
There may be differences between this version and the published version. You are advised to consult the published version if you wish to cite from it.

http://eprints.gla.ac.uk/266885/

Deposited on 10 March 2022

Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk
Golden Eagles Show Different Hg Speciation

HgSe Nanoparticles

Demethylation or Consumption?

Box plots showing the distribution of methylmercury fractions for different species (BO, BZ, GE, HH, SH, TO) with a split for two isotopes: $^{204}\text{Hg}/^{13}C$ and $^{80}\text{Se}/^{13}C$.
Mercury speciation in Scottish raptors reveals high proportions of inorganic mercury in Scottish golden eagles (*Aquila chrysaetos*): potential occurrence of mercury selenide nanoparticles

Highlights:

- Mercury speciation was studied in the livers of six species of terrestrial birds of prey.
- Golden eagles showed significantly lower methylmercury fractions.
- Stable isotopes indicate that the elevated inorganic mercury is marine-influenced.
- Bioimaging revealed potential evidence of mercury selenide nanoparticles.
Mercury speciation in Scottish raptors reveals high proportions of inorganic mercury in Scottish golden eagles (Aquila chrysaetos): potential occurrence of mercury selenide nanoparticles

Shaun T. Lancastera,b,1,*, Gabriela Penichec, Ali Alzahranid, Magdalena Blanza,d, Jason Newtone, Mark A. Taggartf, Warren T. Cornsb, Eva M. Kruppa, and Jörg Feldmanna,g

aTrace Element Speciation Laboratory Aberdeen (TESLA), Department of Chemistry, Meston Walk, University of Aberdeen, Aberdeen AB24 3UE, UK.

bPS Analytical, Crayfields Industrial Estate, Main Road, Orpington, Kent BR5 3HP, UK

cThe Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, Edinburgh, EH25 9RG, UK

dArchaeology Institute, University of the Highlands and Islands, Orkney College UHI, Kirkwall, Orkney, KW15 1LX, Scotland, UK

eNational Environmental Isotope Facility, Scottish Universities Environmental Research Centre (SUERC), East Kilbride, G75 0QF, UK

fThe Environmental Research Institute (ERI), University of Highlands and Islands, Castle St, Thurso, KW14 7JD, UK

gTESLA – Analytical Chemistry, Institute of Chemistry, Universitaetsplatz 1, University of Graz, 8010 Graz, Austria

1Present address: Department of General, Analytical and Physical Chemistry, Chair of General and Analytical Chemistry, Montanuniversität Leoben, 8700 Leoben, Austria.
Abstract

Knowledge of the uptake and fate of mercury (Hg) compounds in biota is important in understanding the global cycling of Hg and its transfer pathways through food chains. In this study, we analysed total mercury (T-Hg) and methylmercury (MeHg) concentrations in 117 livers of Scottish birds of prey that were found across Scotland and submitted for post-mortem examination through the Raptor Health Scotland project between 2009–2019. Statistical comparisons focussed on six species (barn owl, Tyto alba; Eurasian common buzzard, Buteo buteo; golden eagle, Aquila chrysaetos; hen harrier, Circus cyaneus; Eurasian sparrowhawk, Accipiter nisus; and tawny owl, Strix aluco) and showed that golden eagles had a statistically lower fraction of MeHg compared to other raptor species. Further investigation using stable carbon and stable nitrogen isotope ratio measurements carried out for the golden eagles (n = 15) indicated that the increased presence of inorganic mercury (iHg) correlated with a marine influence on the primarily terrestrial diet. Additional bioimaging (n = 1) with laser ablation – inductively coupled plasma – mass spectrometry indicated the co-location of Hg and selenium (Se) within the liver tissue and transmission electron microscopy showed evidence of nanoparticles within the range of 10–20 nm. Further analysis using single particle – inductively coupled plasma – mass spectrometry (n = 4) confirmed the presence of Hg nanoparticles. Together, the evidence suggests the presence of mercury selenide (HgSe) nanoparticles in the liver of some golden eagles that, to our knowledge, has never been directly observed in terrestrial birds of prey. This study points to two alternative hypotheses: these golden eagles may be efficient at breaking down MeHg and form HgSe nanoparticles as a detoxification mechanism (as previously observed in cetaceans), or some golden eagles with elevated iHg may have accumulated these nanoparticles by foraging on stranded cetaceans or seabirds.

Keywords: Mercury, Methylmercury, Nanoparticles, Raptors, Birds of prey

1. Introduction
Mercury (Hg) is a well-studied, ubiquitous pollutant of global concern (Obrist et al., 2018). Although naturally occurring, it is anthropogenic emissions that make up the majority of Hg pollution present in the modern environment (UN Environment, 2019). Recently, the Minamata Convention came into force (in 2017) with the aim to reduce emissions of Hg into the environment (UN Environment, 2017). Once released, readily volatile Hg cycles around the globe, and can deposit in different environmental sinks (either by wet or dry deposition) and cause detrimental effects to wildlife (Day et al., 2005; Evers et al., 2008; Lurz et al., 2017). The most common exposure pathway is through diet, whereby up to 16% of inorganic mercury (iHg) (Syversen and Kaur, 2012) and 100% of methylmercury (MeHg) (Gochfeld, 2003) ingested is liberated from the matrix and absorbed by the gastro-intestinal tract. Therefore, MeHg tends to pose the most significant threat to humans (Mergler et al., 2007) and wildlife (Chételat et al., 2020; Scheuhammer et al., 2007) due to its high absorption rate, toxicity and propensity to bioaccumulate.

Birds of prey, also known as raptors, can be exposed to Hg in both terrestrial (Cristol et al., 2008) and aquatic (Eagles-Smith et al., 2009a) environments. Exposure to Hg can cause immunological, physiological, and behavioural changes (Carlson et al., 2014; Scheuhammer et al., 2007; Seewagen et al., 2019). Previous literature on Hg in birds of prey has focussed on the fate of MeHg after uptake through the diet. Once consumed, MeHg cycles within the blood stream and accumulates primarily in the liver and kidneys (Kenow et al., 2007). Toxic effects can be naturally mitigated by elimination and excretion of MeHg, which can occur via different routes. Primary elimination routes include sequestering to feathers (which are then shed during molting), urinary and faecal excretion (Bearhop et al., 2000; Lewis and Furness, 1993, 1991). In female birds, maternal transfer of MeHg to eggs can also occur (Ackerman et al., 2020). The half-life of MeHg in the bloodstream has been shown to change over time, with initially rapid decreases observed (during the first 24 hours following exposure), followed by much slower subsequent decay times (>45 days) (Monteiro and Furness, 2001). Hepatic demethylation of MeHg has also been proposed (Eagles-Smith et al., 2009b; Henny et al., 2002; Scheuhammer et al., 1998). Accumulation of iHg in the liver is often interpreted as evidence of such
hepatic demethylation, which may subsequently bind with selenium (Se) in the liver. Such interactions can exist in different forms, such as the Hg-selenocysteine complex (1:4 stoichiometry) found recently in seabirds (Manceau et al., 2021b), which is formed from the demethylation of MeHg (Manceau et al., 2021a) and acts as an intermediate step to the formation of mercury selenide (HgSe) nanoparticles that may accumulate in the liver. However, direct observations of such HgSe nanoparticles have, so far, only been reported in cetaceans (Bolea-Fernandez et al., 2019; Gajdosechova et al., 2016) and, very recently, seabirds (Manceau et al., 2021b; Renedo et al., 2021), who typically have a very high dietary intake of MeHg.

Most literature regarding Hg speciation in wildlife generally neglects dietary uptake of iHg given that MeHg is more readily absorbed through the diet and more toxic. Bioaccumulation of Hg via iHg is possible at the lower trophic levels of the food chain (Bouland et al., 2012), as well as the top levels (Palma et al., 2005). For this reason, iHg speciation and monitoring of concentrations of total mercury (T-Hg) at higher trophic levels of the food chain, in this case Scottish raptors, may provide additional clues to potential uptake mechanisms or pathways. The consumption of iHg and MeHg may vary across the different birds of prey depending on the species’ diet habits (small birds feeding on insects, rodents, carrion, marine based, etc.). In largely terrestrial birds of prey, high iHg concentrations may (for example) be indicative of dietary uptake, novel Hg exposure pathways, or hepatic demethylation.

In avian ecology (and less so ecotoxicology), stable isotope ratios are frequently used to help identify different food sources; most notably, stable carbon (δ13C) and nitrogen (δ15N) isotope ratios. The isotopic ratios of the consumer tissues depend on the isotope ratios of their diet, which, for a terrestrial diet, is subsequently dependant on available plant species. δ13C ratios show very limited enrichment following consumption and tend to differ markedly between terrestrial C3 plant ecosystems and marine ecosystems, whereas δ15N generally shows enrichment of 2–4 ‰ with each increase in trophic level (Inger and Bearhop, 2008; Zanden et al., 1999). Animals in marine ecosystems tend to have elevated δ15N values when compared to terrestrial animals due to a combination of
longer food chains in the marine environment and higher δ^{15}N in marine plants at the base of the food chains (Schoeninger and DeNiro, 1984). For these reasons, δ^{13}C is widely used to identify relative contributions made to diet by marine- vs terrestrial-derived foods (Chisholm et al., 1982; Hobson and Clark, 1992; Kelly, 2000) and δ^{15}N is used to infer trophic level in avian ecology studies (Cherel et al., 2005; Hobson and Clark, 1992; Kelly, 2000). More infrequently, stable sulphur isotope ratios (δ^{34}S) have also been used similarly to infer relative contributions of marine and terrestrial environments (Hebert et al., 2008).

Bioimaging with laser ablation – inductively coupled plasma – mass spectrometry (LA-ICP-MS) has been used extensively to assess the location and correlation of elements in biological tissues (Becker et al., 2014), such as to show the correlation of Hg and Se (as HgSe nanoparticles) within the livers of pilot whales (Gajdosechova et al., 2016). However, the resolution of the technique typically ranges from 10–100 µm, which is not sufficient to determine accurate sizes of nanoparticles. Complimentary techniques may be used in parallel to give further insight to inorganic particulates on the nano-scale, such as single particle (sp)-ICP-MS. Here, dilute solutions containing analyte nanoparticles are analysed with extremely short dwell times, such that statistically each spike in signal corresponds to one packet of ions from a single particle (Meermann and Nischwitz, 2018). Although the technique provides excellent detection capabilities, it suffers greatly from the lack of ability for simultaneous determinations of two elements when using quadrupole-based mass spectrometers. Another complimentary technique is transmission electron microscopy (TEM), which has been used to study the size and morphology of nanoparticles (Rauwel et al., 2015). Together, these techniques can be used to gain further insights into the fate of Hg in biological samples.

Here, we investigate Hg presence and speciation in the livers of birds of prey to further understand potential exposure routes and fate of Hg in the environment. To achieve this, we analysed T-Hg and its speciation in 117 liver samples from raptors of 13 different species from across Scotland. Statistical comparisons were carried out between six raptor species (with more than seven individuals): for barn
owl, *Tyto alba*; Eurasian common buzzard, *Buteo buteo*; golden eagle, *Aquila chrysaetos*; hen harrier, *Circus cyaneus*; Eurasian sparrowhawk, *Accipiter nisus*; and tawny owl, *Strix aluco*. Further investigation was carried out for golden eagles using carbon, nitrogen, and sulphur stable isotope ratios (n = 15) to consider diet, and nanoparticle analysis by sp-ICP-MS (n = 4), as well as bioimaging using LA-ICP-MS and TEM (n = 1) to consider the form of Hg and its location and interaction with Se. Following interpretation of results, we present evidence that iHg speciation (alongside MeHg) may give additional indications regarding different Hg uptake mechanisms and food chain transfer pathways in Scottish golden eagles.

2. Methods and materials

2.1. Bird collection and sampling

Raptor liver tissues (n = 117) used for chemical analyses originated from raptor carcasses found across Scotland (Figure A.1, Table A.1) between 2009–2019, which were submitted for post-mortem examination through the Raptor Health Scotland project led by the Royal (Dick) School of Veterinary Studies (University of Edinburgh, UK). Tissues were collected and stored in polypropylene containers at −20 °C prior to further processing.

2.2. Sample preparation and storage

For all chemical determinations, approximately 1 g of fresh liver samples were freeze dried and then ground into a fine powder using a mortar and pestle. Moisture content was determined by weight loss using weights taken before and after freeze drying. All reagents used were of analytical grade.

Bioimaging measurements carried out on 30 µm thin sections of liver cut using a Bright 5030 microtome cryostat (Bright Instruments, UK). All samples were subsequently stored in a freezer at −8 °C prior to analysis.

2.3. Sample analysis

2.3.1. MeHg quantification
MeHg extraction and analysis by liquid chromatography – photochemical vapour generation – atomic fluorescence spectrometry (LC-PVG-AFS) (Lancaster et al., 2019) was carried using a PSA 10.820 speciation system and PSA Millennium Merlin analyser (PS Analytical, UK). 30–50 mg of liver sample was extracted with 5 mL of a solution containing 10 mM ammonium pyrrolidine dithiocarbamate in 80% methanol in a hot block digestor (DigiPREP; SCP Science, Canada) at 60 °C for 30 min, followed by 15 min ultrasonication (Ultrasonic Cleaner, Model 010; Skymen, China). Samples were filtered using 0.45 µm PTFE filters (Chromacol Filter PTFE 30-SF-45(T); Thermo Scientific, USA), diluted, and analysed using the LC-PVG-AFS method described with 25% acetic acid and UV to reduce the Hg species to elemental mercury (Hg\(^0\)). Blank extractions were prepared in duplicate alongside the samples and monitored for MeHg, however limit of detection (LOD) was calculated using the standard error of the calibration intercept.

2.3.2. Total Hg and Se quantification

T-Hg determination was carried out using a PSA Millennium Merlin (PS Analytical, UK) analyser. 30–50 mg of liver sample was pre-digested overnight in 3 mL of concentrated nitric acid. Before the samples were subjected to open-vessel digestion, 2 mL concentrated hydrogen peroxide was added. The samples were digested using a hot block digestor (DigiPREP; SCP Science, Canada) at 50 °C for 5 min before the temperature was ramped to 100 °C over 25 min. The samples were left to digest for a further 30 minutes at 100 °C. After digestion, the samples were allowed to cool at room temperature and the lids removed to allow the nitrous fumes to discipate. The samples were then diluted to 20 mL and filtered using Whatman™ filter papers (41, Ashless, 90 mm diameter; Fisher Scientific, UK). After filtration, the samples were diluted to 40 mL with deionised water. Any MeHg remaining in the sample was converted to iHg with the addition of 1 mL concentrated hydrochloric acid and 2 mL of 0.1N bromide/bromate solution. After 30 min, the samples were decolourised with 35 µL of 12% (m/v) hydroxylamine hydrochloride and diluted to 50 mL. A 10 mL aliquot of the sample was taken for further processing for total selenium (T-Se) determination. T-Hg analysis was carried out using cold
vapour (CV)-AFS, where a solution of 2% (m/v) tin(II) chloride in 1.2 M hydrochloric acid was used to convert the Hg to Hg₂. T-Se analysis was carried out using a PSA Millennium Excalibur analyser (PS Analytical, UK). Following preparation for T-Hg, the 10 mL aliquot of the sample was further digested in 10 mL HCl by open-vessel digestion in the hot block digester at 120 °C for 1 hour. The samples were allowed to cool at room temperature before diluting to 50 mL, where they were then analysed by hydride generation (HG)-AFS. The Se-hydrides were generated by the addition of 0.2 M sodium borohydride in 0.1 M sodium hydroxide. Digestion blanks for T-Hg and T-Se were prepared in duplicate and the LOD was determined using replicate measurements of the digestion blanks.

2.3.3. Isotope ratio analysis

Stable isotope ratios of carbon, nitrogen, and sulphur in freeze dried golden eagle liver samples (n = 15) were analysed. Subsamples of 2.5–2.9 mg were weighed into 3 × 5 mm tin capsules and sequentially analysed for δ¹⁵N, δ¹³C, and δ³⁴S using a PyroCube elemental analyser (Elementar, Hanau, Germany) interfaced with an Elementar VisION isotope ratio mass spectrometer (Skinner et al., 2019). Stable isotope ratios reported here use the delta (δ) notation (McKinney et al., 1950), which for δ¹³C, δ¹⁵N, or δ³⁴S is: \([R_{\text{sample}}/R_{\text{standard}} - 1]\), where \(R\) is the ratio of the heavy to light isotope (e.g., \(^{13}\text{C} / ^{12}\text{C}\)), and measured values are expressed in per mil (‰).

2.3.4. Nanoparticle characterisation by sp-ICP-MS

Approximately 20 mg of sample was first defatted using acetone. HgSe nanoparticles were extracted by enzymatic digestion (Gajdosechova et al., 2016) at 37 °C overnight using a solution of 1 mg mL^{−1} protease and 5 mg mL^{−1} SDS in 50 mM ammonium carbonate buffer (pH 7.4). The nanoparticles were isolated from the sample by filtration using centrifuge filters (Amicon Ultra, Merck, UK) with a 50 kDa cut-off spun at 11 300 × g. The filter was further washed with MilliQ water to remove dissolved Hg. The filtration residue was then removed and diluted in MilliQ water before analysis with sp-ICP-MS
using an Agilent 7900 series ICP-MS (Agilent Technologies, USA). Isotopes of 77Se and 202Hg were monitored individually for 2 min each with a 1 ms dwell time. Helium was added as a collision gas at 2 mL min$^{-1}$. Transport efficiency was determined by analysis of a gold nanoparticle reference material (NIST RM 8013, 60 nm nominal diameter), which was diluted to 50 ng L$^{-1}$. Particle number, particle sizes, and limit of size detection were calculated using the Agilent MassHunter software.

2.3.5. Elemental mapping of Hg and Se by LA-ICP-MS

Element mapping of Hg and Se present in tissues was undertaken using the thin sections of one golden eagle liver sample with LA-ICP-MS (Gajdosechova et al., 2016). Analysis was carried out using a New Wave UP-213 laser ablation system (New Wave Research, USA) coupled to an Agilent 7900 series ICP-MS (Agilent Technologies, USA). Laser energy of 30% and spot size of 55 µm was used. Ablation lines covering the entire liver section were generated of length 13.5 mm and spaced 60 µm apart with a scan speed of 50 µm s$^{-1}$. Mass to charge ratios of 13C, 80Se, and 202Hg were monitored, with a dwell time of 0.010 s for 13C and 0.490 s for 80Se and 202Hg. Argon carrier gas was used at 1.2 L min$^{-1}$ and hydrogen reaction gas was used at 3.5 mL min$^{-1}$.

2.3.6. Bioimaging of nanoparticles by TEM

Thin sections of liver sample from one golden eagle were placed onto copper grids (TAAB, UK) and subject to TEM imaging using a JEOL-1400 plus electron microscope. An accelerating voltage of 80 kV and an AMP UltraVUE camera were used.

2.4. Quality control

Certified reference material DOLT-4 was used for validation of the MeHg, T-Hg, and T-Se determinations.

For isotope ratio measurements, international reference materials were placed at the start of the N/C/S run to correct for accuracy. Materials used were USGS40 (glutamic acid) (Coplen et al., 2006; Qi et al., 2003) for δ^{13}C and δ^{15}N and silver sulfide standards IAEA-S1, S2, and S3 for δ^{34}S. These were
preceded by a suite of differently-sized MSAG2 (a solution of methanesulfonamide and gelatin) internal standards to correct for linearity (Werner and Brand, 2001). Two internal reference materials were placed every 10 samples: these included MSAG2, M2 (a solution of methionine, gelatin, glycine), and 15N-enriched alanine and SAAG2 (a solution of sulfanilamide, gelatin, and 13C-enriched alanine). The internal standards were designed to have a wide range of isotope compositions.

2.5. Statistics

2.5.1. Significance testing

Statistical tests were carried out using Minitab19. Data sets were tested for normal distribution using the Kolmogorov-Smirnov test with Lilliefors correction. Where the data sets displayed distributions that were not significantly different to a normal distribution, one way ANOVA was used for comparisons of three or more data sets, with Tukey’s HSD tests applied post-hoc following a significant result ($p < 0.05$). Where distributions differed significantly from a normal distribution, Kruskal-Wallis (non-parametric) ANOVAs were used with Bonferroni corrected pairwise Mann-Whitney tests applied post-hoc.

2.5.2. Measurement uncertainty

The measurement uncertainty for the MeHg, T-Hg, and T-Se methods were determined using a bottom-up approach (JCGM 100:2008, 2008). The uncertainty contributions were taken from available certificates, or from statistical analysis of repeated measurements. Precision was evaluated by triplicate extraction of 10% of the liver samples prepared and analysed on separate days, encompassing both measurement error and the sampling error. The recovery uncertainty was evaluated using DOLT-4 reference material extracted and measured in triplicate on each analysis day. The bias was tested for significance using a t-test and the uncertainty inflated for low degrees of freedom (Barwick and Ellison, 1999). All dilutions were carried out by weight. The uncertainty in the reading of the analytical balance was evaluated from the calibration certificate and the repeatability
of weighing (González and Herrador, 2007). The uncertainty in the measured concentration of the sample due to the linear calibration was evaluated using the EURACHEM/CITAC formula (Ellison and Williams, 2012) without considering replicate sample measurements to avoid double counting from the precision component (Kadis, 2017). The purity of the Hg and Se analytical standards were evaluated from certificates with an assumed rectangular distribution. The purity of the MeHg compound was evaluated from the stated purity assuming a ramp distribution (Van Look and Meyer, 2002). Once all sources of uncertainty were estimated, the components were combined according to the law of propagation of uncertainty. The result was expressed as expanded uncertainty ($U(\overline{C})$) by multiplying the combined uncertainty by a coverage factor, $k = 2$, corresponding to a 95% confidence level.

3. Results

3.1. Hg in raptor livers

In total, 117 raptor liver samples were analysed for MeHg and T-Hg. All sample concentrations reported in this study are reported as mg kg$^{-1}$ dry weight (dw). Quality control and precision data have been detailed in Table A.2. The average moisture concentration of the liver samples tested was $70.8 \pm 4.1\%$. T-Hg concentrations in raptor livers varied by 3 orders of magnitude; from 0.0348 mg kg$^{-1}$ (a golden eagle nestling) to 24.4 mg kg$^{-1}$ (a juvenile hen harrier; Table A.3). Six species with large enough data sets ($n \geq 9$) were selected for more detailed comparisons: barn owl ($n = 19$), Eurasian common buzzard ($n = 34$), golden eagle ($n = 15$), hen harrier ($n = 11$), Eurasian sparrowhawk ($n = 15$), and tawny owl ($n = 9$); total $n = 103$. Comparison of the results obtained are shown in Figure 1.
Figure 1 Box and whisker plots showing the range, semi-interquartile range, and median for MeHg (A), T-Hg (B) and MeHg fraction (C) in barn owls (BO), buzzards (BZ), golden eagles (GE), hen harriers (HH), sparrowhawks (SH), and tawny owls (TO). Outliers (in A and B) exceeded 1.5 times the interquartile range. Roman numerals (in blue) indicate the post-hoc groupings for each raptor species.

MeHg distributions for barn owl and tawny owl were normally distributed (p > 0.15), while all other raptor species had non-normal distributions (p < 0.05). For T-Hg, all six species had non-normal distributions. Therefore, for comparisons between species, non-parametric tests were used. ANOVAs indicated differences between species for both MeHg and T-Hg results (p < 0.0001), however the post-hoc tests revealed too many overlaps between species to highlight distinct differences. Assessment of
the measurement uncertainty for a typical analysis of MeHg and T-Hg in this study showed relative expanded uncertainties of 12.2% and 12.0% respectively (Table A.4a).

All species showed normally distributed MeHg fractions (proportion of T-Hg present as MeHg). ANOVAs indicated that there was a significant difference between species \((p < 0.0001)\) in terms of MeHg fraction, and post-hoc tests indicated that golden eagles had significantly lower mean MeHg fractions than other species, except for barn owls. MeHg fractions up to 120% are covered within the combined measurement uncertainty of both analysis methods, however MeHg fractions determined to be >120% (hen harrier, \(n = 2\)) are outliers.

3.2. Stable isotope ratios \((\delta^{13}C, \delta^{15}N \text{ and } \delta^{34}S)\) of golden eagle livers

Carbon, nitrogen, and sulphur stable isotope ratios plotted against iHg levels are shown in Figure 2 and Figure A.2–A.4. Sulphur stable isotope ratios showed no apparent relationship with iHg (Figure A.2). Comparisons were also made between the stable isotope data and MeHg, T-Hg, and the MeHg fraction data (Figure A.2–A.4), however, no trends were observed.

![Comparison between iHg concentrations and carbon (A) and nitrogen (B) stable isotope ratio data for golden eagle liver samples \((n = 15)\). Error bars represent 1σ. The highlighted ‘outlier’ samples (orange and yellow) originate from the Isle of Rum, Scotland, UK (and are discussed further below).](image)
3.3. *MeHg* fraction differences in golden eagle livers

The T-Hg concentrations in golden eagle livers were plotted against MeHg fraction data in Figure 3. Though all sample concentrations obtained were above the limit of detection (LOD) for each analysis, three samples had MeHg concentrations below the limit of quantification (LOQ). Therefore, since the error on these results would be high, these data points were omitted from the graph. The results showed that as T-Hg increased, a decrease in the MeHg fraction occurred (regression ANOVA; $p = 0.021$).

![Graph showing variation in MeHg fraction with T-Hg concentration (log scale) in golden eagle liver tissue samples (n = 12). Error bars presented represent 1σ. Samples highlighted in orange and yellow are the two ‘outlier’ samples noted in Figure 2.](image)

3.4. Comparison of *iHg* to T-Se in golden eagle livers

Given its previously documented potential to bind to *iHg* in the livers of cetaceans (Bolea-Fernandez et al., 2019; Gajdosechova et al., 2016) and, recently, seabirds (Manceau et al., 2021b; Renedo et al., 2021), T-Se concentrations in golden eagle liver samples were compared with *iHg* (Figure 4).
iHg concentration plotted against T-Se concentration in golden eagle livers (n = 15). Error bars presented represent 1σ. Samples highlighted in orange and yellow are the two ‘outlier’ samples noted in Figure 2.

The golden eagle with the highest iHg (11.9 mg kg\(^{-1}\)) also had extremely high T-Se (20.4 mg kg\(^{-1}\)) and can be treated as an obvious outlier. When this specimen is excluded, the T-Se concentration for all other samples follows a normal distribution (p > 0.150).

Calculated measurement uncertainty for a typical analysis of Se in the raptor livers showed a relative expanded uncertainty of 19.2%, much higher than that for MeHg or T-Hg measurements primarily due to the larger error in the certified value of T-Se in DOLT-4 (Table A.4b).

3.5. Analysis for the presence of Hg and Se nanoparticles in golden eagle livers

The three birds with the most elevated iHg concentrations (all >2 mg kg\(^{-1}\) on Figure 4), and the additional outlier for \(\delta^{13}\)C (in yellow; Figure 3), which originated from the same location as the golden eagle with the highest iHg concentration (in orange; Figure 3), were subjected to sp-ICP-MS analysis to observe and quantify the presence of possible nanoparticles. Analysis of NIST RM 8013 gave a transport efficiency of 8.18%. Although the gold nanoparticles are likely different in terms of surface functionality to that of the biological nanoparticles, transport efficiency was assumed to be consistent between NIST RM 8013 and the Hg and Se measurements. The samples were diluted for analysis based on obtaining a final dilution of 0.5 ng mL\(^{-1}\)iHg. The limit of size detection of the method was found to be 17.6 nm (RSD = 1.3%). All four samples measured showed clear evidence of the presence of Hg.
nanoparticles (Table A.5, Figure A.6). However the shape of the particle size distribution plots did not
approximate a normal distribution. Instead, the number of observed particles only increased as
particle size decreased towards the limit of size detection. This suggests that the true median particle
size likely lies below the limit of size detection in each case. The samples were also measured for Se,
which showed detectable nanoparticles (>25 nm). However, the number of detected particles were
too low (<1000) to obtain further reliable information.

To identify whether Hg and Se were co-located in hotspots within tissues (i.e., as nano or
microparticles), or, if these elements were homogeneously distributed within liver tissues, a thin
section of liver from the golden eagle outlier highlighted in orange in Figures 2–4 was analysed further
with LA-ICP-MS. This particular liver sample was chosen as it was the most extreme outlier for δ^{13}C
and δ^{15}N and contained the highest iHg and T-Se content. Element maps, which give semi-quantitative
data, were then created for the thin section (Figure 5). The most abundant isotopes (80Se and 202Hg)
were used to obtain the best possible sensitivity, with hydrogen reaction gas additionally used to
remove the argon-based interference on 80Se. Carbon intensities (Figure A.7) were used as an internal
standard to correct for instrumental drift and uneven sample thickness in order to ensure a normalised
comparison between the Hg and Se intensities across the liver sample. The maps displayed a clear
presence of Hg hotspots, which also correlated with hotspots of Se.
Figure 5 2D maps of 202Hg/13C (A) and 80Se/13C (B) in the liver of the golden eagle with the highest observed iHg and high T-Se concentrations (highlighted orange; Figure 4). Magnified sections of the 202Hg/13C and 80Se/13C plots are given in (C) and (D) respectively. The scale displays intensity of the monitored isotope (in counts per second), with low counts displaying in blue and high counts displaying in red. Normalised Hg and Se counts (E) is also plotted.

Additional TEM imaging (n = 1) (Figure A.8) from the same golden eagle sample highlighted numerous small dense materials, most likely nanoparticles. Size imaging assessment determined the particles to range primarily between 10–20 nm in diameter.
4. Discussion

Most of the raptor liver samples tested here had concentrations (for both MeHg and T-Hg) within the 0–5 mg kg\(^{-1}\) dw range, however, some individuals showed much higher ‘outlier’ concentrations – up to approximately 24 mg kg\(^{-1}\) (Figure 1) for both MeHg and T-Hg in one hen harrier found on the Orkney isles in 2018 (Table A.1). Proposed liver Hg concentrations indicative of impaired reproduction and mortality are >2 mg kg\(^{-1}\) and >20 mg kg\(^{-1}\) wet weight (ww) respectively (Shore et al., 2011) (approximately equivalent to 7 mg kg\(^{-1}\) and 70 mg kg\(^{-1}\) dw in this study). Although no samples here exceeded the indicative concentration for mortality, 9 of the 117 raptor livers analysed showed Hg concentrations within the range of potential reproductive impairment, however no clear pattern was observed when considering location or sampling year. Of these 9 samples, one was an osprey (Pandion haliaetus), which typically would have a diet of fish and, thus, likely high MeHg. The other species include buzzards (n = 2), golden eagles (n = 2), hen harrier (n = 2), and sparrowhawk (n = 2), and their diets vary from carrion (insects, worms, small mammals) to larger mammals, birds, and sometimes fish. Some diet variation will exist between the prey items of individuals of the same species living inland to those living on the coast. For example, it is known that the diet of Scottish golden eagles consists primarily of lagamorphs (e.g. rabbits) and other mammals (Watson et al., 1993), however in the western isles their diet contains up to 20% of fish and waders/seabirds (Halley, 1998). Not all samples high in Hg were found in coastal locations, therefore there are likely also other potential dietary sources to consider.

Large variations in Hg concentrations were observed in buzzards, golden eagles, hen harriers, and sparrowhawks, spanning over two orders of magnitude. Similar large variations of Hg levels have previously been observed in a study on Norwegian birds of prey (Frøslie et al., 1986). The barn owls and tawny owls generally showed a smaller variation in Hg levels (when compared to the other species), and this could relate to a range of environmental, behavioural, or physiological factors. A similar study on Hg in raptors in Belgium showed that barn owls from a predominantly agricultural
area (n = 16) had 4 times higher Hg levels than barn owls from predominantly forest or meadow areas (n = 3) (Delbeke et al., 1984). Concentrations reported for T-Hg ranged from 0.07–4.31 mg kg\(^{-1}\) ww (equivalent to 0.24–14.8 mg kg\(^{-1}\) dw) in agricultural zones compared to 0.14–1.63 mg kg\(^{-1}\) ww (equivalent to 0.48–5.58 mg kg\(^{-1}\) dw) for meadow areas. The authors suggested that this difference in Hg was due to differing diets in the two areas. The concentration range of 0.22–1.19 mg kg\(^{-1}\) dw for barn owls observed in this study suggests a diet preference component closer to that of the birds foraging in meadow areas, likely small rodents rather than passerines. Similarly, tawny owls have a mostly rodent based diet, however, it also includes small birds, insects, amphibians, and earthworms (Taylor, 2016) potentially reflecting the slightly wider Hg concentration range when compared to the barn owl.

In terms of organic vs iHg speciation, most of the samples tested across all species had MeHg fractions between 80–120%, suggesting a low rate of demethylation of MeHg in these species or low uptake of iHg in diet. However, golden eagles statistically showed significantly lower MeHg fraction values, despite displaying statistically similar MeHg and T-Hg concentrations to sparrowhawks, buzzards, and hen harriers. Differences in behaviour and habit (i.e., prey selection) between these species may in part underlie these observations, and as such, stable isotope ratio data was collected here for golden eagles to consider if the differences in iHg values may correlate with isotopic indicators of diet (i.e., \(\delta^{13}C\), \(\delta^{15}N\) and \(\delta^{34}S\) isotope ratios).

In terms of isotope data (Figure 2), we observed \(\delta^{13}C\) values ranging from –27 to –23 ‰ with one specimen (highlighted in orange) with a value of –21.6 ‰. \(\delta^{13}C\) values for terrestrial C\(_3\) plants generally range from –32 ‰ to –23 ‰ (Kohn, 2010), which fits with the majority of the results observed in this study, except the outlier. The golden eagle livers displayed a wide variation in \(\delta^{15}N\) values, ranging from approximately 2 to 12 ‰ overall. The wide range observed will likely depend on variations in the types of prey consumed. A terrestrial prey diet is ultimately affected by the plants (primary producers) in an area, which in turn are affected by: fertilisation and animal manure (where \(\delta^{15}N\) is lowered by
mineral fertilisers but elevated by dung and seaweed fertilisation, causing changes of over 5 ‰ in plants) (Blanz et al., 2020, 2019; Bogaard et al., 2007; Fraser et al., 2011), soil salinity (van Groenigen and van Kessel, 2002), plant species and plant part (Cloern et al., 2002), rainfall (Handley et al., 1999), and temperature (Craine et al., 2009). Variations in these dietary factors is likely significant across the range of habitats occupied by Scottish golden eagles, hence the wide range of δ^{15}N values observed.

However, in three golden eagles with δ^{13}C values over −25.2 ‰, a notable increase in iHg with increasing (less negative) δ^{13}C values was observed. A similar increasing iHg concentration is also observed with increasing δ^{15}N values above 8.77 ‰. This suggests an additional dietary source with higher Hg levels and higher δ^{13}C and δ^{15}N values. However, the trends observed support previous knowledge of consumption of components of marine origin in the diets of birds from the Scottish Outer and Inner Hebrides (i.e., fulmars, gulls, waders, or pipits) (Watson et al., 1993, 1992). Carcasses of animals such as northern fulmar can have δ^{13}C values (in muscle) in the range of approximately −18 to −15 ‰ (Thompson and Furness, 1995) Alternatively, terrestrial C_{4} plants, such as maize and millet, have δ^{13}C values around −16 to −10 ‰ (Basu et al., 2015; O’Leary, 1998) However, these plants are not present in significant quantities in Scotland (Rural and Environment Science and Analytical Services, 2019) or the wider British Isles and since Scottish golden eagles are not known to migrate or disperse out of the British Isles, apparently residing within the British Isles all of their lives (Watson, 2010), consumption of prey from regions where C_{4} plants are common is unlikely. In addition, the more elevated δ^{15}N values alongside high iHg (Figure 2B) may also indicate a marine-influenced diet due to the higher trophic level implied. Therefore, given this evidence, for golden eagle livers with the most elevated δ^{13}C and δ^{15}N values, marine-influenced foods were likely consumed. Marine organisms are known to have elevated Hg concentrations around 0.03–3.2 mg kg^{-1} depending on trophic level (Mathieson and McLusky, 1995; Nigro and Leonzio, 1996). Scottish seabirds, such as northern fulmar, also show elevated Hg levels generally from 0.1–1.8 mg kg^{-1} dw (all tissues) (Thompson et al., 1990).

Therefore, the increased proportion of iHg observed in the three golden eagle livers with rather elevated δ^{13}C and δ^{15}N values could be due to marine contributions to an otherwise largely terrestrial
diet. Hg intake from a marine diet is considered to be predominantly MeHg, which has a 100% uptake rate through the GI tract (Gochfeld, 2003) and, on average, makes up most of the T-Hg in muscle tissues of marine mammals (Wagemann et al., 1997). Dietary MeHg may undergo demethylation and deposit in the liver as one potential detoxification mechanism. Alternatively, other tissues of marine predators, such as the liver, may however contain lower MeHg fractions (Wagemann et al., 1997) and may be a potential source of dietary iHg.

No trend was observed for any form of Hg with the δ^{34}S values, which ranged from 12 to 20 ‰. Sulphate from terrestrial and aquatic environments show δ^{34}S values generally within −2 to 9 ‰ (Alling et al., 2008; Croisetière et al., 2009), whereas marine sulphate shows δ^{34}S values of approximately 21 ‰ (Rees et al., 1978). This may suggest that all the golden eagles here were (at least partly) marine foraging, which does not agree with the δ^{13}C or δ^{15}N ratios, or, known common golden eagle feeding behaviour across Scotland. Instead, it may be that other effects, such as the effect of sea spray (shown recently (Guiry and Szpak, 2020)) may mask dietary influences. Therefore, the δ^{34}S values here were not considered further.

One outlier, presented in yellow on these graphs (i.e., Figure 2A) had low iHg but a slightly elevated δ^{13}C value. This sample, as well as the specimen with the highest iHg concentration and highest δ^{13}C value (orange), originated from the Isle of Rum. The outlier highlighted in yellow cannot be fully explained by a high consumption of seabirds, such as fulmar, as it is not an outlier for δ^{15}N, which would be expected since fulmar have δ^{15}N values in the range of 13 to 15 ‰ (Thompson and Furness, 1995). A study conducted on the red deer present on Rum (n = 54) found that δ^{13}C values here were generally higher (up to 1 ‰) in these deer than in those from other Scottish regions (Stevens et al., 2006). This study suggested that this was a result of consumption of seaweed, which has been previously observed as a contribution to their diet (Conradt, 2000). These two outlier eagles may have scavenged upon these deer, and therefore, this could account, at least in part, for the elevated δ^{13}C values seen.
iHg tends to bind with Se in the liver of animals (Cuvin-Aralar and Furness, 1991). In order to determine if this was indeed the case here, laser ablation imaging of a liver thin section from one golden eagle with the most extreme iHg level was carried out. Figure 5 confirms that not only is this true in this case, but that the Se and Hg can be found as micro or nanoparticles in the liver. Due to the resolution of our laser ablation approach, the size of these particles could not be accurately determined. Further analysis of the same golden eagle liver by TEM measurements (Figure A.8) demonstrated the likely presence of nanoparticles ranging primarily between 10–20 nm in diameter. Subsequently, four golden eagles tested for nanoparticles by sp-ICP-MS showed definitively that Hg nanoparticles were present in the range of <18–43 nm, with the number of particles present scaling in magnitude relatively with the iHg concentration. Se nanoparticles were detected, but the particle numbers observed were too low to draw firm conclusions by this method, which could be due to the enzymatic digestion changing the nanoparticle characteristic (e.g. by dissolution of a selenoprotein corona), which was not studied further here. However, the combination of all the data clearly demonstrates the occurrence of Hg nanoparticles co-locating with Se in the liver of golden eagles, likely as HgSe nanoparticles.

The presence of these nanoparticles in the liver could be interpreted by two possible hypotheses; either these golden eagles are able to form these nanoparticles through demethylation of MeHg, or these nanoparticles could have been taken up through their diet – especially given that similar nanoparticles have previously been observed in cetaceans (Bolea-Fernandez et al., 2019; Gajdosechova et al., 2016), a food item that eagles from Rum (for example) could periodically have access to (due to carcass stranding). If demethylation is occurring, a decrease in MeHg fraction with increasing T-Hg should be observed. This trend has been observed in this study (Figure 3), which may suggest that active demethylation of MeHg is taking place in the liver of the golden eagles as total levels increase. This method of MeHg detoxification is known to occur in other bird species, such as waterbirds and common loons (Eagles-Smith et al., 2009b), however, the T-Hg threshold concentration above which demethylation occurs (of 8.5 mg kg$^{-1}$, as observed previously) may actually
be much lower given the data from this study. This, combined with the statistically similar concentration ranges of MeHg and T-Hg to that of sparrowhawks, hen harriers, and buzzards, may suggest that some golden eagles are especially good at demethylation and mineralisation to form these HgSe nanoparticles, possibly as described recently for seabirds (Manceau et al., 2021b), as a detoxification mechanism at a low T-Hg threshold, in addition to detoxification by other routes, such as faecal excretion or excretion to feathers (Lewis and Furness, 1991).

Binding of Hg to Se may reduce circulating essential Se levels in the body, promoting increased accumulation of Se to compensate (given Se is essential to form important selenoproteins). Previous studies of Hg in birds do indeed show a trend of increasing Se concentrations with Hg concentrations (Henny et al., 2002). However, the trend seen in Figure 4 (which admittedly relies on only three samples with elevated iHg concentrations and one sample with very high Se concentration) may not show this behaviour. If the most extreme specimen is omitted, then the other samples tested fall into a normal Se distribution, suggesting that all other samples reflect a normal background level of Se. This outlier sample also showed elevated iHg but not elevated MeHg when compared to the other two outlier samples with iHg between 2–6 mg kg\(^{-1}\).

Although the formation of HgSe nanoparticles has previously been confirmed in cetaceans and seabirds, to our knowledge, it has not yet been shown that demethylation of MeHg forms similar nanoparticles in terrestrial birds of prey, who typically have a far lower dietary MeHg intake. Though this study contains too few samples to draw firm conclusions as to the source of these nanoparticles, the evidence presented (from stable isotope analysis and our other data) may suggest that the presence of these particles found in some golden eagles could be due to a marine-influenced diet. This study highlights the importance of considering not only broad ‘trends’ in data relevant to ecotoxicology – but also in exploring the nature of outliers in datasets, which can provide intriguing insights regarding the fate and behaviour of Hg in the food chains of these top predators. Looking ahead, it would be beneficial to understand if these observations are unique to these individuals or
indicative of a more common phenomenon (i.e., detoxification mechanism) in certain avian species through further investigation with a larger sample set.

Author contributions

Shaun T. Lancaster: Performed the measurements of T-Hg, MeHg, T-Se, and sp-ICP-MS. Performed statistical interpretations of results. Lead author of the submitted manuscript. **Gabriela Peniche:** Sample collection and dissection. Provided input on ecological interpretations of results. **Ali Alzahrani:** Performed the nanoparticle analysis by LA-ICP-MS and TEM. **Magdalena Blanz:** Provided input on the interpretation of stable isotope ratios. **Jason Newton:** Performed the analysis of stable isotope ratios. **Mark A. Taggart:** Conceptualisation, supervision, and editing. **Warren T. Corns:** Supervision, and editing. **Eva M. Krupp:** Conceptualisation, supervision, and editing. **Jörg Feldmann:** Conceptualisation, supervision, and editing.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

S. Lancaster would like to thank PS Analytical for funding and support for the project. G. Peniche was funded under a NERC CASE studentship agreement (University of Edinburgh – SNH – SASA). The authors gratefully acknowledge the Microscopy and Histology Core Facility at the Institute for Medical Sciences, Aberdeen for their support & assistance in this work.

References

Bogaard, A., Heaton, T.H.E., Poulton, P., Merbach, I., 2007. The impact of manuring on nitrogen

Renedo, M., Pedrero, Z., Amouroux, D., Cherel, Y., Bustamante, P., 2021. Mercury isotopes of key

https://doi.org/10.1016/j.chemosphere.2020.127777

$y = 3.1351e^{0.1511x}$

$R^2 = 0.7568$
Supplementary Material

Click here to access/download
Supplementary Material
Raptor Hg STOTEN Supp Info.pdf
Declaration of interests

☒ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

☐ The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:
Author contributions