d.

A training period of 1 month is considered before testing
the proposed methods. This corresponds to the splitting of DS
of size N = NT + NM , which results in NT = 1, 500, 000 data
points for training and around NM = 7, 500, 000 data points for
testing the prediction capability of each approach. Converting
this into a percentage, only 15.8% of the collected values are
used during training to overcome the cold-start problem using
transfer learning, and over 84% is used for testing the different
approaches.

The starting date is located on the 1st of January 2018 and
presents the time t = 0. During the training period, each ED k
generates a local model fk. At time t = 0, each ED sends its
local model fk towards the CL. Inside the CL, these models are
merged using the baseline FedAVG model [11] (see Equation
(4)) for comparison towards the first federated central model
fFL. At time t = 0, fFL is distributed across all the EDs as their
first federated model.

6.2. Performance Metrics
We assess our methods, the baseline models and the mod-

els under comparison with respect to two categories of perfor-
mance metrics for accuracy and information loss, which are
widely used for assessing predictive analytics tasks.

For assessing accuracy, we use three metrics acknowledged
in the literature: (1) Mean Absolute Error (MAE) = 1

N
∑N

n=1|ŷn−

yn|; (2) Root Mean Squared Error (RMSE) = [ 1
N

∑N
n=1(ŷn −

yn)2]1/2; and (3) Symmetric Mean Absolute Percentage Error
(SMAPE)
= 100

T
∑T

t=1
|ŷt−yt |

|yt |+|ŷt |
, because of its unbiased properties and ability

to compare the results representing in percentage with values in
[0, 100].

For information loss in predictive analytics, we use the Kullback-
Leibler (KL) divergence. The KL divergence from p(x) to p(x̃)
denotes the information loss when attempting to reconstruct se-
quential data (data streams) x̃ for the actual data stream x, using
p(x̃) and p(x) as the probability distribution functions, respec-
tively. KL is defined as:

KL(p(x̃)‖p(x)) =

∫
X⊂Rd

p(x̃) log
p(x̃)
p(x)

dx. (32)
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Parameter Notation Value/Range Optimal Setting
(xt , yt) Data input vector and output at time t
t, τ, t∗ ∈ T Discrete time instances
ε Absolute prediction error
p(x); F(x) Density function; Cumulative Distribution Function
w Parameters of ML model
fFL, fk Federated model, Local model at ED k
U Sliding window of rewards θ in EDs
W Sliding window for data vectors x in EDs
D = {DK

k=1} Complete dataset, local datasets at EDs
Z, Q Rewards of local and FL models (TOSM)

K Number of EDs 415
d Data dimensionality {2, . . . , 9}
N Size of complete dataset D 9,000,000
NT ; NM Training data; testing data 1,500,000;7,500,000
α Model weighting between fFL and fk (ASM) (0,1)
θ Reward (ASM) {0, 1}
s Model update epoch (local and/or federated model) {1, 2, 4} 1
M Size of data sliding windowW {250, 500, 1000} 1000
L Size of reward sliding windowU {50, 100, 250, 500} 50
β Delay tolerance factor (TOSM) (0,1) 0.3
η Learning rate in SGD 0.1 0.1

Table 2: Notations and ranges/values of basic parameters.

6.3. Baseline Models & Models under Comparison

A baseline model for comparison is required to evaluate the
performance of our methodologies. Specifically, during the as-
sessment, the performance of the Global Model (G), which
transmits raw data streams from the EDs to the CL, at time in-
stance t is used as a baseline comparison model towards the oth-
ers. Furthermore, focusing on the distributed nature of generat-
ing a federated global model in the CL based on the local ML
models, we compare our methods with the basic deployment
of FL, coined here as the Federated Model (FM) proposed in
[11]. In addition, we compare our methods with the locally
trained model Local Model (L) proposed in [12], which does
not involve any central coordinator or generalized model. The
model L is built from scratch without any previous model(s) re-
ceived from the CL. The Evolving Federated Model (EFM)
uses as the initial local model fk at time t = 0 the received gen-
eralized model fFL. At each selected epoch, the CL requests
the local models of the selected EDs and merges the generalized
fFL over them. Only the model fk is stored inside the ED. More-
over, the proposed Local Federated Model (LFM) extends the
EFM and partially extends the functionality of learning method-
ology in [14] for comparative assessment reasons. Specifically,
the LFM merges the local models in the CL provided in [14] by
updating the generalized model fFL locally at each time t until
the new update from the CL is sent at a predefined epoch. The
Adaptive Selection Method (ASM) introduces a dual parallel
model implementation inside each ED. A local model fk is ini-
tially set to fk = fFL and is continuously updated each time t.
The federated model fFL is received and updated as the model
FM. The final prediction is generated through a reward function
with respect to the historical performance of each model and
balancing the fk and fFL model through the parameter α. We
also compare with the Smoothed Model (SM) in [13], which
is based on the same concept as the ASM but with a fixed value
for the balancing weight α. Finally, the Time-Optimized Se-

lection Method (TOSM) provides a selecting mechanism of
the optimal model at any given time. The fundamental con-
cept is based on finding the optimal model switching time t∗ to
switch between the two models fk and fFL and vice versa using
OST.

6.4. Parameters Configuration

In order to assess the accuracy, multiple parameters for the
different models and ED storage capacities have to be set. After
the starting point (t = 0), at each time t, the models EFM, LFM,
L are updated using SGD. The values for the reward θ are in-
serted into the windowU each time t for the model ASM. The
adaptive weighting α is generated through the ratio over U of
size L ∈ {50, 100, 250, 500}. Moreover, for the model TOSM,
the Zt and Qt values are determined at each time t and the re-
spective current optimal model flagged inside each ED k. The
delay tolerance factor for TOSM β takes values from the range
β = {0.1, 0.3, 0.5, 0.7, 0.9}. If the CL requests at a specific epoch
an update of the model FM, the values inside the window W
are used for the SGD update. The size M of the window W
takes values in the range M = {250, 500, 1000}. The model up-
date epoch is set for the assessment to be every day, every other
day and every fourth day, with s ∈ {1, 2, 4}, respectively.

Assessing the overall performance of each model, a type
of cross-validation has been deployed to guarantee independent
validation of the results. The application is stopped at 24 ran-
dom time points t. At the selected time t, the methodology
implemented is stopped and the next 250 values (representing
one day) of each ED k is used as prediction input to analyze the
performance of each model.

6.5. Performance & Comparative Assessment

6.5.1. Personalized & Efficient Local Learning
We first analyze the impact of α on weighting between local

model prediction using fk and the federated model fFL for the
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weighted prediction ŷ using the model ASM. The influence of
the model update epoch s, where the CL requests and updates
the fFL model, and the size L of the rewards value window U
on the model weighting parameter α using the introduced per-
formance metrics is shown in Figure 2.
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(a) Average value of α over time t.
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(b) Histogram of α in EDs.
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(c) Histogram of α in EDs conditioned on
the federated update frequency (epoch) s.
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(d) Histogram of α in EDs conditioned on
the windowU’s size L.

Figure 2: Parameter setting influence on α for the model ASM.

In Figure 2 (a) the average value of α over all EDs until
t = 4000 is presented. It can be observed that the value of α
is greatly changing over time but lies in the range of α ≥ 0.18
and α ≤ 0.32. This figure has been using the setting of L = 50,
M = 1000, and update epoch s to be every day with s = 1. The
same settings are used for the frequency analysis and α distri-
bution over each ED illustrated in Figure 2 (b). In this figure,
one can observe the distribution of average α values for each
ED, which can be approximated as a normal distribution with
the mean around α = 0.3. This correlates with the findings of
Figure 2 (a) for the average α-values per time instance t over
all the EDs lying in the highlighted range. To identify the in-
fluence of the update epoch s and window size L towards the
weighting parameter α, Figure 2 (c) and Figure 2 (d) highlight
this, respectively. In Figure 2 (c), the setting of s = {1, 2, 4}
indicating the update frequency of the federated model fFL to
be each day, every second day, and every fourth day. From this
figure, the influence of the update frequency towards the model
weighting α indicated that increasing the frequency is decreas-
ing the mean of α and increases the variance. This is in opposite
to the influence of window size L to α as shown in Figure 2 (d).
In this figure, an increase of the mean is presented by increasing
the window size of rewards. The increase in L only influences
the mean but not the variance for the value α in each ED k.

We further investigate the behavior of the model TOSM
by experimenting with the factor β for the delay tolerance of
switching the models fk and fFL to use the optimal model at the
prediction time. This value of β is analyzed in Figure 3 with
the number of model switches that occur during the runtime. In
Figure 3 (a), the influence of switching the models dependent
on β with increasing the update frequency of model epoch s.
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(a) Average switching time for different
β and federated model update frequency s.
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(b) Average switching time for different β
and size M of data windowW.
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(c) Histogram of model switching times for
β = {0.1, 0.9}; M = 250.
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(d) Histogram of model switching times for
β = {0.5}; M = {250, 500, 1000}

Figure 3: Parameter setting influence on β for the model TOSM.

In this figure, no difference between the variation of model up-
date epoch s can be seen influencing the model switching in the
model TOSM. However, a decrease of average switches can be
seen when the value of β ≥ 0.7. Similar results are highlighted
in Figure 3 (b). This figure indicates the influence of increasing
the size M of the (data) windowW with respect to the factor β
and the number of times the model is switched inside the ED.
Figure 3 (c) shows the distribution of β = 0.1, the number of
switches inside each ED and the distribution of β = 0.9 with
delaying the switching. With a β = 0.9, the variation of average
switches is higher than with β = 0.1, in which the density is
around the mean of 500. In Figure 3 (d), the distributions of
β = 0.1 using different values of M are presented. As already
shown in Figure 3 (b), no change of the frequency by differing
the size of M can be observed.

In Figure 4, the performance metrics RMSE, MAE, SMAPE
and KL divergence over different β values are investigated. High-
lighted in the previous figure, increasing the delay of switching
between the models fk and fFL inside the ED indicated through
the value of β shows that β → 1 increases the tolerance and,
thus, less often the models are switched.

In Figure 4 (a), the analysis of RMSE with respect to the
model update frequency s is illustrated. One can observe that
the update frequency s is only slightly increasing the RMSE.
Similar results have been obtained using MAE and SMAPE,
which are not shown due to space limitations. Moreover, in
this figure, the behavior of update epoch s towards the accuracy
is illustrated. Using s = 1 indicating an update frequency of
the fFL model every day, results in the lowest accuracy error.
However, by assuming that increasing the frequency is rising
the error does not hold true as the performance of s = 4 (update
frequency every fourth day) generates lower prediction errors
than s = 2. The KL divergence highlighted in Figure 4 (b)
indicates a clear decrease of information loss by increasing the
update frequency s. Additionally, the influence of β towards the
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(a) RMSE for different β and model update
frequency s.
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(b) KL divergence for different β and model
update frequency s.
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(c) MAE for different β and (data) win-
dowW size M.
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(d) SMAPE for different β and (data) win-
dowW size M.

Figure 4: Comparison of the influence of delay tolerance β for model TOSM
against model update epochs s and window size M towards the metrics KL,
RMSE, MAE, and SMAPE.

information gain shows that using more frequent switching of
models results in higher entropy, presented by the KL metric,
inside each ED.

Figure 4 (c) and Figure 4 (d) investigate the behavior of in-
creasing the windowW’s size M representing the data used for
performing SGD at the model update epoch in order to update
the fFL to the CL. In Figure 4 (c), the influence is presented via
the MAE metric. Increasing the size M to M = 1000 results in
decreasing the error. The dependency of β with respect to the
accuracy over different window sizes M does show a slight in-
crease of MAE, when increasing the delay tolerance of β → 1.
In Figure 4 (d), similar behavior and dependency are observed.
By increasing β → 1, results in increasing the SMAPE, while
by increasing the windowW’s size M to M = 1000, results in
decreasing the prediction error.

In Figure 5, the performance of all models under compar-
ison introduced in Section 6.3 and the influence of the param-
eters model update epoch s and data window size M are illus-
trated for comparative assessment. In Figure 5 (a), the RMSE
for size M = 250 and rewards window size L = 250 over all
epoch values s is highlighted. In this figure, the influence of
epoch s towards the models FM, ASM, SM and TOSM is il-
lustrated. The models G, L, EFM, and LFM do not change
their performance by changing the parameters of M and s as
their learning and adaptation to the data input is continuously
and independent of the FM. Increasing the frequency of model
epoch s results in increasing the prediction error for the meth-
ods SM and ASM. Whereas, the accuracy is increasing for the
FM method. The TOSM model is, as evidenced in Figure 4,
only slightly increasing and performing worst for epoch s = 2,
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(a) RMSE per comparative model with
L = 250 and M = 250.
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(b) KL divergence per comparative model
with L = 50 and M = 1000.
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(c) SMAPE per comparative model with
L = 50 and s = 1.
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(d) MAE per comparative model with
L = 250 and s = 4.

Figure 5: Comparative assessment over all models against different settings for
model update epoch s and data window size M using the performance metrics
KL divergence, RMSE, MAE, and SMAPE.

representing updating every other day. TOSM depends only on
s with respect to the update frequency of the updated model fFL

from the CL on the ED. That is, in the TOSM, the behaviors of
the previous version of fFL and of the new version of fFL are
both captured by the prediction accuracy compared with that
of the local model. Even if, a new/updated fFL is received by
ED, the OST mechanism for deciding on the optimal model
switching time is not enforced to proceed with changing the lo-
cal model with the new fFL model. The arbitrary model epoch
parameter s, which is either application specific or dependent
on the data, does not enforce TOSM to swap models in ED. In-
stead, TOSM assesses the prediction capability of the currently
selected model given its recent history along with its counter-
part model, which optimally decides on a model change event
maximizing the expectation of the objective function in (13).
And, this is the superiority of the TOSM compared to the mod-
els depending on the arbitrary parameter s. Notably, this figure
shows that, evidently, the G model generates the best accuracy
as expected, and the TOSM model provides accuracy closest to
the G model. In Figure 5 (b), the information loss over changing
the model update epochs s over all models is highlighted. Using
the setting of M = 1000 and L = 50 with the performance met-
ric KL divergence, the results show that for the models depend-
ing on these parameters (FM, ASM, SM and TOSM) the KL
divergence increases with the increase of the model epoch s. A
greater information loss can be observed for all these four meth-
ods comparing s = 1 and s = 4 with each other. Moreover, the
information loss is the smallest when transmitting raw data and
generating a centralized model (G). Given the information loss
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performance metric, it is worth mentioning here, the behavior
of TOSM against the model epoch s. As explained above, the
prediction capability of TOSM is based on the model swap de-
cision either involving an updated fFL model or not. Nonethe-
less, once the model update frequency is getting higher (i.e., a
relatively small s value), then an ED receives updated versions
of the fFL with high frequency. These recently updated mod-
els, evidently, are more up-to-date and capture the current data
trends (as aggregated by the edge nodes in the network). Hence,
statistically, their corresponding prediction accuracy, recorded
in the TOSM during the OST mechanism, triggers the ED to
swap to the most accurate model (given the relative ranking
of the prediction errors between local and FL model versions).
This is reflected in Figure 5 (b) where TOSM achieves less in-
formation loss with smaller s value, providing evidence of this
parameter’s influence. Figure 5 (c) and Figure 5 (d) highlight
the performance towards changing the data windowW size M
and the corresponding behavior of each model. Setting the pa-
rameters for Figure 5 (c) with epoch s = 1 and the rewards win-
dow U size L = 50 using SMAPE shows the following: over
all the assessed models, an increase in the training dataset size
in window W inside each ED k for SGD presented by M re-
sults in decreasing the prediction error. In Figure 5 (d), similar
behavior is illustrated with model epoch s = 4 and L = 250 us-
ing MAE. However, it should be highlighted that TOSM, even
with a relatively high s parameter reflecting a smaller model up-
date frequency from the CL, shows overall better performance
than any other comparable model. Again, as above-mentioned,
TOSM given any arbitrary parameter s, which can be e.g., ap-
plication specific or tailored to stationary/non-stationary data,
optimally decides on the most accurate model to be invoked for
predictions at any given time under our OST-based objective
function.

After identifying the influence of the data windowW size
M, the rewards windowU of size L for the ASM model, and the
centrally defined model update epoch s, towards the models in
Section 6.3 with respect to their performance, the following best
settings have been adopted over the four performance metrics
KL divergence, RMSE, MAE, and SMAPE and the results are
shown in Figure 6. Figure 6 uses the setting of M = 1000 as
shown in Figure 5 performing the lowest prediction error over
all models, L = 50 as highlighted in Figure 2 for minor variance
in the average α value, model epoch s = 1 indicating an update
of the FM model of each day, and β = 0.3 analyzed in Figure 4
and Figure 3 to be the most accurate values with respect to the
performance metrics.

In Figure 6 (a), the SMAPE over all the models under com-
parison is provided using the best parameter settings. As it is
evidenced from the experiments, the aim is to identify which
model is closest to the G with respect to performance metrics.
Even though the G is not suitable for IoT, EC applications, and
distributed environments, the aim is to have quality-aware and
efficient models inside the EDs performing as accurate as of the
G. Having this aspect in mind, the TOSM model based on the
OST, which identifies the optimal time to switch between the lo-
cal generated model fk (L) and the generalized model fFL (FM),
shows the best performance. However, TOSM still increases
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(b) Model comparison with best parameter
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(d) Model comparison with best parameter
setting on KL divergence.

Figure 6: Model Comparison using the best parameter settings towards the
performance metrics KL divergence, RMSE, MAE, and SMAPE

the error by 1%. The second best with regards to the perfor-
mance metric SMAPE is the ASM model. The other models
do not show a significant difference. Figure 6 (b) illustrates the
analysis using RMSE. In this figure, the proposed models differ
from each other. Highlighted in this figure is the great perfor-
mance of TOSM with RMSE very close to the G. Moreover,
the prediction accuracy performance of the FM model is bet-
ter than that of the L model. The ASM model provides next
to TOSM the best accuracy for predictive analytics. Figure 6
(c) and Figure 6 (d) support these findings for the performance
metrics MAE and KL divergence. Especially, regarding the KL
divergence, we can observe that the adaptive weighting of ASM
and the optimal model switching of TOSM are the closest to the
G model.

6.5.2. Models Behavior on Concept Drifts
In this section, we investigate the models’ capability of be-

ing adaptive and evolving during learning inside EDs, which
supports qualitative predictive analytics in data streaming envi-
ronments. We experiment with concept drifts over the multi-
dimensional data streams to examine the ability of each model
under comparison towards changing environments and quality-
aware predictions. In Figure 7, the performance across all met-
rics: KL divergence, RMSE, MAE, and SMAPE is illustrated
using the identified best parameter settings of Figure 6. The
values are compared against each other, showing the change of
accuracy and information loss with concept drift appearances
towards regular predictive tasks.

Figure 7 (a) illustrates the performance of all models with
respect to SMAPE. The illustration shows a clear improvement
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(a) Model comparison on SMAPE over con-
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(b) Model comparison on RMSE over con-
cept drifts.
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(c) Model comparison on MAE over concept
drifts.
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(d) Model comparison on KL over concept
drifts.

Figure 7: Model Comparison using the best parameter settings over con-
cept drifts against the performance metrics KL divergence, RMSE, MAE, and
SMAPE

of the FM performance when concept drift occurs. However,
the adaptive and parallel model adaption of ASM and TOSM
perform equal or better than the FM model. This indicates
the ability to adapt to changing environments when using the
generalized model and incorporating the local individualized
model towards predictions. Moreover, it should be noted that
the models L, EFM, and LFM highly increase their prediction
error. In Figure 7 (c), similar behavior towards the approaches
is illustrated assessed by the MAE metric. Figure 7 (b) shows
the RMSE during the concept drift appearances and highlights
the relatively satisfactory adaptation of the ASM model with
similar performance to the presented results in Figure 6 (b) for
familiar data inputs inside the EDs. The FM and ASM mod-
els generate similar prediction results, which indicates that the
adaptive parameter α places more importance on the FM as the
L model cannot adapt fast to concept drifts. Figure 7 (d) pro-
vides insights into the information loss by showing the KL di-
vergence. The value of KL divergence for the FM model im-
proves through the concept drifts, showing the importance of
generalization inside EDs. Some improvement of the informa-
tion loss value is also achieved by the ASM model, as it highly
depends on the accuracy of the FM or LM (depending on the
weighting factor α). However, the method of TOSM provides
constantly low information loss independent of the occurrence
of the concept drift, indicating its applicability in edge comput-
ing settings over data streaming environments.

7. Conclusions

The focus on personalized and efficient predictive analyt-
ics in resource constraint environments has been investigated.
It has been shown through related work on local edge learn-
ing, that Federated Learning introduced local learning over lo-
cal data by design. The research community leaves open ques-
tions towards the quality and efficiency of Federated Learning
under changing environments. In this paper, two fundamental
strategies have been proposed that enable the ability to cen-
trally learn a predictive model and enhancing the quality of
local inferred and predictive results. Quality of analytical re-
sults through enabling the local individuality of heterogeneous
devices provided the fundamentals of these approaches. The
first model, Adaptive Selection Model, uses the local model
and generalized model to provide a new prediction outcome
by weighting these two models based on historical rewards.
The second strategy (TOSM) introduces the optimization to
find the best (optimal) time to switch between the local model
and the generalized federated model by using Optimal Stop-
ping Theory. Theoretical and complexity analysis of the op-
timality and uniqueness of the solution is provided showcas-
ing the time-optimized and lightweight process suitable for the
EDs capacity. Comparative and performance evaluation has
been comprehensively provided across different methods found
in the literature. Furthermore, it was possible to provide ev-
idence that a switching strategy between models inside EDs
enables qualitative predictive analytics for continuous chang-
ing and evolving environments (including concept drifts). The
highlighted strategy is included in our research projects GN-
FUV3 in which we introduced an edge-centric communication
reduction mechanism and local learning methodologies applied
and tested over a swarm of intercommunicated Unmanned Sur-
face Vehicles (USVs) in [13]. In this context, USVs equipped
with humidity and temperature sensors were acting as mobile
edge nodes locally building and updating ML models for en-
vironmental monitoring applications [16], specifically monitor-
ing the sea surface in a coastal area in Athens.

Our future research agenda focuses on hierarchical structur-
ing of Federated Learning models to enable not only personal-
ized models at each ED individually, but enable group-based
models based on their similarities. Moreover, the combination
of active learning for continuous changing environments and
Federated Learning is highly interesting to provide qualitative
analytics for real-time applications over semi-supervised learn-
ing.
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