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We examine the stability of radially spreading, gravity-driven thin films of power-law fluids,9

lubricated from below by another power-law viscous fluid. Such flows are susceptible to10

a viscous fingering instability, also known as a non-porous viscous fingering instability,11

when a less viscous fluid intrudes beneath a more viscous fluid. In contrast to the Saffman-12

Taylor instability, such instabilities originate from a jump in hydrostatic pressure gradient13

across the intrusion front, associated with gradients in the upper surface. These are stabilised14

by buoyancy forces associated with the lower layer near its nose, and all instabilities are15

suppressed above a critical density difference. We find that shear-thinning flows are more16

prone to instability than Newtonian and shear-thickening flows. Lower consistency ratios are17

sufficient for the onset of instability of shear-thinning flows, and the stabilising influences of18

buoyancy forces are suppressed. As such, higher density differences are required to suppress19

the instability completely.20

Key words:21

MSC Codes (Optional)22

1. Introduction23

The intrusion front of a viscous fluid propagating towards another viscous fluid confined to24

a narrow channel, or a porous medium, is prone to a viscous fingering instability when the25

intruding fluid is less viscous. A similar instability occurs when a thin film of a less viscous26

fluid intrudes underneath a thin film of a more viscous fluid under the action of gravity.27

Kowal (2021) introduced the term non-porous viscous fingering to refer to instabilities28

of this type, which, in general, involve free-surface flow with a viscosity contrast. Such29

instabilities are relevant to a wide range of natural and industrial phenomena, such as various30

coating applications (Taylor 1963; Reinelt 1995), the formation and protection of microchips31

† Email address for correspondence: katarzyna.kowal@glasgow.ac.uk
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(Cazabat et al. 1990), patterning in microfluidic devices (Kataoka & Troian 1999), fractures32

(Hull 1999), fingering of granular materials (Pouliquen et al. 1997), the oil recovery industry33

(Orr & Taber 1984), and carbon sequestration (Cinar et al. 2009). These instabilities may be34

controlled by varying the flow rate (Li et al. 2009; Dias et al. 2012), altering the geometry35

(Nase et al. 2011; Al-Housseiny et al. 2012; Juel 2012; Dias & Miranda 2013), through36

elastic deformation (Pihler-Puzovic et al. 2012, 2013, 2014) and anisotropy (Ben-Jacob et al.37

1985), including viscous fingering of nematic liquid crystals (Buka et al. 1986). The rheology38

of the flow alters the onset of instability, as well as the structure of the fingering patterns that39

emerge (Kondic et al. 1998; Fast et al. 2001; Kagei et al. 2005).40

The gravity-driven analogue is also relevant to the flow of ice sheets, lubricated by a much41

thinner layer of subglacial till, consisting of water, clay and subglacial sediment (see, e.g.,42

Weertman 1957; Nye 1969; Kamb 1970; Engelhardt et al. 1990). These form into fast-flowing43

ice streams, which are much more lubricated from below than the surrounding ice, as a result44

of increased basal sliding, a thermoviscous instability, or other flow instabilities (Hindmarsh45

2004, 2009; Sayag & Tziperman 2008; Kyrke-Smith et al. 2014, 2015; Hewitt & Schoof46

2017; Schoof & Mantelli 2021). Instabilities on the opposite end of the spectrum, involving47

thin films of fluid forming a more viscous crust over the main current, are relevant to cooling48

lava domes, forming a solidifying crust (Fink & Griffiths 1990, 1998; Stasiuk et al. 1993;49

Balmforth & Craster 2000). The latter flows are prone to instability following a temperature-50

dependent viscosity change (Whitehead & Helfrich 1991).51

Instabilities of lubricated viscous gravity currents have also been observed experimentally52

for purely Newtonian flows (Kowal & Worster 2015) and when the overlying layer is shear53

thinning (Kumar et al. 2021). A linear stability analysis of these flows has been conducted54

in the Newtonian limit by Kowal & Worster (2019a,b), both globally and locally near the55

intrusion front, and by Kowal (2021) when the intruding fluid fully displaces the pre-existing56

fluid layer. The mechanism of instability can be seen most clearly in the limit in which the57

two layers are of equal density, in which case, the flow is most unstable. These are further58

stabilised by transverse shear stresses and buoyancy forces associated with the lower layer.59

The former emerge when the two layers are of unequal density. Fingering instabilities have60

also been observed in experiments of a viscous gravity current intruding beneath a more61

viscous ambient and at the interface between two more viscous fluids (Snyder & Tait 1998).62

The latter is also subject to a purely gravitational instability, caused by the intrusion of a63

dense liquid layer into a buoyantly unstable layer of ambient liquid.64

Importantly, the instability of lubricated viscous gravity currents is distinct from the65

instabilities formed at the nose of a thin film of viscous fluid down slope (Huppert 1982;66

Troian et al. 1989), and from the long-wave instabilities formed at the interface between67

superposed layers of viscous fluid in the Newtonian and non-Newtonian limits (see, e.g., Yih68

1967; Hooper & Boyd 1983; Loewenherz & Lawrence 1989; Chen 1993; Charru & Hinch69

2000; Balmforth et al. 2003).70

In this paper, we extend the stability analysis of Kowal & Worster (2019b) to investigate the71

role of a shear thinning and shear thickening rheology on the onset of instability. We model72

both layers as immiscible thin films of viscous fluid and assume that the flow is resisted73

dominantly by vertical shear stresses and that inertia and surface tension at the interface74

between the layers are negligible. We adopt a geometry in which the flow is spreading75

radially outwards over a horizontal substrate. The undisturbed flow is axisymmetric and self-76

similar, as examined in a number of flow regimes in a companion paper (Leung & Kowal77

2022), henceforth referred to as Part I.78

We begin by deriving governing equations, which include the effects of small disturbances79

to the base flow, in §2. In contrast to purely Newtonian flows, the stress-dependent viscosity80

of power-law fluids precludes the existence of explicit expressions for fully nonlinear81
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Figure 1: Schematic of the flow of two superposed thin films of power-law viscous fluids
spreading radially outwards under gravity over a horizontal substrate. Schematic adapted

from Part I.

depth-integrated fluxes in terms of standard functions, and we exploit the linearity of82

the small perturbations to proceed. We further formulate the governing equations in83

similarity coordinates, which makes it possible to search for normal mode solutions for84

the perturbations. As both external boundaries of the flow (the origin and the leading edge),85

as well as the intrusion front, involve singularities, it is necessary to develop asymptotic86

solutions near the singular points. We do so in §3. We solve the resulting coupled system87

of differential equations numerically in §4 and discuss the results, mapping out stability88

diagrams across parameter space, in §5. We finish with concluding remarks in §6.89

2. Theoretical development90

We consider the flow of two superposed, thin films of viscous fluid of dynamic viscosity µ91

and µl and densities ρ and ρl spreading radially outwards over a rigid, horizontal substrate, as92

depicted in the schematic of figure 1. The upper and lower layers are supplied at constant flux,93

Q0 and Ql0, respectively, at the origin. We denote physical quantities, such as the flux and94

viscosity, associated with the lower, lubricating later by the subscript l. We denote the surface95

height of the upper and lower layers in the lubricated region by z = H(r, θ, t) and z = h(r, θ, t),96

respectively, where r and θ are the radial and azimuthal coordinates, respectively. We also97

assume there is no surface tension between the layers and consider the limit in which vertical98

shear provides the dominant resistance to the flow of both layers.99

We assume a power-law non-Newtonian rheology for both films of fluid, so that the100

dynamic viscosities are given by101

µ = µ̃

����∂u∂z

����
1
n
−1

, µl = µ̃l

����∂ul∂z

����
1
n
−1

, (2.1)102

within the limits of lubrication theory, where µ̃and µ̃l are constant consistencies. As discussed103

in Part I, the equal power-law exponents imply the existence of a self-similar, axisymmetric104

flow. These flows have been examined in Part I, including their dependence on the underlying105

dimensionless parameters106

D =
ρl − ρ

ρ
, M =

µ̃

µ̃l
, Q =

Ql0

Q0

. (2.2)107

describing the density difference, consistency ratio, and source flux ratio.108

The flow considered in this paper is governed by a generalisation of the governing equations109

for axisymmetric flows developed in Part I, to include non-axisymmetric disturbances. The110

governing equations and boundary conditions of §2 of Part I, apart from the expressions for111
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the velocities and fluxes, are appropriate to examine such flows. To derive expressions for112

the velocities and fluxes, we begin by considering disturbances of order ǫ ≪ 1 so that113

φ = φ0 + ǫφ1, (2.3)114

where φ = (h,H, u, ul, q, ql) and φi = (hi,Hi, ui, uli, qi, qli) for i = 1,2, such that115

∂φ0/∂θ = 0. Specifically,116

h = h0(r, t) + ǫh1(r, θ, t), H = H0(r, t) + ǫH1(r, θ, t) (2.4)117

and118

u = u0(r, z, t)er + ǫ [ur1(r, θ, z, t)er + uθ1(r, θ, z, t)eθ] , (2.5)119

ul = ul0(r, z, t)er + ǫ [ulr1(r, θ, z, t)er + ulθ1(r, θ, z, t)eθ] , (2.6)120

q = q0(r, t)er + ǫ [qr1(r, θ, t)er + qθ1(r, θ, t)eθ] , (2.7)121

ql = ql0(r, t)er + ǫ [qlr1(r, θ, t)er + qlθ1(r, θ, t)eθ] , (2.8)122

where er and eθ are the radial and azimuthal unit basis vectors, respectively.123

In what follows, we use the convention that the 0 and 1 subscripts denote quantities referring124

to the basic state and perturbations, respectively, and the r and θ subscripts denote quantities125

referring to the r- and θ-components of a vector. That is, any vector quantity p can be126

expressed in the form127

p = (pr0er + pθ0eθ ) + ǫ(pr1er + pθ1eθ). (2.9)128

For expressions for the zeroth-order quantities u0, ul0, q0, and ql0 in terms of the zeroth-129

order surface heights h0 and H0 and their gradients, we refer the reader to Appendix A. These130

were derived in §2 of Part I. For convenience, all of these zeroth-order quantities are denoted131

by the variables h, H, u, ul, q, and ql, without the 0 subscript, in Part I.132

We derive expressions for the perturbations by returning to the horizontal force balance in133

the no-slip and lubricated regions.134

2.1. No-slip region135

Integrating the horizontal force balance136

∂

∂z

(
µ
∂u

∂z

)
= ρg∇H, (2.10)137

in the no-slip region, rL < r < rN , results in the velocity field138

u =
1

n + 1

(
ρg

µ̃

)n (
Hn+1 − (H − z)n+1

)
|∇H |n−1(−∇H), (2.11)139

and corresponding depth-integrated flux140

q =
1

n + 2

(
ρg

µ̃

)n
Hn+2 |∇H |n−1(−∇H), (2.12)141

which are of the same functional form as that of axisymmetric flows, including the non-142

axisymmetric contributions. These agree with Kowal & Worster (2015). Linearising gives143

rise to the following components144

qr1 = −
1

n + 2

(
ρg

µ̃

)n
Hn+1

0

����∂H0

∂r

����
n−1 (

nH0
∂H1

∂r
+ (n + 2)

∂H0

∂r
H1

)
, (2.13)145

qθ1 = −
1

n + 2

(
ρg

µ̃

)n
Hn+2

0

����∂H0

∂r

����
n−1

1

r

∂H1

∂θ
, (2.14)146

Focus on Fluids articles must not exceed this page length
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of the perturbations to the flux.147

Mass conservation, at first order, is described by148

∂H1

∂t
= −

1

r

∂(rqr1)

∂r
−

1

r

∂qθ1

∂θ
, (2.15)149

within the no-slip region rL < r < rN . We note that additional terms are required when150

transforming to similarity variables (2.42) to capture terms involving the base state flow151

owing to perturbations in the frontal position.152

2.2. Lubricated region153

Unlike single-layer flows for any value of n, and lubricated flows for n = 1, there are no closed-154

form expressions for the velocity and flux, which include non-axisymmetric contributions,155

unless linearised.156

We proceed by starting from the horizontal force balance157

∂

∂z

(
µ
∂u

∂z

)
= ρg∇H, h < z < H (2.16)158

159

∂

∂z

(
µl
∂ul

∂z

)
= ρg(D∇h + ∇H), 0 < z < h (2.17)160

in the upper and lower layers, supplemented by the stress-free boundary condition at z = H,161

continuity of velocity and shear stress at z = h, and the no-slip boundary condition at z = 0.162

For the upper layer, this can be integrated directly so that163

u = −

(
ρg

µ̃

)n
1

n + 1

[
(H − z)n+1 − (H − h)n+1

]
|∇H |n−1(−∇H) + uI , (2.18)164

where uI is the interfacial velocity, to be determined by matching with the velocity of the165

lower layer. Linearising gives rise to the perturbed velocity166

u1 = −

(
ρg

µ̃

)n
1

n + 1

[ [
(H0 − z)n+1 − (H0 − h0)

n+1
]
|∇H0 |

n−1(−∇H1)167

+ (n − 1)
[
(H0 − z)n+1 − (H0 − h0)

n+1
]
|∇H0 |

n−3(∇H1 · ∇H0)(−∇H0)168

+ (n + 1)[H1(H0 − z)n − (H1 − h1)(H0 − h0)
n |∇H0 |

n−1(−∇H0)]

]
+ uI1, (2.19)169

where uI1 is the perturbed part of the interfacial velocity uI .170

For the lower layer, we obtain171

∂ul

∂z
= |a − zc |n−1(a − zc) (2.20)172

where173

a = −
ρg

µ̃
M (H∇H +Dh∇h) , (2.21)174

175

c = −
ρg

µ̃
M (∇H +D∇h) . (2.22)176

Linearising in ǫ and integrating the linearised expressions yields177

ulr1 =
1

(n + 1)c2
r0

[
(cr1 (ar0 + nzcr0) − (n + 1)ar1cr0) |ar0 − zcr0 |

n−1 (ar0 − zcr0)+178
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((n + 1)ar1cr0 − ar0cr1) |ar0 |
n−1ar0

]
, (2.23)179

180

ulθ1 =
1

n(n + 1)c2
r0

[
(cθ1 (ar0 + nzcr0) − (n + 1)aθ1cr0) |ar0 − zcr0 |

n−1 (ar0 − zcr0)+181

((n + 1)aθ1cr0 − ar0cθ1) |ar0 |
n−1ar0

]
, (2.24)182

from which the interfacial velocity uI can be deduced. Explicitly,183

uI = uI0er + ǫ(uIr1er + uIθ1eθ), (2.25)184

where185

uI0 =
1

n + 1

(
ρg

µ̃l

)n
1

D∂h0/∂r + ∂H0/∂r

[ ����(H0 − h0)
∂H0

∂r

����
n+1

186

−

����h0

(
D
∂h0

∂r
+

∂H0

∂r

)
+ (H0 − h0)

∂H0

∂r

����
n+1

]
, (2.26)187

188

uIr1 =

[
h1
∂ulr0

∂z
+ ulr1

]
z=h0

, (2.27)189

190

uIθ1 =

[
h1
∂ulθ0

∂z
+ ulθ1

]
z=h0

. (2.28)191

Note that since the basic state is axisymmetric, it follows that aθ0 = cθ0 = 0. Expressions192

for ar0,ar1,aθ1, cr0, cr1, and cθ1 are specified explicitly in the Appendix.193

Further integration yields the following expressions for the r-components194

qlr1 = A1h1 + A2ar1 + A3cr1, (2.29)195
196

qr1 = A4
∂H1

∂r
+ A5H1 + A6h1 + A7ar1 + A8cr1, (2.30)197

and the θ-components198

qlθ1 = A9aθ1 + A10cθ1, (2.31)199
200

qθ1 = A11
1

r

∂H1

∂θ
+ A12aθ1 + A13cθ1, (2.32)201

of the perturbations to the fluxes of the two layers in the lubricated region, where the Ai are202

specified in the Appendix. These expressions reduce to those of Kowal & Worster (2019b)203

for n = 1.204

Mass conservation, at first order in ǫ , is described by205

∂h1

∂t
= −

1

r

∂(rqlr1)

∂r
−

1

r

∂qlθ1

∂θ
, (2.33)206

for the lower layer, and207

∂(H1 − h1)

∂t
= −

1

r

∂(rqr1)

∂r
−

1

r

∂qθ1

∂θ
, (2.34)208

for the upper layer within the lubricated region 0 < r < rL. Similarly to the no-slip region,209

additional terms are required when transforming to similarity variables (2.41) to capture210

terms involving the base state flow owing to perturbations in the frontal position.211
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2.3. Boundary conditions212

We apply the source flux conditions213

lim
r→0

2πrqlr = Ql0, lim
r→0

2πrqr = Q0, (2.35)214

the thickness and height continuity conditions215 [
H
]
+

−
= 0 and

[
(q + ql) · nL

]
+

=

[
q · nL

]−
(r = rL), (2.36)216

where nL = er − eθ
1
rL
∂rL/∂θ + O(ǫ

2) is an outward normal vector at the lubrication front,217

and the kinematic conditions218

ÛrL = lim
r→rL

[
qlr − qlθ

1

rL

∂rL

∂θ

] /
h, (2.37)219

for the lubrication front and220

ÛrN = lim
r→rN

[
qr − qθ

1

rN

∂rN

∂θ

] /
H, (2.38)221

for the leading edge. We also apply the zero-flux condition222

ql · nL = 0 (r = rL), (2.39)223

at the lubrication front for D , 0, and224

q · nN = 0 (r = rN ), (2.40)225

at the leading edge, where nN = er − eθ
1
rN
∂rN/∂θ + O(ǫ2) is an outward normal vector at226

the leading edge.227

2.4. Similarity coordinates228

To conduct a linear stability analysis about the self-similar axisymmetric flow of Part I, we229

revert to the similarity coordinates (ξ, φ, τ) defined by230

r =

(
ρg

µ̃

)α
tβQ

γ

0
ξξL for 0 < r < rL, (2.41)231

r =

(
ρg

µ̃

)α
tβQ

γ

0
[ξL + (ξ − 1)(ξN − ξL)] for rL < r < rN , (2.42)232

233

τ = log t, φ = θ. (2.43)234

where 0 < ξ < 1 corresponds to the lubricated region 0 < r < rL and 1 < ξ < 2 corresponds235

to the no-slip region rL < r < rN . The constants α, β, and γ are given by236

α =
n

5n + 3
, β =

2n + 2

5n + 3
, γ =

2n + 1

5n + 3
, (2.44)237

as specified in Part I.238

The lubricated region is, therefore, mapped to the interval (0,1) and the no-slip region is239

mapped to the interval (1,2). Perturbations to the two fronts can be read from240

ξL(φ, τ) = ξL0 + ǫξL1eστ+ikφ, ξN (φ, τ) = ξN0 + ǫξN1eστ+ikφ, (2.45)241

in similarity coordinates. Here, ξL0 and ξN0 correspond to the unperturbed positions of242

the intrusion front and leading edge, respectively. Both ξL0 and ξN0 are constants. We are243

searching for normal mode solutions of growth rate σ and azimuthal wavenumber k , which244
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exist under the change of variables (2.41)–(2.43). Under this transformation, contributions245

owing to the perturbations to the two frontal positions are reflected through appropriate terms246

in the governing equations, rather than through the boundary conditions. Such an approach247

eliminates difficulties associated with the stress singularities at the two fronts.248

The zeroth- and first-order surface heights are transformed as249

©­­­
«

h0(r, t)
H0(r, t)

h1(r, θ, t)
H1(r, θ, t)

ª®®®
¬
=

(
ρg

µ̃

)a
tbQc

0 ·

©­­­
«

f0(ξ)
F0(ξ)

f1(ξ)e
στ+ikφ

F1(ξ)e
στ+ikφ

ª®®®
¬
, (2.46)250

and the components of the flux of the two layers are transformed as251 (
qlr0(r, t)
qr0(r, t)

)
=

(
ρg

µ̃

)−α
t−βQ

1−γ

0

(
q̃lr0(ξ)
q̃r0(ξ)

)
, (2.47)252

at zeroth order and253

©­­­
«

qlr1(r, θ, t)
qlθ1(r, θ, t)
qr1(r, θ, t)
qθ1(r, θ, t)

ª®®®
¬
=

(
ρg

µ̃

)−α
t−βQ

1−γ

0
eστ+ikφ

©­­­
«

q̃lr1(ξ)
q̃lθ1(ξ)
q̃r1(ξ)
q̃θ1(ξ)

ª®®®
¬
, (2.48)254

at first order, where the constants a, b, and c are given by255

a = −
2n

5n + 3
, b =

n − 1

5n + 3
, c =

n + 1

5n + 3
, (2.49)256

as functions of n.257

Correspondingly, after dropping tildes for convenience, the components of the flux258

perturbations are given by the following expressions259

qlr1 = B1 f ′1 + B2F ′
1 + B3 f1 + B4F1 + B5ξL1, (2.50)260

261

qlθ1 = ik(B6 f1 + B7F1), (2.51)262

for the lower layer and263

qr1 = B8 f ′1 + B9F ′
1 + B10 f1 + B11F1 + B12ξL1, (2.52)264

265

qθ1 = ik(B13 f1 + B14F1) − ikξ
ξL1

ξL0

(B13 f ′0 + B14F ′
0), (2.53)266

for the upper layer. In the no-slip region, the components become267

qr1 = B15F ′
1 + B16F1 + B17 (ξN1 − ξL1) , (2.54)268

269

qθ1 = ikB18

(
(ξL0 − ξN0)F1 + ξN1(ξ − 1)F ′

0 − ξL1(ξ − 2)F ′
0

)
, (2.55)270

where the Bi are specified in the Appendix. These expressions reduce to those of271

Kowal & Worster (2019b) for n = 1.272

The mass conservation equations become273 (
σ +

n − 1

5n + 3

)
f1 −

2(n + 1)

5n + 3
ξ f ′1 −

σξL1

ξL0
ξ f ′0 = −

(ξqlr1)
′
+ ikqlθ1

ξξL0
+

ξL1 (ξqlr0)
′

ξξ2
L0

, (2.56)274

for the lower layer of the lubricated region and275 (
σ +

n − 1

5n + 3

)
(F1 − f1) −

2(n + 1)

5n + 3
ξ(F ′

1 − f ′1 ) −
σξL1

ξL0

ξ(F ′
0 − f ′0 ) =276
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−
(ξqr1)

′
+ ikqθ1

ξξL0
+

ξL1 (ξqr0)
′

ξξ2
L0

, (2.57)277

for the upper layer of the lubricated region. These include contributions owing to the278

perturbations to the frontal positions. The mass conservation equation in the no-slip region279

becomes280 (
σ +

n − 1

5n + 3

)
C1F1 −

2(n + 1)

5n + 3
C2F ′

1 −
2(n + 1)

5n + 3
C3F ′

0 + σC4F ′
0 =281

C5(qr1 − ikqθ1) + q′
r1 + C6q′

r0 + C7qr0, (2.58)282

where the Ci are specified in the Appendix.283

The source flux boundary conditions reduce to284

lim
ξ→0

2πξ(ξL0qlr1 + ξL1qlr0) = 0, lim
ξ→0

2πξ(ξL0qr1 + ξL1qr0) = 0, (2.59)285

and the matching conditions at the lubrication front reduce to286

[F1]
+

− = 0 (ξ = 1), (2.60)287

288

[qr1]
+

− = 0 (ξ = 1). (2.61)289

Note that contributions owing to the perturbations to the frontal positions do not appear290

in these matching conditions as they are inbuilt into the governing equations instead. The291

remaining boundary conditions are the zero flux conditions292

qlr1 = 0 (ξ = 1) (2.62)293

at the lubrication front and294

qr1 = 0 (ξ = 2) (2.63)295

at the leading edge.296

Note that the fronts are given by ξ = 1 and ξ = 2 by the definition (2.41)–(2.42) of the297

scaled similarity coordinate, as ξL and ξN are scaled out. The perturbations to the front (from298

linearising ξL = ξL0 + ǫξL1 and ξN = ξN0 + ǫξN1) are factored into the governing equations,299

rather than the radial coordinate by scaling ξL and ξN out as in (2.41)–(2.42).300

The kinematic conditions become301

2n + 2

5n + 3
(1 + σ)ξL1 = lim

ξ→1

[
qlr1

f0
−

qlr0 f1

f 2
0

]
, (2.64)302

at the lubrication front and303

2n + 2

5n + 3
(1 + σ)ξN1 = lim

ξ→2

[
qr1

F0

−
qr0F1

F2
0

]
, (2.65)304

at the leading edge, which lead to the asymptotic solutions described in the following305

subsection.306

3. Asymptotic solutions307

3.1. Asymptotic solutions near the two fronts308

An asymptotic analysis near the two fronts, in which the governing equations (2.56) and309

(2.58) are solved in an inner region by rescaling f1 = δ
p f̂1, F1 = δ

p F̂1, ξ = 1− δX (near the310
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intrusion front) and ξ = 2− δX (near the leading edge), and balancing dominant terms in the311

limit δ ≪ 1, gives rise to p = n/(2n + 1) and the following asymptotic solutions312

f1 ∼
(5n + 3)σ + 2(n + 1)2

(n + 1)(2n + 1)

[
(n + 1)(n + 2)

5n + 3

(
2n + 1

4nMDξL0

)n] 1
2n+1

ξL1(1 − ξ)
n

2n+1 , (3.1)313

as ξ → 1−, near the lubrication front and314

F1 ∼ A(2 − ξ)
n

2n+1 , (3.2)315

as ξ → 2−, near the leading edge, where

A =

(
2(n + 1)(n + 2)ξN0(ξN0 − ξL0)

n

(5n + 3)(2n + 1)n+1nn

) 1
2n+1

[
n(ξN1 − ξL1)

ξN0 − ξL0

+

ξN1

ξN0

(
(5n + 3)σ

2(n + 1)
+ 1

)]
.

These asymptotic solutions are of the same spacial structure as those of the basic state, with316

prefactors proportional to a linear combination of the perturbations to the frontal positions.317

These reduce to the asymptotic solutions of Kowal & Worster (2019b) in the limit n = 1. The318

asymptotic solutions are used to alleviate difficulties associated with the stress singularities319

that occur at the two fronts, when solving for the solutions numerically.320

3.2. Transformation near the origin321

An artefact of radially spreading lubricated viscous gravity currents, supplied at constant322

flux at the origin, is that the thickness of both layers of fluid approaches a point singularity323

at the origin, as a finite amount of fluid is being supplied from a single point. The form of324

the solutions, towards which the surface heights approach at zeroth order in ǫ , are specified325

in Part I. The asymptotic behaviour is of different character depending on the value of n,326

specifically, depending on whether n < 1, n = 1 or n > 1. A similar phenomenon occurs327

at first order, which we examine by rescaling ξ = δX , f1 = δ
p f̂1, F1 = δ

p F̂1 and balancing328

dominant terms of (2.56)–(2.57) in the limit δ ≪ 1.329

For n < 1, the general solution for the perturbations to the surface heights f1 and F1330

approach the functional form ξλ where331

λ = λ± =
1 − n ± (n + 1)

√
4k2n + (n − 1)2

2n(n + 1)
. (3.3)332

For n > 1, the exponent is, instead, given by333

λ = λ± =
n − 1 ±

√
4k2n + (n − 1)2

2n
. (3.4)334

The dominant term as ξ → 0 corresponds to λ = λ−. In the limit n → 1, approaching from335

either the left or the right, the power law dependence of f1(ξ) and F1(ξ) is of the form ξ−k .336

These exponents become large in magnitude for large k , for any n. Therefore, to resolve this337

singularity at the origin for all wavenumbers and to ensure numerical stability, we reformulate338

the problem in terms of g1(ξ) = ξ
−λ− f1(ξ) and G1(ξ) = ξ

−λ−F1(ξ), instead of f1(ξ) and F1(ξ),339

and revert back to f1(ξ) and F1(ξ) through a change of variables after the governing equations340

have been solved numerically. Although it does not provide a formal asymptotic solution,341

this is useful in regularising numerical computations by providing a convenient choice for a342

scaling factor.343

As described in Kowal & Worster (2019b), for n = 1 we instead solve for344

(g1,G1) = ξ
k(− log ξ)3/4( f1(ξ),F1(ξ)). (3.5)345

The prefactor, similarly, involves an exponent that grows with k .346

Rapids articles must not exceed this page length
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4. Numerical method347

We use a shooting method to solve the perturbation equations, by shooting backwards for348

ξL1 and ξN1 from the nose ξ = 2 and matching across the intrusion front ξ = 1. The process349

is similar to that of Kowal & Worster (2019b), except that distinction is made between n < 1,350

n = 1, and n > 1. As the governing equations are singular at both tips, ξ = 1 and ξ = 2, we351

apply the asymptotic solution (3.2) to initiate the computations at ξ = 2−δ, where δ ≪ 1 is a352

small distance away from the singular tip. We integrate backwards towards the singularity at353

the intrusion front, ξ = 1+, and apply matching conditions and the asymptotic solution (3.1)354

at ξ = 1−δ, a small distance δ away from the singularity at the intrusion front. These are used355

to initiate computations in the lubricated region, which we solve numerically by integrating356

backwards towards ξ = ∆, where ∆ ≪ 1. As such, the problem is solved numerically on the357

subdomain [∆,1− δ] ∪ [1,2− δ], to avoid numerical issues with singularities at both exterior358

boundaries ξ = 0 and ξ = 2, and the interior boundary ξ = 1.359

The governing equations pose an eigenvalue problem consisting of differential equations360

for f1 and F1, or equivalently, g1 and G1. As explained in §3.2, we solve for g1 and G1, instead361

of f1 and F1, for numerical stability at large wavenumbers. As the system is an eigenvalue362

problem, nonzero solutions exist only for specific growth rates, or eigenvalues,σ. We exploit363

the linearity of the system of governing equations to solve for the eigensolutions Ψ(ξ) =364

(g1(ξ), G1(ξ), ξL1, ξN1) and associated growth rate σ iteratively. Owing to the order of the365

eigenvalue problem, this involves searching across two-dimensional parameter space for the366

appropriate values of ξL1 and ξN1. As such, for any wavenumber and physical parameter367

values, the iterative process begins with an initial estimate for σ, from which two linearly368

independent solutions for the perturbations are obtained numerically by shooting backwards.369

These two numerical solutions correspond to two perturbation problems, Problems a and370

b, are defined by the values of ξL1 and ξN1. Specifically, Problem a is defined by setting371

ξL1 = 1 and ξN1 = 0, giving rise to a numerical solution Ψa, whereas Problem b is defined372

by setting ξL1 = 0 and ξN1 = 1, giving rise to a numerical solution Ψb . The set {Ψa, Ψb}373

forms two non-zero, linearly independent solutions satisfying the perturbation equations and374

all the boundary and matching conditions apart from the source flux conditions, which we375

apply at ξ = ∆, that is,376

2πξ(ξL0qlr1 + ξL1qlr0) = 0, 2πξ(ξL0qr1 + ξL1qr0) = 0, (ξ = ∆). (4.1)377

By linearity of the governing equations, any linear combination of the solutions Ψa and Ψb378

is also a solution of the perturbation equations and all the boundary and matching conditions,379

apart, in general, from the source flux conditions. It is our aim to select a linear combination380

for which the source flux conditions are also satisfied. Such a linear combination is the381

desired numerical solution to the perturbation equations. To select it, we define the residual382

matrix383

R = 2π∆

(
ξL0qa

l1r
+ ξL1qa

l0r
ξL0qb

l1r
+ ξL1qb

l0r

ξL0qa
1r
+ ξL1qa

0r
ξL0qb

+ ξL1qb

)����
ξ=∆

, (4.2)384

the columns of which measure the residual in the source flux vectors, corresponding to385

Problems a and b, respectively. The desired solution is one for which the determinant of386

the residual matrix vanishes, indicating that there exists a linear combination of the two test387

solutions for which the two source flux boundary conditions are satisfied. We use a root388

finder to find a growth rate σ for which the determinant of the residual matrix is close to389

zero, within a specified tolerance. This is a one-dimensional root-finding problem, for which390

the determinant of the residual matrix is used to update σ at each iteration, as described in391

Kowal & Worster (2019b).392

As this process yields more than one eigenvalue σ, we are interested in the eigensolution393
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Figure 2: Growth rates σ versus the wavenumber k for M = 5, D = 2, Q = 0.1 and
various values of n.
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Figure 3: Neutral curves for M as a function of k for D = 2, Q = 0.1 and various values
of n. The inset shows the critical consistency ratio Mc as a function of n.

for which σ is largest, which physically corresponds to the maximal growth rate for a given394

wavenumber. Once the largest growth rate is found for a given set of physical parameter395

values, we employ parameter continuation to determine growth rates across parameter space.396

We note that the problem is 2π-periodic in θ, and as such, only integer multiples of k are397

admissible. In all plots that follow, the results are interpolated for non-integer values of k .398

5. Discussion of results399

As in the Newtonian limit, a necessary condition for the onset of instability can be understood400

by considering a balance of fluxes either side of the intrusion front. In the D = 0 limit, a401

combination of the flux and height continuity conditions, gives402

(Mn − 1)

[
1 −

(
1 −

f0

F0

)n+2
] [����dF0

dR

����
n−1

dF0

dR

]−
=

[����dF0

dR

����
n−1

dF0

dR

]
+

−

, (5.1)403
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Figure 4: Growth rates as a function of k and M for D = 2, Q = 0.1 and n = 0.8 (left) and
n = 1.2 (right). The σ = 0 contour is drawn as a thick, dashed curve.
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Figure 5: Growth rates as a function of k and D for M = 10, Q = 0.1 and n = 0.8 (left)
and n = 1.2 (right). The σ = 0 contours are drawn as thick, dashed curves.

where R = ξLξ for ξ < 1 and R = ξL + (ξN − ξL)(ξ − 1) for 1 < ξ < 2. Noting that404

qlr0 + qr0 > 0, F0 > f0 and405

qlr0 + qr0 = −
1

n + 2

[
(F0 − f0)

n+2
+Mn

(
Fn+2

0 − (F0 − f0)
n+2

)] ����dF0

dR

����
n−1

dF0

dR
, (5.2)406

it follows that dF0/dR < 0. Therefore,407 [����dF0

dR

����
n−1

dF0

dR

]
+

−

> 0 (5.3)408

if M > 1. That is, there is a positive jump in a transformed pressure gradient across the409

lubrication front if the intruding fluid is less viscous. As seen in figure 3, M > 1, and hence410

(5.3), is a necessary condition for instability to occur for the range of n considered.411

More precise specifications for when the flow is unstable can be obtained by solving the full412

eigenvalue problem numerically. Representative growth rates for typical parameter values413

versus the wavenumber are shown in figure 2 for a range of power-law exponents n, where414

it can be seen that increasing power-law exponents promote instability. Surface plots of the415

growth rates across parameter space for a representative shear-thinning and shear-thickening416

case are shown in figures 4 and 5. Growth rates increase with k for low wavenumbers, and417
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Figure 6: Neutral curves for D as a function of k for M = 10, Q = 0.1 and various values
of n.
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Figure 7: Neutral curves for Q as a function of k for M = 10, D = 2 and various values of
n.

decrease with k for high wavenumbers, with an interval of unstable wavenumbers that is418

bounded from below and from above. Neutral curves for the consistency ratio M, density419

difference D and flux ratio Q, depicting the range of unstable wavenumbers, are shown in420

figures 3, 6 and 7, respectively. Instability occurs for large enough consistency ratios and421

low enough density differences. Physically, the larger the consistency ratio, the greater the422

jump in hydrostatic pressure gradient across the lubrication front, which promotes instability.423

However, the larger the density difference, the greater the influence of the buoyancy forces424

associated with the spreading of the lower layer near its nose, which is stabilising.425

The regions of instability expand for increasing exponents n. For each value of n, the system426

is unstable below a critical density difference Dc (defined as the maximum of the neutral427

curve forD, plotted in the inset of figure 6) within a bounded window of wavenumbers. Small428

changes in the density difference, below its critical value, lead to small (large) changes to429

the interval of unstable wavenumbers when n > 1 (n < 1). On the other hand, small changes430

in the consistency ratio, above its critical value Mc (defined as the minimum of the neutral431
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Figure 8: Neutral curve for n as a function of k for M = 5, Q = 0.1, D = 1
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Figure 9: Critical wavenumber kc and associated growth rate σc versus n for M = 5,
D = 2, Q = 0.1. The values of kc and σc for σc < 0 are dashed.

curve for M, plotted in the inset of figure 3), lead to large (small) changes to the interval432

of unstable wavenumbers when n > 1 (n < 1). Instabilities occur only for large enough433

wavenumbers above a given threshold at a given flux ratio, and this threshold decreases with434

n as seen in figure 7. This can also be seen in figure 8, which shows the neutral curve for n435

versus k . Increasing values of n permit a larger range of unstable wavenumbers k . Changes436

in n are less signifcant for n > 1 than for n < 1. The slope of the neutral curve for n is much437

lower for n < 1 than for n > 1.438

The critical wavenumber, kc, corresponding to the maximal growth rate, σc , is shown in439

figure 9 as it varies with n. The maximal growth rate is positive only for large enough n, and440

both the critical wavenumber and the associated growth rate increase with n. Shear thinning,441

in general, promotes instability and the selected number of fingers increases the more shear442

thinning the rheology.443

6. Conclusions444

We have investigated the role of shear thinning and shear thickening on viscous fingering445

instabilities that occur within lubricated viscous gravity currents. The results are an extension446

of, and agree with, the stability analysis of Kowal & Worster (2019b) in the Newtonian limit.447

These instabilities are driven by a jump in hydrostatic pressure gradient across the intrusion448

front, which is found to be more pronounced the higher the consistency ratio between the two449

viscous fluids. As such, instabilities occur only for high enough consistency ratios. These450

instabilities, in turn, are stabilised by buoyancy forces associated with the lower layer near its451

nose, which become dominant for high density differences between the two layers. As such,452
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the instabilities occur only for low enough density differences. The instability is suppressed453

completely above a critical density difference and below a critical consistency ratio.454

These behaviours are maintained for all power-law exponents. However, the instability455

thresholds, as well as the preferred number of fingers, are altered. Specifically, shear thinning456

promotes instability and the system selects a greater number of fingers the more shear-thinning457

the rheology. The critical consistency ratio, above which instabilities occur, decreases the458

more shear-thinning the rheology. Although the interval of unstable wavenumbers is large459

(small) close to the critical value of the consistency ratio the more shear thinning (shear460

thickening) the rheology, the system tends to select large wavenumbers as the preferred mode461

of instability the more shear thinning the rheology. As such, a large variation in the number of462

fingers may be expected close to the critical value of the consistency ratio in experiments. In463

contrast, the interval of unstable wavenumbers is small (large) the more shear thinning (shear464

thickening) the rheology when the density difference is close to its critical value. This leads465

to a smaller variation in the number of fingers that can be expected to be seen in experiments466

close to the critical value of the density difference.467
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Appendix A. Basic state velocities and fluxes475

As obtained in Part I, the basic state velocity is given by476

u0 =
1

n + 1

(
ρg

µ̃l

)n
1

D∂h0/∂r + ∂H0/∂r

[ ����(H0 − h0)
∂H0

∂r

����
n+1

477

−

����h0

(
D
∂h0

∂r
+

∂H0

∂r

)
+ (H0 − h0)

∂H0

∂r

����
n+1

]
478

+

1

n + 1

(
ρg

µ̃

)n [
(H0 − z)n+1 − (H0 − h0)

n+1
] ����∂H0

∂r

����
n−1
∂H0

∂r
, (A 1)479

for the upper layer and480

ul =
1

n + 1

(
ρg

µ̃l

)n
1

D∂h0/∂r + ∂H0/∂r

[ ����(h0 − z)

(
D
∂h0

∂r
+

∂H0

∂r

)
+ (H0 − h0)

∂H0

∂r

����
n+1

481

−

����h0

(
D
∂h0

∂r
+

∂H0

∂r

)
+ (H0 − h0)

∂H0

∂r

����
n+1

]
, (A 2)482

for the lower layer.483

The corresponding depth-integrated line fluxes are given by484

q =
1

n + 1

(
ρgM

µ̃

)n
H0 − h0

D∂h0/∂r + ∂H0/∂r

[ ����(H0 − h0)
∂H0

∂r

����
n+1

485
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−

����h
(
D
∂h0

∂r
+

∂H0

∂r

)
+ (H0 − h0)

∂H0

∂r

����
n+1

]
486

−
1

n + 2

(
ρg

µ̃

)n
(H0 − h0)

n+2

����∂H0

∂r

����
n−1
∂H0

∂r
, (A 3)487

for the upper layer and488

ql =
1

n + 1

(
ρgM

µ̃

)n
1

D∂h0/∂r + ∂H0/∂r

[
489

−
1

n + 2

1

D∂h0/∂r + ∂H0/∂r

[ ����(H0 − h0)
∂H0

∂r

����
n+1

(H0 − h0)
∂H0

∂r
490

−

����h0

(
D
∂h0

∂r
+

∂H0

∂r

)
+ (H0 − h0)

∂H0

∂r

����
n+1 (

h0

(
D
∂h0

∂r
+

∂H0

∂r

)
+ (H0 − h0)

∂H0

∂r

) ]
491

− h0

����h0

(
D
∂h0

∂r
+

∂H0

∂r

)
+ (H0 − h0)

∂H0

∂r

����
n+1

]
, (A 4)492

for the lower layer.493

Appendix B. Quantities appearing throughout the analysis494

B.1. Quantities describing the perturbed dimensional flux495

The following quantities are used to formulate expressions for the dimensional velocity and496

flux of either layer of the lubricated region:497

cr0(r, t) = −
ρgM

µ̃

(
D
∂h0

∂r
+

∂H0

∂r

)
, (B 1)498

cr1(r, θ, t) = −
ρgM

µ̃

(
D
∂h1

∂r
+

∂H1

∂r

)
, (B 2)499

cθ1(r, θ, t) = −
ρgM

µ̃

(
D

1

r

∂h1

∂θ
+

1

r

∂H1

∂θ

)
, (B 3)500

ar0(r, t) = −
ρgM

µ̃

(
Dh0

∂h0

∂r
+ H0

∂H0

∂r

)
, (B 4)501

ar1(r, θ, t) = −
ρgM

µ̃

(
Dh0

∂h1

∂r
+ H0

∂H1

∂r
+Dh1

∂h0

∂r
+ H1

∂H0

∂r

)
, (B 5)502

aθ1(r, θ, t) = −
ρgM

µ̃

(
Dh0

1

r

∂h1

∂θ
+ H0

1

r

∂H1

∂θ

)
. (B 6)503

The following quantities are the prefactors used in describing the perturbed flux:504

A1 =
|ar0 |

n+1 − |ar0 − cr0h0 |
n+1

cr0(n + 1)
, (B 7)505

A2 =
h0ar0cr0 (n + 1) |ar0 |

n−1
+ |ar0 − cr0h0 |

n+1 − |ar0 |
n+1

c2
r0
(n + 1)

, (B 8)506

A3 =
1

c3
r0
(n + 1)

[
h0

(
−a2

r0

)
cr0 |ar0 |

n−1 − ar0 |ar0 − cr0h0 |
n+1

]
507
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+

1

c3
r0
(n + 1) (n + 2)

[
n (ar0 − h0cr0)

3 |ar0 − cr0h0 |
n−1
+ 2ar0 |ar0 |

n+1
]
, (B 9)508

A4 = −

(
ρg

µ̃

)n n (H0 − h0)
n+2

��H ′
0

��n−1

n + 2
, (B 10)509

A5 =
− |ar0 − cr0h0 |

n+1
+ |ar0 |

n+1

cr0 (n + 1)
−

(
ρg

µ̃

)n
H ′

0 (H0 − h0)
n+1

��H ′
0

��n−1
, (B 11)510

A6 = − (h0 − H0) (ar0 − h0cr0) |ar0 − cr0h0 |
n−1
+

|ar0 − cr0h0 |
n+1 − |ar0 |

n+1

cr0 (n + 1)
511

+

(
ρg

µ̃

)n
H ′

0 (H0 − h0)
n+1

��H ′
0

��n−1
, (B 12)512

A7 =
(h0 − H0)

(
(ar0 − h0cr0) |ar0 − cr0h0 |

n−1 − ar0 |ar0 |
n−1

)
cr0

, (B 13)513

A8 =
(h0 − H0)

(
(h0cr0 − ar0) (ar0 + h0cr0n) |ar0 − cr0h0 |

n−1
+ a2

r0
|ar0 |

n−1
)

c2
r0
(n + 1)

, (B 14)514

A9 = A2/n, (B 15)515

A10 =
h0

(
−a2

r0

)
cr0 (n + 2) |ar0 |

n−1
+ 2ar0 |ar0 |

n+1

c3
r0

n (n + 1) (n + 2)
516

+

|ar0 − cr0h0 |
n−1

(
n (ar0 − h0cr0)

3 − ar0 (n + 2) |ar0 − cr0h0 |
2
)

c3
r0

n (n + 1) (n + 2)
, (B 16)517

A11 = −

(
ρg

µ̃

)n (H0 − h0)
n+2

��H ′
0

��n−1

(n + 2)
, (B 17)518

A12 =
(h0 − H0)

[
(ar0 − h0cr0) |ar0 − cr0h0 |

n−1 − ar0 |ar0 |
n−1

]
cr0n

, (B 18)519

A13 =
(h0 − H0)

[
(h0cr0 − ar0) (ar0 + h0cr0n) |ar0 − cr0h0 |

n−1
+ a2

r0
|ar0 |

n−1
]

c2
r0

n (n + 1)
(B 19)520

B.2. Quantities describing the perturbed fluxes in similarity coordinates521

The following quantities are used to describe the perturbed fluxes in similarity coordinates.522

B1 = −
D f0M

(
D f0 f ′

0
+ F0F ′

0

) (
D f0n f ′

0
+ F ′

0
( f0(n + 1) − F0)

)
(n + 1)ξL0

(
D f ′

0
+ F ′

0

)2

�����
M

(
D f0 f ′

0
+ F0F ′

0

)
ξL0

�����
n−1

523

+

DξL0

(
D f0n f ′

0
+ F ′

0
( f0(n + 2) − 2F0)

)
M(n + 1)(n + 2)

(
D f ′

0
+ F ′

0

)3

�����
M

(
D f0 f ′

0
+ F0F ′

0

)
ξL0

�����
n+1

524

+

2D (F0 − f0) F ′
0
ξL0

M(n + 1)(n + 2)
(
D f ′

0
+ F ′

0

)3

����M ( f0 − F0) F ′
0

ξL0

����
n+1

, (B 20)525
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B2 = −
f0M

(
D f0 f ′

0
+ F0F ′

0

) (
D f ′

0
(F0(n + 1) − f0) + F0nF ′

0

)
(n + 1)ξL0

(
D f ′

0
+ F ′

0

)2

�����
M

(
D f0 f ′

0
+ F0F ′

0

)
ξL0

�����
n−1

526

+

ξL0

(
D f ′

0
(F0(n + 2) − 2 f0) + F0nF ′

0

)
M(n + 1)(n + 2)

(
D f ′

0
+ F ′

0

)3

�����
M

(
D f0 f ′

0
+ F0F ′

0

)
ξL0

�����
n+1

527

+

( f0 − F0) ξL0

(
D(n + 2) f ′

0
+ nF ′

0

)
M(n + 1)(n + 2)

(
D f ′

0
+ F ′

0

)3

����M ( f0 − F0)F ′
0

ξL0

����
n+1

, (B 21)528

B3 = −
D f0M f ′

0

(
D f0 f ′

0
+ F0F ′

0

)
ξL0

(
D f ′

0
+ F ′

0

)
�����
M

(
D f0 f ′

0
+ F0F ′

0

)
ξL0

�����
n−1

529

−
F ′

0
ξL0

M(n + 1)
(
D f ′

0
+ F ′

0

)2

�����
M

(
D f0 f ′

0
+ F0F ′

0

)
ξL0

�����
n+1

530

+

F ′
0
ξL0

M(n + 1)
(
D f ′

0
+ F ′

0

)2

����M ( f0 − F0) F ′
0

ξL0

����
n+1

, (B 22)531

B4 = −
f0MF ′

0

(
D f0 f ′

0
+ F0F ′

0

)
ξL0

(
D f ′

0
+ F ′

0

)
�����
M

(
D f0 f ′

0
+ F0F ′

0

)
ξL0

�����
n−1

532

+

F ′
0
ξL0

M(n + 1)
(
D f ′

0
+ F ′

0

)2

�����
M

(
D f0 f ′

0
+ F0F ′

0

)
ξL0

�����
n+1

533

−
F ′

0
ξL0

M(n + 1)
(
D f ′

0
+ F ′

0

)2

����M ( f0 − F0) F ′
0

ξL0

����
n+1

, (B 23)534

B5 =
n (F0 − f0) F ′

0

M(n + 1)(n + 2)
(
D f ′

0
+ F ′

0

)2

����M ( f0 − F0) F ′
0

ξL0

����
n+1

535

+

n
(
D f0(n + 1) f ′

0
+ F ′

0
( f0(n + 2) − F0)

)
M(n + 1)(n + 2)

(
D f ′

0
+ F ′

0

)2

�����
M

(
D f0 f ′

0
+ F0F ′

0

)
ξL0

�����
n+1

, (B 24)536

B6 = −
D f0M

(
D f0 f ′

0
+ F0F ′

0

) (
D f0n f ′

0
+ F ′

0
( f0(n + 1) − F0)

)
n(n + 1)ξξL0

(
D f ′

0
+ F ′

0

)2

�����
M

(
D f0 f ′

0
+ F0F ′

0

)
ξL0

�����
n−1

537

+

DξL0

(
D f0n f ′

0
+ F ′

0
( f0(n + 2) − 2F0)

)
Mn(n + 1)(n + 2)ξ

(
D f ′

0
+ F ′

0

)3

�����
M

(
D f0 f ′

0
+ F0F ′

0

)
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�����
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−
2D ( f0 − F0)F ′

0
ξL0

Mn(n + 1)(n + 2)ξ
(
D f ′

0
+ F ′

0

)3

����M ( f0 − F0)F ′
0

ξL0

����
n+1

, (B 25)539

B7 = −
f0M

(
D f0 f ′

0
+ F0F ′

0

) (
D f ′

0
(F0(n + 1) − f0) + F0nF ′

0

)
n(n + 1)ξξL0

(
D f ′

0
+ F ′

0

)2

�����
M

(
D f0 f ′

0
+ F0F ′

0

)
ξL0

�����
n−1

,540

+

ξL0

(
D f ′

0
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0
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Mn(n + 1)(n + 2)ξ

(
D f ′

0
+ F ′

0
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�����
M

(
D f0 f ′
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+ F0F ′
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�����
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+

( f0 − F0) ξL0

(
D(n + 2) f ′
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(
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+ F ′
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D f ′
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+ F ′

0
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D f0 f ′

0
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�����
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+
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0
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+ F0F ′

0
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D f ′

0
+ F ′

0

)2

�����
M

(
D f0 f ′
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B.3. Quantities describing mass conservation566

The following quantities are used to describe the mass conservation equations in the no-slip567

region in similarity coordinates.568

C1 = ξL0 − ξN0, (B 38)569

C2 = (ξ − 2)ξL0 − (ξ − 1)ξN0, (B 39)570

C3 =
ξL1ξN0 − ξL0ξN1

ξL0 − ξN0

, (B 40)571
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C4 = (ξ − 2)ξL1 − (ξ − 1)ξN1, (B 41)572

C5 =
ξL0 − ξN0

(ξ − 2)ξL0 − (ξ − 1)ξN0
, (B 42)573

C6 =
ξN1 − ξL1

ξL0 − ξN0

, (B 43)574

C7 = −
(ξL0 − ξN0) ((ξ − 2)ξL1 − (ξ − 1)ξN1)

((ξ − 2)ξL0 − (ξ − 1)ξN0)2
(B 44)575
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