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Abstract: With the development of science and technology, transparent, non-invasive general com-
puting is gradually applied to disease diagnosis and medical detection. Universal software radio
peripherals (USRP) enable non-contact awareness based on radio frequency signals. Cheyne-Stokes
respiration has been reported as a common symptom in patients with heart failure. Compared
with the disadvantages of traditional detection equipment, a microwave sensing method based
on channel state information (CSI) is proposed to qualitatively detect the normal breathing and
Cheyne-Stokes breathing of patients with heart failure in a non-contact manner. Firstly, USRP is used
to collect subjects’ respiratory signals in real time. Then the CSI waveform is filtered, smoothed and
normalized, and the relevant features are defined and extracted from the signal. Finally, the machine
learning classification algorithm is used to establish a recognition model to detect the Cheyne-Stokes
respiration of patients with heart failure. The results show that the system accuracy of support
vector machine (SVM) is 97%, which can assist medical workers to identify Cheyne-Stokes respiration
symptoms of patients with heart failure.

Keywords: CSI; non-invasive detection; Cheyne-Stokes respiration; USRP

1. Introduction

In addition to normal breathing, there are many kinds of abnormal respiratory states,
and an abnormal respiratory state may indicate that the human body has potential diseases.
Therefore, timely detection of respiration can obtain important human health information
and prevent the occurrence of related diseases. The abnormal breathing pattern studied
in this paper is Cheyne-Stokes respiration, which was first described by John Cheyne and
William Stokes in the 19th century.

Cheyne-Stokes respiration gradually changes from shallow to deep, then from deep
to shallow, followed by a period of apnea, and then repeats the above periodic breathing.
The period of Cheyne-Stokes respiration can be as long as 30 s to 2 min, and the pause time
can be as long as 5~30 s. Therefore, it is necessary to observe carefully for a long time to
understand the whole process of periodic rhythm changes. The appearance of Cheyne-
Stokes respiration is the manifestation of decreased central respiratory excitability. During
apnea, carbon dioxide retention in hypoxic homes stimulates the chemical receptors and
respiratory centers of arterial sinuses and aortic bodies to some extent, leading to respiratory
recovery and enhancement; with the increase of respiratory frequency and the deepening of
amplitude, carbon dioxide is discharged in large quantities, and the respiratory center loses
effective excitement. The respiration slows down and shallows again until it is suspended,
and carbon dioxide is re-accumulated. Cheyne-Stokes respiration is a manifestation of
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critical illness and poor prognosis, which occurs in late and critical illnesses such as chronic
congestive heart failure. Moreover, whether Cheyne-Stokes respiration exists or not is also
closely related to the treatment plan. For example, adaptive SERVE-HF ventilation cannot
be used in clinical trials of patients with heart failure mainly suffering from Cheyne-Stokes
respiration [1]. In conclusion, Cheyne-Stokes respiration is closely related to the prognosis
of patients with heart failure, which can increase their mortality.

Almost all major vascular diseases and all types of heart disease can cause heart
failure, and it is estimated that about 26 million people worldwide suffer from heart
failure [2]. Heart failure has become the most common cause of unplanned outpatient and
hospitalization in developed countries [3], and for chronic heart failure, which is clinically
very common with Cheyne-Stokes respiration, about 50% of patients with symptomatic
congestive heart failure have sleep apnea—primarily a Cheyne-Stokes respiration [4]. With
the rapid development of wireless technology, A non-contact method of chronic heart
failure associated with Cheyne-Stokes respiration based on CSI is proposed. The method
is efficient, fast and easy to use, and chronic heart failure associated with Cheyne-Stokes
respiration can be monitored without the need of expertise, providing reference and
assistance for patient diagnosis.

Heart failure is a clinical syndrome caused by cardiac structural or functional abnor-
malities. Chronic heart failure encompasses a variety of heart disease, such as rheumatic
valvular disease, dilated cardiomyopathy, acute severe myocarditis, coronary heart disease,
hypertension and other clinical syndromes developed to a severe stage [5,6]. Chronic
heart failure affects 0.9 percent of the general population, but the prevalence of the disease
increases significantly with age, and they have a higher mortality rate; the five-year survival
rate is only about 50% [6]. Among patients with more severe heart failure, Cheyne-Stokes
respiration is often present, and the abnormal breathing pattern is an independent predictor
of poor prognosis in patients with heart failure [7–9]. The emergence of Cheyne-Stokes
respiration is a warning sign of worsening heart failure, and an independent risk factor
for increased case fatality [10]; it is also closely related to the physical condition of the pa-
tient. Cheyne-Stokes respiration occurs in patients with heart failure, complete respiratory
interruption (apnea) or reduction (hypopnea) after hyperventilation, which is associated
with decreased hemoglobin oxide, wakefulness and sympathetic activation, which may
be harmful to the failing heart. Therefore, the inhibition of apnea and hypotension in
Cheyne-Stokes respiration seems to be a reasonable goal for patients with heart failure [1].

For the monitoring of Cheyne-Stokes respiration in common heart failure diseases,
in the existing practice, the methods for measuring abnormal breathing, including Cheyne-
Stokes respiration, are mainly divided into the contact breathing measurement method and
non-contact breathing measurement method [11].

Contact measurement methods mainly include the breathing sound detection method,
piezoelectric method and extraction from ECG signal. The respiratory detection system
uses a condenser microphone to detect respiratory sounds from the external auditory canal.
By collecting the sound signal of human breathing, the breathing was identified after noise
reduction and extraction [12]. This is susceptible to interference noise, however, and is not
suitable for detecting Cheyne-Stokes respiration. Takashi Koyama’s team detected Cheyne-
Stokes-like breathing by placing a piezoelectric sensor on the sheet under the patient
to detect the movement and deformation of the patient’s chest [13]. Nadi Sadr’s team
extracted respiratory signal (EDR) via human electrocardiograph (ECG) by the Principal
Component Analysis (PCA) algorithm [14].

Non-contact measurement methods mainly include the acoustic breath detection
method, infrared imaging method, imaging radio and television volumetric method,
and radar monitoring breathing method. Lu’s team proposed a method of breathing
monitoring based on tracheal sounds called cardiac sound-derived respiration (PDR). They
collected sound signals, then postprocessed the recordings in both the time domain and
frequency detection domains, and finally compared them with electrocardiograms to detect
apnea [15]. Preeti Jagadev et al. used infrared imaging equipment to detect respiration by
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observing the temperature changes of the chest, neck, mouth and nose during respiration
and extracting dynamic thermal eigenvalues, but this method was greatly affected by
ambient temperature [16]. Asanka G. Perera’s team used images and signal processing
designs from aerial video to detect breathing movements. First, they used the key points
of adjacent image frames to stabilize the image information. Then, the time-domain band
of the video is amplified and other frequencies are suppressed. Finally, image differential
and time filtering were performed for each video to detect potential respiratory signals [17].
In 2021, a team used ultra-wideband radar sensors based on pulse radio to detect human
motion and identify children’s various respiratory states [18].

Most of these methods can only detect the frequency of breathing, and cannot meet the
needs of Cheyne-Stokes respiration detection. Furthermore, if Cheyne-Stokes respiration in
heart failure has reached the late stage of the disease, the patient’s body itself is very fragile,
and a non-contact detection device can reduce the patient’s active cooperation and reduce
the patient’s body burden. According to the scattering characteristics of electromagnetic
wave irradiating human body, it is proven that there is a certain correlation between
the slight activity of human body surface and the reflected signal [19]. C-band sensing
technology has been proven to be able to detect respiratory anomalies in real time [11].
The non-contact detection technology based on thesoftware defined radio can detect heart
failure with Cheyne-Stokes respiration in real time. The main contributions of this paper
are summarized as follows:

1. We propose a non-contact, non-invasive method to help monitor chronic heart failure
accompanied by Cheyne-Stokes respiration, and provide new ideas and methods for
monitoring heart failure patients. We use wireless signals to convert Cheyne-Stokes
respiration caused by heart failure into amplitude changes of subcarriers.

2. Different from other methods for detecting heart failure, we assisted the detection of
heart failure from the perspective of Cheyne-Stokes respiration. We show the abnor-
mal physiological activity of Cheyne-Stokes respiration by using the peak changes of
subcarriers collected by two antennas connected to USRP. After data processing and
feature extraction, a machine learning algorithm is used to classify Cheyne-Stokes
respiration and normal breathing.

3. We carried out experiments to verify the performance of the proposed system, as well
as the classification accuracy of normal respiration and Cheyne-Stokes respiration
reached 97%. Because the patients with heart failure accompanied by Cheyne-Stokes
respiration have been very weak, and at a later stage of the disease, our non-invasive
non-contact detection method can minimize the burden and damage caused by the
detection behavior for patients, which is of great significance for them.

The other parts of this paper are as follows: Section 2 introduces the experimental
methods, including the theoretical basis of wireless sensor technology, experimental steps
and data processing; Section 3 is an overview of the experimental environment and the
design of the acquisition method; Section 4 describes the classification of experimental
results and machine learning results; Section 5 discusses comparing existing research with
specialized sensors; and Section 6 mainly summarizes the results obtained. In abbreviations,
we summarize all the used abbreviations in this work to assist the reader.

2. Methods

In this section, we mainly introduce the system from the aspects of fundamental, experimental
steps, data preprocessing, feature extraction, data set division and classification algorithm.

2.1. Fundamental

The system proposed in this paper is based on software defined radio technology to
obtain the respiratory condition caused by heart failure through CSI. In this experiment, the
breathing human body was used as a reflector to map the movement of the relative position
of chest and abdomen in the process of breathing to the phase and amplitude changes
caused by the length change of the reflection path, so as to establish a quantitative mapping
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between human breathing activity and CSI signal fluctuation [20]. During respiration,
the chest fluctuates periodically with a displacement distance of 4.2–5.4 mm [21]. However,
when Cheyne-Stokes respiration occurs in patients with heart failure, the chest displacement
distance can be increased to 12.6 mm [22]. The specific schematic diagram of detecting
breathing is shown in Figure 1. Based on the specific circumstances of the above medical
exploration, it can be seen that the chest displacement of healthy people and patients
during breathing is significantly different, and the CSI data based on physical background
mapping will also be significantly different. Based on this theory, this paper proposes a
system to detect patients with heart failure accompanied by Cheyne-Stokes respiration.
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Figure 1. Schematic diagram of human respiration.

The system proposed in this paper is based on the Orthogonal Frequency Division
Multiplexing (OFDM) technology to extract CSI, using USRP equipment as a receiver
and transmitter for C-band signal analysis. OFDM is a special multi-carrier transmission
technology. Multi-carrier transmission decomposes data stream into several bit rates of low
bit rate, and modulates the corresponding subcarriers through low rate multi-state symbols
formed by low bit rate, thus forming a concurrent transmission system of multiple low rate
symbols. In addition, each subcarrier of OFDM is orthogonal to each other, so the mutual
interference between subcarriers is greatly reduced and the frequency spectrum utilization
is greatly improved. Moreover, in this system, all subcarriers in OFDM can well-describe
the WCSI under each propagation path, and then obtain quantitative respiratory behavior
data [23]. In this system, there are 64 subcarriers of channel frequency response

H(x) = [H( f1), H( f2), H( f3), . . . , H( fK)] (1)

where H is channel frequency response (CFR), n = 64 is the total number of subcarriers,
and the CFR of any subcarrier can be expressed as

H( fk) = |H( fk)|ej∠H( fk) (2)

which represent the subcarrier number k ∈ [1, 64], each child carrier contains the phase and
amplitude information, and represents the amplitude information, and ||H( fk)|| represents
the amplitude information, ∠H( fk) on behalf of the phase information. In order to obtain a
continuous breathing signal, the measured values of the CSI within a given time window
are shown below

H = [H1, H2, H3, . . . , Hm] (3)
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where m represents the total number of data packets (CFRs) received, wireless data contain-
ing the raw data of breathing behavior. The number of data packets is positively correlated
with the length of detection time. With the increase in detection time, the number of data
packets keeps increasing.

Figure 2a shows a subcarrier waveform of breathing conditions of a normal person in a
calm state within one minute, collected in a static environment without interference. It can
be clearly seen from the figure that the amplitude information is similar to a cosine function,
presenting a periodic fluctuation state, and the respiratory rate is relatively stable. Figure 2b
shows the situation of 64 subcarriers of data collected at one time in the experiment.
In previous studies, the respiration waveform was basically a sinusoidal waveform [24].
The experimental waveform is consistent with the sinusoidal waveform. Waveform data
contains amplitude information and phase information, among which a large number of
experiments have found that sampling frequency deviation, symbol timing deviation and
carrier frequency shift deviation will cause an excessive phase amplitude change. Therefore,
phase information is difficult to be used as a detection method to identify Cheyne-Stokes
respiration in patients with heart failure. Relatively speaking, the amplitude data is easy to
obtain, and can reflect the breathing situation more intuitively and efficiently. Therefore,
it is feasible to carry out Cheyne-Stokes respiration detection in patients with heart failure
based on amplitude signal in this paper.
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64 subcarriers.

2.2. The Experimental Steps

In this paper, a computer and two USRP devices are used to carry out the experi-
ment [25]. After the respiration information of the subjects was extracted, the original CSI
data were further processed in this paper, and after feature extraction, the different features
of Cheyne-Stokes respiration of normal respiratory patients and heart failure patients were
obtained. The classification model was constructed by machine learning method, and then
the identification of patients was completed.

Universal Software Radio Periphehal (USRP) is a Software Radio device produced
by Ettus Research for Software Radio design and development. USRP can mainly realize
digital up-conversion, digital down-conversion, digital-to-analog conversion, analog-to-
digital conversion and other signal processing functions, so that common computers can
work like high-bandwidth software radio peripherals. The hardware device used in this



Electronics 2022, 11, 958 6 of 19

system is USRP B210. The USRP operates in a frequency range of 47 MHz to 6.0 GHz,
and supports channel bandwidths ranging from less than 200 kHz to 56 MHz.

The Figure 3 describes the overall framework of the system, which is mainly divided
into three parts. The experimental environment shown in the upper left corner consists of
a computer and two USRP devices with antennas. The following module introduces the
data pretreatment method, which is mainly divided into three steps: eliminating outliers,
filtering and data normalization processing. The upper right corner introduces the feature
extraction method and machine learning classifier. Finally, a classification model was
established to effectively distinguish Cheyne-Stokes respiration from normal respiration in
patients with heart failure.

Electronics 2022, 11, x FOR PEER REVIEW 6 of 19 
 

 

digital up-conversion, digital down-conversion, digital-to-analog conversion, analog-to-
digital conversion and other signal processing functions, so that common computers can 
work like high-bandwidth software radio peripherals. The hardware device used in this 
system is USRP B210. The USRP operates in a frequency range of 47 MHz to 6.0 GHz, and 
supports channel bandwidths ranging from less than 200 kHz to 56 MHz. 

The Figure 3 describes the overall framework of the system, which is mainly divided 
into three parts. The experimental environment shown in the upper left corner consists of 
a computer and two USRP devices with antennas. The following module introduces the 
data pretreatment method, which is mainly divided into three steps: eliminating outliers, 
filtering and data normalization processing. The upper right corner introduces the feature 
extraction method and machine learning classifier. Finally, a classification model was es-
tablished to effectively distinguish Cheyne-Stokes respiration from normal respiration in 
patients with heart failure. 

 
Figure 3. The system block diagram. 

2.3. Pre-Processing 
This summary mainly introduces the purpose and steps of preprocessing for col-

lected CSI data and the effect after preprocessing. For the CSI collected in the experiment, 
due to environmental noise, multipath effect, signal attenuation and other factors, the sub-
carrier directly obtained will contain more interference factors, thereby affecting the judg-
ment of the results of patients with Cheyne-Stokes respiratory heart failure. Thus, it is 
necessary to preprocess the collected CSI data, and there are two main objectives: (1) to 
remove noise interference from the environment, and; (2) the abnormal values caused by 
the relatively drastic changes in the dynamic path of the receiving signal caused by the 
movement of the subjects, except breathing in the experiment, are excluded. As long as 
there are three steps in the pretreatment, the main contents are as follows: 

Step 1: Eliminating outliers in experimental data using Hampel filter. 
The principle is to use a sliding window which can move in the time series. The win-

dow is composed of the sample points of the selected area and three samples on both 
sides. The value of the sample point is used as the median of the window, and the stand-
ard deviation of each sample to the median is estimated. If a sample is more than three 
standard deviations from the median, replace that sample with the median. 

Figure 3. The system block diagram.

2.3. Pre-Processing

This summary mainly introduces the purpose and steps of preprocessing for collected
CSI data and the effect after preprocessing. For the CSI collected in the experiment, due to
environmental noise, multipath effect, signal attenuation and other factors, the sub-carrier
directly obtained will contain more interference factors, thereby affecting the judgment of
the results of patients with Cheyne-Stokes respiratory heart failure. Thus, it is necessary to
preprocess the collected CSI data, and there are two main objectives: (1) to remove noise
interference from the environment, and; (2) the abnormal values caused by the relatively
drastic changes in the dynamic path of the receiving signal caused by the movement of the
subjects, except breathing in the experiment, are excluded. As long as there are three steps
in the pretreatment, the main contents are as follows:

Step 1: Eliminating outliers in experimental data using Hampel filter.
The principle is to use a sliding window which can move in the time series. The window

is composed of the sample points of the selected area and three samples on both sides.
The value of the sample point is used as the median of the window, and the standard
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deviation of each sample to the median is estimated. If a sample is more than three
standard deviations from the median, replace that sample with the median.

mi = median(xi, xi+1, . . . xi+d) (4)

MADi = median(|xi −mi|, |xi+1 −mi|, . . . |xi+k −mi|) (5)

In the above formula, MADi represents the mean value within the sliding window.
Figure 4 is a schematic diagram of Hampel’s treatment of filtering outliers, which is

an example of a normal person moving at a constant speed under static conditions. Where
the blue line represents the initial signal amplitude value, the yellow line shows the filtered
signal amplitude value, and the outliers in the data are marked by white boxes. It can be
clearly seen from Figure 4 that after exception processing, a large number of discrete values
and the prominent positions of some waveforms are removed.
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Figure 4. Outlier processing.

The purpose of this step is to remove the abnormal value caused by noise interference
from the environment. It can be seen from Figure 4 that after processing, the relative clutter
subcarrier waveform is smoother and cleaner, and some burrs of curve vibration and some
negligible abnormal points are eliminated, but some others are not eliminated, so further
processing is needed.

Step 2: Smoothing the experimental data.
The main method used is the Loess method. That is, by dividing the sample into

multiple intervals, the samples in the interval are polynomially fitted, and the weighted
regression curve is obtained after continuous repetition, and finally the complete regression
curve is combined. Firstly, the sample data is divided into multiple intervals, each interval
is a time window with a certain length. The larger the length is selected, the smoother the
curve that is finally obtained. Secondly, local weighted regression is performed on the data
in the time window.

wi = (1− | x0 − xi
(x0)

|3)
3

(6)

∆(x0) =
max
xi∈N|x0 − xi| (7)

Finally, quadratic function is used for regression smoothing. The final result is shown
in Figure 5.

ŷk = a + bxk + cxk
2 (8)
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Figure 5. Subcarrier smoothing processing.

Figure 5 shows that after smoothing, the waveform of cluttered subcarriers is smoother and
cleaner, and the burrs of curve vibration and the negligible outliers disappear almost completely.

Step 3: Normalize the experimental data.
In order to better simulate the real patient’s situation, the subjects are not required to

maintain absolute prohibition with regard to respiratory activities. Therefore, according to
the Fresnel zone perception theory [26], in the process of the experiment, the amplitude of
the received signal will fluctuate violently when the subjects do not autonomously shake
their body or appear other relatively obvious displacement movements, which will produce
abnormal amplitude data and affect the judgment of respiratory movement. At the same
time, in the actual process, the overall amplitude of the collected waveform will be quite
different in different positions of the vertical line of LOS in the Fresnel zone. In order
to more conveniently combine with the actual detection situation, this paper takes into
account the elimination of this effect in the subsequent data processing, and the measure
is normalization.

The steps of data normalization are as follows

mi =

(
yMax − yMin

)
× (x− xMin)

xMax − xMin
+ yMin (9)

where x is the value before conversion and y is the value after conversion. yMax and
yMin are the maximum and minimum values of a group of subcarriers processed in the
sample, respectively. In this paper, we take 1 and −1. xMax and xMin are the maximum and
minimum values in sample raw data.

2.4. Feature Extraction

This summary mainly introduces the main purpose of extracting the features of
preprocessed data. The main purpose of feature extraction is to select representative features
for subsequent classifier recognition. Appropriate features can comprehensively reflect the
characteristics of CSI amplitude variation from multiple perspectives [21]. Different data
sets correspond to different prediction results, and the most representative features can
be derived from the advantages and disadvantages of the predicted results. It makes it
easier to identify patients with heart failure accompanied by Cheyne-Stokes respiration, so
as to improve the authenticity and accuracy of the recognition effect. Feature extraction
transforms and maps the original CSI data samples with mathematical methods to obtain
the features that can best characterize the normal respiratory data that is different from the
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Cheyne-Stokes respiration data of patients with heart failure. This operation can remove
the redundant information of the original data to the greatest extent.

There are three main existing methods of signal feature extraction: the time domain
analysis method; frequency domain analysis method; and time-frequency analysis com-
bined method [27].

In this paper, a large number of experiments were carried out to verify the pre-
processed respiratory data from both time domain and frequency domain perspectives,
and different features were changed several times. By comparing the corresponding recog-
nition results of different feature data sets, the appropriate feature data was finally selected
as the feature set.

In the time domain, the mean value, standard deviation, variance, root mean square
value, wave form factor, impact factor, skewness value, skewness value and crest factor are
mainly selected from the traditional features. The selection of mean value mainly reflects
the central trend of CSI signal distribution. The selection of standard deviation and variance
reflects the dispersion of CSI signal from the mean value. In addition to these common
feature accidents, this paper also adds the quartile distance to reflect the dispersion of
CSI data samples. The median and quartile distance reflect the intensity of respiration to
some extent.

In frequency domain, Fourier transform is carried out on CSI sample signals, and the
time series in time domain is transformed into frequency components, so as to extract the
frequency domain features of CSI samples. The characteristics in the frequency domain
mainly include energy spectral density, power decline rate, entropy, fast Fourier transform
(FFT) coefficient and so on. Conversion to the frequency domain can clearly see the
breathing frequency, and the result can be very intuitive distinction. The frequency domain
features of the selection in this paper are energy spectral density and information entropy.
Information entropy is a measure to describe the complexity of a system proposed by
Shannon. If the system is more complex and there are more kinds of different situations,
then his information entropy is relatively large. The CSI data of Cheyne-Stokes respiration
obviously have apnea and severe breathing, and the information contained should be
redundant to normal breathing, similar to a sine wave. The energy spectral density is the
sum of the square of the amplitude per unit frequency, and the area of the energy spectral
density curve is the total energy of CSI signal. The formulas of information entropy and
power spectral density are given below:

H(X) = −
N

∑
i=1

p(xi) log(xi) (10)

S(X) =
∞∫
−∞

|x(t)|2dt (11)

We extracted a total of 12 features: the mean value, standard deviation, median,
variance, root mean square value, wave form factor, impact factor, skewness value, crest
factor, Quartile distance, information entropy and power spectral density. At the same time,
in order to eliminate redundant features, we conducted principal component analysis on
feature sets to reduce dimension before machine learning. We list all the extracted feature
columns and their corresponding expressions in Table 1.
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Table 1. Statistical features of csi.

Feature Feature Definition

Total number of taps N
Amplitude Peaks–troughs

Mean value 1
N

N
∑

i=1
xi

Standard deviation
√

1
N

N
∑

i=1
(xi − ux)

2

Variance 1
N

N
∑

i=1
(xi − ux)

2

Root mean square (RMS)
√

1
N

N
∑

i=1
xi

Wave form factor RMS
1
N ∑N

i=1|xi |
Impact factor max(|xi |)

1
N ∑N

i=1|xi |

Skewness value 1
N

N
∑

i=1

( xi−ux
σ

)3

Kurtosis value 1
N

N
∑

i=1

( xi−ux
σ

)4

Crest factor max(|xi |)
RMS

2.5. Dividing the Dataset

The obtained feature data set is divided into the training set and test set. The training
set is mainly used to train the CSI feature data set mentioned above, and then obtain
the classification model. The test set is a data set used to verify the performance of the
obtained classification model. The main verification method is to use the trained normal
breathing and Cheyne-Stokes respiration classification model to predict the new untrained
CSI data, and to judge the quality of the classification prediction model based on the
classification results. In this paper, there are two main principles for dividing the data
set. First, the selected samples of the training set and the test set are mutually exclusive.
The second principle is that the number of normal breathing data and Cheyne-Stokes
respiration data of heart failure patients in the training set and the test set is the same.
The consistency of data distribution is kept as far as possible in the partitioning process to
avoid the impact of additional deviation introduced by the data partitioning process on
the test.

There are three commonly used data set partitioning methods: the hold-out method,
cross validation method; and self-help method. The data set partitioning verification
method adopted in this paper is cross validation, which mainly divides the data set into
several parts and estimates the accuracy of each part to prevent overfitting. In this experi-
ment, the feature data set is divided into 5 mutually exclusive subsets of the same size by
sub-volume sampling. The number of samples in the training set is 4/5 of the total number
of samples, and the number of samples in the test set is 1/5 of the total number of samples.
5 different division methods can be generated, a total of 5 training and testing are carried
out, and the average value of the 5 testing results will be returned in the end. This method
can minimize the impact of different division methods on the recognition model.

2.6. Classification Algorithm

To quantify the differences in Cheyne-Stokes respiration between normal and heart
failure patients in our experiments, we used a variety of classification algorithms, includ-
ing ensemble learning, logistic regression, linear discriminant, decision trees, K-NN and
support vector machines. Because the Gaussian SVM algorithm works best, this section
describes the SVM algorithm. SVM algorithm has been widely used in classification recog-
nition problems. The basic model is to find the best sub-hyperplane once in the feature
space to maximize the interval between positive and negative samples on the training set.
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SVM can complete the flexible decision boundary at higher dimensions, and optimize the
training results at the same time [28].

In general, the following formula is usually used to indicate the way of dividing
hyperplanes in the sample space:

ωTx + b = 0 (12)

For the so-called “interval”, it can be expressed as:

γ =
2
||ω|| (13)

Thus, the basic type of SVM can be described as:

min
w, b

1
2
||ω||2 s.t.yi

(
wT ·xi + b

)
≥ 1, i = 1, 2 · · · n (14)

The Lagrange multiplier method can be applied to this formula to obtain its dual
problem solution:

max
α

m

∑
i=1

αi −
1
2

m

∑
i=1

m

∑
i=1

αiαjyiyjxixj (15)

Thus, when the KKT (Karush–Kuhn–Tucker conditions) [29] condition is satisfied, the
solution of the original problem can be equivalent to the solution of the dual problem, and
the solution of the above problem can be transformed into the solution of α, through which
the support vector can be obtained.

At the same time, the kernel function is introduced to solve the problem of not finding
an appropriate hyperplane in the actual scene, so that it can accurately distinguish two
different samples in the original sample space. Suppose the formula is:

k
(
xi, xj

)
= Φ(x1), Φ(x2) (16)

By this formula, the inner product in higher dimensional or even infinite dimensional
eigenspace is avoided.

3. Experimental Design

In this section, the experimental setup and implementation are described. Extensive
experiments were conducted to verify the performance of software-defined radio-based
detection of heart failure with Cheyne-Stokes respiration disease. In the test to detect heart
failure with Cheyne-Stokes respiration disease, the equipment included a computer, two
USRP devices, two antennas and two stands, which could be adjusted at any height.

The test area of this experiment is located in an independent room of 5 m × 6 m.
The transmitting antenna and receiving antenna are 1 m apart, and both antennas are
located at a height of 59–77 cm. The subject sat in a relaxed posture between the two
antennas at a slightly backward position of 10–20 cm, and when the subject sat on a chair
between the antennas, the height of his abdomen was exactly the same as the height of
the two antennae. The reason for taking seated breathing is shortness of breath due to
heart failure, or even coma in severe cases. Sitting breathing can reduce shortness of breath
during sleep. The specific experimental conditions are shown in Figure 6.

The breathing test data collected in this experiment came from five different volunteers,
all of whom agreed to perform the experiment. The volunteers were fully informed
of all the conditions of the experiment. First of all, we have trained many volunteers
professionally. The subjects were mainly asked to watch the medical videos of patients
with Cheyne-Stokes respiration, and to have a clear cognition of Cheyne-Stokes respiration
through the introduction of medical professional description. Subjects were then trained
to mimic Cheyne-Stokes respiration, and sampling with the HKH-11C digital breathing
sensor was used to verify that the simulated Cheyne-Stokes respiration was similar to the
medical standard Cheyne-Stokes respiration. Finally, before the formal experiment, we also
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conducted a series of preliminary tests to detect the measured breathing waveform, so that
the subjects could achieve breathing behaviors similar to those of the real patients in the
medical videos after repeated practice. Finally, five subjects were selected to simulate the
patient’s situation perfectly. The details of the subjects are shown in Table 2.
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Table 2. Details for five participants.

ID Gender Weight (kg) Height (cm)

1 Male 75 170
2 Female 50 165
3 Male 52 173
4 Male 72 174
5 Male 62 175

In this experiment, the subjects always kept a sitting position, and the experimental
equipment collected the ordinary breathing of each participant for two minutes in real
time, which was repeated ten times. Then, the apparatus took the subjects’ Cheyne-Stokes
respiration for two minutes in real time, and repeated them 10 times. The two-minute
collection time was chosen here, as Cheyne-Stokes respiration cycles range from 30 s to
2 min. When collecting the signal, it can be seen that with the slight undulating movement
of the chest and abdomen during breathing, the amplitude of the collected signal will
undergo a certain change.

4. Results

The normal breathing data collected in Figure 7 is shown below, which shows the wave-
form of 64 subcarriers when the subject is breathing normally. In the figure, the horizontal
axis represents the 120-s acquisition time in seconds, and the vertical axis represents the
subcarrier amplitude. The breathing rhythm of normal adults is stable, uniform and orderly,
and the breathing rate is 12–20 times per minute when it is quiet. It can be clearly seen
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from Figure 7 that the breathing times detected within 120 s counted 30 times, which is in
line with the above medical common sense.
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Figure 7. Normal respiration waveform.

The Cheyne-Stokes respiration data of patients with heart failure collected in Figure 8
is shown below, which shows the waveform of 64 subcarriers during Cheyne-Stokes
respiration of the subjects. The horizontal axis in the figure represents the experiment time
in seconds. Professional medical books introduce Cheyne-Stokes respiration from shallow
slow to deep fast, and then from deep slow to shallow fast, followed by a period of apnea.
Then, the breathing cycle is repeated. It can be seen from Figure 8 that within two minutes
of detection, there were three nearly smooth line segments, representing three instances of
apnea. The three breaths occurred at the same time, and also changed from small to large
and then to small, showing a trend of increase first and then decrease. The experimental
waveform results are in accordance with the medical professional books.
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In this summary, we describe the results of machine learning classification of normal
breathing behavior and abnormal breathing with Cheyne-Stokes respiration in patients
with heart failure in turn.

The results tested in this experiment were machine learned, using a variety of main-
stream classification methods. These include Ensemble Learning, Logistic Regress, Linear
Discriminant, Decision Tree, K-NN and SVM. The results show that the average accuracy
of SVM algorithm is the highest, which is 97%. Figure 9 shows the comparison of different
algorithms in the analysis. From Figure 9, we can see that the SVM model presents the best
overall performance.
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Figure 10 shows the confusion matrix under the SVM classification model. Among
them, the extraction feature mark of ordinary respiratory data is 0, and the extraction
feature mark of Cheyne-Stokes respiration data of patients with heart failure is 1. As can be
clearly seen from Figure 10, the predicted accuracy of normal respiration was 96% and the
failure rate was 4%, while the predicted accuracy of Cheyne-Stokes respiration in patients
with heart failure was 98% and the failure rate was only 2%. It can be seen that the model
proposed in this paper can accurately distinguish Cheyne-Stokes respiration from normal
respiration in healthy people, as well as in patients with heart failure.
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5. Discussion
5.1. Estimation Ability of Proposed Method

We do a lot of work to explore the optimal number of principal components to retain
in our experiments.

The Figure 11 shows the accuracy of the svm algorithm with different numbers of prin-
cipal components retained. The horizontal axis represents the 12 eigenvalues mentioned
above, and the vertical axis represents the accuracy of the model prediction. We conducted
experiments on three SVM algorithms with different kernel functions, namely Medium
gaussian SVM, linear SVM and quadratic SVM. According to the broken line graph, it can
be clearly seen that when more than six principal components are selected, the accuracy
tends to be flat; thus, we think it is reasonable to keep 4–6 principal components. We think
this can alleviate the problem of data redundancy to a certain extent.

Electronics 2022, 11, x FOR PEER REVIEW 15 of 19 
 

 

We do a lot of work to explore the optimal number of principal components to retain 
in our experiments. 

The Figure 11 shows the accuracy of the svm algorithm with different numbers of 
principal components retained. The horizontal axis represents the 12 eigenvalues men-
tioned above, and the vertical axis represents the accuracy of the model prediction. We 
conducted experiments on three SVM algorithms with different kernel functions, namely 
Medium gaussian SVM, linear SVM and quadratic SVM. According to the broken line 
graph, it can be clearly seen that when more than six principal components are selected, 
the accuracy tends to be flat; thus, we think it is reasonable to keep 4–6 principal compo-
nents. We think this can alleviate the problem of data redundancy to a certain extent. 

 
Figure 11. The influence of the number of PCA selections on the prediction accuracy of SVM model. 

5.2. Research Comparison 
Three main methods were used in Giannini’s study to measure Cheyne-Stokes respi-

ration. First, Cheyne-Stokes respiration is measured with an inductive plethysmography 
tape placed on the person’s chest or abdomen, according to individual respiratory me-
chanics. Then, Cheyne-Stokes respiration is detected by detecting carbon dioxide from the 
nasal airflow. Finally, Cheyne-Stokes respiration is detected by measuring oxygen satura-
tion with a finger pulse oximeter, combining the detection of the three relevant character-
istics to verify whether the patient has Cheyne-Stokes respiration [30]. Compared with 
Giannoni’s method, the system proposed in this paper can detect Cheyne-Stokes respira-
tion non-contact, and will not impose a further burden on the patient’s body during the 
detection process. 

Javed developed an algorithm (ResCSRF) to detect Cheyne-Stokes respiration. This 
mainly collects four kinds of signals (nasal flow, thoracic, abdominal and finger oxygen 
saturation), and distinguishes them by calculating respiratory characteristics. The respir-
atory characteristics include cycle length, lung-to-peripheral circulation time and peak 
flow time. Finally, the output statistics of these characteristics (mean, median, standard 
deviation and percentiles) from CSR cycle (cycle length (CL)), apnea length (AL), ventila-
tion length (VL) and peak flow time (time-to-peak flow, TTPF) are extracted from certain 
time-domain features for classification [31]. The information collected by Javed is oxygen 
saturation, and experiments are carried out through respiration characteristics. However, 
this paper collects channel state information from another angle for classification. 

The use of an electrocardiogram (ECG) signal to detect Cheyne-Stokes respiration 
has also been explored [32], and it is clear that our method is relatively less expensive. 

Yee Siong Lee presented an evaluation of the use of microwave Doppler radar to 
capture different dynamic breathing patterns, in addition to breathing rates [33]. The 

0 1 2 3 4 5 6 7 8 9 10 11 12
Principal component

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Medium gaussian SVM
Linear SVM
Quadratic SVM

Figure 11. The influence of the number of PCA selections on the prediction accuracy of SVM model.

5.2. Research Comparison

Three main methods were used in Giannini’s study to measure Cheyne-Stokes respi-
ration. First, Cheyne-Stokes respiration is measured with an inductive plethysmography
tape placed on the person’s chest or abdomen, according to individual respiratory me-
chanics. Then, Cheyne-Stokes respiration is detected by detecting carbon dioxide from
the nasal airflow. Finally, Cheyne-Stokes respiration is detected by measuring oxygen
saturation with a finger pulse oximeter, combining the detection of the three relevant
characteristics to verify whether the patient has Cheyne-Stokes respiration [30]. Compared
with Giannoni’s method, the system proposed in this paper can detect Cheyne-Stokes
respiration non-contact, and will not impose a further burden on the patient’s body during
the detection process.

Javed developed an algorithm (ResCSRF) to detect Cheyne-Stokes respiration. This
mainly collects four kinds of signals (nasal flow, thoracic, abdominal and finger oxygen sat-
uration), and distinguishes them by calculating respiratory characteristics. The respiratory
characteristics include cycle length, lung-to-peripheral circulation time and peak flow time.
Finally, the output statistics of these characteristics (mean, median, standard deviation
and percentiles) from CSR cycle (cycle length (CL)), apnea length (AL), ventilation length
(VL) and peak flow time (time-to-peak flow, TTPF) are extracted from certain time-domain
features for classification [31]. The information collected by Javed is oxygen saturation,
and experiments are carried out through respiration characteristics. However, this paper
collects channel state information from another angle for classification.
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The use of an electrocardiogram (ECG) signal to detect Cheyne-Stokes respiration has
also been explored [32], and it is clear that our method is relatively less expensive.

Yee Siong Lee presented an evaluation of the use of microwave Doppler radar to cap-
ture different dynamic breathing patterns, in addition to breathing rates [33]. The system
proposed in this paper uses communication signals, and is suitable for OFDM modulation
devices (WiFi, mobile phones, base stations) without special radar equipment.

Umer Saeed also used USRP equipment to detect abnormal breathing, but Cheyne-
Stokes respiration was not mentioned in the paper [34].

The main purpose of the experiment is to provide a new idea and method for the
verification of Cheyne-Stokes respiration, and explore the potential feasibility of the ap-
plication of the technology. Therefore, it is necessary to compare and verify mature
medical equipment.

The HKH-11C wearable breathing sensor mentioned above is selected for the com-
parative experiment. Figure 12 shows the comparison diagram of CSI data collected by
HKH-11C wearable respiratory sensor and this system at the same time and place within
1 min. In the comparison test, subjects wore HKH-11C breathing sensor and sat between
two USRP devices for breathing movement. Figure 12 shows the breathing waveform in a
period of time, while Figure 13 shows the Cheyne-Stokes respiration waveform in a period
of time.
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It can be seen from the figure that the system can fully detect normal breathing and
Cheyne-Stokes respiration. In the comparison diagram of Cheyne-Stokes respiration in
Figure 13, the system in this paper can show even more detailed changes and contain
more information.
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6. Conclusions

In this paper, we propose a non-contact heart failure detection method based on
software-defined radio. Patients with heart failure, especially those with Cheyne-Stokes
respiration, a common risk factor, should be highly vigilant and tested in a timely manner.
For patients with heart failure as well as Cheyne-Stokes respiration, timely treatment with
non-invasive positive pressure ventilation can greatly improve cardiac function in addition
to basic anti-heart failure drug therapy. In this paper, the respiratory state information of
patients was collected by wireless sensing technology to detect the symptoms of Cheyne-
Stokes respiration, and the accuracy of the classification algorithm was 97.0%.

This method is a non-contact, non-invasive detection method, which can minimize the
secondary injury to the critical patients with heart failure in the detection process, and does
not require the patient to carry out complex cooperation. The device is also easy to carry,
and can be in the ward or at home for a long term. Real-time detection of Cheyne-Stokes
respiration in patients with heart failure is an early warning signal that is convenient
for further targeted treatment of patients. However, this method has two disadvantages.
One is that, due to the limitation of the condition, the condition tested is not the real patient,
but the simulated condition of the patient through professional training. Another drawback
is the inability to test multiple patients at once, rather than one subject at a time. Therefore,
further work in the future is to optimize the classification algorithm to distinguish Cheyne-
Stokes respiration as much as possible, and collect real real-time patients with heart failure,
accompanied by Cheyne-Stokes respiration. According to the situation of real patients,
the classification and discrimination algorithm is optimized to improve the persuasiveness
and authenticity of the device in detecting this disease.
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