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ABSTRACT

The dynamical convergence of a system to the thermal distribution, or Gibbs state, is a standard assumption across all of the physical sciences.
The Gibbs state is determined just by temperature and energies of the system. However, at decreasing system sizes, i.e., for nanoscale and
quantum systems, the interaction with their environments is not negligible. The question then arises: Is the system’s steady state still the Gibbs
state? If not, how may the steady state depend on the interaction details? Here, we provide an overview of recent progress on answering these
questions. We expand on the state of the art along two general avenues: First, we take the static point-of-view, which postulates the so-called
mean force Gibbs state. This view is commonly adopted in the field of strong coupling thermodynamics, where modified laws of thermodynam-
ics and nonequilibrium fluctuation relations are established on the basis of this modified state. Second, we take the dynamical point of view,
originating from the field of open quantum systems, which examines the time-asymptotic steady state within two paradigms. We describe the
mathematical paradigm, which proves return to equilibrium, i.e., convergence to the mean force Gibbs state, and then discuss a number of
microscopic physical methods, particularly master equations. We conclude with a summary of established links between statics and equilibra-
tion dynamics and provide an extensive list of open problems. This comprehensive overview will be of interest to researchers in the wider fields
of quantum thermodynamics, open quantum systems, mesoscopic physics, statistical physics, and quantum optics and will find applications
whenever energy is exchanged on the nanoscale, from quantum chemistry and biology to magnetism and nanoscale heat management.
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I. INTRODUCTION

Our everyday experience tells us that a macroscopic system, which
is brought in contact with a much larger thermal environment at tem-
perature T, such as a cup of coffee in a room, itself reaches a steady state
characterized by the environment’s temperature. Statistical physics
argues that such an equilibrium state is determined by the system ener-
getics, given by the Hamiltonian HS, as well as the temperature.
Classically, this equilibrium state is known as the thermal distribution,
while for quantum systems, it is known as the Gibbs state:

s ¼ e�HS=kBT

Z
; (1)

where kB is the Boltzmann constant and Z is the partition function
that normalizes the density matrix s.

Taking the Gibbs state as the equilibrium or thermodynamically
“free” state is a central assumption in much recent research on nano-
scale and quantum thermodynamics. For example, it forms the basis
of thermodynamic resource theory1–4 and is assumed in “thermal
operations,” which investigate the properties of CPTP maps5 that have
the Gibbs state as their fixed point.6,7 However, there is a (potentially
serious) inconsistency here—the Gibbs state assumption can be prob-
lematic exactly for these “small” systems, as we will discuss below.

When a nanoscale or quantum system interacts with its environ-
ment, such as a molecule with the surrounding solution8 or a quantum
spin with the phononic modes within a material,9 the system-
environment interaction energy can become comparable in size to the
system’s bare (or self) energy. This is due to the fact that the surface-
to-volume ratio of smaller systems can be much higher than that of
macroscopic systems, e.g., scaling as R2=R3 ¼ 1=R for a spherical sys-
tem with radius R. For short range interactions, the surface size of the
system determines the strength of the interaction with its environ-
ment, while the self-energy of the system usually scales with volume.

This implies that, while negligible for macroscopic systems, the inter-
action energy is relevant for systems of decreasing size.8–11

Conventional Gibbs state statistical physics, which makes a tacit
assumption that this interaction is vanishingly weak, then no longer
applies. This motivates the core questions addressed in this overview
article. Let qðtÞ be the system density matrix at time t and denote the
system steady state as

qss :¼ lim
t!1

qðtÞ: (2)

We ask

(Q) Is the system steady state qss the Gibbs state s?
If not, how does qss depend on the interaction details?

As we will see, relaxation without recurrences is an irreversible effect,
which, mathematically speaking, can only happen if the dynamics has no
“eternal oscillations.” Such convergence to a steady state is attributed to
the environment. However, not all environments cause such irreversible
effects. For example, an environment consisting of a single qubit cannot
make another qubit relax to a steady state. We will call an environment
that can induce the convergence of the system (S) to a steady state a
“bath” (B). Baths must have certain properties (large size, infinitely many
degrees of freedom, a continuum of energies, etc.), which will be detailed
in Sec. III. An illustration of the dynamical approach to a stationary state,
as in Eq. (2), is provided in Fig. 1 for a qubit. A discussion of the quality
of agreement of several predictions discussed in Sec. II, with the numeri-
cally solved steady state, is provided in Sec. IV F.

A. Dynamic and static points of view

There are two points of view to answering the questions (Q): In
the dynamic point of view, one considers the dynamics of the system,
which continuously interacts with an environment, beginning from an
initial state qSBð0Þ. One then asks whether the reduced state of the sys-
tem alone, qðtÞ :¼ trB½qSBðtÞ�, stops changing (significantly) at late
times t. If this is so, then one may define (one or more) system steady
states qss. It is often assumed that the initial SB state is uncorrelated,
qSBð0Þ ¼ qð0Þ � sB, where sB :¼ e�HB=kBT=trB½e�HB=kBT � is the bath
Gibbs state (bath Hamiltonian HB and temperature T). Furthermore,
it is common to make the so-called Born approximation, qSBðtÞ
� qðtÞ � sB for all times t � 0, implying that any effect of the system
on the reduced bath state can be neglected as well as any correlations
that may built up between S and B.

In the static point of view, one postulates that at the end of any
equilibration process, the combined systemþbath complex is in the
global Gibbs state sSB / e�Htot=kBT , where Htot is the total (interacting)
Hamiltonian and the temperature is the same as the bath’s tempera-
ture at the beginning of the equilibration process. The system equilib-
rium state is then “simply” the reduced state of the global state,
sMF ¼ trB½sSB�, called themean force Gibbs state.

Each avenue has its merits and limitations. For instance, many
analytical results from the dynamics point of view are based on the
analysis of master equations (MEs), which are approximations of the
true system dynamics. MEs are a powerful and widely used tool for
the assessment of dissipation of quantum systems. The applicability of
most MEs requires weak—while not negligible (see Fig. 2)—system–
bath interaction strengths and additional further approximations.
Different approximations can lead to different steady states qss.
Furthermore, quite often, approximations are chosen such that the
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steady state of the ME becomes the standard Gibbs state s, turning the
question regarding the steady state somewhat on its head.

On the other hand, the static point of view has given rise to the
subfield of strong coupling thermodynamics, see Fig. 2, concerned with
building a thermodynamic framework that correctly includes the
bath’s fingerprint.8,11–39 Based on the definition of an effective system
Hamiltonian in equilibrium, called the mean force Hamiltonian, a
general theory has been established, which includes thermodynamic
laws and stochastic fluctuation relations for out-of-equilibrium pro-
cesses. While there is some debate about the non-uniqueness of the
mean force Hamiltonian, the mean force Gibbs state sMF is generally
accepted as the (unique) formal equilibrium state. An explicit expres-
sion of this state in terms of system operators alone is, however, only
known in a handful of cases. This leaves much of the difficulty of
including the environment in the reduced system state unresolved.
Moreover, answering whether and/or when the dynamical steady
state(s) qss and the reduced global equilibrium state sMF are identical
has been addressed only relatively recently for a handful of settings.

In this article, we assemble results—originally reported in many
individual papers—into a focused, comparative overview describing
both the static and the dynamic points of view. We begin with detail-
ing expressions for the static mean force Gibbs state (MFG state) in
Sec. II, followed by discussing mathematical results on the dynamical

return to equilibrium (RtE) in Sec. III. Section IV gives a brief sum-
mary of key results on the dynamical steady states of microscopic mas-
ter equations and other dynamical methods, and how these compare
to the MFG state. We conclude in Sec. V with a summary of the out-
lined state of the art on the link between dynamics and statics and end
with a (rather long) list of open questions.

Before embarking on the above topics, we will first set out the
general setting of open quantum systems and clarify the naming con-
vention that we will use for various coupling regimes.

B. General setting and coupling strength regimes

The starting point for describing an open systems is to view it as a
subsystem of a bigger, closed bipartite system SB, consisting of the sys-
tem and the remaining part, called the bath. Deciding which part of an
interacting complex is S and which is B may seem somewhat arbitrary.
Intuitively, the system is understood to consist of degrees of freedom
(DoFs) that one can manipulate and/or measure, such as the position
and momentum of a pendulum, while the bath consists of degrees of
freedom that are uncontrolled, such as air molecules that dampen the
motion of the pendulum. The two components S and B are not equal
partners: the bath influences the thermodynamic and dynamical prop-
erties of the system significantly, while S cannot move B too far from
its initial state. This is modeled by taking bath HamiltoniansHB, which
have a continuum of energies, while system Hamiltonians HS have
only discrete energies. In models where the bath has a spatial structure
(say, the bath consists of a gas of quantum particles allowed to move in
a region R � R3 of position space), continuous bath energies arise in
the limit of infinite volume (R! R3), see also Sec. IIIA.

FIG. 1. Illustration of relaxation dynamics to steady state (boxes) for a qubit that inter-
acts weakly (interaction strength ¼ 0:4� 10�21 J) or strongly (4� 10�21 J) with a
bath at temperature T ¼ 317 K. The energy gap between the qubit ground state jgi
and the excited state jei is 2� 10�21 J. For each coupling strength, the excited
state population hejqðtÞjei (green) and the absolute coherence jhejqðtÞjgij
(magenta) are plotted as a function of time t. The bath relaxation time is 0:1 ps.
Deviations from the Gibbs state (excited state population is 0.388 and coherence is
0) are shaded for the weak coupling case and clearly much larger at larger coupling.
These plots are discussed in Sec. IV F and plot parameters are given as follows: The
system Hamiltonian is HS ¼ erz with energy splitting e ¼ 2� 10�21J. The qubit is
coupled via X ¼ ðrz � rxÞ=

ffiffiffi
2
p

, to a continuous harmonic bath [see Eq. (21)] at
temperature T ¼ 317 K. The system-bath interaction is specified by a Drude-Lorentz
spectral density J xð Þ ¼ 2c

p
xxD

x2þx2
D
with the Drude frequency xD ¼ 1:06� 10�21J

(so that the decay rate of the bath correlation function is exactly 0.1 ps) and
c ¼ 0:4� 10�21J. The system-bath interaction strength may be associated with
k2c. k¼ 1 in the weak coupling case and k ¼

ffiffiffiffiffi
10
p

in the strong coupling case.
The initial state is the Gibbs state e�bHS=trS½e�bHS �. The dynamics was solved with
the method of hierarchical equations of motion (HEOM) in the high-temperature
approximation (Ref. 62).

FIG. 2. (a) Coupling regime conventions commonly used in the current theory of
open quantum systems literature (dynamics) and the strong coupling thermodynam-
ics literature (statics). Note that the dynamical “weak coupling regime” is contained
within the field of “strong coupling thermodynamics.” (b) Proposed unified naming
convention for various coupling regimes and fields of study.
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The total Hamiltonian of a general SB complex has the following
form:

Htot ¼ HS þ HB þ kVSB; (3)

where k 2 R is a dimensionless coupling constant and VSB is the
system-bath interaction operator. The latter is generally of the form

VSB ¼
X
j

XðjÞ � BðjÞ; (4)

where XðjÞ and BðjÞ are operators acting on the system and bath
Hilbert spaces, respectively.

Note that throughout the text, we will subindex states for system-
bath with SB, e.g., the global Gibbs state is sSB, and we will subindex
states for the bath alone with B, but for the system states, we will drop
the index S, e.g., the system Gibbs state is denoted as s. We will, how-
ever, keep the index S for the system Hamiltonian HS. Furthermore,
unless otherwise stated, we set �h ¼ 1.

One distinguishes several regimes related to the magnitude of the
coupling strength k. Usually, these are set by a comparison of typical
system (HS) energy differences and energies associated with the inter-
action VSB. We note that the current naming convention used in the
theory of open quantum systems’ literature and the strong coupling
thermodynamics literature are not uniform.

Here, we propose a unified naming of the regimes, see Fig. 2, for a
visual illustration. Our definition of the regimes is as follows: The weak
coupling regime describes the regime where k is small, and perturbation
theory in k, usually to second order in k, is justified. Weak coupling
regime examples include many master equation derivations, see Sec.
IVC. The ultraweak coupling regime is taken when all terms of order k
and higher are neglected. In the other extreme, the ultrastrong coupling
regime is achieved when k is very large, a perturbation expansion in k�1

may be performed, and all orders k�1 and higher can be neglected.
In the intermediate coupling regime, k cannot be considered either large
or small. In this challenging regime, either non-perturbative methods or
other kinds of approximations are required.

II. STATICS

Here, we discuss the static point of view, which arises from equi-
librium statistical mechanics.

The classical Boltzmann distribution and the quantum Gibbs
state s are justified by a number of arguments.40 Gibbs’ original deriva-
tion41 (see also Refs. 40 and 42–44) considers sharing of energies
between two systems in equilibrium andmakes use of the equal proba-
bility postulate for microstates. Many modern approaches to deriving
the canonical equilibrium state in the classical and quantum regime
follow the maximum entropy principle.45,46 This approach is justified
by the second law of thermodynamics, which introduces the concept
of irreversible entropy production and with it a direction toward
higher entropy states. Gibbs state statistical physics, see Fig. 2, emerges
when the equilibrium state of a system with fixed energy hUi at tem-
perature T is taken to be the state that maximizes entropy under the
fixed energy constraint. To evaluate this maximum, one needs to
know the energy operator, i.e., a system HamiltonianHS, and chose an
expression for the entropy, usually taken to be the Shannon or von
Neumann entropy.47 An implicit assumption is that neither the
Hamiltonian nor the entropy functional depends on the properties of
the equilibrium state, such as the temperature. Maximization introdu-
ces a Lagrange multiplier b, which, upon equating the average

statistical energy with hUi, becomes b ¼ 1=kBT . The resulting state of
maximum entropy takes the form of the Gibbs state s.

Thermodynamically, the system is postulated to reach this equilib-
rium state when it has been in weak thermal contact with a bath at tem-
perature T for a long enough time. Within Gibbs state statistical
physics, no further explicit mention is made of any bath. The only
impact that the bath is assumed to have on the system is that it deter-
mines its temperature T and that the energy of the system is subject to
(statistical) fluctuations around the fixed mean value hUi.

A. Mean force Gibbs state sMF

We now consider the system and bath complex, SB, to be in the
global Gibbs state sSB associated with the total Hamiltonian Htot

[Eq. (3)]. The emergence of this state can be justified—for now—by
considering that the SB compound has been in very weak thermal con-
tact for a long time with a super-bath14,48 R at inverse temperature
b ¼ 1=kBT . Gibbs state statistical physics for the compound SB then
tells us that the equilibrium state for SB is the Gibbs state

sSB :¼ e�bHtot

ZSB
; (5)

where ZSB ¼ trSB½e�bHtot � is the global partition function. The mean
force Gibbs state (MFG state) is defined as the system state obtained by
taking the partial trace over the bath degrees of freedom,

sMF :¼ trB sSB½ �: (6)

Generally, sMF differs—sometimes substantially—from the Gibbs state
s / e�bHS , as we will see below. The naming arises from casting sMF

in the Gibbsian (exponential) form

sMF ¼:
e�bHMF

ZMF
(7)

for an effective Hamiltonian HMF called the Hamiltonian of mean
force (HMF) or the potential of mean force. The MFG state, as well as
the HMF, has found widespread use in chemistry49–55 since the 1930s.

Before proceeding with the discussion of the state sMF, let us first
comment on the HMF. Unlike the bare system Hamiltonian HS used
throughout Gibbs state statistical physics, the HMF is temperature
dependent. (As a consequence, identities of statistical physics will not
necessarily hold and require corrections.) It will also depend on the
coupling strength k and some of the details of the interaction VSB in
Eq. (3). Note that the HMF is not uniquely defined since, e.g., a con-
stant may be added to it without changing sMF in Eq. (7). This is due
to the fact that such a constant would also change the partition func-
tion ZMF ¼ trS½e�bHMF �. (The constant also cancels when calculating
energetic differences). A common choice is to set ZMF ¼ ZSB=ZB with
ZB the bare bath partition function, and to include certain strong cou-
pling corrections into energetic and entropic potentials.8,10,11,19,26,39

This leads to an extensive (additive) behavior of the effective system
and bare bath potentials for classical and quantum systems, which
mirrors that of standard thermodynamics. Other thermodynamically
consistent choices are being discussed,8,39 and approaches to deter-
mining the physically meaningful HMF are being explored.39,56,57

Meanwhile, based on the above definitions, much progress has
been made in constructing a comprehensive framework of “strong
coupling thermodynamics”11 that includes corrections arising from
the system’s interaction with the environment. Strong coupling
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thermodynamic potentials have been identified,8,19,21,23,28 detailed
entropy fluctuation relations have been shown to hold,10,26 and the valid-
ity of the Jarzynski equality13,14,58 and the Clausius inequality15–17 has
been proven. The strong coupling impact on a Maxwell demons’ opera-
tion has been elucidated,29,30 an extension of Bohr’s energy-temperature
uncertainty relation to the strong coupling limit has been proven,31 and
quantum measurements have been included in a stochastic description
of strongly coupled quantum systems.33 In quantum thermometry,
strong coupling has been found to improve measurement precision,27,34

while it can be detrimental for the efficiency of quantum engines.35

We now return to the MFG state sMF, which is uniquely
defined by the formal identity [Eq. (6)]. However, unfortunately,
giving explicit expressions for sMF in terms of system operators
alone is very often intractable—because it requires carrying out the
trace over the (large number of) bath DoFs. Exact results have been
obtained for the quantum harmonic oscillator interacting with a
bath of oscillators, see Sec. II D. For more general systems S, still
interacting with a bosonic bath, perturbative results have been
established in the weak coupling limit, see Sec. II E, as well as the
ultrastrong coupling limit, see Sec. II F.

B. Open systems with a discrete bosonic environment

The paradigmatic open quantum system model is a system with
Hamiltonian HS coupled to a field of quantum harmonic oscillators
according to the Hamiltonian (3) with59,60

HB ¼
X
k

xk a
†
kak; VSB ¼ X �

X
k

gk a
†
k þ h:c:; (8)

where xk are the frequencies of the oscillator (modes) k, the creation
a†k and annihilation operators ak obey the commutation relations
½ak; a†‘ � ¼ dk;‘, and X is an arbitrary system operator. gk are complex
numbers that weigh the strength of the interaction between S and the
oscillator mode at frequency xk. Even though HB, Eq. (8), has infi-
nitely many energy levels, those levels do not fill a continuum of val-
ues. Thus, technically, according to our bath definition, HB is not the
Hamiltonian of a “bath.” Nevertheless, the discrete mode model [Eq.
(8)] often serves as a starting point, see also Sec. II C. An additional,
so-called counter term k2

P
kjgkj

2X2=xk is often included in the
Hamiltonian, which physically arises whenever coupling is introduced
via the difference of coordinates, for example, ðxk � XÞ2, instead of a
product, e.g., xkX. When included, the total Hamiltonian is

HS þHB þ kVSB þ k2
X
k

jgkj2

xk
X2

¼ HS þ
X
k

xk a†k þ
kgk
xk

X

� �
ak þ

kg	k
xk

X

� �
; (9)

where the bath oscillators are now displaced by the system operators.
Note that we here neglect the zero-point energy of the bath oscillators,
i.e.,

P
kxk=2, which cancels in the reduced system state. This energy

diverges in the continuum mode limit, and dropping it amounts to a
renormalization of the bath energy.

When the system is a two level system, then Eq. (8) is the
Hamiltonian of the ubiquitous spin-Boson model, which is used to
describe a wide range of physical systems,59,61–66 ranging from qubits
in quantum computers7,67,68 to electron transfer complexes in quan-
tum chemistry and biology.69–72

For a particle moving in an arbitrary potential v(x) with x the
particle position operator, Eq. (9) is the well-known Caldeira–Leggett
(CL) model of quantum Brownian motion.73 Here, the inclusion of the
counterterm74 guarantees that the particle dynamics given by the
Heisenberg equation of motion for x is determined by the bare poten-
tial v(x) and not by a renormalized potential vðxÞ � k2

P
kjgkj

2X2=xk.
Mathematically, this is significant since, without the counterterm and
at sufficiently strong system– reservoir interaction, the energy spectrum
of the global system can become unbounded from below leading to a
thermodynamically unstable scenario.75,76 Of particular interest is the
quantum harmonic oscillator model for which vðxÞ ¼ mx2

0x
2=2, giving

the Hamiltonian77

HCL ¼
p2

2m
þmx2

0
x2

2
þ
X
k

p2k þ mkxk xk � kck
xk

x
� �2

2mk
: (10)

where xk and pk are the bath oscillator position and momentum opera-
tors, respectively, gk ¼ �ck

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h=ðmmkxkÞ

p
, and the coupling operator

is X ¼ x
ffiffiffiffiffiffiffiffiffi
m=2

p
. The Caldeira–Leggett model is a key model for open

quantum systems theory21,78,79 with widespread application to quan-
tum tunnelling80 and studies of decoherence and the quantum-
classical transition.78

C. Continuum limit for bosonic baths

For the open system to actually exhibit irreversibility, one must
take a bath with a continuous spectrum, as we will discuss in detail in
Sec. IIID on return to equilibrium. In addition, there is a practical
advantage of taking the continuum limit: it means replacing sums with
integrals and with it converting some intractable summations into
analytically solvable integrals.

For bosonic baths, one wants to replace the discrete set fxkgk by
a continuum of frequencies, for instance, x 2 ½0;1Þ. There are two
common ways of implementing this continuum limit. An ad hoc way
is to perform the limit in expressions for specific physical quantities
(such as time-dependent population probabilities and coherences),
which are obtained from calculations using a discrete mode model,
such as Eq. (8). In this approach, the state of the continuous mode
model is actually never constructed. The procedure may be rather eas-
ily implementable, but it has some disadvantages. For instance, often
one has to consider the limits of continuous modes (infinite volume),
small/large coupling and large time “simultaneously,” and it is not
possible to control those limits in this setup.

The second approach is to immediately construct the continuous
mode model9,81,82,173,176,275 and then analyze the full SB statics and
dynamics. This allows one, in particular, to control the perturbation
theory for all times, even t !1. This is done in the quantum reso-
nance theory, which we explain in Sec. IVC1. In quantum optics
models, the index k labeling the oscillators in Eq. (8) represents a wave
vector in physical space of dimension d (usually, d¼ 3).83 The contin-
uous mode limit then leads to k 2 Rd , and the continuous mode
Hamiltonian associated with Eq. (8), becomes9,81

HB ¼
ð

Rd
dkxk a

†
kak; VSB ¼ X � a†ðgÞ þ h:c:; (11)

where a†ðgÞ ¼
Ð

Rddk gk a
†
k is the creation operator smoothed out

with gk, which in this context is sometimes called the form factor,
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a square-integrable complex function of k 2 Rd . Taking the contin-
uum limit here amounts to taking the quantization volume of the
problem to infinity, which also redefines the creation and annihilation
operators. In the continuous mode limit, they obey the continuous
canonical commutation relations, ½ak; a†‘ � ¼ dðk� ‘Þ, where d is the
Dirac delta-function in d dimensions. The index k does not need to
have a physical meaning though, generally, beyond simply being a
continuous index labeling the modes.9,81 Often it is directly chosen to
be the energy x of a mode, which means that HB /

Ð1
0 dx x a†xax

and VSB / X �
Ð1
0 dx gx a†x þ h:c:

For a discrete model, an alternative to specifying the coupling
constants gk is to specify the (real) bath spectral density,

59,84,85

JðxÞ :¼
X
k

jgkj2 dðxk � xÞ; (12)

a choice that allows modeling diverse physical situations. For continu-
ous mode environments, the sum is naturally replaced by an integralÐ
dk.

If JðxÞ / xs for small x, then the spectral density is called
“Ohmic” for s¼ 1, and “super-Ohmic” for s> 1. In what follows, we
will assume that the spectral density is either Ohmic or super-Ohmic.
In both cases, the limit JðxÞ=x as x! 0 is finite. This will be impor-
tant for obtaining finite damping rates in Secs. IVC1 and IVC2,
which turn out proportional to JðxÞcothðbx=2Þ / JðxÞ=x at low x.
The sub-Ohmic case s< 1 is studied by different theoretical methods,
see, e.g., Refs. 86–93, and non-Ohmic densities have been found to be
relevant in, e.g., opto-mechanical resonator experiments.94

D. Exactly solvable sMF for the Caldeira–Leggett model

The properties of the MFG state for the damped quantum har-
monic oscillator given by the Caldeira–Leggett Hamiltonian [Eq. (10)],
for arbitrary coupling strengths k, were obtained in Refs. 74, 95, and
96. For simplicity, let us formally put here k ¼ 1 (one can consider k
to be included in the coupling coefficients ck). The most explicit results
can be obtained in the case of the Drude–Lorentz spectral density,

JðxÞ ¼ 2cxD

p
xxD

x2 þ x2
D

(13)

in the limit of continuous modes. Here, xD is the Drude frequency
(which determines the time scale of the bath relaxation) and c is a
damping frequency. Since the CL model is quadratic, the system MFG
state will be of Gaussian form and completely determined by the first
and second moments97 of the oscillator position and momentum
operators: hxi; hpi; hx2i; hp2i, and hpxi. The first moments trivially
vanish, while the second moments are given in terms of the partition
function Zðx0; cÞ at inverse temperature b,

Zðx0; cÞ ¼
bx
4p2

Cðl1=�ÞCðl2=�ÞCðl3=�Þ
CðxDÞ

; (14)

where CðzÞ denotes the gamma function and � ¼ 2p=b is the first
Matsubara frequency. The functions ljðx0; cÞ, for j¼ 1, 2, 3, denote
the roots of the cubic polynomial

l3 � xDl2 þ ðx2
0 þ cxDÞl� xDx2

0: (15)

With these expressions, the second moments given in unit-free form
[~x and ~p, see Eq. (10)], and including �h explicitly, are95

h~x2i ¼ mx0

�h
hx2i ¼ � 1

b�h
@ lnZðx0; cÞ

@x0
;

h~p2i ¼ 1
mx0�h

hp2i ¼ h~x2i � 2c
b�hx0

@ lnZðx0; cÞ
@c

;

h~p~xi ¼ 1
�h
hpxi ¼ � i

2
:

(16)

Reference 95 implies the MFG state as the Gibbs state of an effective
harmonic oscillator Hamiltonian (the HMF) Heff

S ¼ p2=ð2mðkÞÞ
þmðkÞx2

0ðkÞx2=2. They formally establish the mass mðkÞ and fre-
quency x0ðkÞ of the oscillator, which are rescaled from their bare
counterparts due to the interaction with the bath. Alternatively, the
harmonic oscillator’s MFG state can also be given in Gaussian integral
form,97 expanded in the Weyl-basis, as

sMF ¼
1
2p

ð
R2
dn1dn2 e�n21h~p

2i=2 e�n22h~x 2i=2 eiðn1~p�n2~xÞ: (17)

It is an open question to show if this expression indeed reduces to the
Gibbs state of the effective Hamiltonian given in Ref. 95.

Another method of obtaining the oscillator moments, cf. Eq.
(16), is via the closed expressions for the oscillator correlation func-
tions in the MFG state. These have been derived21,98 using Heisenberg
equations of motion for an arbitrary spectral density JðxÞ, e.g.,

hxðtÞxðt0Þ þ xðt0ÞxðtÞi

¼ 1
p

ð1
0
dx cos xðt � t0Þ

� �
coth

bx
2

� �
ImG ðxÞ; (18)

where the mass was set to m¼ 1 and �h ¼ 1 again. Here, G ðxÞ
¼ �1=ðx2 � x2

0½1� vðxÞ�Þ is a Green’s function, and vðxÞ is a com-
plex susceptibility given by

x2
0 vðxÞ ¼

ð1
0
dn

xJðxÞ
n2 � x2

þ ipJðxÞ
2

; (19)

where the integral is understood as the principal part integral. Setting
t ¼ t0 makes the correlation function [Eq. (18)] time-independent,
and it should then correspond to the first line in Eq. (16). This route
allows us to give analytic expressions for thermal energies21 of damped
quantum and classical harmonic oscillators as a functional of vðxÞ
and inverse temperature b.

E. Expansion of sMF for small coupling constant k

We are now interested in expressions for the MFG state in the
weak coupling limit, when k in Eq. (3) is assumed to be small, so
that an expansion of sMF can be considered. Such expansions are
based on the Kubo identity99 and are sometimes referred to as
“canonical perturbation theory,”100 equivalent to a standard time
dependent perturbation expansion with t replaced by �ib. In the
mathematical literature, the expansion in k is known as the pertur-
bation theory of Kubo–Martin–Schwinger (KMS) states.101 For a
bosonic bath and a linear SB coupling as in Eq. (11), one can con-
sider the expansion

sMF ¼ sþ k2sð2ÞMF þ k4sð4ÞMF þ 
 
 
 : (20)

Only even terms in k are present because thermal equilibrium
averages of products with any odd number of bath creation and anni-
hilation operators vanish. Such expansions have been provided in
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Refs. 66, 82, 100, 102, 103, and 104 to second order in k. In Ref. 104,
the correction term sð2ÞMF was obtained for the Caldeira–Leggett model
[with an arbitrary potential v(x)] and in Ref. 66, for the spin-boson
model.

Reference 82 considers an arbitrary system S with system
HamiltonianHS with a discrete spectrum coupled to a continuous bosonic
bath via an arbitrary Hermitian system operator X. The Hamiltonian,
including the counter term [cf. Eqs. (9) and (10)] is given by

Htot ¼ HS þ
1
2

ð1
0
dx p2x þ x qx þ k

ffiffiffiffiffiffiffiffiffiffiffiffi
2JðxÞ

x

r
X

 !2
2
4

3
5
: (21)

Note that here a spectral density JðxÞ is used immediately without
specifying any coupling constants ck. Here, ½qx; px0 � ¼ i dðx� x0Þ
are the commutation relations for the bath position and momentum
operators. Using perturbative methods and evaluating the bath trace
in Eq. (6) explicitly, the dominant correction sð2ÞMF for an arbitrary sys-
tem was found to be

sð2ÞMF ¼b
X
m

s XmX
†
m � trS sXm X†

m

� �	 

DbðxmÞ

þ
X
m

X†
m; sXm

� � dDbðxmÞ
dxm

þ
X
m 6¼n

Xn;X
†
m s

� �
þ h:c:

	 
 DbðxmÞ
xn � xm

: (22)

Here, the decomposition of the Hermitian system operator X into a
sum of energy eigenoperators Xm is used, where Xm are defined by

HS;Xm½ � ¼ xm Xm; X�m ¼ X†
m; xm ¼ �x�m; (23)

with xm being the Bohr frequencies of the system (energy differences
ofHS). Furthermore, the function DbðxmÞ is defined as

DbðxmÞ ¼
ð1
0
dx JðxÞ xmcothðbx=2Þ þ x

x2 � x2
m

� 1
x

 !
; (24)

where the integral is understood as a principal part integral.
Expression (22) evidences the appearance of coherences in the HS

basis in the system’s equilibrium state sMF (see Fig. 1 and Sec. IV F).
Coherences are often considered a quantum “resource,”105 and beyond
their significance in quantum thermodynamics,66,106–110 play an
important role in some biological processes.111–115

One can now also quantify what is “weak enough” for the weak
coupling limit and expression [Eq. (22)] to be valid. Beyond the loose
requirement that k ought to be “small,” one finds (by comparing per-
turbative orders) that k has to obey the inequality,82

jkj � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi����bX
m

trS sXmX
†
m

� �
DbðxmÞ

����
s : (25)

This condition gives a well-quantified limit for k being in the weak
coupling regime at a given b. Note that the range of k for which the
weak coupling regime and, hence, Eq. (22) is applicable changes as a
function of temperature with larger temperature generally allowing
larger k.

F. Ultrastrong coupling for general system
and bosonic bath

One can also consider the opposite limit, when coupling is much
stronger than other energy scales of the system, i.e., the “ultrastrong”
coupling limit k!1, see Fig. 2 and Refs. 116–120. Here, it is also
possible82 to find an explicit expression for sMF for a general system.
This is done for the case that it couples to a bosonic bath as in Eq. (21)
with a single system interaction operator X with a nondegenerate spec-
trum (extensions to degenerate situations should be straightforward),

X ¼
X
n

xnPn; (26)

where xn are real numbers and Pn are orthogonal projectors of rank
one. By expanding the global Gibbs state sSB to orders of 1=k and
explicitly integrating out the bath oscillators, the mean force Gibbs
state simplifies to82

sMF ¼
e
�b
X
n

PnHSPn

trS e
�b
X
m

PmHSPm
�  : (27)

This is a surprisingly neat form for the open system equilibrium state
at ultrastrong coupling. It implies that, in this limit, the equilibrium
state of the system becomes diagonal in the basis of the system’s cou-
pling operator X. In the context of measurement and decoherence the-
ory, it is referred to as the “pointer basis.”118,121–124 For ½HS;X� 6¼ 0,
an immediate consequence is that sMF will maintain coherences in the
HS energy basis jemi, i.e., hemjsMFjemi 6¼ 0 for somem (see Fig. 1 and
Sec. IV F). Corrections to Eq. (27) with respect to k�1 have been
obtained in Ref. 125.

It is worthwhile to build bridges between these results and discus-
sions about localized and delocalized excitations in the theory of exci-
tation energy transfer in biological photosynthetic complexes.69,126–128

Due to the dipole interaction between the chromophore molecules, the
eigenstates of the system Hamiltonian are superpositions of local exci-
tations and describe the so-called delocalized excitons. The X operator
[or more generally XðjÞ in Eq. (4)] is diagonal in the local excitation
basis. Thus, the local excitation basis corresponds to the pointer basis.

In this context, “weak coupling” theory describes the relaxation
in the basis of delocalized excitons. Non-negligible coupling to the
phonon bath leads to the relaxation not in the exciton basis, but in a
more localized basis.127 In the ultrastrong coupling limit, which corre-
sponds to the F€orster theory of excitation energy transfer,69 the relaxa-
tion occurs in the local excitation (pointer) basis. This is exactly the
regime described by the mean force Gibbs state [Eq. (27)]. The
dynamical aspects of the F€orster regime of excitation energy transfer
and the ultrastrong coupling regime for a general open quantum sys-
tem will be discussed in Sec. IVD.

G. Intermediate coupling: Polaron transformation

Under certain conditions, the ultrastrong and intermediate cou-
pling regime, see Fig. 2(b), can be treated with the so-called polaron
transformation. Originally, a polaron is a quantum quasiparticle in a
solid material consisting of an electron and a field of elastic deforma-
tions of the crystal lattice (a phonon cloud).129 In the more general
context of open quantum systems theory, a polaron is a state of the
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system “dressed” by the bath excitations. Mathematically, the polaron
transformation is a certain unitary transformation acting on SB, which
mixes the system and bath DoFs.130–134 The benefit of the polaron
transformation is that one can apply weak coupling perturbation the-
ory for the redefined system and bath; see also Sec. IVE 2.

As an illustration of this formalism, we consider the spin-boson
model.67,135–137 The total Hamiltonian (21) here contains

HS ¼
e
2
rz þ

D
2

rx; (28)

and the system coupling operator is X ¼ rz , where rx;y;z are the usual
Pauli matrices. Thus, the pointer basis is the rz-basis. Then, the
polaron transformation is given by the unitary transformation

U ¼ exp ð�irz � kR̂Þ with R̂ ¼
ð1
0
dx

ffiffiffiffiffiffiffiffiffiffiffiffi
2JðxÞ

x

r
px

x
: (29)

The polaron-transformed Hamiltonian (indicated with a tilde) is
~H tot ¼ UHtotU† ¼ ~H S þ HB þ ~V SB, where ~H S ¼ e

2 rz þ j D
2 rx with

j :¼ trB sB cosð2kR̂Þ
� �

¼ exp �2k2
ð1
0
dx

JðxÞ
x2

coth
bx
2

� �" #
: (30)

The bath part remains unchanged, HB ¼
Ð1
0 dxx a†xax, and the

interaction becomes

~V SB ¼ rx � Bx þ ry � By;

Bx ¼
D
2
ðcos ð2kR̂Þ � jÞ; and By ¼

D
2

sin ð2kR̂Þ;
(31)

where k has now moved inside ~V SB. When the integral in the defini-
tion of j converges, it turns out that trB½sB e6i2kR̂ � ¼ j. However, con-
vergence only happens for a subclass of super-Ohmic spectral
densities. For example, the integral converges whenever for small x
and considering strictly positive temperatures, JðxÞ is proportional to
x3, but it diverges whenever JðxÞ is proportional to xs for s � 2. This
is a restriction of the polaron transformation method.

The factor j represents the above-mentioned “phonon cloud,”
while the Bx and By operators represent fluctuations around this cloud.
One may hope that these fluctuations are not large and ~V SB can be
treated perturbatively. Thus, the benefit of the polaron transformation is
that one can now apply the weak coupling perturbation theory for the
rotated SB complex. However, strictly speaking, the conjecture of appli-
cability of the weak coupling theory to the polaron-transformed
Hamiltonian is justified only in two opposite limits: (i) the weak system-
bath limit [small k2JðxÞ], where the polaron transformation is trivially
reduced to the identity transformation, and (ii) the limit of small D
(weak tunneling limit).137,138 Since jjDj < jDj, the eigenvectors of ~H S

are more “localized” superpositions of the pointer basis vectors than the
eigenvectors of HS. Such localization due to non-negligible system–bath
interaction was mentioned at the end of Sec. II F.

Now, we can consider the total Gibbs state in the polaron frame

~sSB ¼ U sSB U† / e�b~H tot . One can show that the diagonal part (in
the pointer basis) of the desired MFG state sMF formally coincides
with the diagonal part of the reduced system state ~g ¼ trB½~sSB�, i.e.,
sMF;jj ¼ ~gjj for j¼ 1, 2. Approximate expressions for ~g were
obtained135–137 using second-order perturbation theory with respect to
~V SB,

~g � ~gð0Þ þ ~gð2Þ þ Oð~V 4
SBÞ; (32)

where ~gð0Þ ¼ e�b~H S=~Z with ~Z ¼ trS½e�b~H S � is the Gibbs state corre-
sponding to the system Hamiltonian in the polaron frame. The next
term in Eq. (32) is

~gð2Þ ¼ A
~Z
� trS A½ �

~Z
~gð0Þ; (33)

where

A ¼
X

m;n¼x;y

ðb

0
db0
ðb0

0
db00Gmnðb0 � b00Þe�b~H Srmðb0Þrnðb00Þ;

and GmnðbÞ ¼ trSB½BmðbÞBnsB� are the imaginary-time bath correla-
tion functions. The operators in imaginary time, such as rmðbÞ and
BmðbÞ, are defined as OðbÞ ¼ ebð~H SþHBÞOe�bð~H SþHBÞ. These expres-
sions can be made more explicit using the methods of Ref. 82 pre-
sented in Sec. II E.

However, to determine the off-diagonal element sMF;12 (in
pointer basis), ~sMF does not suffice—the bath DoFs of the total
polaron-transformed Gibbs state are also required. Up to the first
order in ~V SB, it is found

136,137 to be

sMF;12 � �
j2D
2K

tanh
bK
2

� �
�
X
m¼x;y

ðb

0
db0 Smðb0ÞKmðb0Þ; (34)

where K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ ðjDÞ2

q
; Smðb0Þ ¼ trS½rmðb0Þr� ~s�, and Kmðb0Þ

¼ trB½Vmðb0Þ cos ð2kR̂Þ sB�, where the functions Sm and Km can be
explicitly evaluated and r� ¼ ðrx � iryÞ=2.

In Refs. 135–137, the following (super-Ohmic) spectral density is
considered:

JðxÞ ¼ c
2
x3

x3
c
e�x=xc ; (35)

where c (or, more precisely, k2c) determines the system–bath cou-
pling strength, while xc is the cutoff frequency and determines the
rate of relaxation of the bath correlation functions in time. The above
expressions for the elements of sMF are compared with numerically
exact simulations. It turns out that the approximation works well for
the cases of fast bath xc > D and ultrastrong coupling (large k). It
remains an open question to simplify expressions (32) for sMF to a
form similar to (22).

Finally, the so-called variational (partial) polaron transformation
can be used to enlarge the range of applicability of this approach. In
particular, the variational polaron transformation allows one to over-
come the assumption of the super-Ohmic spectral density. Numerical
calculations of the equilibrium state and equilibrium physical observ-
ables for the Ohmic spectral baths using the variational polaron
approach are presented in Refs. 135–137 and 139.

H. High-temperature expansion

An approximate expression for sMF in the high temperature limit can
be obtained Ref. 363 by expanding in powers of inverse temperature b.

In the notations introduced above, the model considered in Ref.
363 can be formulated as follows: a multi-state system with orthonor-
mal basis fjnig interacts, via Xn ¼ jnihnj, with several baths
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n ¼ 1;…;N that all have the same temperature. Instead of (21), the
Hamiltonian is

Htot ¼ HS þ
1
2

XN
n¼1

ð1
0
dx p2x;n þ x qx;n þ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2JnðxÞ

x

r
Xn

 !2
2
4

3
5
(36)

for independent baths,

qx;n; px0 ;m½ � ¼ idðx� x0Þ dnm:

The system Hamiltonian can be decomposed asHS ¼ He þ HJ , where
He is the part that is diagonal in the jni basis and HJ contains all off-
diagonal contributions (cf. Ref. 63). Expanding Eq. (6) for the
Hamiltonian Eq. (36) to second order in b, evaluating the partial
traces, and then re-summing into an exponential form, give a MFG
state (Ref. 363) proportional to

sMF / exp �b He þ e�
1
6bK HJ e

�1
6bK

� �h i
: (37)

Here, K ¼ k2
PN

n¼1
Ð1
0 dx JnðxÞ

x Xn 
PN

n¼1 ‘n Xn is an operator-
valued reorganization term. The result [Eq. (37)] implies that the inter-
state coupling constants Jmn contained inHJ, describing hopping between
states jmi and jni, get rescaled by the bath interaction into effective cou-
pling constants. The rescaling itself is temperature dependent and van-
ishes for b! 0. For a dimer system with ‘1 ¼ ‘2 ¼ ‘, expression (37) is
found to be accurate (Ref. 363) for temperatures satisfying ‘b � 2. We
emphasize that generally Eq. (37) is valid even at intermediate system–
bath coupling strengths as long as the temperature is large enough (see
Sec. IV F).

I. Adequacy of the bosonic bath model

The bosonic bath model considered from Sec. IIB onwards is
very widely used in the theory of open quantum systems and quantum
thermodynamics, though fermionic and spin bath models are also
actively studied.140–147 In addition to it being bosonic, coupling to the
system is assumed to be linear in creation and annihilation operators.
In this case, the bath DoFs can, without loss of generality, be assumed
to be noninteracting, as re-diagonalization can always bring it into
such a normal mode form. Nevertheless, the resulting bath model is a
very special case, and we here discuss its range of applicability.

One can distinguish three levels of validity of this model. The
only case where this model is exact is for a bath consisting of photons
(electromagnetic field).148–154 On the second level, the bosonic bath
model is used as an approximation of the real physics. For example, in
solid-state physics and chemistry, e.g., for modeling charge and energy
transfer, the bath consists of phonons or vibrational modes that
describe oscillatory degrees of freedom of nuclei. If the magnitudes of
these oscillations are not too large, the harmonic approximation can
be used153,155 implying linear coupling to the system (electronic
degrees of freedom). This approximation is used for various system-
bath (electron-phonon) coupling regimes.153 Even at strong coupling,
it is often a reasonable assumption that the oscillations of the nuclei
around the equilibria are small enough to warrant the harmonic
approximation (though the equilibria themselves can be significantly
shifted due to strong coupling).80

The third level is the use of this model as a phenomenological
model, which need not directly represent the real physics of the bath.
Namely, let the bath be a complex system of many interacting particles
that cannot be reduced to a set of harmonic oscillators. However, the
details of the bath dynamics are not that important for the reduced
dynamics of the system—only some aggregated properties of the bath
dynamics, such as correlation functions, are required. In addition,
Gibbs states of the bosonic bath are Gaussian, implying that all corre-
lation functions can be expressed in terms of just the second-order
correlation functions. Such a Gaussian property is likely to emerge
also for rather general baths containing a large number of particles, as
a consequence of the central limit theorem. Thus, there is hope that a
bosonic bath with the same second-order correlation functions as that
of a real bath may serve as a phenomenological model of the real bath,
at least for qualitative analysis.

III. RETURN TO EQUILIBRIUM

Return to equilibrium (RtE) is a basic and intuitive phenomenon,
saying that initial states which do not deviate much from the equilib-
rium state will converge to the equilibrium state in the long time limit.
As an analogy, a ripple created at some point on the surface of a still
lake (equilibrium) will propagate away. Eventually, the lake’s surface
will return to be still. For this to happen, it seems clear that the total
system under consideration has to be infinitely large to avoid recur-
rences for all times, and that the dynamics has to be dissipative in the
sense that it propagates local disturbances away to infinity.
Furthermore, the perturbation must be “small,” for instance localized
in space (if initial ripples are created everywhere in space then at any
fixed point, the surface will not remain still, even for large times, as rip-
ples keep arriving from far away positions). In Sec. IIIA–III E, we for-
malize these intuitive notions in mathematical terms.

A. Continuous spectrum and the emergence
of irreversibility

In the static approach, see Sec. IIA, we have assumed a super-
bath to justify the systemþbath Gibbs state sSB as the equilibrium
state. This immediately implied that the MFG state sMF is the equilib-
rium state for the system alone. Now, we abandon the super-bath and
adopt the point of view that SB together forms a closed system com-
plex. In the following, we will identify system and bath properties
which lead to “self-thermalization,” that is, the convergence toward
the global Gibbs state sSB (return to equilibrium).

The Hamiltonian Htot of the total, closed SB complex determines
the dynamics in time t from an initial SB state qSBð0Þ according to the
Schr€odinger equation,

qSBðtÞ ¼ e�itHtot qSBð0Þ eitHtot : (38)

Htot also determines the global Gibbs state sSB at inverse temperature
b, see Eq. (5). We now discuss two mathematical intricacies relating to
equilibration toward sSB, issues that have been kept under the carpet
in Sec. II.

There are formal definitions of irreversibility156—here, we mean
by it, somewhat intuitively, that averages of suitable observables
approach constant values in the limit of large times. The first point to
recall is that a closed system exhibits truly irreversible dynamics only if
its Hamiltonian H has a continuous energy spectrum.157 Indeed, if the
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energies are discrete, E1;E2;… 2 R, with corresponding eigenstates
jwji, then the evolution is e�itH ¼

P
je
�itEj jwjihwjj. This shows that

the dynamics is simply oscillating for all times.
The connection between irreversible dynamics and continuity of

modes (energy spectrum) can be illustrated on a bath consisting of
noninteracting particles as follows. Consider a closed system of n par-
ticles in a region V � R3 with Hamiltonian (kinetic energy),

HV ¼ �
Xn
j¼1

Dj

2mj
; (39)

where Dj ¼ @2xj is the Laplacian. For finite V, the energies of HV are
discrete and the dynamics generated by HV is quasi-periodic (a sum of
oscillating terms). Particles are confined to V, and boundary effects
cause recurrence. However, for V ¼ R3, the spectrum of HV becomes
continuous (equal to ½0;1Þ). The dynamics is now irreversible in the
following sense: Given an arbitrary finite region of observation
R � R3, the probability of finding any of the particles inside R con-
verges to zero in the limit of large times (the particles travel to infinity).
Of course, even in the infinite volume situation, the probability of find-
ing the particles in all of space R3 equals 100% at all times. This is
simply a consequence of the global unitarity of e�itHV . However, all
observations made in any finite volume (such as a laboratory) show
dynamical irreversibility.158

The second point to highlight is that in writing Eq. (5), one implic-
itly assumes that the matrix e�bHtot is trace-class (meaning that its trace
is finite). However, for Hamiltonians Htot which have continuous spec-
trum, we always have159 trSB½e�bHtot � ¼ 1, so the equilibrium state
cannot be expressed by Eq. (5). In this situation, one must in fact use a
limiting procedure to mathematically define the equilibrium state, as we
illustrate in Subsection IIIC (see also Sec. 4 of Ref. 160 and Ref. 101).

From now, we consider the bath to be a very large and complex
environment with a Hamiltonian HB having a continuum of energies.
In contrast, the system is “small and simple,” typically having a
Hamiltonian HS with discrete (i.e., not continuous) spectrum. The
total interacting Hamiltonian Htot for the SB complex, see Eq. (3),
then inherits the property of continuous energies. In a sense, if you
add to a very complex physical system (the bath B) some more degrees
of freedom (by coupling it to a small system S), then the overall char-
acteristics of the energy spectrum does not change (the continuous
spectrum remains a continuous spectrum under such coupling).

Despite our above convention of using the term “bath” in the
case of continuous modes (infinite volume), we sometimes want to
discuss the situation of large but finite “baths” in which we use the
term “finite bath.”

Before discussing the continuum limit of e�bHtot in Sec. III C, we
first comment on the decription of (apparent) irreversibility for non-
continuous systems.

B. Finite baths and effective dimension

While any physical lab environment is large—but finite—taking
the continuum limit is a meaningful approximation of most real situa-
tions, where a multitude of uncontrolled and spatially far extended bath
modes may interact with a system of interest. The question in what way
a very large, but finite environment can describe thermalization or,
more generally, equilibration (convergence to an equilibrium state
which is not necessarily thermal), is addressed in Refs. 161 and 162.

The authors consider a generic class of Htot with nondegenerate
eigenvalues and nondegenerate Bohr frequencies different from zero.
(The Bohr frequencies are differences between the eigenvalues). They
show that the average magnitude of fluctuations in time, around the
equilibrium state (generally dependent on the initial state), is propor-
tional to 1=

ffiffiffiffiffiffiffi
deff
p

, where the effective dimension is defined by

deff ¼
1

trSB �q2
SB

� � (40)

in which �qSB is the time-averaged state,

�qSB :¼ lim
t!1

1
t

ðt
0
ds e�isHtot qSBð0Þ eisHtot

¼
X
k

hEkjqSBð0ÞjEki jEkihEkj; (41)

where jEki are the eigenvectors of Htot, see Refs. 161 and 162. The
quantity trSB½�q2

SB� is equal to the time average of the Loschmidt echo,
or the survival probability163 of the initial state, i.e.,

trSB �q2
SB

� �
¼ lim

t!1

1
t

ðt
0
ds trSB e�isHtot qSBð0Þ eisHtot qSBð0Þ

� �
: (42)

The recurrence time grows exponentially with deff , see Ref. 164. There
are estimates for interacting many-body systems,163 indicating that deff
is exponentially large in the joint system plus bath size. Indeed, strong
evidence exists that deff is exponentially large for almost any wavefunc-
tion.165,166 One may conjecture that deff increases indefinitely with the
number of modes; but so far, a rigorous proof of this for the bosonic
bath model described above has not been achieved.

As the recurrence time increases with the bath size, taking the
infinite volume, or continuous modes limit, corresponds to setting the
recurrence time to infinity. This is physically not always realistic, and
when it is not, then one has to study the system and bath dynamics for
finite baths, which is an intricate task, as it necessitates simultaneously
the analysis of the nontrivial (nonconstant) bath dynamics. It has been
observed that for certain models, the dynamics converges numerically
to a stationary regime on rather fast time scales, even if the bath con-
sists of only a relatively small number of degrees of freedom.167–172

C. Constructing an infinite volume equilibrium state

The mathematical construction of the equilibrium state sSB asso-
ciated with an infinitely extended system proceeds via two steps: First,
one takes the “thermodynamic limit” for the bath B, resulting in a con-
tinuous spectrum of HB, and a characterization of its own equilibrium
state sB at inverse temperature b. Second, the much “smaller” system
is coupled to the bath, which results in a new system plus bath equilib-
rium state sSB.

We now explain the first step for a bath consisting of free bosons
with HamiltonianHV, see Eq. (39). The procedure was first carried out
in Ref. 173 and further explained in Refs. 160 and 174. Consider a
finite volume V � R3 of position space, say a cube of side length L,
centered at the origin. The momenta kj and eigenstates jWji of a single
particle are explicitly known. [The single particle Hamiltonian is just
the Laplacian�D; setmj ¼ 1=2 in Eq. (39)].

By applying a suitable selection of creation operators a†ðWjÞ [cf.
definition after Eq. (11)] to the vacuum state j0Vi (V indicates finite
volume), one builds
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jWVi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1! 
 
 
 np!
p a†ðW1Þn1 
 
 
 a†ðWpÞnp j0Vi; (43)

which is the state describing n1 particles of momentum k1 and n2 par-
ticles of momentum k2, and so on, in the volume V. Now, one
increases the volume V, keeping the density lj ¼ nj=jV j fixed, in such
a way that the discrete distribution lj tends to a pre-selected function
lðkÞ of continuous momenta k 2 R. This lðkÞ is called the (continu-
ous) momentum density distribution because lðkÞdk is the number of
particles per unit volume (in position space) having momenta in the
volume dk � R3 around k.

As it turns out, the limit cannot be taken directly on the states.
Rather, it has to be taken on averages of local observables A, which are
operators built from (e.g., integrals of) creation and annihilation oper-
ators a†x , ax with x 2 V for some finite (but arbitrary) V � R3 (the
a†x; ax are the Fourier transforms of a†k; ak). This limiting procedure
defines the average hAib;1 of the observable A in the infinite volume
state. The values of the expectation functional A7!hAib;1, for all
observables A, define the infinite volume state. Now, the question is
how to represent this state as a vector (or density matrix) sB. One can
find a suitable Hilbert space H and a normalized state jXi 2H ,
such that hAib;1 ¼ hXjpðAÞXiH ¼ trH ½jXihXjpðAÞ� (inner
product and trace of H ). Here, p is a representation of the observ-
ables, mapping each A to an operator pðAÞ acting on H . The vector
jXi, or equivalently, the density matrix jXihXj, is often times called
the purification of the infinite volume state. The triple ðH ;p;XÞ
is called the Gelfand–Naimark–Segal representation.101,175 It is
given explicitly as follows for any prescribed momentum density dis-
tribution lðkÞ.160,173,176 The Hilbert space isH ¼ F �F , whereF
is the usual Fock space for the bosonic gas in which a general N parti-
cle state is given by

jUF i ¼
ð

R3N
dk1 
 
 
 dkN Uðk1;…; kNÞ a†k1 
 
 
 a

†
kN
j0F i; (44)

where Uðk1;…; kNÞ is the N-particle wave function in momentum
representation. [Note that in Eq. (44), we integrate over all the possible
continuous values k1;…; kN 2 R3 of the momenta of the N particles;
k1;…; kN are just integration variables, not to be confused with the
fixed momenta chosen to build Eq. (43) in the finite volume situation.]
The infinite volume bath state associated with the momentum density
distribution lðkÞ is represented as the vector jXi :¼ j0F i � j0F i,
where j0F i is the vacuum state of the Fock space F . The representa-
tion map is given by

pða†kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lðkÞ

p
a†k � 1F þ

ffiffiffiffiffiffiffiffiffi
lðkÞ

p
1F � ak: (45)

The desired density lðkÞ is correctly reproduced, as one can check eas-
ily hXjpða†ka‘ÞXiH ¼ lðkÞdðk� ‘Þ. The construction works for all
momentum density distributions lðkÞ. Upon choosing Planck’s black
body distribution, lðkÞ ¼ 1=ðebxðkÞ � 1Þ, the state jXi is the (purifica-
tion of the) infinite volume equilibrium state sB for the bosonic gas in
R3.

We now discuss the second step—introducing the (much
smaller) system. For an uncoupled SB complex, with the infinitely
extended B, the global equilibrium state is q� jXihXj, where
q / e�bHS . The full (interacting) SB equilibrium state, correspond-
ing to an SB interaction operator VSB, see Eq. (3), is given
by101,176,177 sSB / e�bðL0þkpðVSBÞÞ=2ðq� jXihXjÞe�bðL0þkpðVSBÞÞ=2.

Here, L0 ¼ LS þ LB is called the noninteracting Liouville operator
with LSq ¼ ½HS;q� (defined on system density matrices q) and
LB ¼ HB � 1F � 1F �HB (acting on the purification Hilbert
spaceF �F ), where HB ¼

Ð
R3dkxðkÞa†kak.

The construction of the evolution of the infinitely extended bath
and system complex follows the same procedure as the above infinite
volume limit. Now, one takes the thermodynamic limit of the finite
volume Heisenberg picture evolution of observables. The evolution is
represented in the purified Hilbert space by e�itL, where L is the
Liouville operator. It plays the role of the Hamiltonian, but now this
evolution acts in the infinite volume Hilbert space H , whose vectors
represent states.

To conclude this somewhat technical section, we summarize: It is
possible to explicitly construct the equilibrium state of a system–bath
complex for a bath that is infinitely, spatially extended. The state is
represented by a vector in a new Hilbert space, not simply Fock space
F . In a way, when taking the volume of the bath to infinity and keep-
ing the density of particles fixed and not zero, the usual Fock space is
not suitable any longer to describe the equilibrium state. This is due to
the fact that any density matrix acting on Fock state describes a state
with only finitely many particles, which means a zero density at infi-
nite volume! The explicit form of the infinitely extended SB equilib-
rium state is an important ingredient in the rigorous analysis of the
dynamics, such as for return to equilibrium, see Sec. IIID. In the fol-
lowing, we will still use the notation sSB given in Eq. (5), even if we
mean that the limiting procedure has been performed. We further
point out that this construction works for any value of the coupling
parameter k; no weak coupling regime is needed here.

D. Long time SB asymptotics and RtE

We say that the property of RtE holds for a class of SB initial
statesS and a class of SB observablesO if

lim
t!1

trSB qSBðtÞ A½ � ¼ trSB sSB A½ � (46)

for all initial states qSBð0Þ 2 S and all observables A 2 O . In dynami-
cal systems’ parlance, Eq. (46) means that the Gibbs state sSB is dynam-
ically attractive and has a basin of attraction containing the class of
statesS . The convergence is measured by limits of expectations of SB
observables A 2 O . We cannot expect Eq. (46) to hold for all states
and all observables. For instance, the initial state s0SB, the equilibrium at
a different temperature b0 6¼ b, is stationary, so it does not converge to
sSB (nor does any other initial state approaching s0SB in the long time
limit). Also, for models in which the bath is a spatially extended physi-
cal system, bath observables which sample space locations arbitrarily
far away will capture deviations from the equilibrium state at arbitrarily
late moments in time, soO should exclude such global observables.

In the pioneering papers,178–184 the property of RtE is shown to
hold for an arbitrary N-level system coupled to a spatially infinitely
extended bath of noninteracting bosons (as explained in Sec. III C). SB
coupling is kVSB [see Eq. (3)] with VSB as in Eq. (11). The class of ini-
tial statesS consists of all states that can be obtained by a local modi-
fication of sSB, and the observable algebra O contains all system
observables and all spatially localized bath observables. It is shown that
Eq. (46) holds provided the coupling constant k in Eq. (8) is small
enough, cf. Eq. (25), namely, 0 < jkj < k0 for some (not very explicit)
k0. As the temperature T becomes smaller, the upper bound k0 on k
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shrinks, and the method breaks down in the zero temperature case.
Beyond the smallness condition on k, there are two further assump-
tions: the bath correlation function decays in time (exponential decay
is assumed in the above references, while in subsequent improve-
ments,185–187 polynomial decay suffices), and the so-called Fermi
Golden Rule Condition is assumed [S and B are well coupled so that
relaxation effects are visible at Oðk2Þ]. Two remarks are in order: (i)
The result [Eq. (46)] holds for small enough k, but the final state is
exactly the coupled equilibrium state sSB, to all orders in k. (ii) The
result [Eq. (46)] is a statement about the full SB dynamics, not merely
the reduced system dynamics.

The class of SB observables O contains OS, the algebra of all
observables acting on the system S alone. For the system dynamics,
the primary consequence of the RtE relation (46) is that for all system
observables AS,

lim
t!1

trSB qSBðtÞAS½ � ¼ trS sMF AS½ � (47)

with sMF being the MFG state defined in Eq. (6) for the total
Hamiltonian (3). A special class of initial states for which (47) holds is
that of uncorrelated states of the form

qSBð0Þ ¼ q� sB; (48)

where q and sB are an arbitrary system density matrix and the bath
equilibrium state, respectively. In other words, under the conditions
mentioned above, namely, that 0 < jkj < k0, that the bath correlation
function decays and that the Fermi Golden Rule holds, Refs. 178, 179,
and 183–187 show the following: For any global initial state [Eq. (48)],
regardless of the details of q, the system converges in the long
time limit to the mean force Gibbs state sMF. The same holds for corre-
lated initial states qSBð0Þ, which are not of the product form (48), as
long as they remain in the classS of states explained at the beginning
of Sec. IIID.

E. Relation to non-integrable baths and eigenstate
thermalization hypothesis (ETH)

In Subsection II I, we outlined how the bosonic bath can serve as a
phenomenological model that can describe more complex, potentially
nonintegrable, baths. This raises the issue of comparing the system–
bath approaches with those actively studied in many-body phys-
ics.188–191 The question of convergence to some equilibrium state (and
in particular, thermalization to a thermal state) and the identification of
the correct form of this state are central questions also in this field.

Many-body physics usually considers systems of many identical
particles. Typically, each particle interacts with its neighboring par-
ticles, either in physical space (for example, particles in a gas) or in a
lattice (for example, spin chains). Such many-body models are often
nonintegrable.192,193 In this context, the celebrated ETH194–197 answers
the question about the steady state of a small subsystem as a part of a
large isolated system. The ETH can be viewed as a quantum version of
the ergodic hypothesis in classical mechanics. Though there is no rig-
orous proof of the ETH (the same holds for the ergodic hypothesis for
most classical models), there is enormous numerical evidence that the
ETH is satisfied for a large class of nonintegrable physical models.

A bath consisting of noninteracting particles is integrable and
does not obey the ETH. It is not known whether the complex, obtained
by coupling this bath to a system, satisfies the ETH. There are studies

which show that a localized perturbation of an integrable system
is often sufficient to obtain a nonintegrable and thermalizing
system,198–201 while other results shows that this is not always the
case.202 Note that the noninteracting bosonic bath coupled to a system,
as detailed in Sec. II B, can be exactly mapped into a chain of interact-
ing harmonic oscillators coupled to the system.203,204 This observation
could serve as a starting point to compare and link the bosonic bath
used in open systems’ theory with many-body physics baths.

If we use the model of noninteracting bosons as a phenomeno-
logical model for a more complex nonintegrable bath satisfying ETH,
then one may argue that our question (Q) about the steady state is
answered directly by the ETH. However, just like the ergodic hypothe-
sis in classical mechanics, the ETH does not say anything about the
rate of equilibration. In contrast, with the bosonic bath, one does
obtain this more detailed information, including decoherence rates.
One may then ask whether the nonintegrability of the bath is responsi-
ble for thermalization, or whether thermalization can be explained
from the viewpoint of a noninteracting bath model? Imagine a very
weakly nonintegrable bath for which one may expect that the thermal-
ization process caused by the ETH occurs very slowly. However, it
might be that thermalization occurs much faster due to a mechanism
independent of nonintegrability and the ETH, a mechanism which
can be explained and understood in the framework of a simplified
model of a noninteracting bosonic bath. It would be interesting to
compare the predictions of both models and to establish further links
between them in future works.

IV. SYSTEM DYNAMICS AND STEADY STATE

The results presented in Sec. IIID are concerned with the asymp-
totics of the full SB dynamics at t !1 leading to Eq. (46), which also
implies that the system converges to the stationary state sMF. Now, we
consider the microscopic details of the dynamics of the system alone,
starting from the combined system and bath complex evolving accord-
ing to the unitary dynamics given by the total Hamiltonian
Htot ¼ HS þ HB þ kVSB, as stated in Eq. (3).

A. General dynamical setting

The dynamical point of view for an open system S is generally
concerned with describing its state evolution qðtÞ when S is brought
into contact with a heat bath B at temperature T. One tries to solve the
dynamical equations of motion for the system or at least to determine
the system’s steady state qss ¼ limt!1 qðtÞ, cf. Eq. (2). One may then
address a more refined version of our initial questions (Q):

(Q0) Is the system’s dynamical steady state qss equal to the mean
force Gibbs state sMF discussed in Sec. II?

Below, we summarize some key results on steady states of various
dynamical systems and make a connection to sMF where possible.

To proceed, consider the general interaction of the form (4). If
the operators XðjÞ commute with HS, then the interaction is called
energy conserving. The system populations are constant in time but the
bath still causes irreversible effects in the system, such as decoherence.
Those models are suitable for situations in which decoherence hap-
pens much more quickly than thermalization and we are interested
only in the decoherence time scale.68,205 If at least one XðjÞ does not
commute with HS, then energy exchange processes between the sys-
tem and bath are enabled.
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The initial SB state, qSBð0Þ, is usually assumed to be of product
form (48), although the evolution of correlated or entangled initial
states is also relevant and studied.187,206–212 The state of S at time t is
the reduced density matrix, cf. Eq. (38),

qðtÞ ¼ trB qSBðtÞ½ � ¼ trB e�itHtot qSBð0Þ eitHtot
� �

: (49)

Taking the time-derivative gives

_qðtÞ ¼ �i trB Htot; qSBðtÞ½ �½ �; (50)

from which we want to derive an autonomous equation, a master
equation, for qðtÞ. For product initial states (48), Eq. (50) can be cast
into the form of an integro-differential equation for qðtÞ, which is
called the Nakajima–Zwanzig master equation.59 For an arbitrary ini-
tial state qSBð0Þ, where S and B are correlated or entangled, the master
equation for qðtÞ will depend on the initial SB correlation, see e.g.,
Refs. 103, 187, 206, 208, 210, 211, and 213–216.

With very few exceptions, a master equation for qðtÞ (in an ana-
lytically closed form) cannot be derived without recourse to approxi-
mations. In Secs. IVC–IVE, we will discuss various approximations in
the well-studied weak coupling limit as well as the ultrastrong and
intermediate limit. Before we do so, we will introduce some useful
terms and notations and then begin the discussion with the exactly
solvable model of the open dynamics of the quantum harmonic
oscillator.

Unless otherwise stated, the analysis of the master equations
discussed in Secs. IVC–IVE assumes the Hamiltonian Htot defined
in Eq. (3) with a single interaction term X � B in Eq. (4). We will
make use of decomposition (23) of the operator X into a sum of energy
eigenoperators Xm. In the interaction picture (denoted by the tilde),
one has ~XmðtÞ ¼ Xm eixmt . These quantities define two time scales—
one associated with the Bohr frequencies xm and the other associated
with the differences of Bohr frequencies, xmn ¼ xm � xn.

Furthermore, the bath correlation function G(t) plays a central
role in open system dynamics, particularly at weak coupling, as it
determines the memory time of the SB interaction. It is defined as the
autocorrelation function of the bath operator B,

GðtÞ ¼ trB e�itHB B eitHB B sB
� �

; (51)

and is the well-known dynamic version of the imaginary-time bath
correlation function introduced in Sec. IIG. It satisfies the
Kubo–Martin–Schwinger (KMS) condition GðtÞ ¼ Gð�t � ibÞ,
where b is the inverse temperature of the bath Gibbs state sB. G(t) is
assumed to vanish as t !1, and this decay defines the time scale, tB,
of the correlations of the quantum noise. We also define the time
dependent coefficients,

CmðtÞ ¼
ðt
0
dr e�ixmr GðrÞ with Cm  Cmð1Þ; (52)

which will appear in the master equations below.

B. Exact dynamics of the damped quantum
harmonic oscillator

A general method to solving96 the exact dynamics of a damped
harmonic oscillator described by Eq. (10) follows a path integral func-
tional integral approach. For general spectral density JðxÞ and

coupling strength k, and a broad class of initial states of the global sys-
tem, including the global Gibbs state sSB and entangled states, it is
shown96 that their steady states are all the same. The initial state sSB is
clearly a stationary state of the global evolution, and its reduced system
state is sMF. Hence, sMF is the steady state for the whole class of initial
states considered. This state is given in Eq. (17) in Sec. II.

An alternative method to show the dynamical convergence to
sMF is obtained in Ref. 217 using Heisenberg–Langevin equation
methods. More recent work100 addresses general N-body quantum
Brownian motion, for which the general two-time correlation func-
tions are explicitly evaluated.100 This is done for initial states
qSBð0Þ ¼ qð0Þ � sB, cf. Eq. (48), and in the steady state limit of long
times t !1. Then, the above stationary state argument96 for sSB is
again applied to prove that the steady state of the N-body system, for
initial states qSBð0Þ ¼ qð0Þ � sB, must coincide with the MFG state
sMF.

Working from the functional integral description of the system
dynamics, it is also possible to construct an exact non-Markovian mas-
ter equation78 and specify its steady state in terms of its Wigner func-
tion.218 A generalization to the case of the driven damped quantum
oscillator has been also obtained.219

Taken together, the studies above firmly establish that the
dynamical steady state qss of a quantum oscillator, under dynamics
given by Eq. (10) for a broad class of initial global states, is exactly the
mean force Gibbs state sMF at all system-bath coupling strengths k
and for general spectral density JðxÞ.

C. Weak coupling dynamics

In most cases, approximate forms for the master equation are
obtained on the assumption that the system-bath coupling is weak
enough that a second order perturbative treatment suffices. This
defines the “weak coupling limit” for master equations, as indicated in
Fig. 2. Weak coupling applies in a variety of contexts, including quan-
tum optical systems,148–152 nuclear magnetic resonance,220–229 solid
state and molecular physics,153,155,230,231 and in certain biological sys-
tems.115,232–237 Weak coupling expansions generally lead to master
equations that are relatively simple and have useful immediate physical
interpretations. For example, they predict basic properties of open
quantum systems such as decoherence and thermalization6,59,238–242 as
well as more complicated properties such as laws of thermodynam-
ics,243–248 environment-assisted quantum transport,249–253 super-
radiance and supertransfer,254,255 emergence of dark states,256–258 and
decoherence-free subspaces.259 Even if a weak-coupling approxima-
tion is not strictly valid, many important system properties can be
qualitatively captured in this approximation. Often, phenomenological
equations of the GKSL form260 are used,152,233 which implicitly assume
weak coupling. Moreover, for the example of light-harvesting com-
plexes, the system (representing the electronic DoFs) is often strongly
coupled only to a finite number of distinguished vibrational modes.261

If these are included into an enlarged system, then the weak coupling
approximation can be applied to the enlarged system now interacting
with the remainder of the bath.237,262

The weak coupling limit allows for the introduction of two impor-
tant approximations. The first is the Born approximation, which is based
on the assumption that, as far as the system dynamics is concerned, any
changes in the state of the bath, or any correlations that might develop
between the system and bath due to their interaction,59,187,214,215 can be
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neglected. The second approximation is theMarkov approximation in
which the rate of change of the state of the system at time t is assumed
to depend only on its state at that same time, and not on its history.
The Born approximation is justified due to the difference of the sizes
of S and B (small influence of S on B), and the Markov approximation
is justified via a separation-of-time scale argument.59 These approx-
imations are almost universally inserted into derivations of master
equations, for example, for the Bloch–Redfield ME discussed in
Sec. IVC2.

1. Weak coupling: Davies theory and resonance theory

A rigorous analysis of the weak coupling limit has been provided
in pioneering work by Davies.140,263,264 The master equation is derived
in the Bogoliubov–van Hove limit,265,266 where h ¼ k2t is taken as con-
stant, but k! 0 and simultaneously t !1. The rescaled time h is
sometimes called the coarse-grained time. For initial product states
q� sB, and under certain conditions on the bath correlation function
G(t), a master equation can then be derived rigorously without making
the explicit Born–Markov approximation. Specifically, Davies shows
that the reduced system dynamics ~qðhÞ (interaction picture indicated
by ~) is well approximated by some ~qDðhÞ, i.e.,

lim
k!0
jj~qðhÞ � ~qDðhÞjj ¼ 0; (53)

where the convergence is uniform on the segment h 2 ½0;H� for an
arbitrary finite H and jj 
 jj denotes the trace norm. Here, ~qDðhÞ is the
solution to the Davies master equation in the interaction picture, and
for the coarse-grained time h ¼ k2t,140,263,264

d~qðhÞ
dh
¼ ~L

D
~qðhÞ; (54)

where ~L
D
does not depend on h and is given by267

~L
D

~q ¼ �i DHjj; ~q
� �

þ
X
m

cm Xm ~q X†
m �

1
2

X†
mXm; ~q

� �� �
: (55)

The positive damping rates are given by cm ¼ 2 Re½Cm�, and the term
that renormalizes the system energy is

DHjj ¼
X
m

Im Cm½ �X†
mXm; (56)

where Xm and Cm are the energy eigenoperators and the master equa-
tion coefficients defined in Eqs. (23) and (52), respectively. Note that
this renormalization commutes with the system’s bare Hamiltonian
HS, i.e., ½HS;DHjj� ¼ 0.

We now discuss the implications of the convergence (53) at
coarse-grained times h � 0. If one assumes non-degenerate energy
levels of HS and non-degenerate non-zero frequency differences xmn,
see Sec. IVA, then Eq. (55) predicts no coupling between system pop-
ulations (diagonal entries of ~q in the HS eigenbasis) and the coher-
ences (off-diagonals). The coherences are found to decay to zero as
t !1.

The above assumptions imply that cm satisfy the detailed balance
conditions cm ¼ e�bxmc�m. As a consequence, the steady state of Eq.
(54) is then readily shown140,263,264 to be the system Gibbs state s, cf.

Eq. (1). For degenerate energy levels, the steady state is non-
unique240,242,255,268–270 and the situation becomes more complex.

Thus, to summarize, working in the Bogoliubov-van Hove limit
and assuming the generic nondegenerate case, Davies showed that the
steady state is the standard Gibbs state s, confirming the validity of
Gibbs statistical physics, see Fig. 2. However, this jars with the static
assumption of the steady state being the MFG state sMF, which
includes Oðk2Þ and higher order corrections in comparison to s, see
Eq. (20). There are a number of reasons for this incongruence.

First, in order to obtain an equation in the so-called GKSL
form,6,260,271–274 Davies made the so-called secular approximation (see
Sec. IV C 3) in his derivation of Eq. (54). But this removes those
dynamical features that could lead to a final state sMF, and instead
forces convergence to s. Second, the Davies master equation is of sec-
ond order in k, but relaxation also takes place on time scales of order
k�2. Small errors accumulate over long times, and thus, the steady
state is trustworthy only up to the zeroth order. Third, the convergence
in Eq. (54) is proved for arbitrary large but finite rescaled time inter-
vals h 2 ½0;H�. Davies’ proof requires k to be smaller and smaller as
H increases. Hence, strictly speaking, it is not guaranteed that the
steady state of the Davies master equation coincides with the true
steady state in the weak-coupling limit.

These limitations are overcome by the quantum resonance theory,
which improves Davies’ results. Namely, under the same conditions
used to show RtE (Sec. IIID), it is shown in Refs. 176, 185–187, and
275 that Eq. (53) can be improved to

jj~qðtÞ � ~qDðtÞjj � C k2 (57)

valid for all times t � 0 (no coarse graining necessary), where C is a
constant independent of k and t. Equation (57) shows that the solution
of the Davies master equation approximates the system dynamics to
Oðk2Þ at all time scales. In particular, this guarantees that the system
Gibbs state s, which is the steady state predicted by the Davies master
equation, is the true steady state up to Oðk2Þ. This is entirely consis-
tent with the result of RtE, saying that the stationary state is
sMF ¼ sþ Oðk2Þ. It is further shown in Refs. 176 and 275 that by
adding to the Davies generator ~L

D
higher order terms,276

~L
KM ¼ ~L

D þ k ~L 1 þ k2 ~L 2 þ 
 
 
 ; (58)

the solution ~qKMðtÞ of the corresponding master equation
d
dt ~qKMðtÞ ¼ ~L

KM
qKMðtÞ has the following properties. First, it is

asymptotically exact, meaning that the stationary state is the exact
mean force Gibbs state, limt!1 ~qKMðtÞ ¼ sMF. Second, the popula-
tions (diagonal density matrix elements in the HS basis) of the system
are approximated by those of ~qKMðtÞ to OðkÞ for all times t � 0. The
coherences of the system (off-diagonals) are guaranteed to be approxi-
mated by those of ~qKMðtÞ to OðkÞ for times t in the windows
k2t < C1 and k2t > C2 for some constants C1, C2. The corrections
~L k are constructed by an explicit perturbation procedure.

We close this section by mentioning that in the literature, pertur-
bation theory is usually carried out by simply neglecting higher order
terms without controlling their size for large times. In contrast, the res-
onance theory is a rigorous approach in which remainder terms are
estimated to be small for all times.
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2. Weak coupling: Bloch–Redfield master
equation (BRME)

For Htot with a single interaction term kX � B, the general form
of the second order (Oðk2Þ) master equation obtained by invoking the
Born and Markov approximations is known as the Bloch–Redfield
master equation,59,220–222,277

_q ¼ L BR
t qð Þ ¼ �i HS þ k2DHjjðtÞ þ k2DH?ðtÞ; q

h i
þk2

X
mn

cmnðtÞ XmqX†
n �

1
2

X†
nXm;q

� �� �
: (59)

The energy renormalization contributions consist of a contribution
that commutes withHS,

DHjjðtÞ ¼
X
m

Im CmðtÞ½ �X†
mXm; (60)

and one that generally does not commute withHS,

DH?ðtÞ ¼ 1
2

X
m6¼n

CmðtÞ � C	nðtÞ
	 


X†
nXm; (61)

where Xm and CmðtÞ are the energy eigenoperators and the master
equation’s damping coefficients defined in Eqs. (23) and (52),
respectively.

The second line in Eq. (59) contains the damping matrix

cmnðtÞ ¼ CmðtÞ þ C	nðtÞ: (62)

Note that, in general, Eqs. (60), (61), and (62) are all time-dependent.
The time dependence of the generatorL BR

t implies that the mas-
ter equation is non-Markovian in the sense that the time evolution
operator Kt, defined by qðtÞ ¼ Ktqð0Þ, is such that KtKs 6¼ Ksþt , i.e.,
it does not satisfy the semigroup property criterion for
Markovianity.278 This time dependence makes solving Eq. (59) much
more difficult than solving the Davies ME [Eq. (54)] for which ~L

D
is

h-independent. However, due to the bath correlation decay, the func-
tions CmðtÞ saturate to constant values for times t � tB. In this
regime, one can replace CmðtÞ by Cmð1Þ  Cm and obtain the time
independent generator L BR

1 . At large times, the generators L BR
t and

L BR
1 coincide, and since we are interested in steady-state solutions, we

will always mean the simpler, time-independent versionL BR
1 .

In Sec. IVC1, we found that the steady state of the Davies master
equation is the Gibbs state s, i.e., this steady state does not show any
signature of the bath interaction other than the bath’s inverse tempera-
ture b. Having next introduced the Bloch–Redfield equation, we are
now in the position to discuss the complex world of its steady state(s).

A first setback is that, contrary to the Davies ME, there is no ana-
lytical expression for the steady state of the Bloch–Redfield equation.
Two approaches concerning the issue of determining the steady state
can be identified, which are discussed below. The first is the one
adopted by Geva et.al.102 and in more detail by Mori and Miyashita103

in which the aim is to derive an expression for the time derivative
dq=dt and confirm to second order in k that the mean force Gibbs
state is such that this derivative vanishes, i.e., sMF “qualifies” as the
dynamical steady state. The second approach adopted, e.g., by Fleming
et al.,279 Thingna et al.,104 Subaşi et al.,100 and Purkayastha et al66 is to
construct a master equation for qðtÞ to search for its long time steady
state solution to second order in k and to compare this with the mean
force Gibbs state also evaluated to second order.

As an example for the first approach, Mori and Miyashita103 con-
sider the time derivative _qðtÞ to second order in k (weak coupling),
which is given in terms of qðtÞ and the total system state qSBðt0Þ at an
earlier time t0. Like the quantum oscillator case discussed in Sec. IVB,
this initial state is chosen as either (i) qðt0Þ � sB or (ii) the global
Gibbs state sSB. Assuming now that qðtÞ is set equal to the mean force
Gibbs state sMF [also to second order in k see Eq. (20)], Mori and
Miyashita confirm103 that the derivative _qðtÞ is zero (to second order
in k) for both initial state choices (i) and (ii), i.e.,L BR

1 ðsMFÞ ¼ 0 ¼ _q.
Interestingly, the same statement is recovered by letting t0 !�1
while no constraint is imposed on the form of the initial state in that
infinite past, i.e., all memory of the initial conditions is lost. It is quite
general then to view the above conclusion to hold independently of the
initial state of the total system, at least to second order in k.

The above result103 is applicable for a general quantum systems S
in contact with a bath at inverse temperature b and is valid to second
order in k. It confirms that sMF at inverse temperature b is a steady
state of the Bloch–Redfield dynamicsL BR

1 given in (59).
Mori and Miyashita also note that there is, however, an important

ambiguity regarding the steady state as follows. The algebraic equation

L BR
1 ðqÞ¼Oðk3Þ for the steady state yields a steady state qð2Þss accurate

to Oðk2Þ. However, for any second order generator L ð2Þ, and for W a

traceless operator that is diagonal in the HS basis, one has L ð0ÞðWÞ
¼�i ½HS;W�¼ 0 andL ð2ÞðWÞ¼Oðk2Þ. Thus, for states qð2Þss þk2W,
one finds that they are also steady state solutions to the same order in k

as qð2Þss itself, i.e.,L BR
1 ðq

ð2Þ
ss þk2WÞ ¼Oðk3Þ due to the linearity of the

evolution L BR
1 in the density matrix q, cf. Eq. (59). This ambiguity

implies that while the steady state qð2Þss is correct to second order in k2

for the off-diagonal elements in the HS basis, the diagonal elements are
correct only to zeroth order that is the order where it is correct to simply
replace the diagonal elements of sMF with those of s, see Eq. (20).

Fleming et al279 (see also Ref. 280) show that the above ambiguity
in the steady state is a consequence of the perturbative approach used
to construct the master equation: solving a 2n order perturbative mas-
ter equation will yield the diagonal elements of the steady state accu-
rate only to order 2n� 2 (while the off-diagonal elements are
determined to order 2n). Thus, resolving the second order indetermi-
nacy requires expanding the master equation to fourth order, and then
using degenerate perturbation theory to find the needed corrections,
thus fixingW in the above. A slightly different proof of the last conclu-
sion is given in Ref. 280.

Thingna et al104 reach a similar conclusion to Ref. 279, but bypass
the need to calculate fourth order terms in the master equation, typi-
cally a very complex task. They do so by making use of analytic contin-
uation methods to derive the corrections to the diagonal elements of
the steady state based on its second order off-diagonal elements alone.
They confirm that the resulting steady state solution, now correct to
second order in k and uniquely defined, is identical to the mean force
Gibbs state sMF to Oðk2Þ. Subaşi et al.100 generalize this result to the
case where the system–bath interaction is of the more general form
(4), while the initial state is restricted to the product state (48). For a
double-quantum-dot charge qubit, described by the spin-boson
model,66 the above results100,103,104,279 on the convergence of the
dynamics (to second order in k) to the sMF (to second order in k) are
calculated and illustrated in detail in Ref. 66.
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The Bloch–Redfield master equation does have the problem of
generating non-positive probabilities, at least for some early times. The
trustworthiness of this master equation has been questioned60 for this
reason, though inclusion of a slippage of initial conditions281–283 cor-
rects this without having an impact on the final steady state.284,354

However, what we saw here is that its long time steady state, qss, has
corrections to s that are partially consistent with sMF, in line with the
expectation from the static point of-view discussed in Sec. II.
Assuming that the weak coupling limit is justified [here meaning
expansions in k2 as well as k4 to get theOðk2Þ corrections for the diag-
onals], it, hence, appears that the BRME is trustworthy when it comes
to predicting long time behavior and equilibration. It also gives well-
behaved, positive predictions at shorter times when the initial system
state is assumed to be close to sMF.

It is worthwhile to comment on the above results100,103 in com-
parison to those of RtE, cf. Sec. IIID. Coincidence of the perturbative
expansion of the steady state of the BRME with that of the mean force
Gibbs state up to a finite order does not, in fact, guarantee that these
states are exactly the same. To contrast, the results on RtE prove the
exact (i.e., in all orders of k) equality of these states. This is proven for
any k smaller than a fixed strictly positive number k0. For this reason,
the results of Refs. 100 and 103 are most relevant in the context of dis-
cussions about the choice between the Bloch–Redfield and the Davies
(secular Bloch–Redfield) master equation: Which one reproduces the
true equilibrium state more precisely. If, for a concrete problem to
solve, it is important to have a steady state that contains corrections to
the Gibbs state s, then the Bloch–Redfield equation or the master
equation (58) should be preferred.

3. Weak coupling: Further results

A consequence of taking the long time form L BR
1 for the

Bloch–Redfield generator is that the master equation is not of the
GKSL form6,271–274 as the damping matrix, cmn, defined in Eq. (62), is
not necessarily positive definite. Negative probabilities can now occur
for some initial states of the system6,285,286 at times less than tB, the
bath correlation time. This weakness can be removed by making a fur-
ther approximation, the secular approximation, already introduced by
Davies, cf. Sec. IVC1, which involves removing those terms XmqX†

n in
Eq. (59) that oscillate, in the interaction picture, at frequencies
xmn � t�1S , where tS is the system relaxation time. The resultant full-
secular-approximation form of the Bloch–Redfield master equation
can be readily shown59 to be of the GKSL form and, moreover, has the
consequence that the steady state is the Gibbs state, s. However, if
nearly degenerate Bohr frequencies are found to occur, then the corre-
sponding non-secular terms in the master equation are important and
should not be removed.

It has been noted that the full secular approximation is quite
often made indiscriminately, even in circumstances where it is not jus-
tified. This appears motivated, at least in part, by it leading to a GKSL
master equation that has the Gibbs state as its steady state, thus con-
necting the ME dynamics to Gibbs state physics, see Fig. 2. If only
those non-secular terms that satisfy xmn � t�1S are removed,113,287–291

called partial secular approximation, the resultant master equation will
still not be of the GKSL form, and moreover, the steady state is no lon-
ger guaranteed to be either the Gibbs state or a second order approxi-
mation to the mean force Gibbs state. A further approximation, often

made in practice, is to ignore the imaginary parts of the master equa-
tion coefficients Cm, see Eq. (52). It turns out103,292 that the
Bloch–Redfield equation with Cm replaced by Re½Cm� has the Gibbs
state s as its steady state.

Recently, a rigorous derivation of a unified GKSL quantum mas-
ter equation beyond the secular approximation was proposed.293 A
rigorous procedure leads, in general, to a partial secular approximation
followed by certain modifications in the arguments of the spectral den-
sity function. Since the derivation is rigorous, the resulting equation is
thermodynamically consistent, see also Refs. 294 and 295. In particu-
lar, a Gibbs state with respect to a modified system Hamiltonian (in
which all nearly degenerate energy levels and Bohr frequencies become
exactly degenerate) is its steady state.

D. Ultrastrong coupling limit and strong
decoherence limit

Beyond master equations based on weak coupling expansions, it
is possible to develop296 a dynamical perturbation theory that extends
to the ultrastrong coupling regime, see Sec. II F. Consider again the
total Hamiltonian (21). For a non-degenerate X with spectral decom-
position into Pn ¼ jxnihxnj given in Eq. (26), the trick is to decompose
HS in the pointer basis fjxnig from the outset,

HS ¼
X
m

emjxmihxmj þ
X
m6¼n

Dmnjxmihxnj: (63)

Here, em and Dmn are real and complex numbers, respectively. One
may now assume that Dmn can be treated as small compared to a very
large system–bath coupling strength k. More precisely, one should
compare Dmn with another quantity of the dimensionality of energy,
e.g., k2JðxÞ for a characteristic Bohr frequency x may serve as such
quantity. Both large k and small Dmn imply that the decoherence in
the “pointer basis” fjxmig takes place on a time scale much smaller
than the relaxation of the populations, pm ¼ hxmjqjxmi, see Ref. 205
for a detailed analysis of the spin-boson model. Using this observation,
a Pauli master equation for the populations in the pointer basis
pm ¼ pmðtÞ is obtained,296

_pmðtÞ ¼
X
n6¼m
ðkmnpnðtÞ � knmpmðtÞÞ; (64)

where the rate constants kmn follow detailed balance,

kmn ¼ e�bðem�enÞknm; (65)

and are proportional to jDmnj2 and decrease exponentially296 with
k2. This is a generalization of the F€orster approximation, which
is well-known in the theory of excitation energy transfer,69 see
Sec. II F. The detailed balance condition implies that steady-state
populations pm are proportional to e�bem . The off-diagonal ele-
ments in the pointer basis, hxmjqðtÞjxni, tend to zero for an
arbitrary t> 0 as Dmn ! 0 (or k!1). Thus, the dynamical
steady state at k!1 is exactly the static MFG state sMF given
in Eq. (27). The proof presented in Ref. 296 extends to multiple
interactions XðjÞ in Eq. (4), degenerate spectra of the XðjÞ, as well
as combinations of weak- and strong-coupling parts of the inter-
action Hamiltonian. All these cases assume strong decoherence
between certain subspaces, thus giving the name “strong decoher-
ence limit” for the corresponding perturbation theory. The steady
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state at high, but not infinitely large, k has now also been
derived296 and is found to agree well with the steady state that
is numerically solved in Fig. 1 at strong coupling, see also
Subsection IVF. Also, numerical calculations of Ref. 125 show
excellent correspondence between the MFG state and the steady
state at high, but not infinitely large k.

Pioneering work118,124 on the ultrastrong coupling limit has
previously conjectured a dynamical steady state based on arguments
from einselection theory.122 They argued that the state should be
diagonal in the pointer basis Pm, which is now confirmed analyti-
cally.296 The steady state diagonals in the pointer basis were conjec-
tured to be hxmjsjxmi provided that the initial state is the Gibbs state
s. This conjecture differs from the expressions derived above.
Moreover, such a state is clearly non-stationary in the case of non-
zero Dmn. Nevertheless, since Dmn are much smaller than k2JðxÞ,
decoherence in the pointer basis occurs much faster than the transfer
between the different pointer states.296 Hence, the conjectured state
is, in fact, rapidly achieved due to strong decoherence. However,
thereafter, the system still slowly relaxes to the MFG state sMF. This
resolves the discussion82,118 about the correct form of the steady
state at ultrastrong coupling.

Finally, compared to the mathematical rigorous convergence
proof in Sec. IIID for small enough coupling, the proof outlined here
for the ultrastrong coupling is only “physically rigorous,” i.e., based on
a microscopic model and physically plausible assumptions. For the
spin-boson model, and under certain conditions on the spectral den-
sity, the convergence has also been proven mathematically rigorously
using a combination of the polaron transformation and quantum reso-
nance theory,71,297,298 see Subsection IVE 2.

E. Intermediate coupling

So far, we have been discussing two limiting cases: weak and
ultrastrong coupling limits, see Fig. 2(b). However, the case of interme-
diate coupling is highly interesting. Since in this case, generally there is
no basis for a perturbation theory, non-perturbative techniques need
to be developed and employed.We will briefly discuss two known ana-
lytical methods that can explore this regime: the reaction coordinate
approach and the polaron transformation.

1. Reaction coordinate approach

The reaction coordinate approach is a non-perturbative approach
to dealing with intermediate and strongly coupled systems. It was orig-
inally developed quite some time ago302,303 but has recently been
much extended to various applications in the quantum thermody-
namic context.20,25,29,30,304–315 The basic idea is to redefine that part of
the bath B that contributes most strongly to the system–bath coupling
into a collective single degree of freedom, the reaction coordinate
(RC). This coordinate is then incorporated along with the original sys-
tem into an enlarged system S&RC. The remnant degrees of freedom
of the original bath B now constitute a reduced bath ~B. The whole
point is that the enlarged system S&RC may interact only weakly with
the reduced bath ~B with a new small coupling parameter ~k. Thus, the
impact of ~B on S&RC can be treated by the perturbative approaches
discussed in the weak coupling, see Sec. IVC. A development of the
reaction coordinate method leads to a mapping of a free bosonic bath
into a chain of interacting harmonic oscillators coupled to a system at

one end.203,204 This mapping was mentioned in Sec. III E in relation to
many-body physics. It can be used for numerical simulations: the so-
called time evolving density matrix using orthogonal polynomials
(TEDOPA) algorithm.

The reaction coordinate approach can offer insight into the
steady state of the original system when the coupling to the original
bath is in the intermediate coupling limit, see Fig. 2. First, one obtains
an expression for the steady state of the enlarged system S&RC, which
is usually just the Gibbs state sS&RC for the corresponding
Hamiltonian of S&RC. By tracing out the reaction coordinate, the
steady state of the original system S is then be found. In Ref. 305,
numerical results are presented that strongly indicate that this state is
not the Gibbs state s. In Refs. 20 and 307, the steady state of S is shown
to be sMF þ Oð~kÞ, where sMF is the mean force Gibbs state for S, as
defined in Eq. (6). In Ref. 316, steady states obtained by the reaction
coordinate method are compared with the perturbative result (22) for
the MFG state in the weak coupling regime.

2. Polaron transformation

In Sec. IIG, we mentioned the use of the polaron transformation
for the derivation of approximations to the mean force Gibbs state. A
quantum master equation in the polaron-transformed frame was
derived in Refs. 138 and 317–320 Since the polaron transformation
mixes the system and bath DoFs, originally, the method allowed to
evaluate only the populations (in the system eigenbasis). Formulas for
the coherences were derived in Ref. 261. As in the static considerations,
if the off-diagonal elements of the system Hamiltonian in the pointer
basis are small enough with respect to the system–bath coupling, the
polaron-transformed Bloch–Redfield master equation correctly
describes the dynamics. Again, the variational (instead of full) polaron
transformation can be applied; the corresponding master equation and
its application to excitation energy transfer and excitonic Rabi rotations
in a driven quantum dot were considered in Refs. 321–323.

The steady states of the (full) polaron-transformed master equa-
tion were studied in Ref. 324, see also the review article.137 They con-
firm convergence to the mean force Gibbs state.

Combining the polaron transformation and quantum resonance
theory, it is shown rigorously in Ref. 297 that the spin-boson model
discussed in Subsection IIG exhibits RtE (see Sec. III) for arbitrary val-
ues of the coupling strength k. The authors show that under certain
conditions on the spectral density [in particular, JðxÞ should be pro-
portional to xs for s � 3 for small x], if the coupling D in the system
Hamiltonian (28) is smaller than a certain value D0 (depending on the
other parameters of the model), then the coupled SB dynamics con-
verges to the joint SB equilibrium state sSB asymptotically in time. In
particular, the reduced state of the system converges to the mean force
Gibbs state, which rigorously proves the result of Sec. IVD for this
particular model. In the subsequent works,71,298 the reduced dynamics
of the population and coherences of the two-level system is derived for
all times.

The analysis of Ref. 71 is carried out in a more general setting,
including lower temperatures, collective and local (independent donor
and acceptor) baths, and donors and acceptors coupled with different
strengths to the bath(s). It leads to a generalized Marcus formula325

with the original one (high temperature, common bath, and same
donor and acceptor coupling strength) as a special case.
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We stress, however, that, even in the case of proper (super-
Ohmic) spectral densities, the polaron transformation followed by
weak coupling perturbation theory in the polaron frame cannot serve
as a universal tool. It has a certain range of validity, and establishing
precise conditions on where the weak coupling perturbation theory in
the polaron frame can truly be applied remains largely an open
problem.

3. Low density limit

A common assumption in the above discussion is the choice of
interaction (11), which is linear in creation and annihilation operators
of the bath. However, open quantum systems theory also studies other
types of interactions, bath models, and limits, such as the singular cou-
pling limit and the low density limit.59,60 While the singular coupling
limit is shown to be equivalent to a special kind of the weak coupling
limit,326,327 which is captured in the unified weak coupling frame-
work,293 the low density limits328–330 represent significantly different
theory.

Now, the interaction VSB is quadratic in the creation and annihi-
lation operators, which represents a collision of a system with a parti-
cle of the bath. The state of the bath is a grand canonical (instead of
canonical) equilibrium state. The low density limit is the limit n! 0,
where n is the density of particles of the bath. Thus, the collisions of
the system with the particles of the bath are not weak, but rare. A close
relation of this model to the collision model (or repeated interactions
model), popular in the theory of open quantum systems and quantum
thermodynamics,331–339 is established in Ref. 340.

In the low density limit, one can derive a Markovian quantum
master equation of the GKSL form for the reduced system state
qðtÞ.328–330 The steady state(s) of this equation are much less studied
than those for the weak coupling MEs discussed above. Some sufficient
conditions for the Gibbs state s to be a unique steady state were
derived in Refs. 328 and 341. However, in a recent paper,342 it is shown
that, under certain (non-generic) conditions on the spectrum of HS,
the system state converges to a unique steady state that is different
from s. It is an open question whether this steady state is the mean
force Gibbs state.

F. Steady states with non-perturbative
numerical methods

There is a range of powerful numerical methods able to solve the
dynamics of an open quantum system for different coupling limits as
well as the intermediate coupling regime. These include the hierarchi-
cal equations of motion (HEOM)299,300 and TEMPO, which is based
on time-evolving matrix product operators.301 We will not describe
these numerical methods here. We used HEOM [in its high-
temperature version (Ref. 62)] to calculate the dynamics of the qubit
system shown in Fig. 1. HEOM gives numerically exact results. In
both the weak and strong coupling cases, we find excellent agreement
of the steady state qss with the high temperature MFG state formula
(37) from Ref. 363. This is due to the fact that for the parameters given
in Fig. 1, the temperature is sufficiently high that even in the strong
coupling case, the condition ‘b < 2 is still satisfied. For the (moder-
ately) strong coupling case in Fig. 1, we find very good agreement of
the steady state qss also with the MFG state formula (27) for the ultra-
strong coupling limit (k!1) derived in Ref. 82. Inclusion of

corrections to this formula for large, but finite, k, obtained in Refs. 125
and 296 gives the most precise match with the numerical steady state.

V. CONCLUSIONS AND OPEN QUESTIONS

We now conclude on the findings outlined above and provide an
extensive list of open questions.

Section II summarized the static point of view. This view includes
non-negligible coupling into a modified equilibrium state, the MFG
state sMF, and provides the backbone for much current research on
constructing a thermodynamic framework that goes beyond Gibbs
state physics.8,11–17,19,21,23,24,26–31,33–35 Despite the growing importance
of this framework for the assessment of thermodynamic processes of
nanoscale and quantum systems, e.g., in terms of heat and work
exchanges as well as entropy production on the level of fluctuations
and averages, explicit expressions for the concrete functional shape of
sMF, are only known in a handful of cases.

Beyond the exactly solvable quantum oscillator, explicit expres-
sions for general systems are known for weak [neglecting Oðk4Þ and
higher] and ultrastrong [neglecting Oðk�1Þ and higher] coupling lim-
its. It remains an open question (a) as to whether or not there exist rel-
atively simple, tractable expressions for the MFG state for intermediate
coupling regimes, at least for specific system choices. This is the inter-
esting regime where, loosely speaking, the system’s interaction with its
environment is of comparable scale to the system’s bare energy. For
example, it may be possible to construct useful expansions for k that
neither expand for small or large k, but some intermediate value
k0.

343,362 However, we note that previous considerable analytical effort
has not resulted in “simple” expressions even for classical systems. It
also remains open (b) whether there exists a general criterion, or crite-
ria, that allows one to judge, just looking at the Hamiltonian of a par-
ticular problem, whether mean force corrections are going to be
important or not in the equilibrium state. For the weak coupling limit,
such criteria exist [see, e.g., Eq. (25)], which reveal a complex interplay
of system energies, system–bath coupling parameters, and bath tem-
perature. Analogous condition(s) in other coupling regimes remain to
be uncovered.

Another open question is the extension of the above results, all
valid for coupling to a single (continuum) bosonic bath, to (c) simulta-
neous coupling to multiple bosonic baths and to (d) fermionic baths.
(e) Nonlinear couplings in the bath ladder operators could also be
considered.

Furthermore, connections between quantum and classical MFG
states are well worth exploring. First, they would (f) provide a direct
connection8 to numerical simulations in (classical) chemistry.50,52–54

These routinely include potential of mean force corrections in the cal-
culation of arrangements of molecules in solutions in a vast range of
contexts. A timely example are simulations of the catalytic mechanism
of proteases in respiratory syndromes.55 Second, (g) a comparison
between quantum and classical cases could also illuminate quantum
signatures in the mean force Gibbs state, which are not present in the
classical counterpart.344 Another intriguing question (h) is whether
one can derive, or not, the MFG state sMF in some manner from
entropy-maximization arguments in line with such derivations of the
standard Gibbs state as outlined in the beginning of Sec. II. For both
the classical or quantum cases, the difficulty here is that the strong-
coupling corrected system energy and entropy functionals can depend
on temperature.8,19,31,36
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Section III outlined how equilibrium arises dynamically, culmi-
nating in the mathematical proof that a SB complex does equilibrate
exactly to the global Gibbs state sSB, when the initial state is not too far
away from it, and the coupling k is finite and small. Under those
assumptions, this result immediately dynamically justifies the postu-
lated sMF used in the statics section. A major open question is to (i)
give a detailed quantification of the upper bound on k in terms
of physical quantities and (j) to prove the global convergence to sSB
and/or the local convergence345 to sMF for a larger (or the whole)
range of coupling strengths k. In regard to this, all bounds obtained so
far shrink with temperature T. It remains an open problem to (k)
show RtE at low (or zero) temperatures346 T � k2.

Another issue is dimension: in all proofs of RtE, the system S is
assumed to be finite-dimensional. Giving (l) a proof of RtE for
infinite-dimensional systems (with discrete spectrum), such as a har-
monic oscillator, is an important problem to solve. Likewise for an
environment with a discrete spectrum, (m) estimating the effective
dimension deff in Eq. (40) in terms of the volume and/or the number
of bath modes is an open problem.

Finally, current studies on quantum thermodynamics often make
use of the properties of CPTP maps and define the system’s dissipated
heat Q (with implications for work, entropy, efficiency, etc.) as the
energy received by an environment347 during a global unitary opera-
tion on an SB complex. However, if the environment is small, such as
a qubit, then the very notion of it being a thermodynamic context is
being abandoned. If the environment is somewhat larger, such as a dis-
crete “bath” of harmonic oscillators, then this is somewhat reasonable
given the results discussed in Sec. III B. Yet, it is worth keeping in
mind that even in this case, the dynamics does not produce the irre-
versible character, see Sec. IIID, often assumed in thermodynamic
arguments. A major task is (n) the careful assessment of how the
results outlined in Sec. III come to bear on such thermodynamic
characterizations.

Section IV outlined a selection of microscopic approaches, in par-
ticular master equations, which are capable of giving analytical details
of a system’s evolution as well as an indication of its steady state.
While the application of the secular approximation in the weak cou-
pling MEs of Davies and others predict s as steady state, the Bloch-
Redfield ME predicts k2-corrections to s. However, here the issue was
that not all k2-corrections are in fact captured by the k2-order BRME:
some corrections require higher order expansions.

Most ME treatments assume linear coupling to bath modes.
However, in the low density limit, quadratic (collision-like) cou-
plings342 are important and give rise (o) to open problems concerning
their steady states and consistency with sMF. In the intermediate cou-
pling limit, reaction coordinates or polaron transformation methods
can be used, but they cannot serve as universal tools as they have their
own limitations. Finally, the ultrastrong coupling regime stands out
because here the ME discussed in Sec. IVD leads, without any ambi-
guities, to the corresponding mean force Gibbs state (27) as detailed in
Sec. II F (which differs from the standard Gibbs state s).

To conclude, in this Review, we provided an introduction to sev-
eral current avenues in the disparate fields of open quantum systems,
strong coupling thermodynamics, and beyond. The aim of these fields
is to uncover the bath’s signature on a nanoscale system’s equilibrium
state as well as elucidate the system’s approach to equilibrium.
Impressive results have been achieved addressing this timely

challenge—but many key questions remain open. Solving these will
provide much needed clarity on how to consistently characterize the
thermodynamics of nanoscale and quantum systems.

While some researchers may feel it is obvious that the MFG state
sMF should be the equilibrium state, we highlight that much current
research in quantum thermodynamics still tacitly assumes it to be the
Gibbs state s. This includes many master equation derivations as well
as the theory of thermal operations and thermodynamic resource
theory to name a few. Causes for this scientific mismatch might be the
unwieldy formal definition of sMF, partially resolved in Sec. II, and the
conflict between unitary evolution and irreversibility, partially resolved
in Sec. III. The results outlined above provide a glimpse of a theory
that goes beyond Gibbs statistical physics and will find applications in
a variety of fields, where the exchange of energy on the nanoscale is
essential, from quantum chemistry and biology, to magnetism and
nanoscale heat management.
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