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ABSTRACT

Motivation: The observation of positive selection acting on a
mutant indicates that the corresponding mutation has some form
of functional relevance. Determining the fitness effects of mutations
thus has relevance to many interesting biological questions. One
means of identifying beneficial mutations in an asexual population
is to observe changes in the frequency of marked subsets of the
population. We here describe a method to estimate the establishment
times and fitnesses of beneficial mutations from neutral marker
frequency data.
Results: The method accurately reproduces complex marker
frequency trajectories. In simulations for which positive selection
is close to 5% per generation, we obtain correlations upwards of
0.91 between correct and inferred haplotype establishment times.
Where mutation selection coefficients are exponentially distributed,
the inferred distribution of haplotype fitnesses is close to being
correct. Applied to data from a bacterial evolution experiment, our
method reproduces an observed correlation between evolvability and
initial fitness defect.
Availability: A C++ implementation of the inference tool is available
under GNU GPL license (http://www.sanger.ac.uk/resources/
software/optimist/).
Contact: vm5@sanger.ac.uk
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
The potential of a biological system to adapt to a given environment
is a key characteristic, measurements of which shed light on a
critical aspect of the process of evolution. How adaptation takes
place depends to a large extent on the distribution of the fitness
effects of mutations (Eyre-Walker and Keightley, 2007; Orr, 2005).
Therefore, quantitative measurements of selection are biologically
interesting and valuable.

Neutral markers provide one tool for identifying selection in
experimental populations. In an experimental population, markers
allow for the easy identification of variants. Selection pressures
acting on marked populations can then be seen by changes in their
relative frequencies (Atwood et al., 1951). In initially isogenic,
asexual populations, neutral markers have been used to characterize
novel beneficial mutations (Imhof and Schlotterer, 2001; Rozen
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et al., 2002), and to study evolutionary processes such as clonal
interference (Kao and Sherlock, 2008; Perfeito et al., 2007) and
evolvability (Woods et al., 2011).

Where marked subpopulations have differing initial fitness, their
relative fitnesses can be derived by considering the ratio between
their Malthusian parameters (Lenski et al., 1991). Where the initial
population is isogenic, these growth rates are theoretically identical,
but novel beneficial mutations lead to changes in the marker
frequencies. In a study of beneficial mutations arising in Escherichia
coli, Hegreness et al. (2006) examined the log ratio between marker
population frequencies. For each set of observed marker frequencies,
a deterministic curve, parameterized by a mutation time and a
selection coefficient, was fitted. Multiple simulations of populations
were then generated, giving an estimate of a single beneficial
mutation rate and selection coefficient fitting the set of observations
as a whole.

While this characterization of multiple populations by single
mutation and selection parameters provides a useful approach where
clonal interference between mutations is severe, it is not applicable
to all evolutionary scenarios (Barrett et al., 2006). Under a very low
beneficial mutation rate, where competition between clones is rare,
mutations under a range of strengths of positive selection would
be likely to fix. Furthermore, in the application of this method,
where only the first mutational event in an experiment is considered,
frequencies at later time-points are discarded (Barrick et al., 2010).
Potentially valuable information on the evolution of the system
is lost.

Here, we describe an alternative method that uses a maximum
likelihood approach to infer selective effects and establishment
times of mutants in an asexual population from individual marker
frequency trajectories. Our method enables the inference of fitness
of multiple mutant haplotypes arising in an experiment, with no
prior assumption of their distribution of fitness effects, while also
allowing for the detection of standing variation in the initial pool.
We test our method against data generated from simulations using a
range of evolutionary parameters, and against experimental results
from a recent study of marker populations (Barrick et al., 2010).

2 METHODS
We describe a marked experimental population in terms of haplotypes.
Mutations result in the emergence of new haplotypes, which we characterize
by their marker, haplotype fitness, and time of establishment. A formal
mathematical description of the method is given below; a simpler, more
qualitative guide is included in Supplementary Material.

Deterministic model of evolution We consider a deterministic represen-
tation of a system of NH haplotypes. Where qa denotes the frequency of
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haplotype a, and fa denotes its Malthusian fitness parameter, the evolution
of the system can be described via a set of differential equations:

dqa/dt =qa

(
fa −

∑
a′∈H

fa′ qa′

)
(1)

where the sum over existing haplotypes H gives the mean population
fitness. Equation (1) is a standard population genetics description of
deterministic evolution of haplotypes under selection [see e.g. Hofbauer and
Sigmund (1998)]. In order to allow for new mutations, we further define
an establishment time ta of haplotype a. For the set of initial haplotypes
H0 ={a|ta =0}, the initial frequencies qa(0) are set in some manner such
that

∑
a∈H0

qa(0)=1. To represent mutations, we start a new haplotype at a

population frequency q0 =1×10−3, at the establishment time ta, rescaling
the frequencies of other haplotypes accordingly. This choice of initial
frequency reflects the frequency required to escape from genetic drift, i.e. to
become ‘established’ [see e.g. Park et al. (2010) and references therein]. In an
otherwise isogenic population of size N , a mutant haplotype with selection
coefficient σ (denoting the fitness difference between the mutant and the
wild-type population; σ = fa −fwildtype) is affected more by selection than drift
above a frequency of ∼1/Nσ (Rouzine et al., 2001). Here, where we consider
underlying population sizes of order N =106, and strongly beneficial mutants
with selective benefit of the order of 10−2 per generation, selection is by far
the dominant force above a frequency of q0, such that a deterministic model
for haplotype evolution may be considered.

Under this model, we define nominal unscaled haplotype population sizes
ya(t) by

ya(t)=

⎧⎪⎨
⎪⎩

qa(0)efat if a∈H0

0 if a /∈H0 and t < ta
q0efa(t−ta)Za(ta)/(1−q0) if a /∈H0 and t ≥ ta

(2)

where Za(t)=∑{a′ |ta′ <ta}ya′ (t). Haplotype frequencies are then given by

qa(t)=ya(t)/Z(t), where normalization Z(t)=∑a ya(t) ensures that the
haplotype frequencies add up to one. The term Za(t) is calculated in a
recursive manner; where haplotypes are ordered by increasing value of ta,
Za(t) is dependent on Za′ (t) for all a′ <a.

We now suppose that the population is divided into subpopulations by the
use of neutral markers, with each initial haplotype having a single marker,
and subsequent mutations arising within distinct subpopulations. We refer
to these subpopulations as marker populations. The dynamics of the marker
populations can be expressed in terms of the assignment of markers to the
haplotypes. Given k markers m1,...,mk , we denote this assignment by a
vector χ={χ1,...,χNH } where NH denotes the number of haplotypes, and
χa ∈{m1,...,mk}. The time-evolution of the frequency xi(t) of the marker mi

is then given by

xi(t)=
∑

a|χa=mi

qa(t). (3)

Model parameterization Given observations of the evolution of the marker
frequencies over time, we derive a model for the evolutionary events
leading to these observations. We suppose that there are k markers, and
consider a model including nm beneficial mutations. We use k haplotypes
to model the initial marker populations. This gives χa =ma, and, as the
markers are assumed neutral, fa =0 for a=1,...,k. The initial frequencies
qi(0), i=1,...,k−1, remain to be fitted by the model, the final frequency
qk(0) being given by

∑
i qi(0)=1. Beneficial mutations are modelled by

the haplotypes a=k+1,...,k+nm, each being assigned the parameters
{ta,fa,χa}, ta representing the time when the haplotype reached frequency
q0, fa its fitness, and χa the marker population in which it arose.

In an initial implementation of this method, the values of ta were restrained
to occur between the beginning and end of the observation time. In a variant
of the method, however, this requirement was relaxed to allow for standing
variation. If a haplotype representing the first mutant occurring in one of the
first k−1 marker populations had ta <1, this mutation was allowed to have

an initial frequency greater than q0, the initial frequency of the corresponding
wild-type haplotype being decreased accordingly.

Likelihood fitting Given a model M generating a deterministic trajectory
for the evolution of the marker populations, a fit was carried out between
the observed marker population frequencies, {x̂i(tk)}, and the model
marker population frequencies, {xi(tk)}. At each point tk for which the
marker frequency was observed, a log likelihood for the observation was
calculated as

L(tk)= log
n(tk)!∏

i(n(tk)x̂i(tk))!
∏

i

xi(tk)n(tk )x̂i(tk ) (4)

where n(tk) was the number of individuals sampled at time tk . The overall
log likelihood for the system under the given model was then calculated as

LM =
∑

k

L(tk) (5)

Optimization Given a set number of mutations for a system, the parameters
{ta,fa,χa}, and the initial frequencies qa(0), were optimized to derive the best
fit between the observed and model marker frequencies. A standard GSL
(GNU Scientific Library) minimization routine was used to find optimal
values of the fa and qa(0), while other parameters were optimized using a
random search approach. For each set of observed frequencies, likelihoods
were calculated under models with increasing numbers of mutations, up to a
limit of six mutations per system (the limit being chosen on computational
grounds). Comparison of models was carried out using a variant of the
Akaike information criterion (AIC) model (Akaike, 1974), expressed as
AIC =2.5(p−1)−(LM ), where p was the number of model parameters, a
lower score being assumed to indicate a better model. Where adding an
extra mutation to the model increased this score, no further optimizations
were carried out. The factor of 2.5 in the definition was chosen on the
basis of qualitative examination of preliminary results with a sample size
n(tk)=500, a higher penalty missing some subtleties induced by additional
mutations, and a lower penalty falsely adding mutations to fit frequency
variations caused by noise in the sampling process.

Model populations In order to assess the performance of the method,
simulated population histories were generated using a Wright–Fisher model,
implemented using in-house code. An initial population was created of
N =106 individuals, each with L+1 binary loci, lij ∈{0,1}, where the first
index denotes the individual (1≤ i≤N), and the second index denotes the
locus (1≤ j≤L+1). L was set to 100 in all simulations. The first L loci of each
individual were initially set to zero, while the final locus denoted the neutral
marker. In our model, we examined the two-marker case, k =2, in which the
marker frequencies give the smallest possible amount of information about
the system. As such, the final locus was set to one in N/2 individuals, and
to zero in the other N/2 individuals. The first L loci were each assigned
a positive selection coefficient, σj ≥0, while the final locus was assigned
a selection coefficient of zero. An additive fitness landscape was assumed,
such that the fitness Fi of any individual i was specified by

Fi =
∑

j

(1+σj)
lij (6)

Within each generation, the first L alleles of each individual were subject
to mutation with some fixed probability U/L, where U represented the
beneficial mutation rate per genome per generation. Subsequent generations
were sampled from the previous generation using a multinomial distribution,
such that the probability of an individual i in the population being chosen for
replication was proportional to eFi . Every 16 generations, a random sample
of 500 individuals was taken from the population, recording the number of
individuals in the sample with each neutral marker. This sampling process
was continued for 640 generations, or until the first instance when the entire
sample comprised individuals from a single marker population.
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Simulations were run for both constant and exponentially distributed
selection coefficients σj . With a constant coefficient, simulations were
run with σj =σ for a range of values of σ ∈{0.025,0.05,0.1,0.2},
denoting selective advantages between 2.5% and 20% per generation.
Exponentially distributed selection coefficients were chosen with parameters
σ0 ∈{0.01,0.025,0.05,0.1}, where the parameter σ0 is the mean of the
distribution. In either case, the beneficial mutation rate U was chosen
from a range of values U ∈{1×10−8,5×10−8,1×10−7,2×10−7,5×10−7},
expressed per genome per generation, close to the value of U =6.6×10−8

obtained in the experiment of (Barrick et al., 2010).
For each distribution of selection coefficients, 50 simulations were run

for each combination of {σ,U} or {σ0,U}. Haplotype fitnesses, timings and
marker populations of mutations, and the initial haplotype frequencies at the
beginning of the experiment, were then inferred for each simulation using the
model previously described. Here, the possibility of standing variation was
not included in the model, there being no standing variation in the underlying
populations. To evaluate the effect of a variable population size on the
performance of the method, simulations were repeated with a more limited
set of parameters (σ0 ∈{0.025,0.05},U ∈{5×10−8,1×10−7,2×10−7}) for
a population with initial size 106, which repeatedly doubled in size
each generation for eight generations before undergoing a bottleneck at
ratio 1:256.

Analysis of inferred parameters The distribution of inferred fitnesses was
compared with the distribution of fitnesses of haplotypes reaching a threshold
of q0 in the simulated populations. For the simulations with constant
selection coefficients, inferred selection coefficients were calculated as the
differences between successive inferred haplotype fitnesses within each
marker population. Analysis of inferred establishment times was carried out
by pairing real and inferred times, the inferred time of each mutant being
paired with the closest time at which a haplotype in the simulated population
bearing the inferred marker reached a threshold of q0.

Analysis of experimental data Our method was used to analyse marker
frequency data from a set of experiments measuring the fitness of novel
mutations in nine populations of Escherichia coli, in which the initial fitness
of the bacteria had been reduced through mutation (Barrick et al., 2010).
Following this previous work, we performed calculations of the evolvability
of each population, defined to be the rate at which the population adapted to
its environment. While multiple measures of evolvability can be calculated
(Barrick et al., 2010), in our case the mean fitness of the first mutant haplotype
observed for each population was considered. Mean fitness values were
calculated from the results of optimized models generated as above for
between 11 and 13 repetitions of the neutral marker experiment. Analyses
were run both with and without the inclusion of a possibility of standing
variation in the initial pool, the former model being chosen when it offered
an improved likelihood.

3 RESULTS

3.1 Reproducing the evolution of marker and
haplotype frequencies

Application of the method gave model frequencies that captured
the primary features of the observed marker dynamics. In many
cases, it was clear that more than one mutational event was described
by the observed trajectory. Figure 1 shows models fitted to data
from an experiment of Barrick et al. (2010) where a four-mutant
model provided a substantially better fit to the data than a single-
mutant model. Across the set of populations analysed by Barrick
et al. (2010), a model with more than one mutant was fitted to the
marker frequencies in 80 out of 108 cases, with a mean of 2.41
mutants identified per experiment.
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Fig. 1. Complex marker trajectories are better explained with multiple
mutations. Inferred frequencies for an example population [data from
(Barrick et al., 2010)] are shown from models with one (blue dotted line),
and four (blue solid line) beneficial mutations. The observed frequencies are
shown as red dots. AIC scores for the two models were 364.8 and 156.4,
respectively. Optimal two-, three- and five-mutant models had AIC scores of
313.8, 208.6, and 163.5, respectively.

More detailed results from two example simulations from the
constant selection coefficient set (σ =0.1,U =1×10−7) are shown
in Figure 2. In the first example (Fig. 2a–d), the model marker
frequencies are very close to those from the simulation (Fig. 2b). The
simulated haplotype frequencies too are extremely well reproduced,
with the initial haplotype in the red marker population being replaced
by a fitter haplotype between generations 100 and 220, and two
successive replacement events taking place in the blue population.
The inferred timings of the establishment of the two haplotypes are
accurate, with the mutant in the red population being predicted to
establish after 111 generations (real time 106 generations), and in
the blue population mutants being predicted to establish after 94 and
426 generations (real times 83 and 429 generations). A single error
is seen in the red population, with a haplotype reaching frequency q0
after 509 generations not being seen by the model. This haplotype,
which reaches a peak frequency of 0.17% and is maintained in the
population until generation 640, was not detected by the sampling,
which registers zero population for the red marker at generation
560. At this point, no further data are considered by the method,
such that the two late events in the blue population are also missed.
In the second example (Fig. 2e–h), the fit to the marker frequency
is also very good, but a substantial error is seen in the reproduction
of haplotypes. In the red marker population, two beneficial events
establish in close succession, in generations 81 and 94. While the
cumulative effect of these mutations is captured in the model, with
a single mutant haplotype predicted to establish at generation 91
(inferred fitness 0.12), no distinction between the two haplotypes
can be made, leading to a clear discrepancy in the haplotype plot
(Fig. 2g). The underlying simulation parameters, in which beneficial
mutations have identical fitness advantages, represent a pathological
case for generating this effect, with haplotypes of identical fitness
in the same marker population being indistinguishable in their
effect on the neutral marker. This example, however, illustrates a
general difficulty in imputing haplotypes from a marker population.
Where haplotypes establish but do not substantially move the
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Fig. 2. Reproduction of marker and haplotype frequencies. (a) Full haplotype distribution for a simulated population, divided by a red/blue marker. Times
within marker populations at which a new mutation reaches q0 (dots with black outline, red or blue according to marker). The frequencies are shown in
a cumulative way so that each background colour separated by black lines represent a haplotype. (b) Marker population frequencies from the simulated
population (red solid line) and predicted by the model (black dotted line). Samples from the marker population are shown as red dots. Times at which new
mutations reached q0 are shown for the simulation (red/blue dots with black outline) and the model (red/blue dashed vertical lines). (c) Haplotype frequencies
in the red marker population in the simulation (red solid line) and model (black dotted line). (d) Haplotype frequencies in the blue marker population in the
simulation (blue solid line) and model (black dotted line). (e–h) represent a second simulated population. These have the same formatting as their counterparts
in (a–d). Data shown are from simulations with constant σ =0.1 and U =1×10−7.
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marker frequency (see, for example, the event at generation 162
in the blue population), or where multiple similarly fit haplotypes
establish in the same marker population, the number of mutation
events is undercalled by the inference method. Sequencing of an
experimental population could be used to capture the distribution of
haplotypes at substantial frequencies within a population, although
the identification of very low frequency haplotypes is difficult even
then. We now consider results collected from across the set of
simulations.

3.2 Statistical analysis of simulated data
Initial haplotype frequencies The overall performance of the
method was assessed by an analysis of multiple simulated
populations. Across the sets of simulations, initial haplotype
frequencies at the beginning of the experiment were accurately
reproduced, with a mean absolute error in the inferred frequency
of 7×10−3 for constant selection coefficients and 1.5×10−2 for
exponential selection coefficients. Standard deviations in the raw
errors were 0.01 and 0.04, respectively.

Fitness effects of mutations Selection coefficients inferred for the
constant selection simulations were reasonable in their accuracy,
with mean selection coefficients of 0.026, 0.055, 0.101 and 0.216
compared with real values of 0.025, 0.05, 0.1 and 0.2. Some variance
in these values was seen, with standard deviations in the range of
half of the inferred mean selection coefficient (0.015, 0.034, 0.048
and 0.111, respectively).

Haplotype fitnesses inferred for populations with exponentially
distributed selection coefficients showed a good reproduction of
the distribution of fitness effects. Figure 3 shows the distribution
of fitness effects identified for simulations in which σ0 =0.05
and U =1×10−7. As can be seen from the distribution, the
number of mutations identified by the model is lower than the
true value, illustrating the undercalling of mutations described
above. To the right of the figure, a single mutant is noted with

Fig. 3. Haplotype fitnesses for a set of simulated populations. Results are
shown for a set of 50 simulations, in which selection coefficients were
generated from an exponential distribution with parameter σ0 =0.05 and
the beneficial mutation rate was U =1×10−7. Real haplotype fitnesses are
shown in blue columns, with inferred haplotype fitnesses in red. The number
of inferred haplotypes is lower than the number of real haplotypes.

fitness >0.5. This high attributed fitness arises due to the limited
time-resolution of the sampling of marker population frequencies.
Where a haplotype has a selective advantage above a certain
threshold, the marker frequency moves very rapidly, so that the
difference between the time of the first significant move in the
marker frequency, and the time at which the fixation of the marker
frequency is detected, can be small. If this difference is less than
twice the sampling frequency, the sampled marker frequency can
have only a single point between a steady frequency and fixation,
a situation which is compatible with an arbitrarily high selection
coefficient. The selective advantage required to create this effect
depends on the previous marker frequency, and on probabilistic
factors arising from sampling. However, examination of simulated
data where the fitness advantage was constant suggests that, where
the mutant haplotype occurs in a marker population with high
frequency, the effect can arise with a fitness advantage as low as
0.2 (in a marker population at >80% frequency, selection coefficient
called as 1.134), or even with a fitness advantage of 0.1 (in a marker
population at frequency >98%, selection coefficient called as 0.264).
This effect is likely to underlie the increased mean inferred selection
coefficient called for mutants with constant selection coefficient
0.2, described above. In an experiment where very large selective
advantages are expected, more regular sampling would be beneficial
for the purposes of this method (in Supplementary Tables, we
have applied a heuristic cut off such that fi >0.5→0.5 in order
to prevent these events biasing the reported fitness ratio statistics).
The performance of the method at beneficial mutation rates higher
than described here is discussed in Supplementary Material.

Establishment times of mutations A good correlation between the
real and inferred establishment times of haplotypes was obtained.
Figure 4 shows results for simulated populations with exponentially
distributed selection coefficients with parameter σ0 =0.05 and
beneficial mutation rate U =1×10−7. Across these simulations,
the correlation between establishment times was 0.98. Equivalent
correlation scores for all but the lowest levels of selection were
high, falling between 0.91 and 1 (mean 0.977) for exponentially
distributed selection coefficients, and between 0.95 and 1 (mean
0.974) for constant selection coefficients. Figure 4 also details
individual fitnesses inferred for new haplotypes. Inferred fitnesses
for this dataset shown were, on average, 6% larger than those in
the actual population. Correlation between the inferred and real
establishment times and mean haplotype fitness statistics for all
simulations are detailed in Supplementary Table S1. Similar plots
constructed for the population undergoing growth and bottlenecking
did not show substantially different results (see e.g. Supplementary
Fig. S1).

Detection rates of mutations In order to quantify the undercalling
of haplotypes noted above, the ratio was calculated between the
mean number of mutant haplotypes called, and the true number
of new haplotypes in a simulation (Table 1). In general, the
fraction of events called increased as the selection coefficient
increased, reflecting the larger effect on the marker population
caused by each mutation, and decreased as the beneficial mutation
rate increased, reflecting an increased likelihood of multiple
competing haplotypes within each marker. Results for systems with
exponentially distributed selection coefficients were substantially
better at higher mutation rates than those for constant selection
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Fig. 4. Establishment times and selection coefficients of real and inferred
mutant haplotypes. Establishment times of inferred haplotypes were paired
with the establishment times of real haplotypes reaching a frequency of q0.
Paired event times are shown for the first (red), second (green), third (blue)
and fourth (black) mutants inferred by the method. Each pair is shown by a
rectangle, the height/width ratio of which is equal to the ratio between the
real and inferred mutant haplotype fitness. Data are shown for σ0 =0.05 and
U =1×10−7.

Table 1. Fraction of new haplotypes called by the method

Selection σ Mutation rate U

10−8 5×10−8 10−7 2×10−7 5×10−7

Constant selection coefficients
0.025 0.545 0.568 0.402 0.321 0.191
0.050 0.870 0.684 0.561 0.392 0.183
0.100 0.889 0.664 0.561 0.380 0.205
0.200 0.855 0.747 0.519 0.379 0.197

Exponentially distributed selection coefficients
0.010 0.333 0.500 0.452 0.509 0.267
0.025 0.667 0.667 0.671 0.559 0.481
0.050 0.812 0.734 0.673 0.583 0.405
0.100 0.900 0.693 0.779 0.593 0.517

Mean numbers of mutant haplotypes called by the method as a fraction of the mean
number of haplotypes in simulated populations that reached a frequency of q0. Results
are given for constant and for exponentially distributed selection coefficients, for each
set of mutation and selection parameters.

coefficients, a constant selection coefficient allowing for multiple
equally fit haplotypes to arise within each marker population.
Repeating the calculation, but considering only haplotypes in the
simulated population which reached a minimum frequency of
0.01 (10q0), gave substantial improvements to many of the ratios
(Supplementary Table S2), reflecting the existence of haplotypes
having only a very small effect on the marker frequency.

The general undercalling of mutations means that accurate
estimation of the beneficial mutation rate of a system from the
inferred establishment times is a difficult task. While accurate
inference of U is not a primary aim of our method, a rough
approximation can be calculated using the result that in a Wright–
Fisher model, the probability of a mutant with selection coefficient

σ reaching frequency 1/σ is 2σ [see e.g. Desai and Fisher (2007)],
giving

U ≈nm/(2σT ) (7)

where nm is the number of inferred mutations and T is the
simulation time in generations. Applying this formula across the
set of simulations with constant selection coefficients gave an
estimate within 15% of the correct value when U =10−8, with
rapidly declining performance at higher values of U (Supplementary
Fig. S2).

3.3 Statistical analysis of experimental marker
trajectories

For each experiment described in Barrick et al. (2010), the model
giving the best AIC score was identified. While models with more
than one beneficial mutant often best fitted the data, for direct
comparison with the original work, only the fitness of the first
identified mutant haplotype was recorded in each case.Acomparison
of the mean fitnesses of these haplotypes with the fitness defect
induced in the population showed a correlation with parameter
r2 =0.59 (Fig. 5). This result is close to the equivalent value of
0.67 achieved in the original work, and supports the idea that the
evolvability of a strain is in proportion to its fitness defect.

While standing variation is not directly incorporated into the
method of Hegreness et al. (2006), our comparison of results
from models with and without standing variation suggested that
standing variation had an important effect in marker evolution. In
the analysis of 16 of the 108 experiments, the method allowing
for standing variation identified a mutant haplotype preexisting in
one of the marker populations. Across these inferences an average
improvement in the AIC score of 3.6 likelihood units was seen,
suggesting that standing variation had a significant effect in the
evolution of these experiments. (No clear relationship between
the existence of standing variation and the evolvability of the
population was observed.) The models arising from the remaining
92 experiments were, in theory, identical, such that their comparison
gave an insight into the performance of the optimization process.
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Fig. 5. Relationship between the fitness effect of the first beneficial mutation
and the initial fitness defect of a population of E.coli. Initial fitness defects
were taken from the work of (Barrick et al., 2010), while mean haplotype
fitnesses were calculated from the corresponding marker frequency data
using the model.
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Of these experiments, a difference between models of more than
one log likelihood unit was identified in seven cases, such that
our optimization was robust in most if not all cases. We leave the
task of identifying the best possible algorithm for optimization to
future work.

4 DISCUSSION
We have described and demonstrated the use of an evolutionary
model to infer the timing and selective advantage of mutations
in a system, based on the use of neutral marker data. With the
limitations described above, our method performs acceptably well
over a range of selection coefficients and beneficial mutation rates,
with generally better performance for systems with exponentially
distributed selection coefficients. Of the two models, the exponential
distribution of selective benefits is likely to be more biologically
relevant (Betancourt and Bollback, 2006), a constant selective
benefit representing, in some ways, a worst-case scenario for the
method.

While our method gives a good reproduction of the marker
frequency data, the replication of the details of the haplotype
distribution is a much more challenging problem. In certain
circumstances, changes in the haplotype population are invisible to
the marker, such that inferring their details can be an impossible
task. As illustrated in Table 1, undercalling of mutations is
an error inherent to the marker method, the extent of which
depends on the underlying system parameters. Full resolution
of haplotype information ultimately requires sequencing of the
population.

Our method allows for the explicit capture of the effects
of multiple mutations. As demonstrated above, this allows for
close fitting of complex marker behaviour (Fig. 1), and for an
approximation of the distribution of fitness effects (Fig. 3), though
at higher mutation rates, details of changes in the full haplotype
distribution are missed. Our method also allows for the explicit
inclusion of standing variation. Where marked populations are
grown before the initiation of an experiment, the possibility exists of
a mutant arising in one marker or another before the experiment is
begun. This was identified to be the case in 16 out of 108 examples
from the experiment studied here. The method has the potential to
identify standing variation at frequencies larger than q0, although
the accuracy of measurements of the marker frequency presents a
limiting factor.

Our choice of sampling parameters, with 500 individuals sampled
every 16 generations, represents an achievable experimental
protocol (Barrick et al., 2010). The use of flow cytometry to
count individuals could lead to higher sample sizes, potentially
improving the calling of fitness effects, and the identification
of individual haplotypes. More frequent sampling would avoid
the false assignment of very high fitnesses to mutant haplotypes,
and should be carried out where large selective differences are
expected.

While in this work we have analysed only populations in which
a population is split into two subpopulations by neutral markers,
analysis of populations with higher numbers of markers would be

entirely compatible with our framework. Multiple markers would
give an improved description of the system. Lowering the fraction
of the population with each marker, the potential for multiple events
occurring close together in time in a single marker population would
be reduced, allowing for better discrimination of the detail of the
underlying haplotype distribution.
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