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Range-based Relative Navigation for a Swarm of
Centimetre-scale Femto-Spacecraft

Thomas Timmons∗, James Beeley†, Gilles Bailet‡ and Colin R. McInnes§
James Watt School of Engineering, University of Glasgow, Scotland, UK. G12 8QQ

In-orbit relative navigation between a networked swarm of centimetre-scale femto-spacecraft

would add considerable value to a range of space mission concepts and applications, such as for

multi-point sensing and distributed sparse aperture interferometry. For a swarm of networked

femto-spacecraft, relative position determination would be possible by inferring coarse range

estimates from the received signal strength indication associated with the communication link

between swarm members. This is particularly advantageous for highly resource-constrained

devices. In this paper, algorithms for swarm relative positioning using inter-spacecraft range

estimates are presented that can be applied to centralised, decentralised and distributed network

configurations. Relative navigation filters for initial relative orbit determination (IROD) and

state estimation are presented for femto-spacecraft swarm deployment and dispersal scenarios.

The algorithms presented could also find use in terrestrial applications, in static and dynamic

wireless sensor networks.

Nomenclature

𝐴 = system matrix

a𝑘 = position of anchor spacecraft 𝑘

𝑒𝑖 = zero column vector with the value of 1 at point 𝑖

𝑒𝑖 𝑗 = zero column vector with the value of 1 at point 𝑖 and -1 at point 𝑗

F = relative coordinate frame

𝐻 = observation matrix

ℎ = observation function

𝐼 = identity matrix

𝐽 = Jacobian matrix

𝐾 = Kalman gain
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𝑘 = discrete time step

𝑁 = number of range estimates

𝑛 = number of femto-spacecraft

𝑃 = state covariance estimate

𝑄 = process noise covariance

𝑅 = rotation matrix or sensor noise covariance

𝑅𝑜 = orbital radius

𝑟𝑖 𝑗 = true range between the 𝑖th and 𝑗 th femto-spacecraft

𝑟𝑖 𝑗 = estimated range between the 𝑖th and 𝑗 th femto-spacecraft

𝑟 = mean range of 𝑁 range estimates

𝑇 = translation matrix

𝑇𝑜 = orbital period

𝑡 = time

𝑈,𝑉 = unitary matrices

w𝑘 = process noise at discrete time step 𝑘

x𝑖 = position of the 𝑖th femto-spacecraft

x̂−k = a priori state estimate

x̂+k = a posteriori state estimate

𝑥, 𝑦, 𝑧 = Cartesian elements of femto-spacecraft position

¤𝑥, ¤𝑦, ¤𝑧 = Cartesian elements of femto-spacecraft velocity

¥𝑥, ¥𝑦, ¥𝑧 = Cartesian elements of femto-spacecraft acceleration

𝑋 = matrix of 𝑛 femto-spacecraft positions [x1, ..., x𝑛]

𝑍 = symmetric positive semidefinite matrix

z𝑘 = state measurement at discrete time step 𝑘

𝛼𝑖 𝑗 = squared distance error between the 𝑖th and 𝑗 th femto-spacecraft

` = standard gravitational parameter of an orbital body

ak = observation noise at discrete time step 𝑘

𝜎2𝑟 = mean squared error in range estimate

𝜎2𝑝 = mean squared error in position

Φ = state transition matrix

𝜔𝑛 = mean motion of the femto-spacecraft deployer
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I. Introduction

Due to continued miniaturisation in technology, it is now practical to develop active femto-spacecraft (mass under

100 g) with an inertial measurement unit (IMU), an attitude determination and control system (ADCS) and

wireless radio frequency (RF) communications contained within a single printed circuit board (PCB) with a side length

of only several centimetres. A wide range of potential applications are possible if many of these devices were to be

deployed from a larger carrier spacecraft, such as a CubeSat, and dispersed into orbits neighbouring the carrier. This

concept was pioneered by the KickSat project, which recently deployed more than one hundred ‘ChipSats’ from a 3U

CubeSat [1]. Several research groups now have femto-spacecraft projects under development, including the Space

and Exploration Technology Group at the University of Glasgow [2, 3]. A swarm of femto-spacecraft would render

large-scale, simultaneous and spatially distributed measurements feasible for the improved investigation of planetary

atmospheres, space weather monitoring, magnetospheric characterisation, gravity field mapping, distributed sparse

aperture interferometry and other novel applications [3–8].

An underpinning motive behind the femto-spacecraft concept is to discover what functionality and new applications

can be delivered at the smallest of spacecraft length-scales. Scaling the technology to a networked swarm of such

devices dispersed over a large volume of space is a desirable extension to current capabilities. Not only would this

enable compelling new applications for a range of mission scenarios, but would also enhance the capability of these

resource-constrained devices as sensor platforms. As a swarm, objectives could be accomplished that are well beyond

the capacity of any individual femto-spacecraft. Other motives for this approach include robustness and redundancy

against failure with modular and dis-aggregated operations. Unlike traditional constellation and cluster architectures, a

swarm could operate in an emergent way to achieve tasks beyond what its individual members are capable of, and do so

without structure or hierarchy [9, 10]. Moreover, for centimetre-scale femto-spacecraft we can expect the number of

devices in a swarm potentially to be extremely large. This utilisation essentially supposes a femto-spacecraft swarm as

an ad-hoc space-based wireless sensor network (WSN).

Determining the location of femto-spacecraft relative to one another is essential in adding value to the data gathered

in many mission applications and in enabling swarm members to operate in close proximity to each other. This can

maximise the utility of each swarm member, not only for scientific investigation, but to also navigate in orbit without

relying on an Earth-based ground station [11–13]. It is anticipated that absolute navigation would be enabled by the

known position of the carrier spacecraft. Network structure and computation sharing would vary widely depending on

the mission application, so we do not limit our discussion to one particular approach.

Concepts for the on-orbit relative navigation between at least two spacecraft can be broadly grouped into GPS-based,

vision-based and RF-based approaches [10]. GPS-based approaches operate on the principle of differencing two absolute

positions to obtain the relative positions of each satellite with respect to the other(s). Equipping femto-spacecraft
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with GPS transceivers is in principle feasible but it is power intensive and of course restricted to low Earth orbit

[7, 14]. In expanding a swarm from dozens to thousands of femto-spacecraft there is a need to consider how relative

localisation is achieved for the situation where few or no swarm members have access to GPS [15]. Recent work on

vision-based methods for on-orbit relative navigation proposes using cameras and optical sensors for relative pose

estimation via image processing and/or computer vision techniques for small satellites [16, 17]. Femto-spacecraft could

be equipped with small COTS cameras, but the limited computational, ADCS and power resources required for relative

state estimation makes approaches like this presently impractical.

Range-based relative-navigation methods have been implemented as part of a chain of available resources in a

satellite’s sensor suite, used to accompany or back-up other measurements, as was developed for the GRACE [18] and

PRISMA [19] formation-flying satellites. These approaches only consider one-to-one communication for a pair of large

satellites. With femto-spacecraft however we can consider a large number of limited devices using only range estimates

for on-orbit relative navigation. This idea is discussed in [20], where the author presents how range data could be applied

for the initial relative orbit determination problem (IROD) of small satellite formations, with no a-priori information on

the formation’s state. In this paper, we propose using swarm range estimates from communication within the network to

calculate relative positions of swarm members directly. This would be of utility in the following circumstances:

1) Where there is an estimate of the a-priori swarm state from the known ejection impulse/time from a deployer

spacecraft and a model of the relative dynamics of the swarm. Processing ranging estimates to determine

swarm relative positioning could be used to improve the swarm’s state estimate over time and bound growing

uncertainties.

2) Where there is little or no understanding of the a-priori swarm state in a given scenario. Relative positioning

information would characterise the dispersal of the swarm and the spatial density of the swarm. This information

could then be post-processed by the deployer spacecraft to enhance the utility of sensed data from the swarm.

We propose that range-based relative positioning methods would utilise the wireless communication link between

members to infer ranges, using the received signal strength indication (RSSI) as a proxy for a direct range measurement

between two femto-spacecraft using omni-directional antennas. A signal sent from a device transmitting at a known

power can be converted to a range estimate with an understanding of the path loss between the two devices. This

is an appealing solution for femto-spacecraft as it would not require additional sensors when resources are already

constrained, is usable in essentially any orbit scenario, and is available by virtue of the swarm carrying out its primary

mission application when passing data packets between swarm members.

The rest of this paper is organised as follows. Section II explains the relative positioning problem and the development

of two range-based relative positioning algorithms. Simulation-based results for the performance of both algorithms

under the presence of varying levels of measurement noise are presented. Section III describes the relative dynamics
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and navigation filtering in scenarios where the swarm is deployed from a carrier spacecraft and disperses over several

orbits. Simulation-based results of the relative navigation filtering are presented. Conclusions are given in Section IV.

II. Range-based Relative Positioning Algorithms for a Femto-spacecraft Swarm

In this section we present two range-based relative positioning algorithms for a femto-spacecraft swarm; firstly a

centralised and then a distributed algorithm designed to work in different network configurations. For this purpose, we

suppose that a ranging metric is available from the RF communication link between networked femto-spacecraft in the

form of RSSI data. We demonstrate that both algorithms work in simulation with a degree of random normally-distributed

measurement noise added to the true ranges, representative of real-world inaccuracies that would be present. In

simulation we assume the presence of a suitably accurate ranging metric that can be characterised in this way (e.g. via

UHF omni-directional antennas). In free space, assuming isotropic radiation and the presence of no error sources, the

Friis transmission formula [21] describes how signal strength decays with the square of the distance travelled, in simple

terms allowing the range between a receiver and a transmitter to be calculated if the transmission power is known.

In practice, undirected antennas would exhibit some directive losses relative to the orientation between a receiving

and transmitting device. While this would not render RSSI as a range estimate ineffective for the majority of relative

orientations between two communicating devices in three-dimensional space, it would still be a source of error if

alignment is unfavourable and if using this metric alone without any relative attitude knowledge. Were the relative

attitude between two devices known (as would be possible from an on-board ADCS), this could in practice reduce

the effect of this error by implementing a scale factor for particular relative attitude configurations between devices.

Practical testing and implementation of undirected antennas in three-dimensional space, the potential of improved RSSI

ranging with relative attitude knowledge, and the derivation of suitable path loss models for the scenarios described in

this paper will be the subject of future work. For this paper we assume the ranging metric is present with a degree of

measurement noise in order to develop the underlying methodology for both algorithms.

There are broadly three main network configurations for communication and computation, as shown in Fig. 1. The

(a) Centralised (b) Distributed (c) Decentralised

Fig. 1 Network configurations

arrowheads indicate communication between spacecraft for the purposes of localisation (sending range estimates to be
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processed). In a centralised configuration (Fig. 1a), femto-spacecraft send ranging data back to a central node (e.g.

the swarm deployer) that handles all computation and optimises relative position estimates for the entire swarm. In a

distributed configuration (Fig. 1b), this computation is shared; the femto-spacecraft share ranging information and

attempt to localise relative to one another. In a decentralised configuration (Fig. 1c), distributed ‘cluster heads’ may act

in a centralised way with nearby femto-spacecraft, but relate to other cluster heads in a distributed fashion. Different

strategies suit various applications and swarm sizes. Developing both a centralised and a distributed algorithm, either of

which may be more suited depending on the utility, scale and application, is therefore the approach taken. As presented,

the algorithms developed in this paper may also be adapted for terrestrial applications. Such applications share the need

for relative localisation in 2-D and 3-D with WSNs that share the high resource constraints and numbers of nodes that a

femto-spacecraft swarm has, such as environments where GPS is unavailable.

A. Centralised Relative Positioning Algorithm

The top-level challenge of this approach to femto-spacecraft swarm localisation is to find where individual members

are located with only an estimate of their distances to one another. For WSNs this is commonly referred to as the sensor

positioning problem [22]. The inputs to this problem are the unknown sensor positions (considering a femto-spacecraft

being an individual sensor within the network, Fig. 2), the known sensor positions (if any, e.g. the deployer spacecraft),

commonly referred to as ‘anchors’, and the estimated ranges between sensors. The outputs are the relative sensor

positions. Applying this problem, we consider 𝑛 femto-spacecraft with position vectors x1 (𝑥1, 𝑦1, 𝑧1) to x𝑛 (𝑥𝑛, 𝑦𝑛, 𝑧𝑛),

and 𝑘 anchor spacecraft with position vectors a1 (𝑥1, 𝑦1, 𝑧1) to a𝑘 (𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘 ). The range between the 𝑖th and 𝑗 th

femto-spacecraft is given by 𝑟𝑖 𝑗 , and the range between the 𝑘 th anchor spacecraft and 𝑗 th femto-spacecraft is given by

𝑟𝑘 𝑗 . Arranging the femto-spacecraft position vectors into a 3 × 𝑛 matrix 𝑋 , the objective is to find:

X =


𝑥1 . . . 𝑥𝑛

𝑦1 . . . 𝑦𝑛

𝑧1 . . . 𝑧𝑛

 (1)

subject to: x𝑖 − x 𝑗

2 = 𝑟2𝑖 𝑗 &
ak − x 𝑗

2 = 𝑟2𝑘 𝑗 (2)

In practice, the objective of an algorithm that solves this problem is to minimise the difference between the true

relative positions and noisy estimates. By relaxing the problem constraints to satisfy convex optimisation bounds,

geometric constraints between femto-spacecraft can be represented by linear matrix inequalities (LMIs) combined to

form a single semidefinite program (SDP), as shown in [23, 24]. A linear function is minimised in an SDP subject to

the LMI constraint that a linear combination of symmetric matrices is positive semidefinite (the 𝑛 × 𝑛 symmetric real

6



Fig. 2 Relative positioning problem

matrix 𝑀 is positive semidefinite if for a non-zero scalar 𝑥, 𝑥𝑇𝑀𝑥 ≥ 0). The feasible regions of SDPs are spectahedra,

and this requires the constraints to be convex functions. The sensor positioning problem is reformulated as finding the

symmetric positive semidefinite matrix Z containing the matrix 𝑋 with all the femto-spacecraft positions. A solution

that will minimise the sum of the errors matching the noisy distance estimates is found subject to most of the original

constraints of the sensor positioning problem (non-convex constraints such as minimum range cannot be used). The

formulation is then to find the semi-definite matrix:

𝑍 =

[
𝐼3 𝑋𝑇

𝑋 𝑋𝑇 𝑋

]
(3)

to minimise: ∑︁
(𝑖, 𝑗) ∈𝑁1

(𝛼+𝑖 𝑗 + 𝛼−𝑖 𝑗 ) +
∑︁

(𝑘, 𝑗) ∈𝑁2

(𝛼+𝑗𝑘 + 𝛼
−
𝑗𝑘 ) (4)

subject to: (
𝑒𝑖 𝑗

0

)𝑇
𝑍

(
𝑒𝑖 𝑗

0

)
− 𝛼+𝑖 𝑗 + 𝛼−𝑖 𝑗 = ˆ𝑟𝑖 𝑗2 ∀ (𝑖, 𝑗) ∈ 𝑁1 (5)

(
𝑒𝑖

𝑎𝑘

)𝑇
𝑍

(
𝑒𝑖

𝑎𝑘

)
− 𝛼+𝑖𝑘 + 𝛼

−
𝑖𝑘 = ˆ𝑟𝑖𝑘2 ∀ (𝑖, 𝑘) ∈ 𝑁2 (6)

where:

Z, 𝛼+𝑖 𝑗 , 𝛼
−
𝑖 𝑗 , 𝛼

+
𝑗𝑘 , 𝛼

−
𝑗𝑘 < 0 (7)

and where 𝛼𝑖 𝑗 = 𝛼+𝑖 𝑗 + 𝛼−𝑖 𝑗 and 𝛼 𝑗𝑘 = 𝛼+
𝑗𝑘
+ 𝛼−

𝑗𝑘
are the errors in the ranging measurements. The positive and negative

notation in these variables addresses the issue of purely using error magnitudes to account for over and under estimations.

𝐼3 is a 3 × 3 identity matrix, 𝑒𝑖 𝑗 is a zero column vector with the value of 1 at point 𝑖 and the value of -1 at point 𝑗 ,

and 𝑒𝑖 is a zero column vector with the value of 1 at point 𝑖. The measured range between femto-spacecraft 𝑖 and
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femto-spacecraft 𝑗 is given by ˆ𝑟𝑖 𝑗 , and ˆ𝑟 𝑗𝑘 is the measured range between femto-spacecraft 𝑗 and anchor 𝑘 . The set

𝑁1 contains the pairs of femto-spacecraft (𝑖, 𝑗) that have a range estimate ˆ𝑟𝑖 𝑗 between them. The set 𝑁2 contains the

pairs of femto-spacecraft 𝑖 and anchor 𝑘 that have a range estimate ˆ𝑟𝑖𝑘 between them. Equation 7 indicates variables or

matrices that are positive semidefinite.

This SDP problem formulation is the basis for the three-dimensional centralised positioning algorithm presented,

implemented in MATLAB using the convex optimisation solver cvx [25]. This approach is necessarily ‘centralised’

because it would require one device to optimise for the entire swarm given all the range estimates and problem constraints.

Such computation could be handled by the swarm deployer (e.g. a carrier CubeSat). In this role, the central unit would

gather swarm range estimates communicated to it and use this information to form the SDP constraints, optimise and

then extract the swarm relative positions. In practice, the space-based WSN that the femto-spacecraft forms would be

dynamic, gradually drifting away from the deployer. The algorithm would therefore be sampled at regular intervals to

update the overall swarm state estimates dynamically.

As will be discussed later in Section II.B, five femto-spacecraft can be localised in an arbitrary reference frame

relative to one another to unambiguously describe their relative positions in three-dimensional space. This can provide

the algorithm with a coordinate system if anchors are unavailable. Otherwise, anchors could be provided from the

swarm deployment process, with the known ejection impulses and times used for initial state estimation, or by a small

number of femto-spacecraft with GPS or other sensors.

We now quantify the algorithm’s performance by generating a test case of 20 femto-spacecraft placed randomly in a

cubic volume space, assigning four of these femto-spacecraft as anchors. The algorithm is then used with this same set

of random positions with different error levels in the range estimates supplied to the solver. We assign four anchors for

this test case as this is the minimum number of reference points found from testing that the algorithm can be expected to

operate reliably with. Note here that while for this test anchors are points known in absolute space for investigating the

algorithm’s performance quantitatively, in practice these could be roles taken by any set of femto-spacecraft to transform

a solution into a single relative frame.

The true ranges between femto-spacecraft are distorted with additive white Gaussian noise (AWGN), varying its

standard deviation (𝜎𝑟 ) to examine how the algorithm performs. The mean squared error in range estimates, 𝜎𝑟 2, is

given by:

𝜎𝑟
2 =

𝑁∑︁
𝑖=1

(𝑟𝑖 − 𝑟𝑖)2
𝑁

(8)

where 𝑁 is the number of range estimates, 𝑟𝑖 is the range estimate supplied to the algorithm and 𝑟𝑖 is the true

range. The algorithm is supplied a series of these range estimates between all femto-spacecraft. We vary 𝜎𝑟 in

simulation according to the average ranges between all the femto-spacecraft in the random network configuration, with
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the expectation that the ranging error in practice using an RSSI range estimate would be proportional to the magnitude

of the range. In order to assess the performance of the algorithm in a systematic manner, we therefore vary 𝜎𝑟 from

0-20% of 𝑟, where 𝑟 is the average range between all femto-spacecraft. For the example scenario presented in Fig. 3,

𝑟 = 85.0 𝑚 within a cubic volume of 200 𝑚3. We use the mean squared error of the localised femto-spacecraft (𝜎𝑝
2) to

compare the algorithm’s localisation to the true positions, such that:

𝜎𝑝
2 =

𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝑥𝑖)2 + (𝑦𝑖 − 𝑦𝑖)2 + (𝑦𝑖 − 𝑦𝑖)2
𝑛

(9)

where 𝑛 is the number of femto-spacecraft, position 𝑃𝑖 has true coordinates (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) and the algorithm estimates

these coordinates to be (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖). Table 1 displays the algorithm performance for the scenario described above. The

results are presented in Fig. 3.

Table 1 Centralised algorithm performance in random scenario

𝜎𝑟 𝜎𝑝 [m]
0 0.01
0.01𝑟 (0.92 m) 1.42
0.02𝑟 (1.84 m) 3.01
0.03𝑟 (2.75 m) 2.69
0.04𝑟 (3.67 m) 8.77
0.05𝑟 (4.59 m) 9.43
0.06𝑟 (5.51 m) 11.89
0.07𝑟 (6.43 m) 14.78
0.08𝑟 (7.34 m) 15.33
0.09𝑟 (8.26 m) 17.73
0.10𝑟 (9.18 m) 16.03
0.20𝑟 (18.36 m) 30.08
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(a) 𝜎𝑟 = 0 (b) 𝜎𝑟 = 0.01𝑟 (c) 𝜎𝑟 = 0.03𝑟

(d) 𝜎𝑟 = 0.05𝑟 (e) 𝜎𝑟 = 0.10𝑟 (f) 𝜎𝑟 = 0.20𝑟

(g) 𝜎𝑝 as noise levels increase

Fig. 3 Centralised algorithm performance in random scenario

In Fig. 3, the anchor coordinates are marked by red squares, the true coordinates (unknown to the algorithm) are

marked by grey circles and the algorithm estimates are marked by green crosses. The blue dashed lines indicate the

difference between an estimate and the true position for that point. As can be seen from these results, the algorithm

can comfortably handle a significant degree of inaccuracy and noise in the range estimates it is provided with and

still localise the points. Figure 3f presents the case approaching the upper limit of this process, where the algorithm’s

performance is significantly degraded when supplied range estimate errors with a standard deviation of 20% of the

average range between points. This demonstrates the performance of the algorithm in a controlled volume of space. In
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Section III we consider the practical performance of this algorithm for femto-spacecraft in realistic dynamic scenarios

as the swarm drifts away from its deployer spacecraft.

B. Distributed Relative Positioning Algorithm

A centralised approach relies on one unit being supplied all information necessary to optimise the estimate of the

relative positions for the swarm members. With a decentralised or distributed approach, we suppose varying degrees of

shared data and computation between swarm members. Using a distributed positioning algorithm we consider relative

trilateration of many unknown points using only the ranges between them to determine relative positions. The challenge

for this strategy is developing an algorithm that is robust to measurement noise and the resulting potential ambiguities in

the solutions. The key advantage of this method however is its scalability and ability to work in an anchorless way.

The structure of the algorithm in computational implementation and in communication within the network could vary

considerably depending on the application or swarm size. In the simplest case, a single femto-spacecraft would be able

to determine its position relative to at least four of its neighbours.

With trilateration in three-dimensional space, knowledge of the ranges between four other known points that are not

co-planar is in principle sufficient to uniquely identify a fifth point as the only possible intersection, as shown with

femto-spacecraft in Fig. 4.

(a) 4 ranging spheres to 5th femto-spacecraft (b) Unique intersection of 5th femto-spacecraft

Fig. 4 Relative trilateration in three-dimensional space

The fifth femto-spacecraft 𝑃5 is shown as the only possible intersection of the other four ranging spheres. A

least-squares approach (or similar) is required to estimate position with this method in practice due to measurement

noise. In its usual implementation, trilateration also requires the absolute coordinates of the four points to be known.

With a relative approach, we reverse this idea to determine relative positions where there are many unknown points but

there are estimates of the ranges between them.
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The relative positions found must be robust against ambiguities up to a global translation, rotation and reflection

(TRR). Translational ambiguity simply refers to the fact that a solution could be translated anywhere in space and remain

valid, so solutions must not have such an ambiguity in the relative coordinate system the solution is found in. Rotational

ambiguity is similar; suppose that the set of points form a structure consisting of lines between the femto-spacecraft that

is able to be rotated in any direction about a central pivot common to the entire structure. Reflective ambiguity exists

if a candidate solution point can be ‘flipped’ about a face shared by other points in a solution and still remain valid;

effectively there is a potential ‘ghost’ solution that is (without further knowledge) equally correct. It is essential to avoid

this ambiguity in constructing a network of further relative positions. Consider the scenario shown in Fig. 5.

(a) Localisation (b) Alternate localisation

Fig. 5 Reflective ambiguity in three-dimensional space

In Fig. 5a, consider that positions 𝑃1 to 𝑃4 are known in relative space, and that each ranging measurement to

position 𝑃5 is used to trilaterate and locate it relative to the first four positions. It is possible that in the presence of

measurement noise both the solutions shown in Figs. 5a and 5b are valid without considering the range 𝑟45 between

𝑃4 and 𝑃5. The solution shown in Fig. 5b, where the fifth position is above the plane formed by points 𝑃1 to 𝑃3, is

also possible. Even when 𝑟45 is considered, it is possible that the difference between 𝑟45 and the potential 𝑟45′ is not

sufficient in the presence of noise to rule out one or the other. While Fig. 5 illustrates a case where the estimate 𝑟45

would need to be completely anomolous to mistake the correct configuration (as the difference is so large), this is not

always the case for random geometries, particularly in the presence of noise. In developing a distributed algorithm that

uses relative trilateration it is essential to be robust against this kind of uncertainty and rule out candidate solutions that

exhibit it. This is especially important for the first set of points used to start the algorithm and trilaterate new solutions

to that first solution.

Consider now Fig. 5a to explain how relative trilateration would work as the basis of this algorithm. We can
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arbitrarily assign a femto-spacecraft at position 𝑃1 as the origin of a new relative Cartesian coordinate system, position

𝑃2 with the x-coordinate 𝑟12 and positions 𝑃3 and 𝑃4 using basic trigonometry (forming a relative tetrahedron of four

femto-spacecraft). This is described later (see Eq. (10)). We can perform that same operation with positions 𝑃1, 𝑃2, 𝑃3,

and 𝑃5, and then confirm the relationship between both tetrahedra with the range measurement 𝑟45. With this structure

formed subject to strict ranging conditions that avoid reflective ambiguity, we can freely trilaterate new femto-spacecraft

to this cluster in a simple way as we now know a sufficient number of true relative locations.

It is important to note here that five points connected by ten links is the smallest rigid structure in three-dimensional

space that can be found up to a global TRR. Were we to use tetrahedra as a stitching mechanism for new points to

trilaterate onto, many solutions could be found that exhibit ambiguities. Existing two-dimensional distributed algorithms

use two-dimensional quadrilaterals as a stitching mechanism. The two-dimensional analogue of a tetrahedron is a

triangle, with a quadrilateral being four points connected by six links in two-dimensional space, as has been described for

two-dimensional WSN localisation [26]. The third dimension introduces a relative up/down direction for this scenario

meaning that five points are required in three-dimensional space [27].

The first five femto-spacecraft start the algorithm by defining a relative orientation and position that newly trilaterated

positions are found relative to. This process continues until confidence limits of new femto-spacecraft positions are

reached based on an estimate of the size of the measurement noise. At this stage, the process would then restart for

new unknown femto-spacecraft positions. This results in clusters in different relative coordinate systems that need

to be transformed (translated and rotated) into a single relative reference frame. There are several ways of achieving

this [28], provided the clusters share a degree of overlap with localised femto-spacecraft in common (at least four in

three-dimensional space). Singular value decomposition (SVD) [29] has been found to be the most stable in computation,

so we use this method for frame transformations in our distributed algorithm.

To describe how the algorithm determines the swarm’s relative positions we first summarise the process and then

explain each step in detail. The fundamental steps of our algorithm’s logic are:

1) Trilaterate the first set of femto-spacecraft that pass volumetric and ranging tests against positioning ambiguity

as positions 𝑃1 - 𝑃5 in the relative frame F1.

2) Trilaterate further positions onto this cluster using a non-linear least squares iteration process:

a) Subject new configurations to the same volumetric and ranging tests for positioning ambiguity

b) If a configuration passes volumetric tests, start with a ‘first guess’ linear least-squares estimate that solves

the range equations

c) Refine through iteration of a non-linear case with the Newton-Raphson method

d) If the position found agrees with ranging test results against flip ambiguity, the femto-spacecraft is

localised onto the cluster.
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3) Continue to add new femto-spacecraft as in Step 2 until a (pre-determined) threshold on the error propagation in

newly trilaterated positions is reached for the cluster.

4) Repeat Steps 1-3 with a new cluster of positions for the entire swarm, ensuring a degree of overlap in clusters for

subsequent frame transformations.

5) Transform 𝑛 clusters in 𝑛 relative frames F1 − F𝑛 into a single swarm localisation in one relative frame using

singular value decomposition.

As described in step 1, to start a localisation cluster, the femto-spacecraft must pass both a volumetric test and a

ranging (flip ambiguity) test to work in the presence of ranging error. For these tests, we employ a similar method in

three-dimensional space to those presented in [27]. The two tests used work as follows:

(a) Volumetric test: prevents poor geometry and measurement noise allowing trilateration of non-robust structures

(e.g. in two-dimensional space, the equivalent would be three ranges failing the triangle inequality). If

the probability that a tetrahedron formed by four femto-spaceraft encloses a negative volume is above a

pre-determined value (set at 1% in simulation), then the femto-spacecraft are not localised.

(b) Ranging test: prevents flip/reflective ambiguity by using the otherwise redundant tenth range estimate 𝑟45

between five femto-spacecraft (Fig. 5). A statistical two-tailed z-test is used to determine within a 95%

confidence interval that their positions are robust against reflective ambiguity.

These tests ensure robust determination of femto-spacecraft relative positions. The relative localisation in the

arbitrary local frame F1 of the first 5 positions of the cluster (𝑃1 (𝑥1, 𝑦1, 𝑧1) to 𝑃5 (𝑥5, 𝑦5, 𝑧5)) can then be assigned from

trigonometry:

𝑃1 =


0
0
0

 𝑃2 =

𝑟12

0
0

 𝑃3 =

𝑟13 (𝑟223−𝑟

2
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2
13)

−2𝑟12𝑟13√︃
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2
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2
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2
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2
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2
4 − 𝑦

2
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𝑃5 =
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2
25+𝑟

2
12

2𝑟12
𝑟215−𝑟

2
35+𝑥

2
3+𝑦

2
3−2𝑥3𝑥5

2𝑦3

±
√︃
𝑟215 − 𝑥

2
5 − 𝑦

2
5


(10)

where the relative orientation of ±𝑧5 is determined by the flip ambiguity test. Further femto-spacecraft are then

trilaterated onto this cluster using a non-linear least squares refinement process. Using Newton’s method, this starts

with a first iteration ‘guess’ from a linear least-squares solution of the spherical ranging equations which is refined with

non-linear least squares. First, we solve the trilateration problem with a system of linear equations involving the new

femto-spacecraft to be localised 𝑃(𝑥, 𝑦, 𝑧) and four other femto-spacecraft already trilaterated within the cluster (e.g.

𝑃1 to 𝑃4). Note here that the notation 𝑃𝑖 to 𝑃𝑖+3 (where 𝑖 = 1 − 𝑛) would describe the general case for this scenario

with four arbitrary relative positions used, but we use the notation 𝑃1 to 𝑃4 in the following equations for clarity in the

expressions. Also note that this method uses the ranges between the femto-spacecraft used that are already trilaterated.

This requires only the four ranges between each of the localised femto-spacecraft and the new femto-spacecraft to be

localised to add this point to the structure. Its formation is still subject to the same volumetric and ranging tests as used
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for cluster formation. From Fig. 4b the four equations:

(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2 + (𝑧 − 𝑧𝑖)2 = 𝑟2𝑖𝑃 (𝑖 = 1 − 4) (11)

can be rearranged into a system of 3 linear equations of the form:

𝐻x = b (12)

where:

𝐻 =


𝑥2 − 𝑥1 𝑦2 − 𝑦1 𝑧2 − 𝑧1
𝑥3 − 𝑥1 𝑦3 − 𝑦1 𝑧3 − 𝑧1
𝑥4 − 𝑥1 𝑦4 − 𝑦1 𝑧4 − 𝑧1

 x =


𝑥 − 𝑥1
𝑦 − 𝑦1
𝑧 − 𝑧1

 b =
1
2


(𝑟21𝑃 − 𝑟

2
2𝑃 + 𝑟

2
12)

(𝑟21𝑃 − 𝑟
2
3𝑃 + 𝑟

2
13)

(𝑟21𝑃 − 𝑟
2
4𝑃 + 𝑟

2
14)

 (13)

This can be solved in a linear least-squares sense as:

x = (𝐻𝑇𝐻)−1𝐻𝑇 b (14)

Solving for x we can now find the newly trilaterated femto-spacecraft position 𝑃(𝑥, 𝑦, 𝑧). This is refined using a

non-linear least squares method that as a first iteration starts with the linear least squares solution. This method

minimises the sum of the squares of the range errors, which is achieved by minimising:

𝐹 (𝑥, 𝑦, 𝑧) =
𝑛∑︁
𝑖=1
(𝑟𝑖𝑃 − 𝑟𝑖𝑃)2 =

𝑛∑︁
𝑖=1

𝑓𝑖 (𝑥, 𝑦, 𝑧)2 (15)

where ˆ𝑟𝑖𝑃 is the estimated range between femto-spacecraft 𝑖 and the femto-spacecraft at position 𝑃, 𝑟𝑖𝑃 is the true range,

and 𝑓𝑖 (𝑥, 𝑦, 𝑧) is given by:

𝑓𝑖 (𝑥, 𝑦, 𝑧) = 𝑟𝑖 − 𝑟𝑖 =
√︃
(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2 + (𝑧 − 𝑧𝑖)2 − 𝑟𝑖 (16)

Finding the partial derivatives of Eq. (15) with respect to 𝑥, 𝑦 and 𝑧 yields:

g = 2𝐽𝑇 f (17)

where g is the vector of partial derivatives and 𝐽 is the Jacobian matrix:

g =

©«
𝜕𝐹
𝜕𝑥

𝜕𝐹
𝜕𝑦

𝜕𝐹
𝜕𝑧

ª®®®¬ 𝐽 =



𝜕 𝑓1
𝜕𝑥

𝜕 𝑓1
𝜕𝑦

𝜕 𝑓1
𝜕𝑧

𝜕 𝑓2
𝜕𝑥

𝜕 𝑓2
𝜕𝑦

𝜕 𝑓2
𝜕𝑧

𝜕 𝑓3
𝜕𝑥

𝜕 𝑓3
𝜕𝑦

𝜕 𝑓3
𝜕𝑧

𝜕 𝑓4
𝜕𝑥

𝜕 𝑓4
𝜕𝑦

𝜕 𝑓4
𝜕𝑧


f =


ˆ𝑟15 − 𝑟15
ˆ𝑟25 − 𝑟25
ˆ𝑟35 − 𝑟35
ˆ𝑟45 − 𝑟45


(18)
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Then, iterating with Newton’s method for point 𝑃:

𝑃𝑘+1 = 𝑃𝑘 − (𝐽𝑇𝑘 𝐽𝑘 )
−1𝐽𝑘 f𝑘 (19)

This procedure can be repeated for a set number of iterations or until convergence within a given tolerance level. The

number of attempts that a femto-spacecraft of unknown position would have to localise onto the cluster would vary.

However, we assume that if extra available configurations are available in a sampling cycle through additional range

estimates to different femto-spacecraft within the cluster, that these would be used, which we assume in simulation.

Other femto-spacecraft can continue to be localised onto a cluster until the solutions exceed noise bounds or confidence

levels. At this stage new femto-spacecraft yet to be localised would find another cluster to localise to, or would start

another cluster altogether.

When cluster positions are combined, a suitable amount of overlap in relative positions is required for the

transformation as described above. Therefore, it is necessary to know some femto-spacecraft positions in at least

two reference frames for transformations. Singular value decomposition frame transformation can be used given the

coordinates of a minimum of the same four non-coplanar positions known in two separate frames of reference, such that

a transformation (rotation matrix and translation vector) between the two frames can be found with the steps below.

Consider the two sets of positions 𝑞 and 𝑚, representing two 3× 𝑛 matrices of the same 𝑛 positions expressed in different

reference frames:

1) Find the centroids of each set of positions: q̄ =

∑𝑛
𝑖=1 𝑞𝑖
𝑛
& m̄ =

∑𝑛
𝑖=1 𝑚𝑖

𝑛
, where 𝑛 is the number of positions

2) Find the centred vectors: 𝑞𝑐𝑖 = qi − q̄ & 𝑚𝑐𝑖 = mi − m̄ (represented as arrays storing all vector combinations)

3) Find the 3×3 covariance matrix: 𝐻 = qcimci
𝑇

4) Find the singular value decomposition: 𝐻 = 𝑈
∑
𝑉𝑇

5) The desired rotation is calculated as 𝑅 = 𝑉𝑈𝑇

6) The desired translation is calculated as 𝑇 = m̄ − 𝑅q̄

7) The two sets of positions are then related by the transformation 𝑞 = 𝑅𝑚 + 𝑇

In the singular value decomposition,𝑈 and 𝑉 are 3 × 3 unitary matrices and ∑
is a 3 × 3 diagonal matrix. With this

rotation and translation, further positions can be transformed into either reference frame as required. This algorithm is

implemented in MATLAB. Using the same performance criteria for the centralised algorithm reported in Section II.A,

the following results show single-cluster performance for the distributed algorithm in the same scenario used in Section

II.A. This is anchorless, so all points are localised and the output is transformed into an absolute frame of reference to

compare its performance with the centralised algorithm.

Table 2 displays the algorithm performance. For this algorithm we also quantify the number of femto-spacecraft

localised to a cluster on their first attempt to do so, and the number localised in total after all potential range configurations
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Table 2 Distributed algorithm performance in random scenario (single cluster)

𝜎𝑟 𝜎𝑝 [𝑚] No. Localised on 1st Attempt No. Localised
0 0 20 20
0.01𝑟 (0.92 m) 2.66 13 20
0.02𝑟 (1.84 m) 4.33 11 20
0.03𝑟 (2.75 m) 5.42 16 17
0.04𝑟 (3.67 m) 11.32 16 19
0.05𝑟 (4.59 m) 11.64 9 15
0.06𝑟 (5.51 m) 12.06 6 17
0.07𝑟 (6.43 m) 7.61 8 10
0.08𝑟 (7.34 m) 21.37 9 17
0.09𝑟 (8.26 m) 18.12 8 14
0.10𝑟 (9.18 m) 12.84 7 7
0.20𝑟 (18.36 m) 17.52 6 6

between each swarm member localised have been attempted for a single cluster. The results shown in Fig. 6 demonstrate

the ability of the distributed algorithm to localise the majority of spacecraft in single-run attempts up to a ranging noise

of 9% 𝑟 . This represents the best performance that can be expected in simulation using the thresholds described for the

volumetric and ranging tests to prevent incorrect localisation of femto-spacecraft.

As ranging noise increases, there is an expected general trend towards fewer first attempt localisations (i.e. femto-

spacecraft localised using range estimates between the first four femto-spacecraft attempted), as shown in Table 2. In

general this leads to fewer total localisations for a single algorithm run as noise increases. In practice, frequent sampling

of the algorithm would update the relative position estimates of the swarm to account for the swarm state changing in

space with time. Femto-spacecraft that fail to localise on a particular algorithm cycle would have the opportunity to do

so on the next cycle.

Analysing the generalised performance of both algorithms in this scenario, as shown in Figs. 3g and 6g, we find that

the distributed algorithm localises to a comparable accuracy with the centralised algorithm as noise levels in the range

estimates increase (from linear best fit at a AWGN level of 10%𝑟 = 8.5 𝑚, in the centralised algorithm 𝜎𝑝 = 15.5 𝑚 and

in the distributed algorithm 𝜎𝑝 = 14 𝑚). However, this is only when considering the femto-spacecraft that manage to

localise, as the distributed algorithm would not necessarily localise all femto-spacecraft at higher noise levels. This

emphasises the contrasting approaches; while the centralised algorithm works on one spacecraft that is provided with all

swarm range data, in the distributed algorithm individual femto-spacecraft have less range data to localise with.
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(a) 𝜎𝑟 = 0 (b) 𝜎𝑟 = 0.01𝑟 (c) 𝜎𝑟 = 0.03𝑟

(d) 𝜎𝑟 = 0.05𝑟 (e) 𝜎𝑟 = 0.10𝑟 (f) 𝜎𝑟 = 0.20𝑟

(g) 𝜎𝑝 as noise levels increase

Fig. 6 Distributed algorithm performance in random scenario

III. Relative Navigation for a Femto-Spacecraft Swarm

In this section we apply the relative positioning methodology described Section II within realistic femto-spacecraft

swarm dispersal scenarios using a model of the relative dynamics of the swarm with respect to its deployer. This enables

the development of a simple relative navigation filter as an example of the utility of the algorithms in practice. For these

purposes we assume the femto-spacecraft have no means of controlling their relative positions and the initial conditions

for the dynamics are defined by the deployer.
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A. Relative Dynamics

Fig. 7 Clohessy-Wiltshire Reference Frame

The Clohessy-Wiltshire (CW) equations [30] provide a linearised approximation of the relative motion of a chase

spacecraft with respect to a target spacecraft in a target-centred reference frame. We will use the terms ‘deployer’ and

‘femto-spacecraft’ to describe the target and chase spacecraft respectively. The deployer is assumed to be in a circular

orbit while the femto-spacecraft drift passively relative to it. Perturbations to the two-body relative motion problem are

neglected in this analysis. The CW equations are defined as:

¥𝑥 − 2𝜔𝑛 ¤𝑦 − 3𝜔2𝑛𝑥 = 0 (20)

¥𝑦 + 2𝜔𝑛 ¤𝑥 = 0 (21)

¥𝑧 + 𝜔2𝑛𝑧 = 0 (22)

where:

𝜔𝑛 =

√︂
`

𝑅3𝑜
=
2𝜋
𝑇𝑜

(23)

The mean motion of the deployer 𝜔𝑛 is expressed in terms of the standard gravitational parameter of the central body

` and the orbital radius 𝑅𝑜 of the deployer’s orbit, which has an orbital period 𝑇𝑜. In this deployer-centred reference

frame, the x-axis points outwards along the radius vector of the deployer spacecraft (radial motion), the y-axis points

forwards along the velocity vector (along-track motion), and the z-axis completes the right-handed set by pointing along

the deployer’s orbital angular momentum vector (cross-track motion). This means that the central orbital body (e.g.

Earth) is towards the negative x-direction of the deployer. This is illustrated in Fig. 7. Expressing the CW equations in

state space form allows a closed form solution to be expressed such that:
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¤𝑥(𝑡) = 𝐴𝑥(𝑡) (24)

Here the state vector 𝑥(𝑡) and the system matrix 𝐴 are given by:

𝑥(𝑡) =



𝑥

𝑦

𝑧

¤𝑥
¤𝑦
¤𝑧


𝐴 =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
3𝜔2𝑛 0 0 0 2𝜔𝑛 0
0 0 0 −2𝜔𝑛 0 0
0 0 −𝜔2𝑛 0 0 0


(25)

These equations can then be solved in terms of a state transition matrix Φ and the initial conditions 𝑥(𝑡0) such that:

𝑥(𝑡) = 𝑒𝐴(𝑡−𝑡0)𝑥(𝑡0) = Φ𝑥(𝑡0) (26)

Abbreviating sin(𝜔𝑛𝑡) = 𝑠 and cos(𝜔𝑛𝑡) = 𝑐, for 𝑡0 = 0 the solutions are:



𝑥(𝑡)
𝑦(𝑡)
𝑧(𝑡)
¤𝑥(𝑡)
¤𝑦(𝑡)
¤𝑧(𝑡)


=



4 − 3𝑐 0 0 𝑠
𝜔𝑛

2
𝜔𝑛
− 2𝑐

𝜔𝑛
0

6𝑠 − 6𝜔𝑛𝑡 1 0 2𝑐
𝜔𝑛
− 2

𝜔𝑛

4𝑠
𝜔𝑛
− 3𝑡 0

0 0 𝑐 0 0 𝑠
𝜔𝑛

3𝜔𝑛𝑠 0 0 𝑐 2𝑠 0
6𝜔𝑛𝑐 − 6𝜔𝑛 0 0 −2𝑠 4(𝑐 − 3) 0

0 0 −𝜔𝑛𝑠 0 0 𝑐





𝑥0

𝑦0

𝑧0

¤𝑥0
¤𝑦0
¤𝑧0


(27)

With this closed form solution we can propagate the state of each femto-spacecraft using the state transition matrix.

The CW equations are now used to consider how femto-spacecraft ejected from their deployer may disperse and drift

with time, and how the relative positioning algorithms proposed can estimate the location of each swarm member. The

initial state vector of the femto-spacecraft deployed will be coincident with the deployer, with some initial ejection

velocity for each femto-spacecraft relative to the deployer.

We will consider two swarm deployment and dispersal methods. Firstly, a controlled, sequential ejection of the

swarm with fixed impulses in front of and behind the deployer, and secondly, a randomly scattered, instantaneous ejection

of the entire swarm around the deployer. These could be used in applications such as sparse aperture interferometry or

massively-parallel space environment sensing. For both scenarios we consider the deployer to be in a circular low Earth

orbit of altitude 400 km. We also consider only the ejection impulse contributing to the swarm dispersal and that no

other perturbing forces affect the swarm dynamics.
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Sequential Swarm Ejection

Here we simulate the sequential ejection of a swarm of femto-spacecraft over one Earth orbit for the deployer, where

each femto-spacecraft is ejected with the same impulse. The initial state of each femto-spacecraft relative to the deployer

is assumed to be coincident in position with the deployer and an ejection velocity given by:


𝑥0

𝑦0

𝑧0

 =


0
0
0

 𝑚

¤𝑥0
¤𝑦0
¤𝑧0

 = ±


0
2
4

 × 10
−3𝑚/𝑠 (28)

If two femto-spacecraft are ejected with the same impulse relative to their deployer, one in front and one behind the

deployer, over one full Earth orbit for the deployer, their trajectories relative to the deployer take the form as shown in

Fig. 8a. By deploying the swarm evenly and sequentially over an orbit the swarm members would be located at different

phases along this same relative trajectory as shown in Fig. 8b, where a swarm of 20 femto-spacecraft (10 ahead and 10

behind) are deployed, which would then gradually drift farther from the deployer in following orbits, as shown in Fig. 8c.

(a) Trajectories over 1 orbit (b) Swarm state at 𝑡 = 𝑇 (c) 𝑡 = 10𝑇

Fig. 8 Sequential swarm ejection: swarm state with time

With this deployment sequence the swarm drifts away from the deployer, bounded in the radial and cross-track

directions, dispersing approximately ±50 𝑚 from the deployer after 1 orbit, to ±500 𝑚 from the deployer after 10 orbits.

Random and Instantaneous Swarm Ejection

Rather than a controlled sequential ejection of the swarm to drift away from the carrier, the swarm could be ejected

instantaneously in random directions around the deployer at the same speed, with the initial state for the entire swarm of:


𝑥0

𝑦0

𝑧0

 =


0
0
0

 𝑚 |𝑣0 | = 1 × 10−3𝑚/𝑠 (29)
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This ejection is modelled with the velocity vectors pointing in uniformly distributed random directions around the

deployer, each with the same magnitude. In practice, the available deployment directions would be limited. Figure 9

displays a swarm of 20 femto-spacecraft deployed randomly around their deployer, at different stages throughout an

orbit:

(a) 𝑡 = 12𝑇 (b) 𝑡 = 34𝑇 (c) 𝑡 = 𝑇

Fig. 9 Random swarm ejection: swarm state with time

After each relative orbit, the swarm returns to a state where each femto-spacecraft is located either in front of or

behind the deployer, drifting further over the course of several orbits.

B. Relative Navigation Filter

We now use a Kalman filter (KF) [31] to demonstrate a relative navigation system for the swarm, combining the

algorithm outputs and relative dynamics in the above scenarios to filter the relative state estimation over time. In

the following scenarios we consider a simple centralised filter operating on the same spacecraft that is running the

centralised relative positioning algorithm. The discrete time model used is:

xk = Φxk−1 + wk−1 (30)

zk = xk + ak (31)

where xk is the state at discrete time step 𝑘 , Φ is the state transition matrix from the CW equations, w is the process

noise, z is the state measurement and a is the observation noise. We use the relative positions from the algorithm to be a

partial linear observer of the femto-spacecraft state in the measurement model. In this implementation, the algorithm is

sampled at every discrete time step, with the swarm relative positions output by the centralised positioning algorithm (as

detailed in Section II.A) providing the input for the filter’s measurement update.

The filter works through two stages iteratively, beginning with an initial state x̂−k−1 and state covariance estimate

𝑃−
𝑘−1 from the initial conditions. Firstly, the time update stage:
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x̂−k = Φx̂+k−1 (32)

𝑃−𝑘 = Φ𝑃+𝑘−1Φ
𝑇 +𝑄𝑘−1 (33)

where the -/+ superscripts denote the a-priori/a-posteriori estimates and 𝑄 is the process noise covariance matrix. Then

the measurement update stage:

𝐾𝑘 = 𝑃−𝑘𝐻
𝑇 (𝐻𝑃−𝑘𝐻

𝑇 + 𝑅)−1 (34)

𝑥+𝑘 = 𝑥−𝑘 + 𝐾𝑘 (𝑧𝑘 − 𝐻𝑥−𝑘 ) (35)

𝑃+𝑘 = (𝐼 − 𝐾𝑘𝐻)𝑃−𝑘 (36)

where 𝐾 is the Kalman gain, 𝐻 = 𝐼 is the observation matrix, and 𝑅 is the sensor noise covariance matrix. The filter

then iterates through 𝑘 − 1← 𝑘 , using the output of the measurement update stage as part of the calculation in the next

time update stage. We assume 𝑄 is a diagonal matrix with the following elements for the CW equations [32]:

𝑄 =

[
𝑄𝑟 0
0 𝑄𝑣

]
𝑄𝑟 =


22 0 0
0 22 0
0 0 22

 × (10
−2𝑚)2 𝑄𝑣 =


22 0 0
0 22 0
0 0 22

 × (10
−3𝑚/𝑠)2 (37)

The relative navigation of the swarm would begin after release from the deployer. Ejection from the deployer would

provide the initial state estimate of each femto-spacecraft within the swarm. The relative velocity at the point of ejection

would introduce uncertainty.

We now apply the filter in the scenarios described above to demonstrate relative positioning performance with

the centralised algorithm. In this simulation we set a AWGN level of 𝜎𝑟 = 0.02𝑟, and we use a sampling interval of

1 minute. Figure 10a displays the filtering of a swarm 20 femto-spacecraft deployed randomly and instantaneously

from a deployer (only shown to 𝑡 = 𝑇
5 for clarity). The algorithm output samples are marked by the red crosses, while

the blue lines indicates the Kalman filter output and the grey lines indicate the dynamics model trajectories for each

femto-spacecraft from the deployer, which is located at the origin. Figure 10b displays the sequential ejection case over

the course of an orbit (where the femto-spacecraft that are deployed last are re-tracing the trajectories of those deployed

first). Note that the filtering in Fig. 10b occurs between the first and second orbit after all femto-spacecraft have been

deployed. To analyse the filter performance in detail, we isolate the filtering of just one femto-spacecraft within the

swarm over the course of 2 orbits (190 minutes) for both scenarios. This is displayed firstly for the random deployment
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(a) Random ejection (shown to t = 𝑇
5 ) (b) Sequential ejection

Fig. 10 Swarm relative positioning filtering

in Fig. 11 and then for the controlled sequential deployment in Fig. 12.

(a) 3D (b) Individual axes

Fig. 11 KF positioning of femto-spacecraft 1 (random ejection)
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(a) 3D (b) Individual axes

Fig. 12 KF positioning of femto-spacecraft 1 (sequential ejection)

The algorithm output samples are again marked by the red crosses in Figs.11 and 12 indicate the sampled algorithm

outputs at each discrete time step, while the blue line indicates the Kalman filtering of these samples. As can be seen in

the plots of both the three-dimensional relative motion and the individual axes, the femto-spacecraft’s relative position

state estimate with time is smoothed by the filter.

As an alternative approach, the outputs of the positioning algorithms can be used for initial relative orbit determination

(IROD), with the localisation solutions generated providing initialisation for an extended Kalman filter (EKF) using

RSSI values directly. This approach requires an EKF only because the range-based measurement model is non-linear.

The state measurement model from Eq. (31) is adapted for the EKF:

zk = ℎ(xk) + ak (38)

where ℎ is the observation function of the state, and the observation matrix 𝐻 is now defined by the following Jacobian:

𝐻𝑘 =
𝜕ℎ

𝜕x

����
�̂�−
𝑘

(39)

Otherwise, the EKF works in the same way as the KF with the steps in Eqs. (32 - 36). The outputs of this filtering

approach are displayed in Figs. 13 and 14, again highlighting the filtering of a femto-spacecraft within the swarm over 2

orbits in both random and sequential deployment scenarios.
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(a) 3D (b) Individual axes

Fig. 13 EKF positioning of femto-spacecraft 1 (random ejection)

(a) 3D (b) Individual axes

Fig. 14 EKF positioning of femto-spacecraft 1 (sequential ejection)

The results of both these filtering approaches demonstrate the improved relative navigation that Kalman filtering

provides over relative positioning algorithm outputs alone. Combining confidence in the algorithm sampling and the

relative dynamics provides improved relative positioning when compared to discrete algorithm samples at each discrete

time step. In the EKF case, where the algorithm is used for initialisation, the results show that using a range-based

measurement model is also viable. As a femto-spacecraft swarm drifts further from its deployer, the uncertainties in

the state estimation would grow with time, so this is important in bounding errors and providing improved relative

positioning for a swarm. The results demonstrate that either of these approaches could be implemented for a centralised

navigation filter for swarm relative positioning. Depending on operational constraints, such as available processing

power, one method or combination of both KF and EKF methods could be implemented.
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IV. Conclusions

In this paper, novel methods for the relative navigation of a swarm of centimetre-scale femto-spacecraft using only

range estimates available from the communication links between swarm members have been presented. Two relative

positioning algorithms that utilise these range estimates have been detailed; firstly a centralised algorithm designed

to optimise the relative positioning of the entire swarm using the computational resources of a single device, and a

distributed algorithm designed to share this computational load throughout the swarm. Sample deployment and dispersal

scenarios have been presented, and the algorithms operating with a basic navigation filter to improve state estimation

over time has been shown.

The performance of both algorithms in simulated random scenarios under the presence of increasing measurement

noise demonstrates their viability in uniquely localising femto-spacecraft relative to one another using coarse range

estimates. The methods presented would provide a low-cost relative positioning system for a swarm of femto-spacecraft

that while of limited computational resource individually can operate collectively for many space-based applications.

The relative navigation demonstrated using the centralised algorithm and Kalman filtering in different swarm dispersal

scenarios highlights opportunities for their practical implementation in low Earth orbit.

The range-based relative navigation approaches described in this paper could be implemented within femto-spacecraft

swarms to enable novel applications in space with a unique design methodology that could provide enhanced space-based

satellite utilities in the near future.
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