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Abstract—One limitation of social robots has been the ability 
of the models they operate on to infer meaningful social infor- 
mation about people’s subjective perceptions, specifically from 
non-invasive behavioral cues. Accordingly, our paper aims to 
demonstrate how different deep learning architectures trained 
on data from human-robot, human-human, and human-agent 
interactions can help artificial agents to extract meaning, in terms 
of people’s subjective perceptions, in speech-based interactions. 
Here we focus on identifying people’s perceptions of their 
subjective self-disclosure (i.e., to what extent one perceives to 
be sharing personal information with an agent). We approached 
this problem in a data-first manner, prioritizing high quality 
data over complex model architectures. In this context, we aimed 
to examine the extent to which relatively simple deep neural 
networks could extract non-lexical features related to this kind 
of subjective self perception. We show that five standard neural 
network architectures and one novel architecture, which we call 
a Hopfield Convolutional Neural Network, are all able to extract 
meaningful features from speech data relating to subjective self- 
disclosure. 

Index Terms—Datasets, Neural Networks, Speech Recognition, 
Human-robot Interaction, Behavioral Health, Non-intrusive sens- 
ing technology, Communication, Perception, Affective computing

I.  I  NTRODUCTION

Social robots do not (yet) offer the same opportunities as 
humans for social interactions (see (1)). In particular, social
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robots are limited in their ability to infer meaningful social 
information from speech disclosures (2). Most humans, on 
the other hand, effortlessly engage in theory of mind (i.e., 
inferring a person’s mental state) and are generally capable 
of using these abilities when communicating through speech 
(3; 4; 5). While humans can intuitively infer complex social 
information regarding a conversation partner, artificial agents 
need to synthesize and analyze multiple kinds (or channels) 
of data from a human interaction partner in order to ap- 
propriately and accurately ”read” complex social meanings 
(6). One important facet of an interaction that human’s are 
adept at detecting is self-disclosure, a complex social dynamic 
that consists of multiple dimensions. In this study we are 
particularly interested in subjective self-disclosure, i.e. the 
amount of personal information one perceives to be sharing 
during an interaction (7; 8; 8; 9). The aim of the current 
study is to experimentally validate the efficacy of standard 
deep learning models for classifying a person’s subjective 
self-reported levels of self-disclosure in human-robot, human- 
human, and human-agent interactions. 

We approach this problem in a data-centric manner, i.e., 
by applying robust experimental design methodology and 
prioritising the collection of high quality data over complex 
computational models. The data collection procedures for 
the raw data used in the present study allows for maximal 
control over the robustness and quality of the data collected. 
Further, allowing participants to rate their own interactions 
carried the benefit that each sample was accurately labelled. 
To probe this problem, we investigated the effectiveness of 
two different standard feature sets from the speech recognition 
literature: log-mel and eGeMAP features. Our experiments
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were conducted using 5 standard neural network architectures 
as well as a novel architecture that replaced the LSTM layer 
in a CNNLSTM with a Hopfield layer.

II.  DATA S ET AND DATA C OLLECTION

To generate data for the models, three laboratory ex- 
periments were conducted, as reported in detail previously 
(10; 11). The three laboratory experiments (N 1 = 26; N 2  =
27; N 3 = 61) consisted of within-subjects experimental de- 
signs with three treatments. In a randomized order, participants 
were asked one (in the first experiment) or two (in the 
second and third experiments) pre-defined questions about 
their everyday life experiences by each of the three agents: (1) 
a humanoid social robot (NAO by Softbank Robotics), (2) a 
human, or (3) a disembodied agent (a “Google mini” voice as- 
sistant) The agents communicated the same pre-scripted ques- 
tions via the Wizard of Oz (WoZ) technique controlled by the 
experimenter, demonstrating different cues that corresponded 
appropriately to their embodiment. The questions’ topics were 
randomly allocated to the agents, and the questions within each 
topic were randomly ordered. All three experiments took place 
in a sound-isolated recording laboratory. The recording room 
was completely soundproofed to ensure the highest possible 
sound quality for the recordings to facilitate offline analyses. 
After each interaction, participants answered a questionnaire 
reporting their level of perceived self-disclosure to the agent 
via 10 items of an adapted version of Jourard’s Self-Disclosure 
Questionnaire (12).

III.  F EATURE S ETS AND DATA AUGMENTATION

We were interested in examining the effects that two dif- 
ferent kinds of feature sets would have on the deep learning 
models that we used in our experiments. The first feature set 
chosen was log-mel spetrograms and their cepstral coefficients. 
This data representation was chosen because representing 
inputs in log-mel space has been shown to be an effective data 
representation for complex speech recognition tasks (13; 14). 
Log-mel spectra are two-dimensional representations of one- 
dimensional amplitude signals that are produced by first ap- 
plying a fast-Fourier transform to the signal using a sliding 
window. The Fourier transformed windows, which are now 
in 2D, are then concatenated to produce a time-series of 
amplitude spectra in the Hz domain. To produce mel-spectra, 
these time series are then transformed from the Hz domain into 
the mel-frequency domain, a log-scale domain which matches 
the way in which humans perceive the distances between two 
pitches. We used the following standard equation to convert a 
frequency f to a mel-frequency m:

m = 2595log 10 

✓
1  +

f 

700

◆
(1)

The cepstral coefficients are produced by taking a cosine- 
transform of the logs of the powers of the individual mel 
frequencies. To produce a singular feature set we then con- 
catenated the log-mel spectra with their associated cepstral

coefficients. For our experiments we computed 128 mel- 
filter banks and applied them to the Fourier windows and 
then computed 20 cepstral coefficients resulting in a 148 
dimensional feature space for our input data. 

The second feature set we chose to investigate were so 
called ”hand crafted” features from the Geneva Minimalistic 
Acoustic Parameter Set (eGeMAPS)(15). This is an acoustic 
feature set designed to avoid over fitting in machine learning 
models by not overwhelming the models with thousands 
of brute-forced features. eGeMAPS contains 88 statically 
computed low-level descriptors of an audio signal including 
frequency, amplitude, and spectral parameters. To create a time 
series of each WAV data point we took eGeMAP features of 
sliding windows of the amplitude data in 10ms segments. 

The raw data from (11; 16) consisted of 625 interactions as 
waveform audio files. The authors found that no participants’ 
average perceived self disclosure score reached the score of 7 
on the scale, so this class was removed shifting the scale to 
1-6. There was also a large degree of bias toward the central 
scores in the scale meaning that a majority of participants 
scored their interactions in the range [2, 5] creating a large 
degree of class imbalance. This is particularly problematic as 
the most underrepresented classes were the scores of 1 and 6. 
To combat this class imbalance problem and produce a more 
balanced dataset we augmented the raw data using two feature 
sets that we considered for our experiments: log-mel features 
and eGeMAPS.

A. Log-Mel Features

The first augmentation technique applied to the log-mel 
version of the data was vocal-tract length perturbation (17). 
The length of a person’s vocal tract is one of the key 
factors in determining the qualities of that person’s voice. The 
intuition behind vocal tract length perturbation is that if we can 
computationally mimic a shift in the length of the performer’s 
vocal tract by transforming the data then we will have a new 
example of that data point because it simulates the speech 
segmented being uttered by a different person. This changes 
the quality of the voice in the data point without changing the 
underlying features of the data that we are aiming to capture 
in the model. Visually this has the effect of stretching the mel- 
spectrogram slightly in the frequency domain and is similar to 
image warping techniques used in image classification tasks. 
We computed vocal tract length perturbation by shifting the 
central frequency of the mel filter banks used to transform the 
data from the Hz domain to the log-mel domain using a fixed 
warping coefficient and the following formula:

f 0 =

(
f  ↵ f   F hi

min(↵,1)
↵

S/2� S/2 �F hi min(↵,1)

S/2 �F hi
min(↵,1)

↵

(S/2 � f ) otherwise

(2) 
Where f refers to the starting frequency, f 0 is the trans- 

formed frequency, ↵ is the fixed warping coefficient, and
F hi is a boundary frequency chosen to cover the significant
formants in the signal. As in (17) we set Fhi = 4800. While
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drawing the warping coefficient from a uniform distribution in
a certain range is a common technique (17; 18) we found, in 
line with (19), that choosing fixed warping coefficients of 0.9 
and 1.1 produced the best results. This also allowed us to apply 
two separate perturbations to the data in the underrepresented 
classes.

B. eGeMAP features

Since the eGeMAP time series we produced from the 
original raw audio files do not naturally lend themselves to the 
same techniques for augmentation detailed above we instead 
used weighted random sampling to ensure that the network 
was being trained on an even number of examples from each 
class. Weighted random sampling, a development of sequential 
or uniform random sampling (20), assigns a weight to each 
example in a training dataset where the weight is the reciprocal 
of the probability that example would be chosen at random. 
This means that examples from underrepresented classes are 
more likely to be chosen in a batch of input data that is 
used to train a deep learning model. As a result the model 
is shown more examples from under represented classes. We 
found that weighted random sampling in this way increased the 
stability of the learning procedure of our models when trained 
on eGeMAP features despite recent work that has shown that 
under specific assumptions about network architecture and 
learning algorithms, importance related sampling can have
a limited positive effect on network training (21). eGeMAP 
features were extracted from the raw WAV files using the 
opensmile toolkit in python (22).

IV. D EEP L EARNING E XPERIMENTS

In our experiments we used five standard deep neural net- 
work architectures and one novel architecture that we designed 
to leverage the spatio-temporal nature of the input data space, 
as well as make use of some key advances in time series 
modelling in the field of artificial neural networks over the 
past couple of years.

A. Neural Network Architectures

1) Linear Neural Network: Our linear network consisted of 
five fully connected layers where each hidden layer consisted 
of 1024 neurons. We applied drop-out and batch normalization 
to each layer to prevent over-fitting. Each layer was then 
passed through an ReLU non-linear activation function before 
its output was passed to the next layer. The output layer 
consisted of a single neuron so as to implement a regression 
problem. The architecture of this stack of linear layers was 
also used as the classification stack in each one of the other 
networks that we used in our experiments.

2) Convolutional Neural Network: Convolutional neural 
networks (23) have been used successfully in a number of 
tasks related to time series modelling (24). To test the ef- 
ficacy of these architectures we constructed a network with 
two one-dimensional convolutional layers and a linear stack 
for classification. The first convolutional layer passes a nx5 
convolutional kernel with a stride of 1 over each data sample

along the time dimension where n is the number of features for 
each problem. The number of feature maps produced by this
first layer was t

5 where t is the number of time steps in each
sample fed to the network. This produced 35 feature maps for 
the log-mel feature set and 15 for the eGeMAP feature set. 
Each of these feature maps was then fed through an ReLU non- 
linearity before being summarised by a 1D max pooling layer 
with a 3x3 kernel. The second convolutional layer contained
15 nx5 kernels with a stride of 1 and a max pooling layer 
with the same parameters as in the previous layer. Both layers 
also contained 1D batch normalisation to prevent overfitting. 
Finally the output of the second convolutional layer was fed 
to a linear classification stack that mirrors the structure of the 
linear neural network above.

3) Long Short-Term Memory Network: Long Short-Term 
Memory (LSTM) networks have been shown to produce 
state-of-the-art results on a number of time series problems 
including a number of audio classification tasks from emotion 
recognition (25). For our experiments we used a simple single 
layer LSTM network with 296 LSTM cells. The output of this 
layer was then fed to a linear classification stack as above.

4) Convolutional Long Short-Term Memory Network:

Convolutional Long Short-Term Memory Networks 
(CNNLSTM)(26) utilize a hybrid-architecture methodology 
whereby an input data point, usually a multi-variate time 
series, is fed through m either one-dimensional or two- 
dimensional convolutional layers supplemented with max 
pooling for averaging the features learned by the convolutional 
kernels and dropout for regularization. These feature maps are 
then fed through n long short-term memory layers to extract 
temporal features. Finally the data is fed through p fully 
connect linear layers and a softmax layer for classification. 
Our version of a CNNLSTM simply combines the three 
architectures above: The input is fed into a two-layer 1D 
convolutional stack then into a single LSTM layer before 
being fed into a linear classifier.

5) Hopfield Network: The limitation of CNNLSTM models 
is that their capacity to store temporally extended relations 
between points in data are limited by the LSTM layers. 
While LSTMs are partial solutions to the exploding/vanishing 
gradient (27) problems they still suffer from poor performance 
when faced with longer sequences. More recently attention 
based models were introduced for natural language processing 
tasks (28) that improved on the base performance of LSTMs 
(and recurrent architectures more generally) by allowing the 
model to learn a vector embeddingthat teaches the model 
which parts of a sentence are relevant to which other parts. 
Attention based LSTM models have proven successful in a 
number of natural language processing tasks such as sentiment 
classification (29; 30) and emotion recognition (31). 

To test this we created a Hopfield network that simply 
replaced the LSTM layer in our LSTM model with a Hopfield 
layer. Since the Hopfield layer cannot encode temporal infor- 
mation from the data natively (as is done via the existence of 
recurrent connections between neurons in the hidden layers of 
recurrent neural networks such as LSTMs) we use positional
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encoding as in (32). The positional encoding is a static matrix 
generated using the following formula:

P  E  (pos,2i) = sin(pos/10000 2i/dmodel )

P  E  (pos,2i+1) = cos(pos/10000 2i/dmodel ) 
(3)

where pos is the position, i is the dimension of the input 
(in our case this refers to the 128 filter bands from the 
mel-spectrograms or the 88 eGeMAP features), and d is the 
dimension of the model. The reason for using a static encoding 
over a learned encoding via embedding was two-fold. Firstly, 
testing showed that using a learned embedding had negative 
effects on the model’s performance, and secondly as is noted 
in (32) the static positional encoding has the benefit that it 
generalizes to input lengths greater than that which the model 
was trained on. 

6) Hopfield Convolutional Neural Network: For the final 
model we designed a network architecture that combined the 
spatio-temporal representational power of hybrid networks like 
CNNLSTMs while aiming to improve on their performance 
by taking inspiration from the developments in the attention 
field Our model, which we call a Hopfield Convolutional 
Neural Network, replaces the LSTM layers in traditional 
CNNLSTMs with a Hopfield layer. In this model we again 
simply replace the LSTM layer in our CNNLSTM architecture 
with a Hopfield layer and use a static positional encoding (as in 
(32)) to inform the Hopfield layer about the temporal position 
of each observation in each data point.

B. Experiments

We split the data into training and testing datasets. The 
testing set in each case contained participants that had not 
been seen by the model in the training phase so as to reflect 
the kinds of examples that it might see in a real world scenario. 
Testing participants were selected such that the testing set 
contained as even a balance of examples from the classes in 
each problem as possible and that the number of testing to 
training samples that the model experienced during training 
was between 10% and 20%. The reason the train-testing split 
was inconsistent was due to the fact that we split the training 
and testing sets by participant. Each participant represented 
two or three interactions, regularly with different scores and 
lengths of time. Therefore one participant might represent 
significantly more samples per class than another participant 
when the interactions were split into windows of a fixed length. 
Finally to ensure consistency in our comparison between 
models and between feature sets, the same training and testing 
participants were used in each case. 

We split the input data up into windows of constant length:
150 frames of data for log-mel features and 75 frames for 
eGeMAP features as these were found to produce the best 
results for each problem. Each network was trained on mini 
batches of 200 samples (i.e. 200 windows of a given length) 
from the training data set over a period of 300 epochs for the 
log-mel feature set and 100 epochs for the eGeMAP feature 
set. The differences in the epoch hyper-parameters were due to

the speeds at which the networks tended to converge in each 
case. For each network we used the ADAM optimiser (33) 
and a negative mean-squared error lost function 1 . We trained 
the architectures on the log-mel and eGeMAP feature sets 
separately to explore how effective each of these literature- 
standard feature types were at capturing informative features 
from the data for this classification problem. Each model 
was validated according to an accuracy metric defined as the 
percentage of correctly classified samples from a testing set 
i.e. what percentage of examples from the testing set the 
model correctly identified as belonging to a ground-truth self- 
disclosure score. Since we were dealing with a regression 
problem we computed the classification accuracy by rounding 
the regression score for each input to the nearest integer. We 
then compared this result to the ground truth integer score 
when computing the accuracy of the input batch.

V. R ESULTS

The results of our experiments are displayed in table I. 
We found that all networks for both the mel-spectrogram 
and eGeMAP feature sets learned meaningful features from 
the data such that they were able to achieve accuracy scores 
significantly above chance. On the mel-spectrogram features 
we found that all models performed effectively identically 
scoring around 48% in each case, while for the eGeMAP 
features the linear net was the most accurate with a score of 
43.52%. We further found that log-mel features were the most 
informative, leading to significantly better accuracy scores 
than the eGeMAP features. For both the mel-spectrogram and 
the eGeMAP features we found that the networks tended to 
overfit the training data. To combat this we set the network 
dropout values to 10% for the mel-spectrogram features and 
90% for the eGeMAP features to account for the degree of 
over fitting that we experienced in both cases. Nonetheless, 
we found that learning in all networks was difficult as is clear 
from the results. We hypothesize that the failure to achieve 
much higher accuracy scores may be able to be put down 
to the difficulty of the task. It’s intuitive that an important 
way in which we ascertain whether someone is disclosing 
personal information is informed in no small part by the 
lexical properties of their speech i.e. what it is they are saying 
as opposed to how they are saying it. Since lexical features 
were absent from the feature sets (since we were specifically 
interested in investigating whether networks could learn non- 
lexical properties of speech) it makes sense that the task would 
be significantly harder than if we had included lexical based 
features. However it is clear from the results that the data were 
informative enough to allow the networks to lean non-lexical 
features despite the intuitively challenging nature of the task.

VI. D ISCUSSION AND C ONCLUSIONS

This study provides novel scientific and technical contribu- 
tions to the HRI and affective computing research communities 
in a number of ways. To our knowledge, this is the first

1 A table containing all network hyperparameters for both feature sets is
displayed in II
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TABLE I
S ELF -D ISCLOSURE M ODEL ACCURACY FOR M EL -S PECTROGRAM AND 

E G E MAPS FEATURE SETS

Model Type Mel-Spec Accuracy(%) eGeMAPS Accuracy(%) 
Chance 16.67 16.67
LNN 48.2 43.52
CNN 48.28 42.42

LSTM 48.34 41.05
CNNLSTM 48.13 40.08

Hopfield 47.8 42.74
HopfieldCNN 48.28 42.85

TABLE II
N ETWORK H YPERPARAMETERS

Hyperparameter eGeMAP Models (%) MelSpec Models (%) 
Learning Rate 0.1 0.1

Epochs 100 300
Input Size (frames) 75 150

Batch Size 200 200
Dropout 0.9 0.1

Loss Function MSE MSE

attempt to investigate deep learning’s ability to extract features 
related to a person’s subjective experience from their speech. 
By using genuine data that was collected in HRIs we will 
be able to extend these and implement those insights to 
further understand how humans communicate with robots, 
and by applying these sort of models we will be further 
ahead in granting robots the ability to understand humans 
subjective perceptions. While the presented architectures are 
relatively straight-forward, these models (and other similar 
models that use the same approach) conceptually mark small 
steps towards creating robots that understand people from 
their subjective point of view by synthesizing available non- 
intrusive behavioral cues. Adapting the architectures presented 
here could help equip artificial agents to understand humans 
better. Nevertheless, our results however do show that much 
improvement can and should be made before deep learning 
platforms are seriously considered for being introduced or 
implemented into social robots. We do, however, believe that 
our results show that such progress is possible and that there 
are promising avenues for future research in this space.
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