Fischer et al. Genome Biology 2013, 14:R39
http://genomebiology.com/2013/14/4/R39

Genome Biology

METHOD Open Access

EMu: probabilistic inference of mutational
processes and their localization in the

cancer genome

Andrej Fischer, Christopher JR lllingworth, Peter J Campbell and Ville Mustonen”

Abstract

The spectrum of mutations discovered in cancer genomes can be explained by the activity of a few elementary
mutational processes. We present a novel probabilistic method, EMu, to infer the mutational signatures of these
processes from a collection of sequenced tumors. EMu naturally incorporates the tumor-specific opportunity for
different mutation types according to sequence composition. Applying EMu to breast cancer data, we derive
detailed maps of the activity of each process, both genome-wide and within specific local regions of the genome.
Our work provides new opportunities to study the mutational processes underlying cancer development. EMu is
available at http://www.sanger.ac.uk/resources/software/emu/.
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Background

The development and progression of cancer is now
widely viewed as an evolutionary process [1-3]. Mutation
is a key component of this process: cancer development
occurring through the progressive acquisition of driver
mutations [4]. Cancer genomes often display large num-
bers of mutations when sequenced; indeed, whole-gen-
ome sequencing studies have identified tens of thousands
of mutations within individual tumors [5]. The vast
majority of these mutations are believed to be passenger
mutations not conferring a growth advantage to the
cancer cell [4]. They do, however, carry useful informa-
tion about the forces to which the cancer genome has
been subjected during its evolution.

A variety of physical, chemical and biological processes
are known to lead to mutations in cancer. Sequencing of
different cancer types has shown strong and distinct biases
for particular mutation types in particular cancers, such as
a propensity, due to UV radiation [6], for C:G > T:A muta-
tions in melanoma [7], and an increased number of C:G >
A:T mutations resulting from chemicals in tobacco smoke
[8,9]. Deactivation of mismatch repair mechanisms can
also lead to mutational biases [10]. We here consider the
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task of identifying mutational processes at work during
cancer development. We assume that these processes are
distinct, in that each process leaves a different characteris-
tic mark on the cancer genome. Given sequence data from
multiple tumors, in which mutational processes have been
active to different extents, we aim to infer the number of
elementary mutational processes, their signatures and the
contribution of each process towards the spectrum of
mutations observed in each tumor. The task itself is an
important one: identifying mutational processes is a step
towards understanding the causative mechanisms of can-
cer. A detailed account of the mutational processes active
in a cancer could inform a neutral null model of mutations
when inferring signals of selection in cancer genomes. The
presence of a mutational process could indicate a driver
mutation, for example in a gene controlling DNA repair.
Computational methods addressing this task have
been developed [11,12] and, more recently, applied to
whole genome sequencing data from multiple breast
cancer samples [13]. However, as previously implemen-
ted, these methods have significant limitations. Firstly,
the opportunity for mutations to occur in a given
genetic sequence has not been explicitly accounted for.
This is important as the observed outcome of a muta-
tional process depends on the composition of the
sequence upon which it acts. For example, a process
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which produces C > T transitions at CpG sites may act
with uniform activity across a genome, but it will be
realized and observed more often in regions with a
higher density of these dinucleotides. Secondly, while
considering mutational processes genome-wide, previous
studies have not examined the action of different pro-
cesses within smaller regions of the genome. Uneven-
ness in mutation rate across a cancer genome has been
observed, associated with bias in the action of DNA
repair mechanisms [5] and with the distribution of his-
tone modification marks [14], suggesting that mutational
processes may act differently in different regions of the
genome. Changes in mutational opportunity, noted
above, are likely to be particularly important within
small regions of the genome. Copy number variation,
which can be prevalent in cancer [15], substantially
alters the mutational opportunity in regions of ploidy
change, while different regions of the human genome
may radically differ in their internal sequence composi-
tion [16]. Finally, previous methods have not explicitly
considered the stochastic manner in which mutations
are introduced into the genome. Stochasticity, together
with the discrete nature of mutation, leads to specific
patterns of noise in the observed mutation spectra. This
noise is amplified when smaller subsets of the genome
are analyzed, making an explicit probabilistic treatment
of the data indispensable.

We here describe a novel method, EMu, based upon the
expectation-maximization (EM) algorithm [17], to infer
the number of elementary mutational processes and their
spectra from cancer sequence data. Use of an explicitly
probabilistic framework allows our method to account
for biases in the mutational opportunity and to accommo-
date noisy data. Using simulation results, we show that
incorporating the mutational opportunity is critical in
identifying the correct number of mutational processes
within this model. As a likelihood-based method, the EM
approach deals naturally with the stochastic nature of
mutational processes, and enables us to use model selec-
tion criteria, such as the Bayesian information criterion
(BIC) [18], to decide which number of processes has the
strongest statistical support. Meaningful error estimates of
the inferred mutational signatures can be derived either
analytically or numerically with Markov chain Monte
Carlo (MCMC) methods. By extending the rationale of the
parameter-learning algorithm to smaller subsets of a can-
cer genome, the local activity of different processes can be
measured. Further, our method is computationally effi-
cient, allowing for the rapid analysis of thousands of can-
cer samples.

We apply our method to the sequences of 21 breast
cancers, described in an earlier study [19], and compare
the inferred mutational spectra to those previously
reported. Next, we examine local variation in the impact
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of the different mutational processes; we show that
regions of kataegis, a phenomenon of regional hypermu-
tation identified in breast cancer [13], are dominated by
one specific mutational process. Finally, we take advan-
tage of annotation data from the ENCODE project [20]
to study variation in mutational processes associated
with chromatin state. The ENCODE project provides
segmentations of the human genome in different func-
tional chromatin states [21], mainly based on the distri-
bution of histone modification marks. In cancer, a
recent study has identified strong correlations of somatic
mutations with some of these histone modifications,
notably H3K9me3 [14]. We here present statistical evi-
dence that mutational processes act differently in
regions of differing chromatin state in breast cancer. In
particular, one of the mutational processes, producing
mostly C > T mutations at CpG sites, is strongly under-
represented in promoter regions and enhanced in het-
erochromatin regions. This suggests that this process is
correlated with DNA methylation, as would be the case
for spontaneous deamination [22].

Results

Validation against simulated data

We here show the performance of the EM inference
method with the help of simulated data. Cancer muta-
tion data were generated for increasing numbers of
tumor samples (M € {10,20,50,100,500,1000}) and differ-
ent numbers of underlying mutational processes (1 €
{5,10,15}), where we tried to replicate the distribution of
observed mutations in the breast cancer data set (exact
simulation parameters are detailed in Additional file 1).
In each case, increasing the sample size improved the
ability of the method to distinguish between mutation
processes; five mutational processes could be distin-
guished from twenty tumor samples in the vast majority
of cases (Figure 1A). But even where not all processes
were found, for those that were identified the mutational
spectra showed a strong correlation with their real
counterparts (Figure 1B). Using BIC for model selection,
the number of processes was never overestimated. How-
ever, when trying to perform the inference, ignoring the
mutational opportunity led to consistent and significant
overestimation of the number of processes as given by
BIC (see Additional file 1).

Our implementation of the EM method (described
further in Materials and methods) led to rapid inference
of mutational processes and their respective activities;
the mean convergence time scaled close to linearly, or
better, with the number of samples (the increased evi-
dence provided by a greater number of samples can lead
to faster convergence). As such, calculations involving
thousands of samples could feasibly be conducted on a
standard computer (Figure 1C).
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Figure 1 Performance. Results of the performance test of the EM method on simulated mutation data. Each simulated tumor belongs to one
of up to three different cancer types, where in each type there are five independent processes active. The total number of processes per data
set is thus 5 (blue), 10 (red) or 15 (yellow). Here, we show the scaling of different observables as a function of sample size (calculated over 50
replicates for each combination of M and n). (A) The number of processes present in the data is determined via the BIC. Shown are the median
(line), the smallest and the largest (shaded area) number of inferred processes. (B) The correlation between the real and the inferred mutation
spectra (the difference from 1 is plotted). (C) The time until completion of the inference program scales approximately linearly with M (for
constant n; the fits above correspond to 0.93, 0.99 and 1.02). (B and C show the median with the 10% and 90% quantiles.). BIC: Bayesian

Number of samples M

Mutational processes in breast cancer

A recent study [13] has identified independent mutational
processes acting in 21 breast cancers. Applying our prob-
abilistic inference method to this particular data set, we
identified four mutational processes (Figure 2A). Judging
from the simulated data (Figure 1), 21 independent sam-
ples would likely be sufficient to identify five spectra
(depending on their similarity and noise level), suggesting
our inference to be robust. The four spectra identified by
the EM method have very pronounced features, such as
the bias for C > T mutations at CpG dinucleotides in pro-
cesses C and D. Process B shows a bias for C > G and C >
T mutations in TpCpX contexts, whereas process A seems
to be a random background process.

Across the human genome, the mutational opportu-
nity varies between channels by as much as 17-fold,
making this an important factor in the derivation of
mutational spectra. In the breast cancer data set, this is
compounded with a prevalence of large-scale copy num-
ber changes [13,19]. This results in a mutational oppor-
tunity spectrum that is highly tumor specific.

The global activities of each of the mutational pro-
cesses within each cancer showed clear differences
between the cancer samples (Figure 2B). For example,
mutations in tumor sample PD4120a almost exclusively
resulted from process B. PD4120a is an outlier in the
total number of mutations, such that it has a large influ-
ence on the compositions of the identified spectra. How-
ever, our inference proved robust to this; re-running the
analysis with this tumor excluded resulted in spectra that
were very similar to those found in the complete data
scenario (see Additional file 1).

Local analysis reveals regions strongly targeted by
individual processes

To localize the regions of the genome where the different
mutational processes are active, we used the globally
inferred mutational signatures to estimate the activity of
each process for each sequence window of 1 Mb (further
explained in Materials and methods). Variation in the
local activity of individual mutational processes was seen
across each cancer genome, especially in process B. To
gain a first overview of the extent of mutational heteroge-
neity, we measured for each process in each cancer sample
an index of dispersion (the ratio of the variance to the
mean of mutations per window, see Additional file 1), cor-
rected for mutational opportunity, where a value of 1 cor-
responds to an unbiased and homogeneous distribution of
mutations across the genome. Substantial over-dispersion
was identified in process B, most obviously in tumor sam-
ple PD4107a, which shows an index of dispersion close to
100 (see Figure 3A).

Clustering of large numbers of mutations within a small
region of the genome, termed kataegis, has previously
been identified in the breast cancer genomes [13] consid-
ered here, being found in 13 of the 21 tumors. In previous
work, kataegis events were found to largely comprise C >
T and C > G mutations. We now see that kataegis is
strongly associated with mutational signature B.

A higher resolution picture of mutational variation
identified regions of significant mutational clustering.
For each 1 Mb region of the genome, the number of
mutations identified from each process was evaluated
against the null hypothesis that each process distributes
its mutations randomly in the cancer genome, according
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Figure 2 Mutational spectra and tumor composition. (A) The mutational opportunity spectrum of the human genome across 96
trinucleotide channels and the mutational signatures found in the breast cancer data. For each mutation, the 16 sequence contexts are ordered
by the 5" and then the 3’ base in the order A, C, G and T, that is, from ApCpA, ApCpC to TpCpG, TpCpT. The error bars were estimated
analytically (see Additional file 1). (B) The contributions of each mutational process towards the mutations for each tumor. The correlation with

cancer subtype matches that reported in [13].

to a globally uniform activity, modulated only by local
opportunity. Inspection of the P value as a function of
genome location in tumor sample PD4107a highlighted
very clearly the previously reported kataegis event in
chromosome 6, but in addition, found a smaller, but
highly significant, event at the beginning of chromosome
12 (see Figure 3C).

Mutational processes and chromatin state

The localized analysis can be carried out for any well-
defined subsets of the genome. The segmentation of the
genome into functionally relevant chromatin states by
the ENCODE project [20,21] is of particular interest.
Indeed, the regional density of mutations was found to
vary by the chromatin state in human mammary epithe-
lial cells (HMECs) (Figure 4A). Comparing the fraction
of mutational opportunity in each chromatin state to the
fraction of actual mutations observed showed there to be

7% more mutations in heterochromatin segments than
would be expected by chance, but almost 50% fewer
mutations in promoter regions. Using our localized infer-
ence method we investigated the sensitivity of the muta-
tional processes to chromatin state. To this end, we
measured the extent to which the local activity of a muta-
tional process depended upon the chromatin state of a
genomic segment (see Additional file 1). The mutational
process C (C > T at XpCpG sites) shows a highly signifi-
cant change in activity in both heterochromatin and pro-
moter regions. This signal is consistently observed in all
21 cancers (see Figure S5 in Additional file 1). To quan-
tify the size of this effect, we compared the number of
mutations that were assigned to a specific process in
each chromatin state to the number that would be
expected if the process acted uniformly across the gen-
ome. In Figure 4B, we show the ratio of these two num-
bers for each process in each chromatin state and for
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Figure 3 Clustering of mutations within the cancer genome. (A) The index of dispersion (corrected for the heterogeneity in spectrum-
opportunity overlap and ordered by process B value) for all 21 tumors and the elementary processes (logarithmic scale). Process B shows a
tendency to be over-dispersed in some tumors (values larger than 1) indicating local clustering of mutations in the corresponding cancer
genomes. (B) Local assignment of mutations to processes for sample PD4107a by chromosome. (C) The corresponding P value with respect to
the null hypothesis that the mutations are randomly distributed in the genome (positive values signify a surplus of mutation, negative values a
deficit; values are capped at 20) by chromosome. The kataegis events in chromosomes 6 and 12 can clearly be attributed to process B. (D) and
(E) show the same information for sample PD4103a, which harbors many more kataegis-like events, albeit of different magnitude. Green: process
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each of the 21 tumors. In heterochromatin regions, the
activity of process C is enhanced in all tumors, on aver-
age by 40%, a large effect given the size of that genomic
segment. In promoter regions, process C is consistently
suppressed, on average by 80%. This observation raises
the possibility that process C is dependent upon DNA
methylation state. Process C consists largely of C > T
mutations at CpG sites. Such mutations have been
observed to occur more frequently at CpG sites when the
cytosine is methylated, as a result of spontaneous deami-
nation [22,23]. In promoter regions of active genes, there
are more CpG sites than usual (increasing the opportu-
nity for process C), but predominantly they are unmethy-
lated (reducing the observed activity of process C).

Discussion

The main import of this study is the demonstration of a
robust and flexible probabilistic method to extract the ele-
mentary mutational processes and their signatures from
large-scale cancer mutation data and to localize process
activity within the cancer genomes. As an application of
the EM paradigm, this method is solidly grounded in
information theory and thus allows for a robust separation
of the signal from the noise in the data. Using extensive
simulated data sets, we have shown that it is highly scal-
able and can be conveniently used to analyze hundreds to
thousands of cancer genomes.

In the second part of this study, we have demonstrated
how one can infer where the different mutational pro-
cesses are localized within individual genomes. With
respect to breast cancer, we have made some unexpected

observations: first, process B is most prevalent in the
mutator-phenotype tumor PD4120a, but is also strongly
associated with the phenomenon of kataegis, that is,
mutational thunderstorms. Second, comparing the pro-
cess-specific distribution of mutations in the genome to
its chromatin state, process C seems to be strongly sup-
pressed in promoter regions and significantly enhanced
in heterochromatin regions. The chromatin state annota-
tion that was used here was derived from experiments
performed upon healthy tissue. An interesting extension
of this work would be to study the correlation between
the mutational processes and the functional and epige-
netic annotation of the actual cancer genomes that they
were found in. This kind of data is as yet unavailable but
certainly within reach of current technologies.

The inference method presented in this study is not
limited to the 96 trinucleotide mutation channels. Addi-
tionally, one could include such information as the
strandedness of mutations or whether a mutation was an
early or late event in the life history of the cancer [19].
This could, potentially, shed light on the temporal
sequence with which different mutational processes
assault the cancer genome. For all such extensions it has
to be ensured that the mutational opportunity is taken
into account appropriately. Due to chromosomal rearran-
gements and large-scale copy number changes during
somatic evolution, this mutational opportunity is actually
a dynamic quantity [19]. As an approximation, we used
the copy number state of the cancer genomes at the time
of sequencing to calculate mutational opportunity. For
example, a duplication event on one parental copy of a
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chromosome might have happened in the late stage of a
cancer’s evolution. The mutational opportunity for this
duplicated segment would thus be increased by 50%
(from two to three copies) for the remaining time until
sequencing. In this work, we have assumed that this
increased mutational opportunity was available to all the
mutational processes throughout. With more detailed
information about the relative timing of copy number
changes one could potentially construct an improved
effective mutational opportunity.

The inference method that we propose is easily gener-
alized to mutation data found in subsets of the cancer
genome, for example from exome sequencing studies, as
long as the correct mutational opportunity is used. In
its present form, the inference of mutational signatures
does not explicitly account for any effects of selection
on the outcome; we implicitly assume that all mutations
are in effect neutral with respect to cancer evolution.
However, the signatures we infer here might be of help
in a future search for signals of selection in cancer gen-
omes. Any claim for the presence of selection in a
sequence must be contrasted against the predictions of
a null model of neutral mutations, of which the present
mutational signatures could form the basis. To further
emphasize the importance of understanding quantita-
tively the mutational processes active in cancer, we note
that passenger mutations themselves have been recently
proposed as a potential therapeutic target [24].

Potential future applications of this method include
the cataloguing of mutational signatures across different
cancer types, identifying shared and cancer-type-specific
mutational processes (and, hence, a better classification
of cancers by their process composition) and finally, a
more refined, cancer-type-dependent null model to
identify causal cancer driver variants via signals of
selection.

Conclusions

We here present a probabilistic model for cancer muta-
tions and a robust method to identify the mutational
signatures of processes that were active in sequenced
cancers. Under explicit consideration of the opportunity
for different mutations to occur, we infer the localiza-
tion of the mutational processes in individual cancer
genomes. Using recent data on breast cancer tumors, we
have demonstrated how a comparison of the distribution
of mutational processes with functional annotation of
the genome can lead to new insights into tumor biology.

Materials and methods

Mutation data

A total of 183,916 somatic point mutations found in the
genomes of M = 21 different breast cancers [13], were
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subjected to analysis. Each mutation was mapped to one
of N, = 96 trinucleotide mutation channels, defined by
one of six possible unique base pair changes (C:G > A:
T, C:G > GC, C:G > T:A, T:A > AT, T:A > CG and T:
A > G:C) and one of the sixteen different trinucleotide
sequence contexts (as given by the bases immediately 5’
and 3’ to the mutated site in a pyrimidine context). As
such, the combined observations were described by the
matrix X" (i=1,...,N,m=1,...,M) of channel- and

tumor-specific mutation counts.

Elementary processes of mutation

We assume that the observed mutational data can be
explained by the action of n distinct elementary muta-
tional processes, denoting the mutational signatures of
the processes as {s,;} (@ = 1,..,n, j = 1,...,N.), where

Z][.\ifl taj = 1. We denote the activity of process a in

tumor m as X)), representing the extent to which a pro-
cess has been operative in a given tumor. It is important
to note that a derivation of the inherent mutation rate
of a process is not possible; the total activity of a pro-
cess in a given cancer is the product of its bare muta-
tion rate, the time for which it has been active and the
proportion of the genome that was actually attacked.
While this last contribution could be factored out with
a spatially resolved analysis, the first two are inseparable
without time-resolved sequencing of the tumor.

Given the above, we describe the result of a stochastic
infusion of mutations into the genome using a Poisson
distribution. Assuming the mutational processes to be
mutually independent, the probability of observing the
vector X" of mutation counts in tumor m across chan-
nels j is given by:

N, n
P (X"x™, 0™, p) = 1_[ Pois (X]ml ngquajwjm) , (1)
j=1 a=1

where @/" is the opportunity for mutations in channel
to occur in tumor m. In the data set under study, copy
number variation produces differences in the mutational
opportunity between tumors; we have here factored in the
available ploidy information [19] in the following way: each
base pair can mutate in three different ways corresponding
to three of the 96 mutational channels, depending on the
immediate sequence context of the mutated base. The total
mutational opportunity vector ™ is the cumulative sum
over all bases, where at each base three channels are
increased not by one, but by the copy number of that base
in genome m. In a variant of the method, which ignored
mutational opportunity, the values w]m were set to 1. We

note that, of the parameters in equation 1, the activities x
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and the spectra 4 are unknown. Maximum likelihood esti-
mation of these values was accomplished using an EM
algorithm.

Finding the mutational spectra
The EM algorithm finds maximum likelihood (ML) esti-
mates of the unknown shared model parameters (here
the spectra y) and the hidden data (here the activities x).
After an initial guess, ﬂ(o), is made, two steps are repeated
in an iterative fashion. In the first step, given the current
best guess, #*, and the observed data, X, an estimate is
found for x. In the second step, this estimate, x of the
hidden data is used to obtain the updated parameter esti-
mate, u* * V. These two steps are iterated until conver-
gence to a (local) maximum of the data likelihood,
P(X|p), is achieved [17]. More formally, the routine pro-
ceeds as follows:

0. (Initialize) Choose an initial guess for y, respecting

the normalization Zﬁcl aj = 1.

1. (E-step) Given the current estimate ), find maxi-
mum likelihood estimates for all the hidden activities:

N, n n
X" = argmax logP (X"‘ |x, @™, /4”‘)) = argmin Z [Zxa;ﬁ“’;'w)"‘ - X,"‘ log (Z x,,/l‘m’;'w:")] (2)
xeR? xeR?
: © a1 Lamt a1

2. (M-step) Using above hidden data estimates, update
the mutation spectra according to:

ulD = arg[Rmax ilog[‘(x"‘\fcm,wm, ), with constraint i#fj,ﬁl) =1. (3)
HERMNe 1y j=1

3. (Finish) Test for convergence. If needed, go back to
the E-step and repeat.

This formulation of the EM routine follows from the
more standard formulation [17] (a rigorous derivation is
given in Additional file 1). The performance of the EM
algorithm depends heavily on how quickly and accu-
rately the two maximizations can be carried out. Here,
approximate analytical solutions to both steps were used
to significantly speed up the route to convergence (see
Additional file 1); numerical optimization was used for
the final steps of the iteration only.

Calculating the total data likelihood

After convergence of the EM algorithm to a maximum
likelihood estimate, i, of the n spectra, the numerical
value of the likelihood was calculated by integrating out
the latent variables, x. To avoid the expense of numeri-
cal integration, this was performed using the saddle
point approximation:

M
log P (XI2) = Zlog/d"xl’ (X0, ) ~ Y [;‘ log2m — L (") — ; log det H (L) (i'")] (4)
P

m=1

where L(x) = -log P(X|x, , u) is the conditional data
log-likelihood (see equation 2), and H (L)(x) is its Hes-
sian matrix of second derivatives.
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Finding the number of mutational processes

Comparing the data likelihoods obtained with different
values of # indicated the most likely number of muta-
tional processes. Increasing the value of # increases
the number of model parameters available for fitting,
and generally produces a better explanation for the
data, X. This is reflected in an increased value of the
likelihood, P(X|,&). To avoid overfitting of the data,
the BIC was used to correct for model complexity. The
model with the largest value of BIC was ultimately
selected [18,25]:

BIC = 2log P (X|/1) — n (N — 1) log M. (5)

Estimating process activities and assigning mutations to
processes

Global analysis

Completion of the EM algorithm provides maximum
likelihood estimates, [, of the mutational signatures of
the n processes. Likewise, the E-step yields estimates,

{562‘}, of the process activities for each sample.
Together, these can be used to estimate the number of

mutations that was most likely contributed by each pro-
cess to the set of all observed mutations: X" = ™"_ X",

To improve the activity estimation, we generalize the
simple maximum log-likelihood estimate of equation 2
to include prior information in the form of pseudo-
counts. As we show below, these pseudocounts are gen-
erally not uniform across channels. The activity

estimates, {X"}, then have the status of a maximum a

posteriori. Finally, the number of mutations, X', in can-

cer m which were emitted in channel j by process a is
then estimated as:

N,

g Ne
2 ,where [X"[ = ¥"X", and(iio™), = 3 ol
b T A ), where |X™| ;: ¢ and(e™), ;y‘,,m} (6)

X &5 g jeor

Here, the superindex g signifies a globally derived
quantity. The assignment rule can be understood as fol-
lows: the fraction of observed mutations that were pro-
duced by a particular process must be proportional to
its activity, its mutational spectrum and to the muta-
tional opportunity in that channel. To each observation,
X", a total of n pseudocounts were added. These counts
were assigned exactly in the above way, but without any
bias due to the (as yet unknown) activities:

Aooom
Ym nua]w]

X = . 7
Y ZZ=1 (/:me)b ( )

Thus, they represent an observation that is solely
based on information known prior to the activity
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estimate. The pseudocounts enter the log-likelihood
function (see equation 2) by an additional term:

Ne n
L(xX", 0" pn) > L(x6X", 0", 1) — Z Zf(;’; log (xap_ujwjm) . (8)

j=1 a=1

Local analysis

With exactly the same logic as above, we derived esti-
mates of the local activity of each process within each
cancer, dividing every genome into non-overlapping
windows of length 1 Mb. However, we could now use

the previously calculated global activities, {&Zn’g}, as a

more informed prior for the inference of process activ-
ities within each megabase window,

smg A m,l
NXa ™ Kaje;

oml E - stepwitheq. 8

= e zml )
LD B i ® (/“"m'l)b ‘

using X", om!

These locally inferred activities, ™!, were used to assign

the mutations observed in each window to the # different
processes, in the manner of equation 6. We also per-
formed a consistency check of the local mutation assign-
ments, measuring for each process independently whether
the total effect of their local activities across all windows
was consistent with the global activity provided by the glo-
bal EM result; in more formal notation, we compared
Zf_]bl X™! with X8 (where Nj, is the total number of
bins). While there exists no a priori reason to expect a
perfect agreement between these values, using the
informed prior, the consistency was very high (see Addi-
tional file 1). A large deviation between values would sig-
nify that the local estimates are incompatible with the
global estimate, suggesting a general discrepancy between
the observed counts and the generative model used to
assign them to processes.

Identification of chromatin state

Chromatin states across the genome were identified
using data from the ENCODE project describing a cell
line of normal HMECs [20]. Sites within the genome
were classified into seven broad chromatin states: pro-
moter, enhancer, insulator, transcription, repressed, het-
erochromatin and repetitive regions [21].

Comparison with an earlier approach

Both similarities and critical differences exist between
our probabilistic approach and the non-negative matrix
factorization (NMF) [11,12] employed in a previous ana-
lysis of the breast cancer data [13], and further documen-
ted elsewhere [26]. In general, NMF is a tool for a very
particular task, finding the matrices, x and g, that mini-
mize some matrix norm, ||X - xu||, without explicit refer-
ence to any probabilistic model. The iterative NMF
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algorithm can, however, be interpreted as an application
of the EM paradigm [27], where different choices of
matrix norms correspond to different assumptions about
the underlying probabilistic model for the observed data,
X (given x and y). The discrete nature of mutation counts
suggests a Poisson generative model, which, in turn, cor-
responds to a very particular matrix norm (related to the
Kullback-Leibler divergence) that is minimized by NMF
[27]. Differences between our approach and previous
work fall into two categories. Firstly, our work addresses
new concepts and applications in identifying mutational
processes. The sequence-specific opportunity for muta-
tions to occur, the inference of process activities in local
regions of the genome, identification of kataegis events
with a specific mutational process and the assessment of
the impact of chromatin state, were not previously con-
sidered in this context. Some of these concepts could
potentially be incorporated into an NMF-based frame-
work, for example by scaling the numbers of observed
mutations to account for tumor-specific mutational
opportunities. Secondly, our method is based on a dis-
tinctly different mathematical formulation. Our belief is
that the concrete probabilistic nature of the method pre-
sented here is an advantage for studying mutational pro-
cesses, which are themselves inherently stochastic. For
smaller genomic segments the sequence contexts become
highly variable and the actual mutation counts become
small necessitating a probabilistic treatment. Critically,
our method allows for an assessment of statistical signifi-
cance - even a small number of mutations can be of great
interest provided they are of the right type in the right
genomic context. More generally, use of a likelihood fra-
mework allows for the application of multiple statistical
techniques. Monte Carlo methods such as MCMC or
simulated annealing can be applied to find robust point
estimates of the parameters, y, and informative estimates
of their errors. The ability to call upon existing theory
was also of help in identifying the number of mutational
processes; the BIC method applied in this study [18,25]
provided a valuable criterion in selecting the correct
number of mutational processes for our system.

Data access

The current version of EMu is provided as Additional
file 2. The most up-to-date version of EMu is available at
[28] together with the localization results (see Figure 3) for
all 21 cancers in computable document format (cdf) (view-
able with Wolfram’s free CDF Player [29]).

Additional material

Additional file 1: Supporting information. Explicit calculations and
implementation for the methods presented in the main text as well as
additional analysis of the breast cancer data.
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Additional file 2: Software. For archival purposes, the current version of
EMu is included as an Additional File. However, we recommend you
download the software from http://www.sanger.ac.uk/resources/software/
emu/, in case a more up-to-date version has been released.
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