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Non-Invasive Localisation Using
Software-Defined Radios

Muhammad Zakir Khan, Ahmad Taha, William Taylor, Muhammad Ali Imran, and Qammer H. Abbasi

Abstract— Non-invasive indoor human activity detection using ra-
dio waves has attracted the interest of researchers, contributing to a
range of new applications including smart healthcare. Localisation
of activities can assist in developing advanced healthcare systems
able to identify the location of patients. Radio frequencies have
been shown in numerous studies as a non-invasive method to
identify human activity. This is achieved by observing the sig-
nal propagation described in the Channel State Information (CSI).
This paper presents experimental results using Universal Software-
Defined Radio Peripheral (USRP) devices to identify and localise a
single human subject performing activities by utilizing the CSI of
radio frequencies. The experiments are carried out to retrieve CSI
samples observing a single subject perform no-activity, sitting, standing, and leaning forward actions in various positions
in a room. Additional CSI is captured for the subject walking in two directions across the observed area. Giving a total of
6 activities spanning the monitored area. CSI is also collected while the monitored area is empty for further comparison.
Artificial intelligence is used to make classifications on collected CSI. The proposed approach uses a Super Learner
(SL) algorithm that can identify the location of different activities with 96% accuracy, outperforming existing benchmark
approaches.

Index Terms— Human Activity Detection, Indoor Positioning, Occupancy Monitoring, Localisation.

I. INTRODUCTION

I ndoor localisation systems are designed to estimate the lo-
cation of an entity within an indoor environment. Technolo-

gies such as WiFi, Ultra Wide-band Communication (UWB),
Bluetooth, Radio Frequency Identification (RFID), Infrared
(IR), inertial sensors, and cameras can be implemented to
detect the location of an entity [1, 2, 3, 4]. In recent years,
indoor localisation has become a popular topic due to its
widely applied in a range of applications including battlefield
surveillance, disaster prediction, intelligent traffic and indoor
navigation [5, 6]. Accurate and reliable indoor localisation and
tracking techniques have become both essential and desirable
in healthcare monitoring technologies. The elderly population
is growing as life expectancy increases as a result of advances
in disease diagnosis and treatment. This results in hospitalisa-
tion capacity rapidly dwindling [7]. According to estimations
from the United Nations (UN), the elderly population will
increase by 2.1 billion by 2050 [8]. This emphasizes the need
of using technology in elderly care.

Indoor localisation is challenged by noise, signal fluctua-
tion, and the presence of obstacles like furniture etc. which
is a factor to consider in the field of indoor localisation.
Significant contributions to the field of indoor localisation
have been achieved due to technological advances in wireless
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communication, computing, and detection techniques. Several
techniques are used to detect human activities in an indoor
environment such as wearable device-based, context-aware
and contactless device-based systems. The ability to detect
behaviours using a device worn by the user has proven
the ability to recognize human activity without violating the
user’s privacy [9]. Context-aware is based on sensors such as
floor sensors, pressure sensors, microphones, and cameras are
utilised for monitoring. The disadvantage of these systems is
that it is not possible to detect activities after the user exits the
monitoring area. The most prevalent example of context-aware
technology is video surveillance systems and the disadvantage
is that it can adversely impact the privacy concerns of patients.
As a result, some countries consider video surveillance to be
illegal [10].

Localisation in outdoor environments has been successfully
implemented using advanced satellite positioning systems,
such as the Beidou and GPS which will provide users with
more precise location services in the outdoors than indoors
[11]. This is due to weak satellite signals, low penetration, and
other issues. Radio Frequency (RF) is often used for indoor
location media due to the extensive use of low-power sensors.
Researchers have proposed popular technologies such as Ultra-
wideband (UWB) [1], WiFi [2], Bluetooth [4], Audio [12],
light [13], Zigbee [14], and Radio Frequency Identification
(RFID) [15] to achieve indoor localisation. This paper makes
use of RF-based Wi-Fi sensing due to the ability to make
use of existing Wi-Fi infrastructures in place in many homes
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Fig. 1: Experiment Setup Diagram showing the position of the horizontal and vertical zones

removing the need to introduce additional sensing equipment.
RF-sensing-based systems differ from one another in terms of
hardware specifications, operational radio frequency, classifi-
cation algorithms, number of activities to monitor, and number
of subjects. RF signal activity recognition, available tracking
systems can employ either the Received Signal Strength In-
dicator (RSSI) [16] or Channel State Information CSI [17].
According to research such as [18], CSI is fine-grained and
measured per Orthogonal Frequency Division Multiplexing
(OFDM) packet, but RSSI provides coarse information. CSI
using Wi-Fi can be used to detect and localise human activity
by observing the amplitude changes of radio signals when
a human activity occurs [19]. This results in CSI being the
better option for activity detection and localisation due to
greater attention to detail. Several researchers have utilised
the CSI of RF signals similar to Wi-Fi to detect small scale
activities such as vitals [20], large scale body motions [21], and
localisation and tracking [22]. The experiment detailed in this
paper makes use of USRP devices using OFDM for 64 points
of fast Fourier transformer (FFT) that produce 64 frequency
carriers (subcarriers) [23]. The objective of this study is to use
two USRP devices, one serving as a Tx and the other as the
Rx to collect CSI data on a single human subject performing
activities in different locations of a single room. The room is
divided into three zones both horizontal and vertical directions
(3x3 zones) shown in Figure 1. Each intersection point is
referred to as a location. The six activities are carried out
in all nine locations. The amplitude changes observed in the
CSI differentiate between activities performed in each location.
This allows for CSI to be used in the localisation of a subject as
the radio signals are affected differently in human movements
occurring in different locations.

Machine Learning (ML) is used to classify the different
locations where six distinct human activities are performed. An
Additional classification is used to represent an empty room.
This research builds on previous work by proposing a single
system that uses RF signals to identify activities in multiple

locations as well as determining activity area occupancy and
activity patterns [24]. The contributions in this paper can
be summarised as using ML algorithms, namely Multi-layer
Perceptron (MLP), Support Vector Machine (SVM), K-Nearest
Neighbors (KNN), Bagging, Random Forest, Extra Trees (ET)
and Super Learner (SL) classifier, to make predictions on
CSI, received from USRP devices, to accurately identify and
localise six different activities inside a room. The SL classifier
combines the SVM, KNN, Bagging, Random Forest and Extra
Trees classifiers to get the best results from each classifier in
an essembled manner. Additional contributions made are to
establish a link between detection accuracy and the position
of the activity. This paper is structured as follows: Section
II describes related work found in the literature. Section III
describes the materials and methods and Section IV provides
results and discussion. Section V concludes the paper.

II. RELATED WORK

This section details work related to this experiment. Various
literature details the use of RF signals to detect different
movements. Iqbal et al. [25] employed a deep-learning-based
system to classify different user movement states like forward,
backward, and no movement. Wi-Fi sensor data was used to
train their system. Using CSI data, Nipu et al. [26] and [27],
attempted to identify different participants. During the experi-
ment, different participants walked through two devices while
data was being transmitted and saved the CSI information
received while walking across radio frequencies. Afterwards,
the data were subjected to ML techniques such as Random
Forest and Decision Tree.

This work shows that the CSI patterns are differing in
the movements of a human. The studies [28, 29, 30], used
USRP N210 devices to detect activity with 91%, 92%, and
95% accuracy, respectively. The study [31] used two USRPs
to propose a Deep Gated Recurrent Unit model for non-
obtrusive human activity recognition using CSI and achieved
results with an accuracy of 95% for all activities. The study
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[21] used USRPs X300 and X310 included separating the
sitting and standing activities and reported an accuracy of 96%
using the Random Forest algorithm. The study [32] proposed
a system that used the WiFi OFDM signal to detect and
classify arm movements. They employed the Long Short-Term
Memory (LSTM) deep learning algorithm to categorize data
from CSI. The LSTM deep learning algorithm was able to
achieve a high-accuracy result of 96%. Other literature details
the use of RF signals to provide localisation of subjects.
WiTrack2.0, developed by Adib et al. [33] is a multi-person
localisation system that employs wireless signals reflected off
people’s bodies. An array of directional Tx and Rx antennas
are used to emit the wireless signals. The distance between
the user and the antennas is calculated using the time it
takes for a signal to travel from the Tx to the Rx after
signal reflection. The distance information is also utilized to
identify the location of subjects. To provide accurate room-
level localisation, other localisation and tracking experiments,
such as [22], reported an accuracy score of 81% and a 5cm
error in a 20*70 cm2 region.

III. MATERIALS AND METHODS

This section will cover materials and methods, as well as
how data is collected utilizing an experimental setup to pro-
duce various test cases before applying ML. Subsections III-.1
and III-.2 describes the hardware and software components
that were designed and used to collect CSI data depicting
human activity from the sensing devices.

1) Hardware Specification: The hardware used for data
collection is comprised of two USRP devices communicating
with each other while activity occurs inside their coverage
region. The National Instrument (NI) X310/X300 models
of the USRPs are used and connected to two PCs each
using 1G Ethernet cables, each with extended bandwidth
daughterboard slots covering DC–6 GHz and up to 120 MHz
of baseband bandwidth. The Two PCs had Intel(R) Core (TM)
i7 − 7700.360 GHz CPUs, 16 GB RAM, and Ubuntu 16.04
virtual system to serve as the operating system. The USRP’s
had VERT2450 omnidirectional antennas attached for wireless
communication.

2) Software Specification: The USRP devices had software
configured to USRP device to transmit to the receiver USRP
device. The GNU radio software package was used to con-
figure the software used to power the USRP communication
in the format of flow diagrams. GNU Radio is a free and
open-source software package for signal processing used in
research [34]. GNU Radio provides OFDM signal processing
examples, which can be manipulated to work with the USRP
devices and allow the extraction of CSI. GNU radio allows to
set parameters for the USRP such as the centre frequency to
3.75GHz, 64 OFDM subcarriers, and gain levels set at 70dB
and 50dB for the Tx and Rx respectfully. The GNU Radio
flow diagram is converted into a python script that can be
used to start OFDM communication on the USRP devices. The
python scripts output the CSI collected during transmission.
The CSI is in the format of complex numbers. The amplitude
of the signals can then be calculated by taking the absolute

value of the complex number. The CSI amplitude information
is then converted into CSV files. These CSV files can then be
compiled into datasets that can be used to train and test ML
algorithms. The data flow diagram of data collection for the
six classes activities is shown in Figure 2.

Fig. 2: Data Flow Diagram showing the process of how the
human movement is recorded as CSI and compiled into a
dataset for ML classification

A. Experimental Setup

The experiments presented in this paper is carried out in a
3.8 ∗ 5.2m2 room in the James Watt South Building at the
University of Glasgow, where an active and approved ethics
application is in place. The experiment was conducted in an
office setting where the room is divided into three zones both
in the horizontal and vertical direction (see Figure 1). The
three zones are separated by one meter where all the activities
took place. The Tx and Rx USRP devices were placed in
opposing corners of the room, facing each other at a 45°
angle. The data is collected using the same single subject to
perform the activities in each of the zones. This ensures that
the only variables in the data collection are the activities and
the location the activity is performed.

B. Data Collection

This section will go over the data collection process
carried out using the hardware, software and experimental
setup described in sections III-.1, III-.2 and III-A. The data
collected in this section is used to create the datasets used
for machine learning techniques. This experiment uses a total
of 7 activities consisting of sitting, standing, leaning, no
activity, walking from the Tx to the Rx device and walking
from the Rx device to the Tx device and empty. Data for
sitting, standing, leaning and no activity are collected from
each of the zones areas illustrated in Figure 1. Walking
from the Tx to the Rx will observe the subject travelling
diagonally across the areas between the Tx device and the
Rx device. Walking from the Rx to the Tx will observe the
subject travelling diagonally across the areas between the Rx
device and the Tx device. Finally, the Empty classification
will consist of data being collected with no subject present
in any of the areas of observation. Figure 3 shows examples
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of CSI amplitude patterns in all 6 activities and empty
classifications. Each colour represents a subcarrier during an
activity, with the amplitude of the subcarrier on the y-axis
and the number of packets on the x-axis. Each data sample
collected represents 3 seconds of OFDM communication.
This results in a sample being approximately 1200 packets
in size. 100 samples are collected for each activity. This
gives a total of 4300 collected data samples. This is made
up of 100 sitting, standing, leaning and no activity samples
collected from each area shown in Figure 1 totalling 3600
(4 Activities x 100 samples x 9 areas). 600 samples were
collected for walking in each direction (2 Activities x 300
samples) This is because walking includes 3 areas and when
two directions are used, a total of 600 samples are chosen to
represent 100 samples for each area walking in one direction
and another 100 samples for each area walking in the other
direction. 100 empty samples are also collected (1 Activity x
100 samples). During the collection of the empty samples, the
subject clears the monitored area and exits the room entirely
to ensure the empty samples are not corrupted. This gives
a total of 43 classifications of 100 samples each. Each data
sample is labelled with a name that corresponds to the zones
and locations, such as L2Z1 mean data sample collected at
location 2 and zone 1. Table I shows the 43 classes and the
total number of data samples collected in each location.

TABLE I: The data classes and their description

S. No Class Class Description No. of
Classes

Count

1 Empty Activity No human subject in the activ-
ity area

1 100

2 No Activity No activity performed by hu-
man

9 900

3 Sitting The action of ”Sitting” at
the designated location within
Zone

9 900

4 Standing The action of ”Standing” at
the designated location within
Zone

9 900

5 Leaning Leaning forward with the up-
per body at the designated lo-
cation within Zone

9 900

6 Walking Rx-Tx
and Tx-Rx

Walking from the USRP X310
Rx side to USRP X300 Tx side
and vice versa

3*2 600

1) System Hypothesis: The hypothesis is summarised as
follows:

1) The position of the activity is determined with a 100%
accuracy as we move vertically or horizontally in the
room.

2) As we move vertically or horizontally, walking is more
accurate than sitting or standing.

3) The horizontal and vertical distance between the Tx and
Rx will affect the accuracy of activity detection.

The contribution of this paper is to determine if Artificial
intelligence (AI) can identify which activities are occurring
in what location by using RF signals.

(a) Empty (b) No Activity

(c) Sitting (d) Standing

(e) Leaning (f) WalkingTxRx

(g) WalkingRxTx

Fig. 3: CSI examples for all 7 activities showing the amplitude
values for all 64 subcarriers (Represented in each colour) in
the OFDM communication

C. Test Cases
In this section, several test cases are presented, which

are used to apply different ML approaches for activity
localisation. In this study, A total of two test cases are
presented based on the data collected as shown in Table II.

The test cases for the data collection is reported in Table II.
The dataset description is given below.

• L1L2Zone1: The dataset contains data from locations 1
and 2 for Zone 1, with a total of 11 classes of activities
from both locations.

• L1L3Zone1: The dataset contains data from locations 1
and 3 for Zone 1, with a total of 11 classes of activities
from both locations.

• L2L3Zone1: The dataset contains data from locations 2
and 3 for Zone 1, with a total of 11 classes of activities
from both locations.
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TABLE II: Test cases of (Figure 1)

Test case Dataset Test case description
The relationship between the activity’s location and the detection accuracy
Test-1.1 Zone 1 (L1L2Zone1,

L1L3Zone1, L2L3Zone1)
To check the co-relation
between zones and locations
when we move horizontally or
vertically from Tx towards Rx

Test-1.2 Zone 2 (L1L2Zone2,
L1L3Zone2, L2L3Zone2)

Test-1.3 Zone 3 (L1L2Zone3,
L1L3Zone3, L2L3Zone3)

Test-1.4 Location wise
combination Location1-
Z1Z2Z3, Location2-
Z1Z2Z3, Location3-
Z1Z2Z3)

To check localisation overall accuracy
Test-2.1 Combined location and

Zones (L1L2L3 −
Zone123)

To check the localisation
accuracy of all the activities
within Room

• L1L2L3Zone1: The dataset contains data from locations
1,2 and 3 for Zone 1, with a total of 15 classes of activities
from three locations.

• Location1-Z1Z2Z3 The dataset contains data from Zone
1, 2 and 3 for location 1, with a total of 19 classes of
activities from three locations.

• L1L2L3-Zone123 The dataset contains data from all
areas with a total of 43 classes of activities from nine
locations.

D. Data Pre-processing and Machine Learning
This section provides an overview of the data preprocessing

and ML approaches that have been designed and implemented
in this study.

1) Data Preprocessing: For data pre-processing and ML
approach, we utilize Scikit, a commonly used data analysis
toolkit in Python [35]. Additionally, Pandas, a python library,
can also parse CSV files. It converts CSV files into python data
frames that can subsequently be analyzed using scikit-learn
[22]. Labels are added to data frames in the first column. Not
a number (NaN) values are produced in the dataset generated
by combining the data frames of each sample due to mini-
mum mismatches in received packets during communication
between the USRP devices. Using a SciKit built-in function
called SimpleImputer, these NaN values are replaced with the
mean of each row. It’s worth noting that data cleansing like this
does not affect the overall pattern of the data. After cleansing
the data, it was input into ML algorithms.

2) Machine Learning: The proposed Indoor localisation of
the human activity monitoring system is evaluated using seven
different ML methods. In our experiment, the accuracy of
successful localisation of various human activities is being
used as an evaluation parameter. Each algorithm’s accuracy
is determined independently for each test case dataset. The
accuracy is evaluated using two approaches to achieve a robust
analysis: (i) k-fold cross-validation and (ii) train-test split.
K-fold cross-validation, where k is the number of groups
into which a given dataset should be divided, is a popular
approach for testing the efficacy of an ML approach [21]. In
this experiment k, is set to 10 resulting in the dataset being
divided into 10 groups. Each group is used as testing data with

the remaining 9 groups used as training data. The results of
each group of classifications give the results of all samples
featured in the dataset. The train-test split technique separates
the dataset into training and testing data. The training data
is used to train the ML model. The algorithm can then make
predictions on the testing data based on what the algorithm has
learned from the training data In this study, 80% of each of the
datasets are used for training and the remaining 20% is used
for testing. The parameters used to configure the algorithms
are listed in Table III.

TABLE III: The Parameters of Machine Learning Algorithms

Algorithm Parameters N estimator
Support Vector Ma-
chine

Kernel = rbf and sigmoid gamma=’scale’

K-Nearest
Neighbors

Euclidean distance and K = 3,7 n-repeat = 3

Bagging max-features, default= 1.0 n-estimators=20
Random Forest max-features: [’auto’, ’sqrt’] n-estimators=20
Extra Trees max-features = auto, sqrt n-estimators=20
Super Learner multi-threading n-estimators=20

IV. RESULTS AND DISCUSSION

This section will present and discuss the results of the test
cases shown in Table II.

A. Test-1.1
The results of Test-1.1 are shown in the below Table IV.

These results show the relationship between localising and
identifying activities across the horizontal zones of:

• L1Zone1 and L2Zone1
• L1Zone1 and L3Zone1
• L2Zone1 and L3Zone1

TABLE IV: ML algorithms comparison using Cross-validation
on test case 1.1 in (Table II)

Algorithm L1L2Zone1
Accuracy

L1L3Zone1
Accuracy

L2L3Zone1
Accuracy

Multilayer Perceptron 66.87% 73.42% 72.70%
Support Vector Machine 74.28% 84.71% 79.40%
K- Neighbors Classifier 78.70% 84.95% 82.25%
Bagging Classifier 79.56% 86.38% 82.68%
Random Forest 80.95% 87.60% 84.44%
Extra Trees 86.00% 92.93% 89.08%
Super Learner 87.27% 95.90% 91.12%

The SL algorithm had the best accuracy on all three of
the experiments in Test-1.1. L1Zone1 and L3Zone1 had the
highest accuracy score with all of the algorithms in comparison
to the results of L1Zone1 and L2Zone1 and L2Zone1 and
L3Zone1. The SL algorithm was able to achieve an accuracy
score of 95.90 % in the L1Zone1 and L3Zone1 experiment.
These results show that the accuracy of the algorithms to
differentiate between the different locations is increased when
the locations have greater space between them. This is likely
due to CSI fluctuations being greater as the distance from the
transmitter increases. For locations closer to each other the dif-
ference between CSI fluctuations is decreased. However, there
is still high accuracy achieved by the algorithms, particularly
the SL algorithm.
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B. Test-1.2

The results of Test-1.2 are shown in the below Table V.
These results show the relationship between localising and
identifying activities across the horizontal zones of:

• L1Zone2 and L2Zone2
• L1Zone2 and L3Zone2
• L2Zone2 and L3Zone2

TABLE V: ML algorithms comparison using Cross-validation
on test case 1.2 in (Table II)

Algorithm L1L2Zone2
Accuracy

L1L3Zone2
Accuracy

L2L3Zone2
Accuracy

Multilayer Perceptron 68.76% 87.59% 88.17%
Support Vector Machine 82.92% 82.22% 92.93%
K- Neighbors Classifier 85.98% 85.56% 90.84%
Bagging Classifier 85.58% 87.77% 90.47%
Random Forest 86.54% 87.81% 91.87%
Extra Trees 91.69 % 91.60% 95.07%
Super Learner 95.54 94.23% 96.36

The results of Test-1.2 showed the highest accuracy in the
experiment L2Zone2 and L3Zone2. The SL algorithm again
had the highest accuracy of all experiments with 96.36 % in
the L2Zone2 and L3Zone2 experiment. These results show that
as the subject is positioned further from the transmitter, the
CSI fluctuations are more prominent in the adjacent locations.

C. Test-1.3

The results of Test-1.3 are shown in the below Table VI.
These results show the relationship between localising and
identifying activities across the horizontal zones of:

• L1Zone3 and L2Zone3
• L1Zone3 and L3Zone3
• L2Zone3 and L3Zone3

TABLE VI: ML algorithms Comparison using Cross-validation
on test case 1.3 in (Table II)

Algorithm L1L2Zone3
Accuracy

L1L3Zone3
Accuracy

L2L3Zone3
Accuracy

Multilayer Perceptron 56.65% 71.88% 77.91%
Support Vector Machine 74.61% 82.58% 85.62%
K- Neighbors Classifier 77.61% 84.16% 84.64%
Bagging Classifier 80.37% 84.68% 85.65%
Random Forest 81.33% 86.21% 88.35%
Extra Trees 82.27 % 87.22% 90.45%
Super Learner 85.00% 92.27% 93.18%

The results of Test-1.3 have shown similarly to the results of
Test-1.2 that if the subject moves further from the transmitter
then the CSI fluctuations are more prominent in the adjacent
locations. This is shown in the L2Zone3 and L3Zone3 exper-
iment, where again the best accuracy results are shown for all
algorithms with the SL algorithm with the highest accuracy of
93.18 % compared to the other algorithms.

D. Test-1.4

The Cross-validation results of Test-1.4 are shown in the
below Table VII. These results show the relationship between

localising and identifying activities across the vertical zones
of:

• Location1Z1, Location1Z2 and Location1Z3
• Location2Z1, Location2Z2 and Location2Z3
• Location3Z1, Location3Z2 and Location3Z3

TABLE VII: ML algorithms comparison using Cross-validation
on test case 1.4 in (Table II)

Algorithm Location1-
Z1Z2Z3
Accuracy

Location2-
Z1Z2Z3
Accuracy

Location3-
Z1Z2Z3
Accuracy

Multilayer Perceptron 47.07% 64.46% 82.81%
Support Vector Machine 66.66% 75.45% 91.08 %
K- Neighbors Classifier 66.66% 69.00 % 91.08 %
Bagging Classifier 71.66 % 76.65% 89.46%
Random Forest 75.66 % 78.66% 91.14%
Extra Trees 77.00 % 83.36% 93.66%
Super Learner 81.66 % 86.66% 96.66%

The results of Test-1.4 have given further evidence of
increased accuracy as the subject moves further from the
transmitter as seen in results of Test-1.2 and Test-1.3. The
Location3Z1, Location3Z2 and Location3Z3 experiment had
the highest accuracy out of all the experiments for Test-1.4 and
previous experiments of Test-1.2 and Test-1.3. The SL algo-
rithm again had the highest accuracy out of all algorithms with
96.66 %. Therefore the dataset of Location3Z1, Location3Z2
and Location3Z3 is taken forward to be analysed using the
train-test split technique. Table VIII show the results achieved
using the train-test split technique.

TABLE VIII: ML algorithms comparison using train test on
test case 1.4 in Table II

Algorithm Location3-
Z1Z2Z3
Accuracy

Precision Recall F1 score Time
(sec)

Multilayer
Perceptron

66.00% 67.00% 67.00% 68.00 % 0.68

Support Vector
Machine

91.66% 92.00% 91.00 % 91.00 % 0.77

K- Neighbors
Classifier

89.66% 91.00 % 90.00 % 90.00 % 0.09

Bagging Classifier 88.87 % 89.00% 89.00% 88.00% 31.93
Random Forest 90.66 % 91.00 % 91.00 % 91.00 % 1.07
Extra Trees 94.33 % 95.00% 94.00 % 94.00 % 1.32
Super Learner 95.33 % 95.00% 95.00 % 95.00 % 1.50

For train-test split results, the SL algorithm again outper-
formed all other algorithms with an accuracy of 95.33%. ET
has a 94.33% accuracy score, whereas SVM and Random
Forest have a 91.66% and 90.66% respectively. As shown in
Figure 4, bagged trees and KNN have the lowest accuracy,
with scores of 88.87% and 89.66 %, respectively. The most
unsatisfied result showed MLP with an accuracy of 66%.

Figure 5 shows the confusion matrix of the results achieved
using the train-test split technique for the SL algorithm.

E. Test-2.1

The paper’s main contributions are highlighted in Test-2.1
results. The first experiment includes all data from all locations
and zones. Two other experiments are conducted using all
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Fig. 4: Accuracy and time comparison of the tested machine
learning algorithms on test case 1.4 in Table II.

Fig. 5: The confusion matrix of SL algorithm on test case 1.4
Location3-Z1Z2Z3 (see Table II) showing how the algorithm
classified each sample of data.

zones in location 1 and 3 and all zones in location 2 and
location 3 for comparison. Table IX shows the accuracy for
each algorithm.

TABLE IX: ML algorithms comparison using Cross-validation
on test case 2.1 in (Table II)

Algorithm Accuracy
L1L2L3 −
Zone123

Accuracy
L1L3 −
Zone123

Accuracy
L2L3 −
Zone123

Multilayer Perceptron 57.44% 68.00% 71.00%
Support Vector Machine 62.33% 70.15% 76.97 %
K- Neighbors Classifier 63.66% 71.66% 72.57%
Bagging Classifier 68.66% 75.90% 76.66%
Random Forest 68.15% 77.12% 75.60%
Extra Trees 76.11% 82.27 % 81.97%
Super Learner 79.00% 85.60% 85.60%

The SL algorithm was able to identify activities and loca-
tions with 79 % accuracy and also had the highest accuracy
of the other experiments. This is expected as it combines
all the SVM, KNN, Bagged, Random Forest and Extra trees
classifiers. This is consistent with the previous test cases.
The SL algorithm was also the best performer for the other
experiments conducted in Test-2.1.

V. CONCLUSION

This paper proposed a localisation system for an indoor
activity that leverages RF sensing to identify seven different

classifications taking place in different locations of the same
room. The system was designed to identify the location
of a performed activity, which activity took place and the
occupancy of a room. The results also indicate detection of
specific activities in an indoor environment The usage of
RF sensing provides a non-contact method of human activity
sensing and localising without the need for a wearable device.
Comparisons of the machine learning classifiers found that
the SL classifier performed the best due to the combination
of several other algorithms used to create the super learner
classifier. The study resulted in several fascinating results
that will require further investigation through the acquisition
of additional data. The localisation of different activities in
location 3 and zone 3 is predicted to be higher than in other
locations due to proximity to the receiver. When the activity
is performed further away from the Tx, the system’s activity
detection accuracy increases in both horizontal and vertical
direction, and what’s more noteworthy is the precise increase
of 3% horizontally and 14% vertically for every 1m away
from the Tx. Future work will seek to test the scalability of
the model by trying to perform the classifications in different
environments. Additionally, future work will seek to provide
the localisation of different subjects and provide the locations
of the different subjects
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