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On the notion of ‘bandwidth’ in geographically weighted regression models of 
spatially varying processes 
 

 
Abstract  

Models designed to capture spatially varying processes are now employed extensively 
in the social and environmental sciences. The main strength of such models is their 
ability to represent relationships that vary across locations through locally varying 
parameter estimates. However, local models of spatial processes also provide 
information on the nature of these spatially varying relationships through the 
estimation of a ‘bandwidth’ parameter. This paper examines bandwidth at a 
conceptual, operational, and empirical level within the framework of geographically 
weighted regression, one of the more frequently employed local spatial models. We 
outline how bandwidth relates to three characteristics of spatial processes: variation; 
dependence; and strength. keywords: bandwidth; spatial scale; MGWR; spatially varying 
coefficients; spatial processes 

 

1. Introduction 

Statistical models of locally varying processes, such as geographically weighted regression (GWR) and 
multiscale geographically weighted regression (MGWR), are commonly employed to provide 
information on spatially nonstationary relationships - those which reflect processes that vary over 
space. Often, in model comparison exercises, a set of local models is fit, and then the local parameter 
surfaces are compared (Waller et al. 2007; Wheeler & Calder 2007; Wheeler & Waller 2009; Finley 
2011; Oshan & Fotheringham 2018; Wolf et al. 2018; Murakami et al. 2019). Generally, this is the 
main interest of local modeling: we fit local models because we are interested in the structure of local 
trends. Thus, most comparisons and examinations of local models generally compare how efficiently 
and accurately local parameters are estimated and how good predictions of the dependent variable are. 

However, local models are “big models.” They generate a vast amount of information, and although 
local parameter estimates and predictions form a major component of this, estimates of process scale 
that are obtained in the calibration of such models are also important (Oshan et al. 2019; Murakami 
et al. 2019). Most local models provide some estimated parameter which describes how localized the 
models are. In the case of GWR and MGWR (henceforth, we refer to both simply as GWR for 
convenience), this parameter is referred to as a ‘bandwidth’. 1 The bandwidth parameter is usually 
interpreted as providing information on how “local” a process is. Generally speaking, if the bandwidth 
parameter is small2, it indicates that a process is “local,” and that parameters for specific locations can 
be optimally estimated by using information obtained from very close to those locations. In contrast, 

 
1 In Bayesian spatially varying coefficients models (SVCM) the parameter is referred to as a ‘decay’ (Finley et al. 2007) or 
a ‘range’ (Banerjee et al. 2004) parameter.  
2 While this requires us to assume that covariance kernels have been specified in a particular way, this assumption is not 
onerous. When specified as a “decay” kernel, large “decay” parameter values indicate locality. Defining the bandwidth as 
inversely-proportional to a decay parameter is sufficient. Either form has been used in Bayesian local models, but the 
bandwidth form is solely used in the GWR literature.  
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if the bandwidth parameter is large, then parameter estimation at each location requires information 
obtained from a much wider range of locations.  

This interpretation of bandwidth is directly relevant to many research questions since it suggests that 
a single measure can be made of how spatially varying are process estimates. Application examples 
include the exploration of spatial process heterogeneity associated with health outcomes, mortality 
rates, air quality, voting behavior, and soil composition (Fotheringham et al., 2019; Comber et al., 
2020; Cupido et al., 2020; Oshan et al., 2020; Fotheringham et al., 2021). Although the link between 
bandwidth and process variability has been established in local aspatial  models (Fan and Gijbels, 1995; 
Ruppert et al. 1995), the situation in local spatial models is more nuanced for the following reasons: 

(i) In aspatial local modeling the focus is solely on establishing the nature of the spatially 
global conditional relationship between a dependent variable y and an independent 
variable x in attribute space whereas in spatial forms of local models nonstationarity is 
viewed as being caused by intrinsically different responses to the same stimulus at 
different locations due to geographical context.  The difference becomes clear when x is 
constant: in local spatial modeling if x were constant over space, the relationship between 
y and x could still vary due to geographical context whereas in an aspatial application, 
local modeling would have no meaning if x were constant. 
 
(ii) In local spatial modeling, the relationship between bandwidth and process variation 
is controlled by factors other than process variation, such as process spatial dependency 
and process strength, and the interplay of these factors on the resulting bandwidth is 
unknown.  
 

Consequently, exactly what determines the optimal bandwidth in GWR models of spatially varying 
processes and what it measures remain research questions which this paper attempts to answer. 
Specifically, we examine the sensitivity of reported bandwidth values in GWR models to three 
characteristics of processes: 

(i) The degree to which the processes reflected in local parameter estimates vary over space. 
When a process becomes increasingly global, the local parameter estimates reflecting this 
process will become increasingly uniform over space,  and the resulting bandwidth will become 
larger. We measure this system characteristic by local parameter variance. 

(ii)  The degree to which a process exhibits spatial dependency, as measured by the spatial 
dependency of the local parameter estimates. If a process varied randomly over space, the 
resulting bandwidth would be very large; increasing spatial dependency in the process would 
lead to smaller bandwidths. We measure this by local parameter spatial dependency. 

(iii) The strength of the process being measured, controlled by the error variance in the model. 
Processes which are very weak (with large model error) and where changes in a covariate 
magnitude have little impact on the magnitude of the dependent variable may exhibit different 
bandwidths from those which are strong, ceteris paribus. We measure this by local parameter 
strength. 

To do this, we generate known parameter surfaces according to three different data generating 
processes (DGPs) with known formal properties: a Gaussian Random Field (GRF), a Simultaneous 
Autoregressive field (SAR),  and a plasma fractal. Agreement in the conclusions drawn across the three 
DGPs reduces the possibility that the results are an artefact of any one DGP. We then use realizations 
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from these processes in a local regression context in order to investigate  what system properties have 
the most influence on the bandwidth  estimates generated by GWR-type models.  

First, we discuss the model specifications and DGPs. We then explain the interpretation of bandwidth 
in GWR as well as the parameters of each data generating process. Next, we examine the behavior of 
bandwidth estimates in  GWR  in terms of local parameter variance, local parameter spatial 
dependence and local parameter strength.  We conclude by generalizing from the empirical patterns 
across  DGPs to  yield insights into the theoretical and empirical meaning of “bandwidth” in GWR 
models.  

 

2. The concept of bandwidth as a measure of process scale 

Scale is a complex and multifaceted concept in geography, but in spatial statistics, scale has generally 
become synonymous with bandwidth. An extension of well-known 1-dimensional nonparametric 
statistics, two perspectives on bandwidth are generally used. The first, focuses on bandwidth as an 
artifact from estimation, considering it as a distance that provides “a specification of neighborhood size” 
(Cleveland and Devlin, 1988 p. 597); points closer than the bandwidth are included in a local model, 
and points further than the bandwidth are not. This line of reasoning is well established among kernel 
methods in nonparametric statistics, where bandwidth only serves as a tuning parameter to improve 
the predictions of the model. There is no “true” value of bandwidth beyond that which optimizes a 
statistical score. 

The second perspective generally comes from data generating processes. In this, bandwidth is an unknown 
parameter of the data generating process that establishes a “neighborhood size” for each site. For 
some DGP, then, the bandwidth parameter governs how far distant sites must be in order to be 
independent of one another. From this perspective, bandwidth has a “true” value in the DGP that an 
estimator ought to be able to uncover.  

Practically speaking, this exposes an issue for the second perspective: how effective are our models at 
recovering the expected values of these bandwidths? Since the true structure of the DGP is unknown, 
it is generally not feasible to decide whether a given process model is correct for the problem at hand. As 
such, we would hope that bandwidth estimates generally have similar semantics between different 
DGPs, even if they arise from different estimators. Put simply, models should generally agree on what 
a “local” surface is in order for us to treat their bandwidth parameters as interchangeable.  

However, interpreting bandwidth parameters is less straightforward than comparing the response 
surfaces, which typically have clear, direct meaning borrowed from a classic linear modelling case. 
Further, this is generally not a problem for aspatial local regression, since the bandwidth parameters 
used in that form of modeling generally are not interpreted as intrinsically meaningful (i.e., 
nonparametric kernel statistics). However, for spatial statistics, bandwidth matters as it is often 
interpreted as a proxy for the spatial scale over which a process is relatively uniform (i.e., an explicit 
characteristic of the DGP).  

To formalize this idea, we define a classic local linear model as: 

   yi = βi xi  + εi                (1) 

where yi indicates a realization of the process at some position i, with observed data xi , local effect βi , 
and error term εi. In the sense of Cressie and Wikle (1993, p. 112), there are two data sources of 
variability (that for y and x), and two modeled sources of variability (that for εi and βi ). It is the variation 
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of βi that we refer to as local parameter variance, since it reflects the fundamental variation in the local 
estimates. The magnitude of εi reflects process strength and arises because we do not measure the 
outcome of βixi  perfectly. The lower the value of εi, the greater is the strength of the relationship 
represented by the local parameter βi . Finally, we define  local parameter spatial dependence as arising from 
the structure of correlation between the local parameters at different sites, while the absolute variation 
is defined as process parameter variance.3 Different processes for βi will encode these sources of 
(co)variation differently, and different models that estimate bandwidth may combine these sources in 
different ways. Whether bandwidth estimates from GWR  are equally sensitive to these three sources 
of variation remains unknown.   

To address this, we discuss the nature of bandwidth in GWR.  Previous research has shown how to 
calculate the uncertainty around each optimized bandwidth to establish confidence intervals and tests 
of the statistical significance of differences between bandwidths ( Li et al. 2020).  Therefore, we 
concentrate here on the interpretation of the bandwidth parameters reported in GWR (and hence in 
its multiscale version, MGWR)  in relation to the impact that parameter variability, parameter 
dependence, and measurement variability may have on them.  Before doing so, we first discuss the 
concept of bandwidth in  the GWR  framework.    

 

2.1 The concept of ‘bandwidth’ in a geographically weighted regression framework 

Suppose we have an area of interest that has n sites at which data are available for a set of variables 
that we assume to be associated in the following manner: 

yi = β0 + β1 x1i + β2 x2i + εi     (2) 

That is, we believe that variations in x1 and x2 cause y to vary in predictable ways which can be 
measured by estimating the parameters β1 and β2. In order to calibrate this model, the usual procedure 
is to assemble data from the n sites, ignoring their locations, and to assume that the relationships 
represented by β1 and β2 are constant over the area of interest. This latter assumption is generally 
untested and not based on evidence. An alternative is to allow the possibility that the relationships in 
the model vary over space and to rewrite the models as: 

yi = β0i + β1i x1i + β2i x2i + εi      (3) 

where now the parameters of the model can vary with location 𝑖. The problem with this approach is 
that traditionally it would need a relatively large number of observations on y, x1 and x2 to be observed 
at each site i whereas typically with spatial data only one set of y, x1 and x2 values are available at each 
location. GWR-related models solve this problem by calibrating the model separately at each location 
by borrowing data from neighboring locations and weighting them between 0 and 1 with greater 
weights being given to data from locations that are closer to that for which the local parameter 
estimates are being estimated. Figure 1 describes this process.   

 
3 Fundamentally, this is a partitioning of the covariance matrix of 𝛽i into its diagonal and off-diagonal elements.  
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Figure 1: Data-weighting or borrowing in geographically weighted regression. 

 

An integral component in this type of local model calibration is the function that relates the weight 
given to data from a certain location to the distance that location is from the regression point.  In 
particular, the ‘bandwidth’ of a kernel function controls the decay of the weighting as distance 
increases.  If the bandwidth is large, weights decline slowly as distance increases so that data from 
more sites are included in the local calibration; if the bandwidth is small, data from only a relatively 
small set of local sites are used in the calibration. The choice of optimal bandwidth is thus a trade-off 
between bias and variance. As more distant locations are added to the local regression, bias in the local 
parameter estimates will increase because data are drawn from further away where the relationships 
they represent are increasingly likely to be different to those at the regression point. However, adding 
more data to the local regression will decrease the standard errors of the local parameters as the local 
estimates will be based on greater numbers of observations (Yu et al. 2020a). The optimized bandwidth 
produced by a GWR calibration thus represents the number of locations (or distance from the 
regression point depending on what type of weighting function is used) at which adding a further set 
of data from the next closest location will increase the bias in the parameter estimates more than it 
will decrease the uncertainty about the estimates. Details on how to calculate the bias and uncertainty 
in GWR models can be found in Yu et al. (2020b). 

Another way of viewing the bandwidth in GWR is via the concept of data-borrowing (Fotheringham 
and Sachdeva, 2021). Local regressions can be calibrated through GWR because data are ‘borrowed’ 
from nearby locations and weighted according to their proximity to the focus of the local regression. 
Each location can be thought of as providing data for the local regression at i which contains some 
information on the processes operating at i and some misinformation. All the data at locations up to 
the bandwidth provide more information than misinformation on the processes at i and are therefore 
used in the local regression. Data which lie beyond the bandwidth are composed of more 
misinformation than information on the processes at location i and are therefore excluded from the 
local calibration for location i.   

In MGWR (Fotheringham et al. 2017), this bandwidth will vary according to the relationship between 
y and each covariate. Some relationships will have relatively small associated bandwidths, indicating 
that in such cases the amount of misinformation in data quickly exceeds the amount of information 
as distance from the local regression point increases. Other relationships will have relatively large 
bandwidths, indicating that levels of misinformation tend to increase very slowly as distance from the 
regression point increases so that larger numbers of data points are included in the local regressions 
to reduce parameter estimate uncertainty. Relationships that do not vary over space will have, in 
theory, infinitely large bandwidths as adding data introduces no bias (or ‘misinformation’) but will 
reduce the standard errors of the parameter estimates. Consequently, the resulting optimized 
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bandwidths that result from a GWR calibration are of interest in that they would appear to suggest 
the spatial scale over which relationships vary. This hypothesis is examined below. 

 

3. Experimental Design 

To examine the extent that the optimized bandwidth parameters from GWR  are related to various 
system features, we conduct  a variety of simulations which are now described. Local parameter 
estimate surfaces are simulated using three different data-generating processes: a Gaussian Random 
Field, a Simultaneous Autoregressive Field, and a bounded discrete-space Fractal process. Each of 
these processes has a parameter governing how ‘dependent’ or ‘local’ their realizations become, as well 
as a parameter governing the ‘intrinsic’ variation of the surface. This allows us to examine the behavior 
of the bandwidth estimate from GWR for different kinds of processes, without reference to what the 
“correct” process specification might be (as has been investigated in Harris (2019)). The overall logic 
of the experiments is to generate surfaces of local parameter values with known properties of process 
variability, process spatial dependence and process strength and to uncover how these properties 
affect the resulting bandwidth parameters in GWR.  

In all the simulations, we use univariate GWR  to calibrate optimal bandwidths with different data that 
have known properties and which are generated by different processes. The model is kept as simple 
as possible because of the time-consuming nature of the simulations, yielding the situation where a 
variable y is a function of a single covariate x: 

𝑦! = 𝛽!𝑥! + 𝜀!      (4) 

where values of the covariate 𝑥! are randomly drawn from a normal distribution (0, 1) for 400 locations 
on a regular 20×20 grid, the local parameters 𝛽! are obtained from a pre-specified surface, and 𝜀! are 
drawn from a normal distribution (0, 1). The values of y are then derived from the model equation. 
Though not pursued here, this experimental design could be extended to the multiscale version of  
GWR although some preliminary experiments with MGWR suggest the conclusions we draw here 
from simple GWR apply equally to the covariate-specific bandwidths derived in MGWR.  Indeed, the 
model we employ here with only one covariate can be considered the simplest case of MGWR. 

 

4.  Bandwidth sensitivity in GWR to process variance and process spatial dependency 

4.1  Bandwidths based on data derived from  a Gaussian Random Field (GRF) process 

For the first DGP, we use a mean-stationary Gaussian random field (GRF) to generate a set of local 
parameter surfaces where Ω denotes the covariance matrix arising from a squared exponential spatial 
covariance function as discussed above:  

Ω(𝑘, ℎ) = 𝑘" ∗ 𝑒𝑥𝑝(−0.5 ∗
#!"
#

$#
)    (5) 

In this notation, h is the parameter controlling the surface’s autocorrelation, k is the intrinsic/residual 
variation (sometimes called the “microscale variation” after Cressie (1993)), and dij is the distance 
between locations i and  j. Thus, the spatial dependence between the local slopes increases when h 
increases. In addition, the strength of realizations of the local slopes will increase when k gets larger. 
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Thus, by systematically varying k and h, we can examine the resulting impacts on bandwidth estimates 
from local models.  

To examine the sensitivity of the resulting optimized bandwidths to both dependency in the local 
parameters and their strength, we vary h from 0.2 to 10 in steps of 0.2 and k from 0.05 to 1 in steps 
of 0.05. By doing this, we obtain 1000 pre-specified local parameter surfaces from the GRF DGP with 
different degrees of dependency and strength. For each of these surfaces, we calculate the optimal 
bandwidth and Moran’s I4. To give a feel for what these surfaces look like in terms of their measured 
spatial dependence and strength, six representative surfaces of parameters are shown in Figure 2. The 
equivalent surfaces for the subsequent two DGPs are very similar and are not included in the paper 
but are available from the authors.  

 

 
4 Here, we use binary first-order rook contiguity. 
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Figure 2: Six examples of parameter surfaces with  an increasing degree of process spatial dependence based 
on the Moran’s I statistic. 

 

In order to remove the influence of randomness from the results, we produce 100 simulations for 
each of the 1000 combinations of dependency and strength and average the resulting optimized 
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bandwidths for each combination. These averages are reported in Figure 3 where each cell denotes 
the optimal number of nearest neighbors used to calibrate a GWR model, which ranges from 5 
(indicating a very localized process) to 400 (indicating a global process). 

 

 

Figure 3: Optimal bandwidths in terms of number of nearest neighbors obtained at different levels of local 
parameter variance (vertical) and local parameter spatial dependence (horizontal) averaged over 100 samples 
derived from a GRF. 

 

The figure shows that when parameter spatial dependency (as measured by Moran’s I) is held constant, 
bandwidth decreases as the variation in the local parameters increases and that when the variation in 
the local parameters is held constant, bandwidth decreases as spatial dependency increases, although 
the sensitivity is not as strong in this latter case. The largest bandwidths are generally found in 
situations where the parameter surface exhibits low variance. When there is little variation in a process 
over space, the optimal bandwidth will be large, ceteris paribus, because using data from locations further 
away in the local regressions introduces little bias. In contrast, the smallest bandwidths are generally 
found when the parameter surface exhibits high variance. With fixed spatial dependency, as the 
process exhibits increasing spatial variation, the optimal bandwidth will decrease as using data from 
more distant locations will introduce more bias. This result is further highlighted in Figure 4 where 
slices across the horizontal axis at several values of parameter standard deviation are taken from Figure 
3 and plotted as lines. Overall, Figure 4 demonstrates that larger bandwidths are obtained when 
parameter variation is low and smaller bandwidths are obtained when parameter variation is high. 
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Figure 4: Optimal bandwidths for six fixed values of parameter surface variation and varying spatial 
dependency. 

 

These results match the intuition that small bandwidths are associated with large variations in 
parameters (processes), reflecting conditioned associations between a covariate and the dependent 
variable that vary rapidly over space.  In such situations, borrowing data from more distant locations 
would yield high levels of bias - the amount of ‘misinformation’ in data quickly exceeds the amount 
of ‘information’ as distance from the regression point increases. When there is little or no variation in 
parameters (processes), there is nothing to be gained from a small bandwidth - data can be borrowed 
from locations at much greater distances which reduces parameter uncertainty. So, small bandwidths 
are associated with processes that vary rapidly over space; large bandwidths are associated with 
processes that are relatively constant over space.  The relationship between bandwidth and parameter 
(process) variation is somewhat tempered by the degree of spatial dependency exhibited by the 
parameters (processes). Holding parameter variation constant, optimal bandwidth tends to decline 
slightly as spatial dependency increases. This also is intuitive because if processes were randomly 
distributed over space, data would be borrowed from more distant locations to reduce parameter 
uncertainty. As parameters (processes) exhibit greater spatial dependency, optimal bandwidths 
decrease to reduce the amount of bias introduced by including more distant (and more different in 
terms of processes) locations in the local calibrations. Therefore, optimal bandwidths are strongly 
related to the amount of parameter variation but only when there is some degree of spatial dependency 
in the processes reflected by the parameters. Given that almost all spatial data exhibit some degree of 
positive spatial dependency, it seems reasonable to assume that spatial processes, if they vary, will also 
exhibit some degree of spatial dependency. In addition, there are few empirical examples of spatial 
processes in the social sciences that vary randomly over space, lending further credence to the 
assumption that spatial process variation and dependence tend to coexist5 . 

 
5 While some spatial processes related to physical phenomena, such as soils, appear to be ‘random’, this is often an issue 
of data and scale, rather than the true underlying process itself.(Webster, 2000)  
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4.2  Bandwidths based on data derived from a Spatially Autoregressive (SAR) process  

While the GRF DGP used to generate the parameter surfaces in Section 3.1 is common in spatial 
statistics, other DGPs are also used to model spatially-dependent phenomena. To test whether the 
results from the previous experiment are generalizable, we repeat the above experiment with two 
additional data-generating processes. First, we assume the pre-specified surfaces S~SAR(ρ, k) follow 
a simultaneous autoregressive process (SAR) which is completely characterized by its spatial lag 
component ρ and its standard deviation k (Anselin 1988). A SAR process is generated as follows: 

𝑆 = (𝐼 − 𝜌𝑊)%&𝜀     (6) 

where ε is drawn from a normal distribution (0, 𝑘"𝐼) and W is a rook contiguity weights matrix. The 
dependency of the surface increases as ρ becomes larger while the variance of the surface increases as 
k becomes larger.  

To investigate the sensitivity of the resulting optimized bandwidth to variations in both ρ and k, we 
vary ρ from 0 to 0.95 in steps of 0.05 and k from 0.05 to 1 in steps of 0.05. This generates 400 surfaces 
of parameter values with different degrees of dependency and variance and for each of these we run 
100 simulations and obtain the average optimized bandwidth over these 100 simulations, which are 
reported in Figure 5. 

 

 

Figure 5: Optimal bandwidths in terms of number of nearest neighbors obtained at different levels of local 
parameter variance (vertical) and local parameter spatial dependence (horizontal) averaged over 100 samples 
derived from a SAR process. 

Reassuringly, the results are similar to those obtained under surfaces generated by the GRF DGP, 
although the influence of the spatial dependence of the parameters is greater in this case. Smaller 
bandwidths are associated with local parameter surfaces with higher spatial dependency and greater 
variation while larger bandwidths are associated with surfaces having lower spatial dependency and 
lower variation. The sensitivity of the optimized bandwidth to variations in process spatial dependency 
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is greatest when process variance is moderate. Similarly, the sensitivity of the optimized bandwidth to 
process variation is greatest when process spatial dependency is not extreme. The tradeoff between 
process strength and process spatial dependence becomes clear: a “local” bandwidth arises in 
situations with large parameter variance or strong spatial dependence.   

 

4.3  Bandwidths based on data derived from a Fractal process 

Finally, we further reinforce our results by assuming that the pre-specified parameter surfaces S ~ 
Fractal(f, k) follow a plasma fractal process (Fournier et al., 1982; Willemse & Hawick, 2013) which is 
completely characterized by its roughness f and its standard deviation k. The dependency of the 
surface decreases as f becomes larger while the magnitude of the surface increases as k becomes larger. 
In order to investigate the sensitivity of the optimized bandwidth to variations in both spatial 
dependency and process strength as above, surfaces are created by varying ρ from 0 to 2 in increments 
of 0.05 and k from 0.05 to 1 in steps of 0.05. This generates 820 pre-specified surfaces with different 
combinations of spatial dependency and process strength. The average optimized bandwidths based 
on 100 simulations for each combination are shown in Figure 6. 

 

 

 

Figure 6: Optimal bandwidths in terms of number of nearest neighbors obtained at different levels of local 
parameter variance (vertical) and local parameter spatial dependence (horizontal) averaged over 100 samples 
derived from a fractal generating  process. 

 

Again, similar relationships are observed as those from the previous two experiments: bandwidth 
decreases with increasing parameter variation and increasing spatial dependency, though the sensitivity 
of bandwidth size is dominated more by parameter variation than spatial dependence. This supports 
the results obtained for the GRF and SAR DGPs but provides an example where the influence of 
spatial dependence on the bandwidth is even weaker. This could be due to the scale-free nature of 
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fractal processes that maintains structural relations across scales or sizes of values in a set. Also note 
that the plot has a minimal dependence of 0.2 on the X-axis, which could skew interpretation. 

From the above three experiments, it becomes clear that the optimized bandwidth in GWR is sensitive 
to the variation in the relationships represented by the local parameters and the degree of spatial 
dependency in relationships represented by the local parameters. Where there are highly spatially 
localized relationships, we would expect to generate small optimized bandwidths and where there are 
relatively constant relationships, it is expected that GWR will generate large bandwidths. 
Consequently, any optimized bandwidth generated in a GWR (or MGWR) calibration can be thought 
of as an indicator of the spatial scale over which a relationship varies.   

 

5.  Bandwidth sensitivity in GWR to variations in process strength (model error) 

Having established a link between the optimized bandwidth and both spatial variation and spatial 
dependency in a given process, we examine here how variation in the strength of a relationship (as 
controlled by the error variance in equation (1)) affects bandwidth estimates. Overall, as the error 
variance in equation (1) decreases, the random component of y decreases. making the local slopes 
increasingly important in determining y at a fixed value of x.  

In the GRF, we set k=1 and vary h in equation (5) from 0.2 to 10 in increments of 0.2, generating 50 
pre-specified surfaces with different degrees of spatial dependency but with the same variance. For 
each of these 50 values of h we change the standard deviation of the error term in the model (sigma) 
from 0.1 to 4 in steps of 0.2. The optimal bandwidth and Moran’s I for each surface is then calculated 
and the results are averaged across 100 realizations for each combination of h and sigma, which are 
displayed in Figure 7. 
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Figure 7: Optimal bandwidths in terms of number of nearest neighbors obtained at different levels of measurement 
error (vertical) and local parameter spatial dependence (horizontal) averaged over 100 samples derived from different 
processes (a) GRF; (b) SAR; and (c) Fractal. 

 

The results indicate that when spatial dependence is held constant, bandwidth increases as the variance 
of the error term (i.e., noise) increases  and process strength decreases. Recall that the optimized 
bandwidth is a tradeoff between bias and variance (i.e., parameter estimate standard error), such that 
as the noise increases (greater randomness and weaker process strength), the optimal bandwidth 
increases to include more data in the local regression, reducing parameter estimate uncertainty. This 
effect is most clearly seen when spatial dependency is low and diminishes as spatial dependency in the 
parameter surface increases. Furthermore, when spatial dependency is very high, the optimized 
bandwidth is typically small because local regression with only a relatively small number of data points 
produces parameter estimates with both low bias and variance.   
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The results in Figure 7 also indicate that if the level of noise in the model is held constant, the 
optimized bandwidth decreases as spatial dependency increases. This relationship is most clear for 
higher levels of noise and lower levels of spatial dependence, causing the optimized bandwidth to 
become very large and approach that of a global model.  In contrast, when the noise in the model is 
consistently low, the optimized bandwidth will tend to become small because adding more data may 
increase bias without substantially reducing variance. This increase in bias becomes more substantial 
as spatial dependence increases. 

6. Sensitivity to the Distribution of Locations 

In order to check if the results described in this paper might be sensitive to the distribution of the 
locations at which data are recorded, we performed the following experiment. We selected one surface 
from Figure 7a where the optimal bandwidth is 50, I=0.98 and measurement error is 1.0. This surface 
is shown in Figure 8a. We then randomized the locations for which the data were recorded 100 times 
and for each randomized set of locations we recorded the optimal bandwidth.  The frequency 
distribution of these 100 values is shown in Figure 8b.   

 

 

Figure 8: (a) Surface from Figure 7(a) with optimal bandwidth = 50, I = 0.98 and measurement error 
= 1; (b) Frequency diagrams showing 100 optimal bandwidths from randomizing the locations used 
to derive the optimal bandwidth in Figure 8(a). 

The results from this single experiment demonstrate that the optimal bandwidths reported in the 
experiments described in section 5 would appear to be robust to variations in the distributions of the 
locations at which data are recorded. This gives us confidence that the results in the remainder of the 
paper are equally unaffected by the distribution of locations. 

 

7. Discussion and Conclusions  

This paper examines the nature of the bandwidth parameter in the Geographically Weighted 
Regression framework to clarify its interpretation as an indicator of the geographical scale over which 
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a process varies. In the GWR framework, the bandwidth can be measured as a physical distance, 
although it is more usually measured in terms of the number of nearest neighbours around a local 
regression point from which data are weighted and borrowed to enable the calibration of a model at 
each regression point. In MGWR, the number of nearest neighbors that data are borrowed from can 
vary across the covariates in the model, providing information on how each separate process 
(conditional relationship between y and a particular x) varies over space. Each covariate-specific 
bandwidth in MGWR is a trade-off between bias and variance in the local parameter estimates for that 
covariate (Yu et al. 2020b). The bandwidth is the nth nearest distance-weighted data point included in 
each local regression; data points beyond this threshold are weighted to zero. Beyond the bandwidth, 
the inclusion of further data points increases the bias in the local parameter estimates more than it 
reduces their uncertainty. Consequently, the bandwidth parameter is an important output in GWR 
and MGWR because it describes how local or global each process is being modeled. Small bandwidths 
indicate processes that vary rapidly over space; large bandwidths indicate processes that vary slowly 
over space. Both models have the global model as a special case when the bandwidth increases towards 
infinity. However, despite its importance as a potential indicator of process scale, very little is known 
about the determinants of the optimal bandwidth. Three factors related to process characteristics were 
theorized to potentially influence the optimized bandwidth parameter estimated from local models: (i) 
the degree to which processes vary over space, denoted by local parameter variance; (ii) the degree to 
which there is spatial dependency in processes, measured by a Moran’s I coefficient; and (iii) the strength of 
the process, measured by the error variance in the model and which is inversely related to process strength.  

The results from the experiments provide evidence that small bandwidths are indicative of processes 
that: (i) have a high degree of spatial variability; (ii) a high degree of spatial dependency; and (iii) are 
strong, in the sense that the covariate has a meaningful impact on the dependent variable. The 
dominant controlling factor on the bandwidth appears to be process variability but this is tempered 
by low process spatial dependence and low process strength (i.e., high noise). This means that a larger 
bandwidth could be reported, even though there is a moderate level of process variability if, for 
instance, there is weak process spatial dependence - indeed,  if processes varied randomly over space, 
then there would be little to be gained from borrowing data from only nearby locations. On the 
contrary, large bandwidths are indicative of processes that are a) relatively stationary over space; b) 
nonstationary but have very weak spatial dependence; c) have a relatively weak relationship with the 
dependent variable; or d) some combination of thereof. 

Although not reported in the main body of the paper, supplemental material below describes some 
preliminary research that suggests that the above results on the determinants of the bandwidth 
parameter within a GWR framework are also found within the Bayesian framework of a Spatial 
Gaussian Process model.  Our findings suggest that the meaning of the bandwidth parameter remains 
the same in both specifications: Spatial dependence in a SAR process is captured in the bandwidth in 
the same fashion as that in a Fractal or GRF process for both kinds of local models.  

In the main, this implies that differences in system articulation (Bivand 2017 citing Wilson 2000) — the 
step of analysis before model estimation where the analyst decides what effects to represent, how, and 
with what parameters—are not as critical for deciding between local model specifications. Even 
though they “use” bandwidth differently or may specify a different theoretical structure from the 
“true” data generating process, the meaning of their estimates is largely the same. This agreement will 
probably remain a feature of this literature. Instead, decisions should consider the practical differences 
between the two specifications.  
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Data and Code Availability Statement 

The data and code that support the findings of this study are openly available in figshare at 
https://www.doi.org/10.6084/m9.figshare.14340368. 
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Supplemental Material 1: Model Error behaves similarly between Spatial Gaussian Process 
and Multiple Bandwidth GWR Models.  

In a similar fashion to the results shown in Section 6 of the main paper, Figures S1 and S2 show the 
effect of model error (top row = 0.4; bottom row = 1.0) for all DGPs on the bandwidth estimate 
from SVCM and GWR, respectively, holding parameter variability constant at 1. Again, both sets of 
results are roughly the same: because process variation is very high (set at 1.0 in all experiments), 
bandwidths tend to be small and get smaller as process spatial dependency increases. However, this 
relationship becomes weaker as measurement error increases (proces strength weakens). Increasing 
model error increases the required strength of process spatial dependence to detect a “local” process. 
The upturn in values observed for the GWR bandwidths at extreme levels of process dependency is 
probably caused by the parameter surfaces at such extreme levels of dependency being essentially 
planes with constant gradient and the optimized bandwidths will be very sensitive to minor variations 
in the surface, somewhat akin to the effect of extreme collinearity on parameter estimates.    

 

 

Figure S1: Bandwidth estimates from a SVCM versus Moran’s I for three different data generating processes 
with parameter standard deviation = 1 and two different levels of measurement error (upper row = 0.4; lower row 
= 1.0). 
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Figure S2: Bandwidth estimates from GWR versus Moran’s I for three different data generating processes with 
parameter standard deviation = 1 and two different levels of measurement error (upper row = 0.4; lower row = 
1.0). 

 

Supplemental Material 2: Corroborating the results with a Spatial Gaussian Process model 

While the results presented above are reasonable for the MGWR framework, it is useful to compare 
the behavior of the indicators of scale obtained in an MGWR approach to other approaches. Thus, to 
corroborate the substantive interpretations we have obtained from MGWR, we estimate a Spatial 
Gaussian Process model, Gelfand (2003)’s Bayesian Spatially-Varying Coefficient model, in the same 
configurations as the MGWR models shown above. This is not to exhaustively compare sets of models 
that purport to provide the same output, but rather to demonstrate that the inferences about the 
behavior of bandwidth parameters that we make above are likely common to other modelling 
frameworks.  

Further, the calibration of Bayesian spatially-varying coefficient models is more complex than for the 
equivalent GWR or MGWR models. Though software exists for the calibration of SVC models, it is 
not as computationally scalable as that for MGWR (Li & Fotheringham, 2020). Consequently, the 
following results are an abbreviated version of those presented above for the GWR framework. In 
particular, it is not feasible to reproduce the two-dimensional ‘heat maps’ (Figures 3, 5 , 6, and 7) of 
optimal GWR bandwidths for the SVC model. Instead, one-dimensional subsets or “slices” of results 
akin to Figure 4 are produced to explore the sensitivity of the Bayesian bandwidth by plotting a single 
system characteristic while holding another constant.  



 

23 

For example, Figures S3 & S4 present the “slice” analogous to the above GWR results (Figures 3, 5 
and 6) with standard normal measurement error6 by plotting the Bayesian (Figs S3, S4) or MGWR (FS 
S4, S3) bandwidth estimates as a function of Moran’s I (i.e., spatial dependence) for each of the three 
DGPs described above for two levels of process variation (0.4 and 1.0). Both indicate that as process 
dependence  increases, the bandwidth estimate decreases, although this is only clearly seen in the SVC 
case when the process variability is relatively high (bottom row). When Moran’s I is low, the bandwidth 
estimate from the SVC model also tends to be relatively invariant to process spatial dependence: in 
these cases, the process is obscured by large noise or weak parameter variation. An identical 
presentation for model error is presented in Supplementary Material, and the similarity between the 
two models holds there as well. Altogether, the similarity across different dimensions of process and 
parameter variability corroborates our interpretation of the MGWR results presented earlier.  

Figure S3: Bandwidth estimates from a SVCM versus Moran’s I for three different data generating processes 
and two different parameter standard deviations (upper row = 0.4; lower row = 1.0) with a standard normal error.  

 
6 Estimates were made using the spBayes R package (Finley et al. 2015) with priors recommended therein. Overall, 2000 
iterations with no thinning were used in the simulations. Due to the generally well-conditioned nature of the study 
design, chains easily converged within the first 500 iterations, and random spot-inspections showed no issues with 
convergence in moderate or extreme simulations. The final 500 iterations were used for analysis. Despite the extreme 
computational improvements made by spBayes authors, simulations were still too time-consuming to generate equivalent 
results of 100 realizations for every combination of error variance and “scale” parameter for the three data generating 
processes.  
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Figure S4: Bandwidth estimates from GWR versus Moran’s I for three different data generating processes and 
two different parameter standard deviations (upper row = 0.4; lower row = 1.0) with a standard normal error. 

 

Supplemental Material 3: Estimated bandwidths with varying degrees of correlation. 

We designed an experiment with two covariates with varying degrees of correlation between them to 
demonstrate the bandwidth sensitivity in a multivariate case. We selected two GRF-based data generating 
processes, and the parameters of the designed processes and estimated bandwidths are shown in Table S1. We 
found that the bandwidths remain stable unless the correlation becomes extreme (e.g. R=0.9). 

Table S1. Estimated bandwidths with varying degrees of correlation. 

GRF 𝛽! 𝛽" 

Moran's I 0.3 0.7 
Parameter standard deviation 0.3 0.7 
  
Correlation coefficient between two 
covariates 

Average bandwidth across 100 
realizations 

0.0 330 31 
0.1 298 27 
0.2 290 35 
0.3 312 34 
0.4 253 34 
0.5 266 40 
0.6 289 27 
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0.7 301 46 
0.8 251 66 
0.9 210 161 

 


