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Abstract

1. Freshwater catchments can experience nutrient deficits that result in reduced

primary and secondary productivity. The most commonly limiting nutrients are

nitrogen and phosphorus, either separately or together. This review considers the

impact of increasing nutrient limitation in temperate basin stream and river

systems, focusing on upland areas that currently or previously supported wild

Atlantic salmon (Salmo salar) populations.

2. Anthropogenic changes to land use and increases in river barriers have altered

upland nutrient dynamics, with particular impacts on salmon and other migratory

fish species which may be net importers of nutrients to upland streams. Declining

salmon populations may further reduce nutrient sources, reducing ecosystem and

fisheries productivity below desired levels.

3. Experimental manipulations of nutrient levels have examined the impacts of this

cultural oligotrophication. There is evidence that growth and biomass of juvenile

salmon can be increased via appropriate additions of nutrients, offering potential

as a conservation tool. However, further research is required to understand the

long-term effects of these additions on salmon populations and stream

ecosystems, and to assess the vulnerability of downstream habitats to

eutrophication as a result.

4. Although purposeful nutrient addition with the aim of enhancing and conserving

salmonid populations may be justified in some cases, it should be undertaken in

an adaptive management framework. In addition, nutrient addition should be

linked to nutrient retention and processing, and integrated into large-scale habitat

restoration and recovery efforts.

5. Both the scientific and the management community should recognize that the

ecological costs and benefits associated with adding nutrients to salmon streams

may change in a non-stationary world.
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1 | INTRODUCTION

Life depends on adequate supplies of key elements, such as carbon,

nitrogen and phosphorus (Xia et al., 2018). These can shape the

productivity of entire ecosystems, and their relative supply is widely

recognized to have profound consequences at an ecosystem level.

Aquatic systems may be particularly vulnerable to variation in nutrient

supply, triggering a variety of ecological consequences with

implications for conservation. High nutrient levels, often as a result of

human influences, may result in eutrophication, which is characterized

by changes to community structure through excessive growth of

planktonic algae and periphyton (Page et al., 2012). Macrophyte

growth can also increase, leading to the competitive exclusion of less

nutrient-tolerant species in affected water bodies (Bergheim &

Hesthagen, 1990). Increased epiphytic algal growth on macrophytes

may lead to a reduction in light availability, exacerbating the change in

community composition from macrophyte dominated to algal

dominance (Hilton et al., 2006; O'Hare et al., 2018). Further impacts

of eutrophication include declines in dissolved oxygen, which can lead

to sudden fish mortality especially if coinciding with warmer

temperatures (Schinegger et al., 2016).

However, whereas eutrophication is more likely to be a feature of

lowland systems, upland streams may be more likely to experience

the other extreme of oligotrophication, where the biological demand

for nutrients outstrips supply (Hecky & Kilham, 1988; Elser

et al., 2007; Jarvie et al., 2018). As these upland streams can be

tributaries of lowland rivers, eutrophication and oligotrophication can

exist simultaneously at different locations within the same catchment

(Figure 1; Stockner, Rydin & Hyenstrand, 2000). Upland streams are

widely recognized as conduits that connect terrestrial and aquatic

systems and influence downstream waters (Alexander et al., 2007).

They are strongly influenced by runoff from surrounding hill slopes,

and so receive sediments, biological matter and nutrients (Gomi, Sidle

& Richardson, 2002). Despite these inputs, upland streams may

experience nutrient limitation; usually a single element is lacking

(typically P or more rarely N), or there can be co-limitation when both

P and N are scarce (Jarvie et al., 2018; Myrstener et al., 2018).

Nutrient limitation reduces primary production by taking the

availability of the key elements C, N and P away from the optimal

ratio of 106C:16N:1P, termed the Redfield ratio (Redfield, 1958), with

major impacts on the productivity and diversity of aquatic ecosystems

(Smith, Jarvie & Bowes, 2017). Naturally low nutrient concentrations

in upland streams can be reduced still further as a result of human

activity (e.g. through habitat and land-use change), a process called

cultural oligotrophication (Stockner, Rydin & Hyenstrand, 2000).

The oligotrophic nature of upland streams may be partially offset

by resource subsidies that cross ecosystem boundaries, often through

the process of animal migrations (Doughty et al., 2016). Perhaps the

most famous of these migrations acting as resource subsidies are the

spawning migrations of salmon, both Pacific (Oncorhynchus spp.) and

Atlantic (Salmo salar L). Salmon spawn in fresh water, mostly in fast-

flowing tributary streams (Jonsson & Jonsson, 2011; Quinn, 2018).

Juveniles (parr) spend a variable period of time (depending on the

species) growing in fresh water before transforming into the

seawater-tolerant smolt stage and migrating to sea (Mobley

et al., 2021). They gain weight rapidly at sea before returning to their

natal stream to spawn (Quinn, 2018; Mobley et al., 2021). Their

migrations from the oceans to the spawning grounds involve the

transfer of large quantities of nutrients in the form of eggs, excreta

and carcasses of spent adults, a process that is well documented in

species of Pacific salmon (Gende et al., 2002; Schindler et al., 2003).

Although the populations of spawning migrants (and hence the

nutrients transferred) tend nowadays to be on a larger scale in species

of Pacific compared with Atlantic salmon, there is evidence that

Atlantic salmon populations were once far larger, even before the

declines documented over the last century (Lenders et al., 2016) so

that their baseline ‘natural’ population size (and hence level of

nutrient transfer) is unclear. Nonetheless, even current populations of

Atlantic salmon are capable of delivering significant levels of marine-

derived nutrients to tributary streams, with positive impacts on algal

growth, invertebrate populations and juvenile fish growth (Nislow,

Armstrong & McKelvey, 2004; McLennan et al., 2019).

The documented decline in populations of Atlantic salmon over

recent decades (Figure 2) has occurred across much of their

natural range (Chaput, 2012). Pressures on salmon are various,

and operate in both the freshwater and marine environments

F IGURE 1 Levels of phosphorus and nitrogen
in headwater streams in Great Britain in relation
to elevation and alkalinity. Streams ‘exceeding P
threshold’ show phosphorus concentrations that
exceed 0.05 mg P L�1, and so are at risk of
eutrophication; ‘partially limited’ streams are
those in which P and N are moderately low, and
‘fully limited’ streams are those where P and N
are so low as to cause significant limitation of
primary productivity. A median elevation of 200 m
separates ‘lowland’ and ‘upland’, and the
boundary between ‘low’ and ‘high’ alkalinity is a
mean alkalinity of 50 mg CaCO3 L

�1. Adapted
from data in Jarvie et al. (2018)
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(Beaugrand & Reid, 2012; Todd et al., 2012; Forseth et al., 2017;

Olmos et al., 2020). These population declines are of serious concern,

given the economic, cultural and conservation value of Atlantic

salmon: in 2017, total expenditure from recreational angling alone

was estimated to be €300–500 million across the North Atlantic

(Myrvold et al., 2019). This has led to wide-ranging conservation

initiatives. For example, in the European Union, Atlantic salmon are

designated for protection in freshwater habitats under Annexes II and

V of the European Habitats Directive (Council of the European

Communities, 1992). Under Annex II, core areas of habitat are

required to be protected under the Natura 2000 Network, whereas

for Annex V, member states are obliged to ensure that any

exploitation in the wild is consistent with maintenance of a favourable

conservation status.

With the closure of many commercial fisheries and control of

recreational angling, conservation efforts have moved towards

improving juvenile salmon survival and growth (and hence the

production of smolts) through freshwater habitat restoration

(Thorstad et al., 2021). This includes consideration of the impact of

declines in resource subsidy in upland streams resulting from

decreased spawner abundance. Lower nutrient inputs from spawners

results in reduced growth rates of juvenile salmon (Auer et al., 2018;

McLennan et al., 2019), and potential alterations to marine survival

arising from changes in size attained by the time of smolt migration,

as this is correlated with return rates (Armstrong et al., 2018; Gregory,

Armstrong & Britton, 2018). This has led to the suggestion that

nutrient restoration in spawning streams that have experienced

cultural oligotrophication could be used as a conservation tool to

manage and enhance important fish populations. However, cultural

oligotrophication often escapes recognition in the literature as a key

stressor limiting effective restoration efforts (Lennox et al., 2021).

Such action could be part of a strategy to mitigate losses of salmon at

sea to counter current declines in Atlantic salmon. However, this

requires assessment of associated risks to receiving bodies of water

and the scale of potential benefits. This is therefore a complex and

potentially contentious issue that presents challenges for managers,

practitioners, regulators and policy makers.

This review describes the impact of nutrient limitation in upland

temperate streams (which are the typical spawning habitat of salmon)

– a topic that has received far less attention than the issue of

eutrophication further downstream. Evidence is presented that

experimental nutrient additions to upland streams can increase stream

invertebrate populations and the growth rates and biomass of the fish

that feed on them. Given this complexity, our objective is to

synthesise the state of science on nutrient limitation of aquatic

ecosystem production, from the perspective of management of

Atlantic salmon and the ecosystems within their current and historical

catchments, but within a wider context of other anadromous

freshwater fishes. The review is particularly oriented towards

Holarctic river basins where migratory fishes are an important

resource and play key roles in ecosystems. The aim is to inform

conservation and restoration practice by providing an integrated

perspective allowing policy makers and practitioners to identify

relevant principles and case studies, as well as signposting areas of

study warranting further attention.

2 | SOURCES OF NUTRIENTS IN
HEADWATER STREAMS

Nitrogen is supplied to headwaters mainly through atmospheric

distribution, often originating from agricultural use and the

combustion of fossil fuels, returning to land or water through wet and

dry deposition (Boyer et al., 2006). It is abundant in the atmosphere

but in an inert form (N2 gas), which must be transformed into reactive

nitrogen to be biologically available (Stein & Klotz, 2016). As a

consequence, in both Europe and North America a greater percentage

of the total continental N inputs are of human origin (61% and 59%,

respectively) than from natural sources such as nitrogen fixation

(Boyer et al., 2006). In aquatic systems, organic nitrogen is degraded

through ammonification producing ammonium and ammonia (NH4
+,

NH3) which then undergo nitrification leading to oxidation into nitrate

(NO3) (Xia et al., 2018).

Phosphorus may be present in several different forms within a

system. In natural waters it is usually present as inorganic phosphate

(PO4
3�), also known as orthophosphate, which may be present in

either dissolved or particulate form, with particulate forms making up

the majority of the P load (Spivakov, Maryutina & Muntau, 1999). As

there are multiple P species, P can be measured in a variety of ways,

usually involving the separation of particulate and dissolved P by

filtration, after which separate measurements are made of the

different fractions (Spivakov, Maryutina & Muntau, 1999). Soluble

reactive phosphorus (SRP) is a measure of the dissolved inorganic P,

usually orthophosphate, that is biologically available to plants and

F IGURE 2 Variation over years in estimated numbers of Atlantic
salmon returning to rivers within the North-East Atlantic Commission
(NEAC) (ICES Scientific Reports, 2021); 90% confidence bands shown
in grey
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algae within a sample. The combined amount of all forms of P in a

sample is defined as the total phosphorus (TP). Phosphorus may also

be present in an organic form (i.e. bound to plant or animal tissue).

Measurements of stream water P may not reflect the true amount of

P within a system because organic P can also be taken up and used by

algae (Whitton & Neal, 2011; Schoffelen et al., 2018). In addition, low

concentrations of P in stream water may not always indicate

limitation for primary production, as luxury uptake by algae during

periods of high P availability can allow growth during periods of P

scarcity, and thus may not appear in soluble P sampling (Jarvie

et al., 2013). The sources of P are more complex than those for N, and

so will be considered in more detail in the following sections.

2.1 | Geological and atmospheric sources of
phosphorus

Bedrock, soils and stream-bed sediments are primary sources of P in

upland streams (Bol et al., 2016), and parent lithology is a principal

determinant of overall stream structure and function. Porder &

Ramachandran (2013) showed that the concentration of P can vary

30-fold among rock types, with the highest P concentrations found

in iron-rich, silica-poor igneous rocks such as basalt. Sedimentary

rocks may also be rich in P, with the highest concentrations in

mudstone, claystone and siltstone, with P concentration reducing as

grain size increases. Metamorphic rocks show broadly similar

P concentrations to the rocks from which they are derived. Soil

P availability is positively correlated with the P concentration of the

underlying bedrock (Porder & Ramachandran, 2013), and this effect

of bedrock can translate into SRP levels in the streams that run

over them through the erosion of bankside soils and sediments (van

der Perk et al., 2006). The presence of alkaline elements in these

rocks increases P availability, so that more acidic streams are more

likely to be P limited than where the alkalinity is high (Jarvie

et al., 2018).

The P content of stream banks is determined in part by localized

land use, but also from the deposition of upstream sediments (Fox,

Purvis & Penn, 2016). Phosphorus, which has no gaseous phase, may

also be supplied to catchments by atmospheric deposition as dust

(Gibson, Wu & Pinkerton, 1995; Mladenov et al., 2012). Atmospheric

P can be supplied in sufficient amounts to cause ecological effects in

areas where the bedrock is nutrient-poor (Vicars, Sickman &

Ziemann, 2010). However, atmospheric deposition associated with

early industrialization in lowland and coastal urban centres tended to

acidify upland surface waters and reduce P availability, except in the

most remote regions (Jüttner et al., 2021).

2.2 | Biological sources of phosphorus

The input of material in the form of logs, sticks and leaves may exceed

1 kg m�2 year�1 in streams with heavily forested riparian zones;

leaves form the dominant nutrient input owing to their quantity and

rate of breakdown (Webster et al., 1999). A perhaps surprising P input

to streams comes from pollen, which is high in phosphorus (Lee,

Kenkel & Booth, 1996). Although the quantity of P supplied via pollen

may be low, deposition in summer when biological demand is high has

important implications for the overall P budget: indeed, in the

Precambrian Shield catchment, Ontario, Canada, pollen accounted for

up to 30% of TP deposition (Eimers, Hillis & Watmough, 2018). Most

of the North Atlantic basin was originally forested and these forests

have been subjected to major changes, including large-scale

deforestation. The replacement of native forests with plantation

monocultures (primarily conifers) that are intensively managed for

timber, alongside reductions in age-class and species diversity, has

probably resulted in reductions in the quantity of leaf and pollen

inputs of P.

The movement and migration of animals results in the transfer of

nutrients across ecosystem boundaries. As mentioned earlier, the

spawning migrations of salmon and other anadromous fish species

results in the release of gametes, excreta and (in some cases)

carcasses of spent adults on or close to the spawning grounds. This

often results in a net import of marine-derived nutrients to upland

systems (Gresh, Lichatowich & Schoonmaker, 2000; Gende

et al., 2002; Schindler et al., 2003). The examples that have received

the most attention to date are those associated with Pacific salmon.

These are large-scale migrations occurring across much of the Pacific

Northwest, with up to 280 million salmon from five species of the

genus Oncorhynchus migrating upstream every year, importing large

quantities of marine-derived nutrients such as C, N and P, but also

smaller quantities of essential micronutrients such as calcium,

iron, magnesium, sodium and cobalt (Gresh, Lichatowich &

Schoonmaker, 2000; Schindler et al., 2003; Currier et al., 2020). These

nutrient inputs support a wide variety of predators and scavengers,

including bears, wolves, eagles, corvids and many other large

vertebrates (Shardlow & Hyatt, 2013). However, the spawning

behaviour of Pacific salmon can also lead to the export of nutrients

from streams, often as a result of bioturbation from the excavation of

nests in the stream bed. Pacific salmon spawning behaviour has been

shown to shift ecosystems from primary production to heterotrophic

production, and also export large quantities of nutrients downstream

through increased transport of suspended sediment (Moore

et al., 2007; Holtgrieve & Schindler, 2011).

Nutrient deposition is not limited to semelparous Pacific

salmonids. The Atlantic salmon is an iteroparous species capable of

repeat spawning, but many individuals may still die on or adjacent

to the spawning grounds (Williams et al., 2010). The species was

estimated to import 1.7–5.3 t of P each year to the River Tweed

in northern England (Lyle & Elliott, 1998), and even in a short river

in south-west Norway the annual import from Atlantic salmon was

132 kg P (Jonsson, Jonsson & Hansen, 2003). The phenomenon

also occurs in other anadromous species of the North Atlantic

basin, such as the semelparous sea lamprey (Petromyzon marinus)

(Nislow & Kynard, 2009; Weaver et al., 2015), the European river

lamprey (Lampetra fluviatilis) (Masters et al., 2006) and

several species of river herring (alosids) such as the alewife
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(Alosa pseudoharengus) (Barber et al., 2018). Although many adults

of iteroparous species such as alewives and Atlantic salmon will

return to the ocean after spawning, they nonetheless still excrete

waste products (including P) while in fresh water. Moreover, P can

be deposited in reproductive material, such as gametes or the

mortality of embryos and fry. For instance, although alewives

spawn in lakes, the streams through which they migrate are the

recipients of their waste products, estimated to be 2.17 μg P per g

of wet fish mass per hour (Post & Walters, 2009; West

et al., 2010).

Fish spending the entirety of their lives in fresh water are also

capable of playing a role in the transport of P. In North America,

longnose suckers (Catostomus catostomus) migrate from the

Great Lakes into tributary streams, with spawning populations

reaching 102–104 individuals in small streams (Klingler, Adams &

Heinrich, 2003). The proportion of suckers that die in the spawning

streams is low, but the contribution from excretory products and

eggs can be significant (Childress & Mcintyre, 2015). One difference

between these nutrient sources is their availability: P in excretory

products is more immediately available to primary producers than P

contained in eggs, which requires mineralization in order to be

taken up (Childress & Mcintyre, 2015; Childress & McIntyre, 2016).

However, eggs are immediately available for consumption by

stream-resident fish (Childress & McIntyre, 2016). Other species of

fish such as European and American eels (Anguilla anguilla and

Anguilla rostrata, respectively) may export nutrients from freshwater

to marine systems, although this nutrient export has not been

quantified.

2.3 | Anthropogenic sources of nutrients

Anthropogenic inputs are increasingly important sources of nutrients

in freshwater ecosystems but tend to be less significant in

headwater streams than further downstream. In upland catchments,

these may be grouped into atmospheric sources, point sources

(e.g. wastewater discharge, such as from sewage treatment plants or

sewer outflows), which tend to have a continuous flow, or diffuse

sources (such as agricultural and urban runoff, septic tank leakage,

logging, and construction) which are often interrupted and irregular

(Carpenter et al., 1998). These sources of nutrients can be sufficient

to cause changes to community structure. For example, P-rich

discharge from a wastewater treatment plant into an Austrian

stream was shown to result in an 80% increase in mean daily

macroinvertebrate secondary production further downstream, owing

to an increase in the proportion of gatherers and grazer/gatherers

(Singer & Battin, 2007). Withers et al. (2009) concluded that a large

proportion of the anthropogenic inputs of nutrients into fresh

waters may not be from agricultural fertilizers (as is commonly

assumed), but from multiple diffuse sources in rural areas (see

Withers & Jarvie, 2008 for review). For example, up to 25% of P in

waste water originates from household detergents (Richards

et al., 2015).

3 | FACTORS CAUSING NUTRIENT
LIMITATION

Although the streams in which salmon spawn receive nutrient inputs

from multiple sources, these may be insufficient to prevent the

habitats being oligotrophic. Before human influence, this limitation

was primarily restricted to acidic catchments with naturally low

nutrient levels; this form of oligotrophication does not require any

remediation. Over more recent times, however, anthropogenic causes

have become of overriding importance in some systems, leading to

the phenomenon of cultural oligotrophication (Stockner, Rydin &

Hyenstrand, 2000). The concept of nutrient limitation originates from

Liebig's ‘Law of the Minimum’, with the ‘minimum’ being the nutrient

present in the smallest proportion relative to the growth demands of

an organism (Liebig, 1842; Harpole et al., 2011). Nutrient limitation is

complex, with systems able to experience limitation by a primary

nutrient, secondary limitation from another nutrient, or co-limitation

from two or more nutrients (Tank & Dodds, 2003). In aquatic systems,

phosphorus and nitrogen are usually assumed to be the major limiting

nutrients (Dodds & Welch, 2000). Phosphorus can become limiting

when the N:P ratio exceeds 16:1, whereas N becomes the main

limiting nutrient at lower N:P ratios (Redfield, 1958; Allan &

Castillo, 2007).

The most extensive limitation in catchment streams is often

found for P in upland low-alkalinity areas, with more than 60% of

such streams in Great Britain being partially limited for P and 40%

fully limited; co-limitation of P and N is also extensive (Jarvie

et al. (2018); Figure 1). However, nitrogen is increasingly being

recognized as a limiting nutrient in its own right (Jarvie et al., 2018).

There is particular evidence for N limitation across boreal

Fennoscandia, resulting in constraints on biofilm primary production;

activities such as clear-cutting result in the export of N downstream,

contributing to further N losses (Burrows et al., 2015; Schelker

et al., 2016). Another contributor to nitrogen limitation in upland

streams is denitrification. During this process denitrifying microbes

produce N2 gas from nitrates, which is lost to the atmosphere through

the anaerobic respiration of nitrite (NO2
�), nitric oxide (NO) and N2O,

ultimately reducing the instream availability of nitrogen (Stein &

Klotz, 2016). The percentage of nitrogen entering streams and rivers

that is removed through this process varies among catchments, but

has been estimated to be between 5% and 50% (Holmes et al., 1996;

Galloway et al., 2004; Alexander et al., 2007).

3.1 | Nutrient storage, retention and fate

Phosphorus and nitrogen may be stored in a variety of ways in upland

catchments. On a small scale, microbes, algae, diatoms and

cyanobacteria make up periphyton, forming biofilms on the substrate

or on larger macrophytes. Periphyton can store significant

concentrations of nutrients structurally within the polysaccharide

matrix, and can also retain suspended particles (Battin et al., 2003;

Godwin, Arthur & Carrick, 2009). Macrophytes, although less
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dominant than periphyton in upland streams, still play a role in storing

P and N by buffering the water current and catching suspended

material, varying seasonally with macrophyte growth (Riis

et al., 2019). These processes may be further enhanced by epiphytic

algae on the leaves of macrophytes, which take up P and N from the

water column and may act to reduce water velocity, allowing further

nutrient storage (O'Hare et al., 2018).

Downstream transport of P and N is closely linked to nutrient

cycling. As nutrients are moved downstream, they may be cycled

through different forms in a process known as ‘spiralling’ (Webster &

Patten, 1979). During a single cycle of a spiral, a nutrient atom would

pass through three compartments whilst being transported

downstream: water, particulates and consumer phases, and the

average distance over which this cycle is completed forms the

‘nutrient spiral length’ (Newbold et al., 1981). A short spiral or uptake

length indicates a high biological demand, so in nutrient-limited

waters the uptake length would be expected to be low (Schade

et al., 2011). Headwater streams are characterized by a low water

volume to benthic area ratio, providing a greater capacity for

exchange of P and N between inorganic and organic materials

(Withers & Jarvie, 2008).

Land use changes can result in a reduced capacity for systems to

both store and retain limiting nutrients. Over the past 150 years, the

spread of low-intensity agriculture in the North Atlantic basin (usually

in the form of rough grazing) has led to some temperate upland

stream catchments becoming P- and N-export systems (Stockner,

Rydin & Hyenstrand, 2000). Channelization (the widening, deepening

and straightening of streams) is carried out as a means to improve

land drainage and is widespread: in north-west Europe, over one third

of land is now drained for agriculture (Abbot & Leeds-Harrison, 1998).

This stream channel simplification leads to increases in water velocity,

therefore reducing the potential for nutrient uptake (and incidentally

increasing the risk of eutrophication further downstream as nutrients

are less likely to be retained in the tributaries). Evidence for reduced

nutrient retention in simplified channels comes from Austrian

agricultural headwater streams, where average SRP uptake length was

shortest in open meanders (0.5 km), followed by forested streams

(1.9 km) and longer still in channelized reaches (3.8 km)

(Weigelhofer, 2017).

Streams are hydrologically linked to wetlands and floodplains,

which also provide nutrient storage and retention capacity. Wetlands

are particularly effective at retaining N, being approximately twice as

effective as lakes (Saunders & Kalff, 2001). Indeed, construction of

artificial wetlands is used in the removal of nutrients from wastewater

treatment plants, with uptake from plants playing a major role in N

removal (Vymazal, 2007). In wetlands, nutrient storage by emergent

macrophytes is particularly important since complex below-ground

structures assist in P and N storage and in trapping sediments.

However, in the North Atlantic basin, these wetlands are under threat

of being transformed to agricultural land or land for housing (Čížková

et al., 2013).

The recent reintroductions of the North American and Eurasian

beavers (Castor canadensis, Castor fiber, respectively) in areas where

these species have been extirpated may help to increase nutrient

storage by altering hydrological regimes through dam construction, so

creating ponds and wetlands. For example, Eurasian beavers

reintroduced to headwater streams in eastern Scotland have been

shown to reduce P and N concentrations by 46% and 43%,

respectively, in water directly downstream of their dams compared

with unmodified sites (Law, Mclean & Willby, 2016). However, the

dams may prevent or impede fish migration, particularly under low-

flow conditions, while also increasing siltation, thereby reducing the

availability of fish spawning habitat (Kemp et al., 2012).

The majority of nutrient transport (especially that of particulates)

occurs during periods of peak flow (Martin & Harrison, 2011). Meyer &

Likens (1979) demonstrated that within a stream in New Hampshire,

USA, 46% of the annual P transport occurred in the short periods of

time (less than 10%) when discharges were highest, although the

concentration of dissolved P did not change with stream discharge.

Sediment particle size also plays a role in nutrient cycling in upland

streams (Gottselig et al., 2017). Phosphorus is transported 2–5 times

further in particulate form than in the dissolved form, and fine

particulates are readily colonized by bacteria (Froelich, 1988; Walters

et al., 2014). Reductions in tree cover may increase soil erosion and

sediment mobility, which, when combined with increased overland flow

during rain events, may temporarily increase nutrient supply to streams,

with deforested areas receiving greater pulses of particulates (Prairie &

Kalff, 1988, but see Sweeney et al., 2004). Riparian buffer zones have

previously been shown to reduce TP and N concentrations in streams,

with wider buffers being more effective (Mayer et al., 2007).

Sediment and biological material transported during periods of

high flows can enter lakes and reservoirs, and may accumulate in bed

sediment, storing nutrients over long periods (Busteed et al., 2009).

Human population growth, especially in the North Atlantic basin, has

led to the construction of reservoirs and impoundments, which may

lead to increased numbers of nutrient sinks in uplands. These may

increase as hydropower gains in importance with the transition away

from fossil fuels (Zarfl et al., 2015).

3.2 | Reductions in nutrient inputs

Inputs of nutrients to upland streams can also be affected by human

interventions, for instance through changes to forest composition or

management. The removal of riparian vegetation, by reducing leaf

litter inputs, may reduce a key source of nutrients (Webster

et al., 1990). In general, rural uplands have steadily become

depopulated as settlement, industry and agriculture have moved to

the lowlands and coasts. Improvements in the efficacy of P removal

from wastewater over time is also likely to have resulted in reduced P

inputs. These reductions in anthropogenic sources of nutrients in

upland streams may have contributed to P and N (co-) limitation – a

process that might continue even in the face of increasing global

human populations.

The capacity for migratory fish to deliver P and N to upland

streams is affected by the erection of impassable instream barriers – a
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process that in Europe has occurred over many centuries (Lenders

et al., 2016). There are currently at least 1.2 million instream barriers

on European rivers, with a mean density of one every 0.7 km (Belletti

et al., 2020). Indeed, Duarte et al. (2021) showed that over half of

European river networks have impaired connectivity for diadromous

fish. In the USA, there are more than 80,000 dams and barriers

reducing upstream connectivity, and this number does not include

smaller, historical barriers (Magilligan et al., 2016). Although many

weirs and dams now have incorporated structures that purportedly

allow the passage of fish, some have limited effectiveness, letting

through less than half the migratory fish biomass when compared

with free-flowing rivers (Noonan, Grant & Jackson, 2012). In recent

years, however, conservation initiatives across Europe and the USA

have led to the removal of river barriers, increasing upstream

connectivity for migratory species including Atlantic salmon (Bellmore

et al., 2019; Birnie-Gauvin et al., 2020), and hence the potential for

increased upstream nutrient transport.

The widespread decline in migratory fish populations (van

Puijenbroek et al., 2019) has led to a reduction in P inputs to the

headwaters. Gresh, Lichatowich & Schoonmaker (2000) report that in

the Pacific Northwest USA, large declines in Pacific salmon

populations mean that only 6–7% of marine-derived P and N now

reach inland waters compared with historical levels. Indeed, Moore

et al. (2011) demonstrated that a shift from P import to P export

occurred when spawning populations in Californian coastal streams

decreased in size. Hence, recommendations have been made to set

escapement targets for Pacific salmon at levels sufficient not just for

egg deposition, but also to account for the return of adequate

amounts of marine-derived nutrients (Bilby et al., 2001), although it is

unclear whether these recommendations have had any effect. The

pattern of nutrient export is not limited to Pacific salmonids, as a net

export of P was also demonstrated for Atlantic salmon when

spawning populations declined (Nislow, Armstrong &

McKelvey, 2004). Moreover, salmon stocked into upland streams as

part of a mitigation response can cause sustained nutrient export

contrary to the net nutrient importation by wild salmon when a

system is unimpeded (Nislow, Armstrong & McKelvey, 2004).

4 | CONSEQUENCES OF NUTRIENT
LIMITATION FOR UPLAND RIVER SYSTEMS

Upland catchments are often remote, with little agricultural or urban

nutrient inputs. Evidence that nutrients are often limiting in upland

tributary streams comes from nutrient supplementation experiments

that typically result in enhanced primary and/or secondary biomass

(Peckarsky et al., 2013; Samways et al., 2015). Increases in the

productivity of food webs can arise through alteration of

biogeochemical cycling once systems are released from P and N

limitation (Brailsford et al., 2019). There may also be changes to

community composition through alterations in the proportion of

different functional feeding guilds. For example, Demi et al. (2020)

demonstrated a 52% increase in total organic-matter flows to

primary consumers in streams treated with aqueous P and

N. Macroinvertebrates in this detritus-based system were observed to

reduce consumption of animal prey, but this was counteracted by an

increase in the biomass of larger shredders. This system was also

shown to be highly limited in P, with an increase of just 7 μg L�1 SRP

being sufficient to significantly alter resource nutrient content (Demi

et al., 2020).

Although an increase in nutrient availability is often shown to

have the greatest impact at the base of food webs, the stimulation to

autotrophic production can have cascading effects to the highest

trophic levels (Bumpers et al., 2017), making it relevant in the context

of fisheries management. These effects can arise through natural

causes, as when the P inputs arising from alpine woodland wildfires

led to increased algal and macroinvertebrate biomass, resulting in an

increase in the size and weight of cutthroat trout (Onchorhynchus

clarki) (Silins et al., 2014); however, of greater current interest is the

concept of deliberate manipulation of nutrient levels.

5 | NUTRIENT ADDITION AS
REMEDIATION FOR CULTURAL
OLIGOTROPHICATION

Adding nutrients to oligotrophic streams has been shown to have

effects that propagate through the food web to higher trophic levels;

for example, increasing the mean weight of under-yearling salmonids

of a range of species (Johnston et al., 1990; Slavik et al., 2004). Such

observations have led to the concept of adding salmonid carcasses as

a method of nutrient remediation for streams experiencing declining

fish populations. These carcasses increase the immediate supply of

nutrients such as SRP, often with a short-term spike peaking after

2 weeks and then declining (Wipfli et al., 2010). The effect can be

seen through invertebrate consumption of enriched biofilm, which is

in turn taken up by fish. Another pathway is through direct

consumption of carcass material by invertebrates and fish, as shown

by Bilby, Fransen & Bisson (1996). Carcasses may also lead to

increases in fish density (Bilby et al., 1998). Although experiments on

carcass addition were initially focused on Pacific salmon, a growing

body of literature has investigated the impacts that nutrient additions

may have on juvenile Atlantic salmon (Table 1). It is clear that the

addition of salmon carcasses or alternative nutrient sources has

demonstrable effects at multiple levels within a food web, ultimately

appearing to stimulate growth and biomass of juvenile Atlantic

salmon, suggesting that increasing nutrient availability can have

beneficial impacts on salmonid populations (Williams et al., 2009;

Guyette et al., 2014; Auer et al., 2018; McLennan et al., 2019).

The impact of nutrient additions is not limited to Atlantic salmon,

having been demonstrated across a range of systems and taxa

(Table 2). Periphyton and fish assemblages have been noted to change

in response to slight increases in nutrients (Taylor et al., 2014). For

example, P levels in upland streams have been linked to increased fish

diversity: Gavioli et al. (2019) observed that higher P levels in Italian

mountain streams were associated with an increased local

BERNTHAL ET AL. 1079



T
A
B
L
E
1

Su
m
m
ar
y
o
f
im

pa
ct
s
re
su
lt
in
g
fr
o
m

re
st
o
ra
ti
o
n
o
f
nu

tr
ie
nt
s
(in

th
e
fo
rm

o
f
ad

ul
t
sa
lm

o
n
ca
rc
as
se
s,
ca
rc
as
s
an

al
o
gu

es
o
r
o
th
er

m
ar
in
e-
d
er
iv
ed

n
u
tr
ie
n
ts

(M
D
N
))
to

A
tl
an

ti
c
sa
lm

o
n

sp
aw

ni
ng

ar
ea

s
in

up
la
nd

st
re
am

s

N
ut
ri
en

t
ad

di
ti
o
n

Lo
ca
ti
o
n

St
ud

y
du

ra
ti
o
n

R
es
po

ns
e
va

ri
ab

le
s

R
es
ul
t

C
it
at
io
n

Sa
lm

o
n
ca
rc
as
se
s

Sc
o
tl
an

d
4
m
o
nt
hs

Ju
ve

ni
le

sa
lm

o
n
bi
o
m
as
s

In
cr
ea

se
in

ju
ve

ni
le

sa
lm

o
n
d
en

si
ty
,s
iz
e

an
d
bi
o
m
as
s

W
ill
ia
m
s
et

al
.,
2
0
0
9

Sa
lm

o
n
ca
rc
as
se
s

Sc
o
tl
an

d
7
m
o
nt
hs

C
ar
ca
ss

de
co

m
po

si
ti
o
n
an

d

in
ve

rt
eb

ra
te

co
lo
ni
za
ti
o
n

N
o
de

te
ct
ab

le
in
cr
ea

se
in

st
re
am

w
at
er

to
ta
lP

an
d
N
,r
ap

id
co

lo
n
iz
at
io
n
b
y

ra
ng

e
o
f
in
ve

rt
eb

ra
te

ta
xa

N
is
lo
w

et
al
.,
2
0
1
0

Is
o
to
pi
c
en

ri
ch

m
en

t
δ1

5
N

en
ri
ch

ed
in

pe
ri
ph

yt
o
n
,

m
ac
ro
in
ve

rt
eb

ra
te

an
d
ju
ve

n
ile

sa
lm

o
n
af
te
r
ca
rc
as
s
ad

d
it
io
n

In
ve

rt
eb

ra
te

ab
un

da
nc

e
In
cr
ea

se
d
do

w
ns
tr
ea

m
o
f
ca
rc
as
s
si
te
s

C
ar
ca
ss

an
al
o
gu

e
pe

lle
ts

m
im

ic
ki
ng

Ju
ne

la
m
pr
ey

sp
aw

ni
ng

an
d

O
ct
o
be

r
sa
lm

o
n
sp
aw

ni
ng

M
ai
ne

,U
SA

2
ye

ar
s

W
at
er

ch
em

is
tr
y

In
cr
ea

se
s
in

to
ta
ld

is
so
lv
ed

P
fo
r

1
m
o
nt
h

G
u
ye

tt
e,

Lo
ft
in

&
Z
yd

le
w
sk
i,
2
0
1
3
;

G
u
ye

tt
e
et

al
.,
2
0
1
4

Ju
ve

ni
le

A
tl
an

ti
c
sa
lm

o
n

In
cr
ea

se
s
in

m
as
s
an

d
le
n
gt
h
in

ju
ve

n
ile

sa
lm

o
n

A
tl
an

ti
c
sa
lm

o
n
lip

id
s

T
re
at
m
en

t
an

d
te
m
po

ra
le

ff
ec
ts

o
n

to
ta
ll
ip
id

Is
o
to
pi
c
en

ri
ch

m
en

t
H
ig
he

r
in

m
ac
ro
in
ve

rt
eb

ra
te
s
an

d

ju
ve

ni
le

A
tl
an

ti
c
sa
lm

o
n

M
D
N
s
fr
o
m

ra
ng

e
o
f
an

ad
ro
m
o
us

sp
aw

ni
ng

fi
sh

N
ew

B
ru
ns
w
ic
k
an

d
N
o
va

Sc
o
ti
a,
C
an

ad
a

1
0
m
o
nt
hs

B
io
fi
lm

co
m
m
un

it
ie
s

A
lg
al
,f
un

ga
la
nd

ba
ct
er
ia
la
b
u
n
d
an

ce

in
cr
ea

se
d
po

st
-M

D
N

en
ri
ch

m
en

t,

po
si
ti
ve

ef
fe
ct

o
n
co

m
m
u
n
it
y

st
an

di
ng

st
o
ck
,g
re
at
es
t
in

b
ac
te
ri
a

Sa
m
w
ay
s
et

al
.,
2
0
1
5

B
io
fi
lm

δ1
5
N

en
ri
ch

m
en

t
Si
gn

if
ic
an

t
du

ri
ng

sp
aw

n
in
g,
la
te
r

re
tu
rn
in
g
to

ba
se
lin

e
le
ve

ls

M
D
N
s
fr
o
m

ra
ng

e
o
f
sp
aw

ni
ng

an
ad

ro
m
o
us

fi
sh

N
ew

B
ru
ns
w
ic
k
an

d
N
o
va

Sc
o
ti
a

7
m
o
nt
hs

Is
o
to
pi
c
en

ri
ch

m
en

t
δ1

5
N

an
d
δ
C
en

ri
ch

m
en

t
in

b
io
fi
lm

,

m
ac
ro
in
ve

rt
eb

ra
te
s
an

d
re
si
d
en

t

sa
lm

o
ni
ds

Sa
m
w
ay
s,
So

to
&
C
u
n
ja
k,
2
0
1
8

R
el
ia
nc

e
o
n
M
D
N
s

P
ar
r
de

ri
ve

d
2
3
%

o
f
nu

tr
ie
n
ts

fr
o
m

M
D
N

sp
aw

ni
ng

su
bs
id
ie
s

1080 BERNTHAL ET AL.



contribution to overall diversity from native fish. In a Spanish

headwater stream, N and P enrichment over 1 year resulted in

changes to diatom community composition, with some species

declining in abundance while others became more abundant, and

some species were unaffected (Veraart et al., 2008). Changes in the

trophic state of a water body, from oligotrophic to mesotrophic, may

result in changes to invertebrate functional groups, which may have

implications for larger ecosystem processes. For example, the biomass

of shredders in stream leaf litter declined as the trophic level of

streams increased from oligotrophic to hypertrophic in a French

stream system (Baldy et al., 2007). Whereas studies have shown

increases in macroinvertebrate abundance and biomass as a result of

nutrient additions in the context of a conservation tool for Atlantic

salmon (McLennan et al., 2019), the effect on macroinvertebrate

diversity and functional groups is not yet known, and there are

potential changes in ecosystem functioning that may only emerge

after prolonged nutrient addition.

The use of carcasses may often not be practicable, which has led

to the development of salmon carcass analogues, usually derived from

salmon carcasses or other fishmeal and produced as dry pellets, with

an N:P ratio of 6:1 (Pearsons, Roley & Johnson, 2007). These

analogues contain a similar mixture of elements as carcasses,

including P, N and C, although the rate of release is likely to differ due

to their homogeneous composition. An alternative is to use bags of

feed pellets produced by the aquaculture industry, which have

traditionally been based on marine fishmeal. These analogues are

widely viewed as having almost the same nutritional value as salmon

carcasses themselves, and have been found to have broadly similar

effects within streams, but limited removal to the riparian zone, in

contrast to the transport of real carcasses by scavengers (Collins

et al., 2015). Ease of storage and application has led to such carcass

analogues becoming a common form of nutrient supplementation.

Like real carcasses, they produce large increases in nutrient

concentrations soon after being applied to a stream. Guyette et al.,

(2014) demonstrated a 4-fold increase in P concentrations in treated

versus untreated streams, with dissolved P levels elevated for up to

5 weeks. This elevation tends to lead to an increased abundance of

benthic macroinvertebrates that form the majority of the diet of

juvenile stream-living fish. McLennan et al. (2019) demonstrated in

Scottish streams that carcass analogues enhanced the growth of

juvenile Atlantic salmon, concurrent with an increased abundance of

macroinvertebrates. Similar results were obtained by Guyette, Loftin

& Zydlewski (2013) in streams in Maine, USA. Increases in fish

biomass in response to the addition of nutrient subsidies may thus be

caused by faster growth rates of individual fish rather than changes in

fish density (Collins et al., 2016; Auer et al., 2018; McLennan

et al., 2019). Interestingly, Auer et al. (2018) showed higher Atlantic

salmon genetic diversity in streams treated with carcass analogues, as

a result of more salmon families having surviving representatives. The

effects of nutrient additions are not always clear, however. Some

studies have shown only limited effects of carcass analogues on

stream communities, although they did increase SRP concentrations

(Wipfli et al., 2010). In addition, the provision of carcasses and carcassT
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analogues cannot fully replicate the effect of salmon spawning, as it

omits the excretion of waste products and deposition of gametes as

well as the bioturbation occurring during nest construction, so that

the input and transport of nutrients is reduced.

6 | APPLYING SCIENCE TO
CONSERVATION AND MANAGEMENT

Management and conservation strategies for declining populations of

Atlantic salmon often focus on the freshwater phase of the life cycle,

where interventions are more easily facilitated than during the

marine phase, and where the species is subject to domestic legal

protection. Increasing both the number and quality of migrating

smolts is recognized as a priority conservation strategy for the fish,

both to combat low levels of marine survival but also to mitigate the

impacts of environmental change (Thorstad et al., 2021). One way in

which this might prove possible is to restore nutrient levels in

culturally oligotrophic tributary streams in which they spend the first

year or more of life, as the evidence presented above shows that

nutrient limitation may be widespread in these streams and that

nutrient restoration may result in faster growth of the fish and larger

size-at-age (Guyette, Loftin & Zydlewski, 2013; Auer et al., 2018;

McLennan et al., 2019). Size and condition (weight per unit length)

of salmon smolts is directly correlated with subsequent marine

survival (Armstrong et al., 2018; Gregory, Armstrong &

Britton, 2018). Therefore, if the increased size of salmon parr that

has been observed after nutrient additions results in larger smolts,

TABLE 3 Suggestions for future research regarding the potential use of nutrient restoration to support migratory fish populations (in
particular, Atlantic salmon)

Knowledge gap Issue Relevant studies

Geographical range Literature currently biased towards North

America; no studies relevant to migratory

salmonids at the southern edge of

European range, where populations are

most fragile

Almod�ovar et al., 2019

Taxonomic skew Existing literature too focused on

Oncorhynchus salmon, which tend to

transport nutrients on a scale very

atypical for migratory fish. Information

needed on iteroparous species and those

spawning at lower densities

Guyette, Loftin & Zydlewski, 2013; Auer

et al., 2018

Method of adding nutrients More information is needed on how the

method, dose and frequency of

application of nutrients can be made

most cost-effective and environmentally

sustainable

Pearsons, Roley & Johnson, 2007; Wipfli

et al., 2010

Lack of long-term studies There is a need for multi-year dosing

experiments in order to understand long-

term effects on target species

Slavik et al., 2004

Impact on rest of the catchment Little is known of the ‘safe’ level of
nutrients that can be added to upland

streams without causing eutrophication

further downstream

Co-limiting factors P is commonly viewed as the main limiting

nutrient, but N and P may often be co-

limiting, other factors such as light levels

may also constrain primary production

Jarvie et al., 2018

Life-history considerations Complex interactions among the growth

rates, migration and mortality of fish

influence both the direction and strength

of nutrient transport, with potential

feedbacks to fish vital rates and

population sizes

McLennan et al., 2019

Environmental change Expected increases in the frequency and

magnitude of extreme flows will affect

nutrient retention in streams, while

increased temperatures will affect

ectotherm energy budgets and nutritional

requirements

Jonsson & Jonsson, 2009; Kovach

et al., 2016
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there would be clear expected benefits in terms of numbers of

returning adult salmon. Modelling by Benjamin et al. (2020) has

demonstrated the potential for this method with chinook salmon

(Oncorhynchus tshawytscha), with increases in potential smolt output

and size. However, in some cases faster growth may result in salmon

reaching the size that triggers smolting a year earlier, at a smaller

smolt size (McLennan et al., 2019). In such cases, nutrient additions

may result in lower per capita chances of survival at sea, but

increased numbers within a cohort surviving to become smolts,

because of less time in the river and reduced inter-cohort

competition. An additional factor is that faster growth may result in

a greater proportion of male salmon maturing precociously as parr

(Aubin-Horth et al., 2006), which may have an effect on their

chances of surviving to become smolts. Therefore, an increase in the

size-at-age of juvenile Atlantic salmon will not necessarily translate

into more or larger adult fish; the overall effect of nutrient

restoration on numbers and sizes of anadromous salmon thus

depends on how these demographic factors balance out, and so

warrants future investigation (Table 3).

The majority of experimental studies of nutrient addition for

Atlantic salmon have been of short-term duration (usually lasting a

year at most), hence the impact on salmon smolt and returning adult

size and survival has not been assessed (Table 1). No study, including

in other salmonids, has yet attempted repeated annual nutrient

additions following a cohort of fish from hatching to returning

spawners (Table 2). Clearly there is a need for longer-term repeated

dose experiments, especially since both empirical and modelling

studies provide evidence that effects of nutrient addition tend to fade

quickly once additions cease (Ericksen et al., 2009; Benjamin

et al., 2020). However, these experiments are extremely challenging

to design and undertake at an appropriate scale and level of

replication (Table 4). Therefore, predictive modelling using the best

available information on salmon demographics in response to growth

variation based on short-term experiments (Auer et al., 2018) is also

recommended. Short-term experiments also, by definition, are not

examining streams in the state that may develop after years of

nutrient supplementation, which is likely to be most relevant to

applied management scenarios. For example, it may take some years

for invertebrate communities to stabilize when nutrient levels are

increased. Furthermore, the nutrient intervention may change the

shape of the consumer pyramid (Leroux & Loreau, 2015) such that a

greater biomass of salmon parr may ultimately support a larger

predator population rather than increase the output of smolts. To

overcome these problems, it may be possible to use extensive

monitoring of invertebrate and juvenile salmon population responses

to nutrients, coupled with water chemistry information, to build

predictive models of the changes in production that could be

achieved through nutrient restoration. Advantages and limitations of

these experimental and observational approaches are summarized in

Table 4.

It is important to recognize that Atlantic salmon are also

vulnerable to environmental changes as a result of a changing climate

(Thorstad et al., 2021). This intersects with nutrient dynamics along

several dimensions. Warmer and wetter conditions are predicted as a

result of climate change, with increased heavy rainfall (Alexander

et al., 2006). The predicted greater frequency and intensity of

extreme precipitation and associated flood flows has important

implications both for upland rivers and lowland receiving waters.

Phosphorus and nitrogen inputs to streams and rivers may therefore

increase over the short term because of an increased frequency and

TABLE 4 Comparison of advantages and limitations of observational, small-scale experimental and large-scale adaptive management
approaches to assessing effects of nutrient status on salmon populations

Approach Advantages Limitations

Observational Large quantities of empirical data can be

collected using natural variations across

landscapes in real-world situations and

interrogated with multivariate modelling.

The scenario may be immediately highly

relevant to potential outcomes of

changing nutrient state under prevailing

environmental conditions.

Power to detect effects of any one variable

likely to be limited especially (i) at

extremes of variable distributions, which

is often the case for low nutrients, and (ii)

where there are interactions among

habitat variables. The distributions of

variable distributions are not controlled

and therefore are likely to be unbalanced.

Small-scale experimental Tight control enables high power to detect

effects of small changes in nutrient levels

on a number of response variables (e.g.

salmon number, size, condition,

probability of early smolting or maturity).

Challenging logistics, usually relatively

short-term and limited to a specific set of

general habitat conditions. Consequently,

results may not be generalizable to

multiple real-world situations.

Adaptive management and monitoring Facilitates rapid application of nutrient

additions in real-world management

scenarios based on best available

information, while checking for potential

damage and assessing potential benefits.

The approach potentially provides large

temporal and spatial scale and possibility

of monitoring at various life stages.

Challenging to organize replication needed

to provide power to detect effects of

nutrient interventions with confidence.

Substantial resource is required to sustain

high-quality monitoring efforts across

potentially multi-generational timespans.
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magnitude of floods. However, these nutrients may be rapidly lost in

the uplands as a result of increased rates of transport from flood

flows, while further downstream, the receiving waters will experience

higher nutrient loading rates and greater risk of eutrophication. The

balance between these processes is complex, but there is a clear need

to manage riparian and floodplain habitats to hold back water and so

retain nutrients in the upper reaches of catchments as much as

possible.

As fish are ectothermic, a rise in water temperature will result in

greater metabolic costs. In the high-latitude cold water aquatic

ecosystems that support salmonids, studies suggest that increasing

water temperatures during the spring may result in the potential for

increased salmonid growth and larger body size, but only if the food

supply is not limiting (Bacon et al., 2005; Xu, Letcher & Nislow, 2010;

O'Gorman et al., 2016). Deliberate nutrient addition could therefore

mitigate some adverse effects of climate change by maintaining

sufficient prey availability and supporting growth and production as

streams warm. However, a further complication is that warmer

downstream receiving waters may be more vulnerable to

oligotrophication (Arora, Tockner & Venohr, 2016; Bolotov

et al., 2018).

It should always be borne in mind that the addition of nutrients

to streams that may be of important conservation value is not without

contention. Manipulating nutrient levels in oligotrophic streams that

may be considered to have high ‘naturalness’ (Boon et al., 2002)

requires assessment of various trade-offs and uncertainties in a

rapidly changing world. Impacts on receiving waters and the

surrounding habitats are important considerations, together with

evaluation of whether such nutrient inputs might result in alterations

to river or stream conservation or ecological status under legislation

including the European Habitats Directive (Council of the European

Communities, 1992) and the European Water Framework Directive

(Council of the European Communities, 2000). In general, nutrient

restoration may be suitable within catchments designated for their

conservation value only if there would be no deleterious

consequences for designated species, habitats, or other

characteristics. Aiming to return to a historical baseline is widely

agreed to be contentious and often not attainable in a non-static

world, but if there is evidence of a reduction in salmon abundance

over previous decades then the restoration of nutrients might be

considered a return to a more ‘natural’ state (sensu Boon et al., 2002),

such as existed before human impacts. However, the addition of

nutrients may have the potential to downgrade the ecological status

of rivers. For example, under the Water Framework Directive,

nutrient supplementation might cause a stream to lose its designation

of ‘high ecological status’ (‘species composition and abundance

correspond totally or nearly totally to undisturbed conditions’;
Council of the European Communities, 2000) and instead be classified

as having ‘good ecological status’ (‘slight changes in species

composition and abundance from the type-specific communities

attributable to anthropogenic impacts on physicochemical and

hydromorphological quality elements’). At present, the potential

impacts of an adaptive nutrient remediation strategy on the

conservation status of rivers are unknown, as the current research in

this area cannot adequately answer these large-scale uncertainties

without further long-term study.

7 | CONCLUSIONS AND
RECOMMENDATIONS

Consideration of stream water chemistry and land/water/fisheries

management history suggest that P and N are likely to be limiting to

juvenile fish production in temperate upland river systems, and that

nutrient addition may increase production of juvenile salmon through

a combination of increases in survival and individual growth rates.

However, further understanding is required to determine how such

responses vary among different river systems and community

structures, how they may affect a stream's conservation value, and

how these effects map on to changes in numbers and sizes of adult

(including precocious male) salmon (Table 3).

Given these considerations, we feel that the stage is set for

incorporating nutrient restoration into the management of salmonid

fisheries in the region, but with some caveats. As an overarching

concern, we propose that wherever possible, additions of P and N

should be coupled with actions (such as restoration of habitat and

channel complexity, increasing flow path length in channelized

reaches, fostering floodplain–channel connectivity) that enhance the

ability of upland systems to retain and process limiting nutrients while

also increasing their naturalness. This will serve the dual purpose of

allowing these nutrient additions to be more effective in situ and

limiting negative downstream impacts; they will also have additional

ecosystem and fish habitat benefits. Nutrient restoration can

therefore be coupled with habitat management such as planting

riparian trees to provide additional protection from climate change by

shading and also enhancing local nutrient retention and cycling

(O'Briain, Shephard & Coghlan, 2017).

Multiple replicates are required in appropriately balanced designs

(Underwood, 1994) to measure the effects of nutrient additions.

Potentially such experiments may incorporate paired comparisons

between bifurcating tributaries to increase power to detect

experimental manipulation of nutrients by controlling for other

environmental variables (e.g. rainfall, geology and temperature)

(Table 4). In view of the difficulty of conducting such large-scale

experiments, we recommend that an adaptive management approach

is adopted. This approach would fast-track likely benefits while

providing the capacity to identify and minimize any damage due to

inadvertent eutrophication. Such an approach will require the

application of well coordinated and designed management and

monitoring regimes. In addition, the use of linked ecosystem

modelling approaches, such as the Aquatic Trophic Productivity

model, coupled with salmonid life cycle models, may help to provide

insights into the relationship between nutrient additions and habitat

restoration efforts, as these have previously shown the potential

benefits for salmonids through carcass restoration (Bellmore

et al., 2017; Benjamin et al., 2020). These approaches may provide a
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framework for the results of these small-scale but focused studies to

contribute to more integrated answers.

In conclusion, nutrient restoration may well have the potential to

help conserve and enhance protected Atlantic salmon populations in

river systems that have experienced cultural oligotrophication.

However, a combination of continued experiments and modelling,

incorporating large-scale adaptive management monitoring, is

required to evaluate and refine the approach and minimize the risk of

potentially adverse effects.
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