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Quantum algorithm for gravitational-wave matched filtering
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Quantum computational devices currently under development have the potential to accelerate data analysis
techniques beyond the ability of any classical algorithm. We propose the application of a quantum algorithm for
the detection of unknown signals in noisy data. We apply Grover’s algorithm to matched filtering, a signal
processing technique that compares data to a number of candidate signal templates. In comparison to the
classical method, this provides a speedup proportional to the square root of the number of templates, which
would make possible otherwise intractable searches. We demonstrate both a proof-of-principle quantum circuit
implementation and a simulation of the algorithm’s application to the detection of the gravitational wave signal
GW150914. We discuss the time complexity and space requirements of our algorithm as well as its implications
for the currently computationally limited searches for continuous gravitational waves.
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I. INTRODUCTION

Quantum computing holds enormous potential for compu-
tational speedup of certain tasks, offering the possibility of
solving classically intractable problems, in particular, in quan-
tum chemistry and many-body physics [1,2]. The technology
has seen rapid development in the last few years, resulting in
processors with 50–100 qubits, and the first demonstrations
of clear quantum advantage over classical computation [3,4].
Quantum algorithms (see Ref. [5] for an accessible overview)
are being explored for more and more fields of endeavor:
for example, finance [6], quantum simulation [7], particle
physics [8,9], machine learning [10,11], and, as the technol-
ogy matures and a new generation of software developers
adopt quantum programming languages, it may be anticipated
that new and unexpected applications will be discovered. A
particularly versatile quantum subroutine is Grover’s search
algorithm [12], which finds a marked solution in a large un-
structured database. Grover’s algorithm, one of the earliest
proposed quantum algorithms, provides a square-root speedup
over classical search. This is less dramatic than the expo-
nential speedup promised by, e.g., Shor’s algorithm [13], but
can nevertheless provide a significant practical advantage for
problems with a large search space. By defining the search
space and conditions for a desired solution, Grover’s algo-
rithm may be applied to any computational problem with a
limited structure and has found use in minimum finding [14],
clustering and nearest-neighbor algorithms for supervised and
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unsupervised learning [15,16], and pattern matching [17–19]
to name but a few. In this paper, we propose the use of
Grover’s search in quantum algorithms for matched filter-
ing, with applications in gravitational wave (GW) astronomy.
These algorithms inherit the square root speedup of Grover’s
search algorithm, an improvement which could enable GW
searches currently intractable with state-of-the-art classical
techniques.

Matched filtering is a signal processing technique [20]
in which an exhaustive search is performed over a bank of
templates to find the template that when correlated with the
data returns the highest detection statistic [21], making it a
natural candidate for a quantum speedup through Grover’s
algorithm. In GW matched-filtering a geometric definition of
distance within the parameter space is defined based on the
relative loss in signal-to-noise ratio (SNR) between a tem-
plate and a potential signal. The required distribution of the
templates in the search space are chosen so the distance (or
overlap) between adjacent templates is constant throughout
the space. Depending on the specific data analysis problem,
the number of templates can range up to ∼1012 [22], resulting
in a total computational time of ∼106 CPU hours. The spacing
of templates in the parameter space determines the efficiency
of the search but also the overall number of templates, and the
sensitivity of searches for certain classes of signals (e.g., con-
tinuous wave sources) is currently computationally limited.
Thus, even a modest square-root speedup could enable the
detection of signals which would be infeasible with classical
techniques.

Key to our proposed algorithms is the fact that the poten-
tial signals in GW astronomy are well-modeled by general
relativity, and the templates may be readily computed as
part of the matching procedure. This eliminates the need to
preload the database into quantum random access memory
(qRAM) [23], and thus avoids hidden complexity associated
with this loading step, as well as doubts about the experimen-
tal feasibility of constructing qRAM [24–27]. The presented
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algorithms may be applied to any matched filtering problem
in which the required templates may be efficiently computed,
although we focus here on the application to GW detec-
tion. A range of quantum algorithms for data processing
and more general learning tasks exist in the literature (e.g.,
Refs. [10,11,15,16,28–34]). Most closely related to our work
are existing algorithms for pattern matching [17–19], which
search for an exact or approximate match for a specified
pattern (bit string) within a larger data set; these, however,
require the data and pattern to be loaded into memory, which
would have prohibitive space requirements in the case con-
sidered here. Alternatively, algorithms for quantum template
matching were first proposed almost 20 years ago [35,36], in
which optimal strategies for determining the closest match-
ing template are given. These rely on generalized quantum
measurements with one outcome for each possible template;
translating a GW template bank into such a measurement is
not trivial for the simplest cases, and likely infeasible for
the more interesting cases. A related task in the literature is
estimating the overlap between quantum states, provided a
number of copies of each [37,38]. In GW data analysis, how-
ever, the number of templates is by far the largest parameter,
and such an approach does not obviously offer an advantage.

Although current state-of-the-art quantum processors are
still too small and error prone for many applications of in-
terest, there is much effort concentrated around developing
applications for so-called noisy intermediate-scale quantum
(NISQ) devices [25], with quantum machine learning being
one promising area [10,11,26]. The next technological hurdle
will be to implement error correction, and this comes with an
overhead in the number of physical qubits required to produce
a smaller number of error-corrected logical qubits [39,40].
In the longer run, fully scalable, fault-tolerant devices will
be required for universal quantum computation, and to run
algorithms such as Shor’s famous factoring algorithm [13].
At this point, further applications in machine learning, pattern
matching, and data processing may be expected, to which we
now add matched filtering for GW data analysis.

In the remainder of the paper, we show how to employ
Grover’s algorithm and its extension to quantum counting
to perform quantum matched filtering. We choose a digital
encoding for the data and templates, that is, each is encoded
as classical bits in the computational basis, and explicitly
construct a quantum oracle which returns whether a template
matches with the data above a given threshold. We present
two algorithms demonstrating the application of quantum
counting to matched filtering; the first determines whether
there is at least one matching template and provides an esti-
mate to their number; the second returns matching templates.
We require only that there is an efficient classical algorithm to
generate the templates from an index into the considered set
of parameters, and to perform template matching. We discuss
the complexity of our algorithms compared to classical
techniques, and the implications for GW data analysis. We go
beyond an asymptotic analysis to compare the approximate
number of matching calculations needed in the classical and
quantum algorithms for particular match-filtering problems
and defined performance requirements, showing orders of
magnitude of difference between the quantum and classical
algorithms.

Throughout, it is our aim to present our ideas in a form
accessible to both the GW and quantum computing commu-
nities. Thus, we provide some background and details to each
which will be well-known to experts within each field but may
be unfamiliar to the other subset of the intended audience.
In Sec. II, we review GWs, matched filtering, Grover’s algo-
rithm, and quantum counting. Following this, we present our
algorithm in Sec. III. We give an implementation on IBM’s
Qiskit platform [41] in Sec. IV and an analysis of the appli-
cation to the detection of the first GW detected, GW150914,
in Sec. V. We detail the potential speedup provided by our
algorithm for matched filtering applied to continuous waves
in Sec VI and discuss the implications to their discovery. We
conclude with a discussion of the implications of our paper
and suggest directions for further study. We also include an
introduction to quantum computing concepts in Appendix A
and some of the mathematical details in Appendix B.

II. BACKGROUND

A. Gravitational wave searches

The detection of GWs from the merger of compact binary
systems is now a regular occurrence. Since the detection of
the binary black hole merger known as GW150914 [42],
the Advanced LIGO and Advanced Virgo detectors have de-
tected signals from 50 such systems, including two binary
neutron star systems [43]. The individual detections, and the
population as a whole, allow us to infer properties of GW
sources including the nature of extreme matter constituting
neutron stars [44], set stringent constraints on the accuracy
of general relativity [45], resolve the mystery of the origin
of short gamma-ray bursts [46], probe the formation his-
tory of compact objects [47], and make measurements on
cosmological parameters independent of the cosmic distance
ladder [48].

While searches are ongoing for continuously emitted GWs,
supernovae and unmodeled burst sources, and the astrophys-
ical and cosmological stochastic backgrounds, as yet only
signals from compact binary coalescences have been detected.
However, as the advanced GW detectors [49–51] increase in
sensitivity and additional detectors join the global network
[52,53], our reach into the universe grows. With sensitivity to
greater cosmic distances, the rate of detections will grow and
other intrinsically weaker classes of signal (e.g., continuous
GWs) will become detectable (see Ref. [54] for the most
recent results from searches for known millisecond pulsars).

Compact binary and continuous GW sources are subject
to a matched-filtering search approach [55–59]. This is mo-
tivated by the fact that these sources are very well modeled
by general relativity. For transient compact binary signals,
template waveforms are obtained through post-Newtonian
expansion of the orbital dynamics and calibrated against nu-
merical relativity simulations for the merger and ring-down
phase [60,61]. The continuous wave case is somewhat simpler
since the waveform is expected to be a weak sinusoid gener-
ated by rotating neutron stars with nonzero mass quadrupole
moments. Such sources will exhibit slowly varying Doppler
modulation of the frequency due to the motion of the detector
relative to the source, combined with amplitude modulation
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produced by the antenna response of the detector as the Earth
rotates [62].

An additional continuous wave problem is that of searching
for signals from sources that reside in binary systems. This
leads to an additional dramatic increase in parameter space
volume and the corresponding numbers of templates [63–65].
When comparing the compact binary and continuous wave
cases, the relative size of the search spaces, and hence the
number of required templates, is typically much greater for
the continuous wave case [22]. In fact, the number of tem-
plates required for a fully coherent analysis for a continuous
wave source of unknown sky location, frequency, and first
frequency time derivative (representing the slow drift in the
intrinsic spin of the source), makes such a search completely
infeasible. Searches such as these are computationally limited
in their sensitivity, and so less sensitive but tractable semico-
herent approaches are applied. Such schemes subdivide the
data in either time or frequency space, analyze each part sepa-
rately, and then combine the results in such a way as to ignore
the signal phase coherence between segments, significantly
reducing the computational cost at the expense of sensitivity.
To a lesser extent, there are computational limitations for the
compact binary searches when extending the search space
to precessing systems [66] and a coherent analysis between
different detectors [67].

B. Matched filtering

Matched filtering is a signal processing technique used
to maximize the SNR by correlating a signal template with
measured data. It is the optimal linear method for detecting
a known signal buried in Gaussian noise [20] and is close to
optimal for the case of searching over a collection of possible
templates [21]. For the derivation of a matched filter, consider
the detector output time-series to be h(t ), defined

h(t ) = s(t ) + n(t ), (1)

where s(t ) is the signal which is added to some noise n(t ).
Now consider a linear filter q(t ) that is applied to the data in
the form of an inner product. Assuming the signal has some
finite duration, this can be written in the frequency domain
denoted ·̃ as

q · h =
∫ ∞

−∞
q̃∗( f )h̃( f ) df

=
∫ ∞

−∞
q̃∗( f )s̃( f ) df +

∫ ∞

−∞
q̃∗( f )ñ( f ) df . (2)

It is evident that q should be chosen as to maximize the inner
product with the signal while minimizing the expected inner
product with the noise. We can define the optimal SNR after
applying the linear filter terms for the case of zero-mean noise
using

SNR2 =
∣∣∫ ∞

−∞ q̃∗( f )s̃( f ) df
∣∣2

E
[∣∣∫ ∞

−∞ q̃∗( f )ñ( f ) df
∣∣2]

= 2

∣∣∫ ∞
−∞

(
S1/2

n (| f |)q̃( f )
)∗(

S−1/2
n (| f |)s̃( f )

)
df

∣∣2∫ ∞
−∞ Sn(| f |)|q̃( f )|2df

, (3)

where E [. . .] denotes an expectation value over noise realiza-
tions, and Sn is the single-sided noise power spectral density
defined here as

1
2 Sn(| f |)δ( f − f ′) = E[n̂( f )n̂∗( f ′)], (4)

where δ is the Dirac delta function. This allows for an upper
limit to be placed on the SNR using the Cauchy-Schwarz
inequality, constraining it to

SNR2 � 2
∫ ∞

−∞
S−1

n (| f |)|s̃( f )|2df . (5)

This upper bound is achieved for Eq. (3) when the template
is proportional to the noise-weighted signal s̃( f )/Sn( f ). By
further applying the constraint that

E

[∣∣∣∣
∫ ∞

−∞
q̃∗( f )ñ( f )df

∣∣∣∣
2]

= 1 (6)

gives the constant of proportionality and allows us to define
the normalized optimal template:

Q̃( f ) =
(∫ ∞

0
S−1

n ( f )|s̃( f )|2df

)−1/2

s̃( f ). (7)

Let us define ρ(t ) as the matched filter SNR that is de-
termined by applying Eq. (2) across h(t ) using the optimal
template from Eq. (7). The inner product in Eq. (2) can be
applied across signal arrival times by instead considering a
convolution, resulting in an additional phase component in
the definition of the SNR. The matched filter SNR can be
maximized over the phase at the time of coalescence φ0 by
constructing a complex normalized template Q̃c( f ) defined as

Q̃c( f ) = Q̃φ0=0( f ) + iQ̃φ0=π/4( f ), (8)

where Qφ0=π/4( f ) is the optimal template but out of phase
with Qφ0=0( f ) by π/4. The matched filter SNR is calculated
from the modulus of Eq. (2):

ρ(t ) =
∣∣∣∣
∫ ∞

−∞

Q̃∗
c ( f )h̃( f )

Sn(| f |) e2π it f df

∣∣∣∣
= 2

∣∣∣∣
∫ ∞

0

Q̃∗
c ( f )h̃( f )

Sn( f )
e2π it f df

∣∣∣∣. (9)

For discretized time-series data of M time steps separated by
�t , ρ as a function of the template and data time offset t j

becomes

ρ(t j ) = 2

M�t

∣∣∣∣∣
(M−1)/2∑

k=1

Q̃∗
c ( fk )h̃( fk )

Sn( fk )
e2π i jk/M

∣∣∣∣∣. (10)

The calculation of ρ across all M time steps involves the
inverse Fourier transform of the product of the frequency
domain signal and template, which has a cost of O(M2). This
process can therefore benefit in computational efficiency via
the use of the (classical) fast Fourier transform (FFT) algo-
rithm, which has a computational cost of O(M log M ) [68].

For signal detection, the parameter space of interest is
discretized and a list of waveforms is constructed as candidate
signal templates. This list of potential waveforms is called
the template bank. The specific number of required templates
and specific locations of each template within the parameter
space are the subject of much study in both compact binary
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coalescence [55–59,69] and continuous GW fields [58,70,71].
A template is considered a matched template if it produces a
ρ greater than some set threshold ρthr at any point in the given
time series data. The computational cost of calculating ρ and
comparing the value to ρthr for all M time steps for a template
bank of N templates is O(NM log M ).

C. Grover’s algorithm

The speedup provided by Grover’s algorithm is proved in
an oracle model: The algorithm is given access to an oracle,
which returns whether or not a given input is a good match,
and in the quantum version it is assumed to allow queries
in superposition. Thus, while a classical oracle can test one
input at a time, a quantum oracle is capable of acting on a
superposition of input values. This means that with a single
query, a quantum oracle can create a state in the quantum reg-
ister which is a superposition over many different input values,
together in each case with the information about whether the
input value is a match. Note, however, that this is not imme-
diately useful: a measurement on the register returns just one
input value at random, and it is necessary to carefully design
procedures to take advantage of this apparent parallelism. For
the case of searching a database, this is achieved by Grover’s
algorithm. We stress here, however, for readers who do not
have a quantum computing background, that each query to
the oracle, even when performed on a superposition of many
possible input values, really is just one query, with a fixed
computational cost independent of the number of input values
in the superposition.

One way to achieve this is to assume that the database of
interest is preloaded into qRAM [23]. This can be efficiently
queried, however there remain doubts about the experimental
feasibility of qRAM, as well as whether the advantage over
classical techniques persists once all resources needed are
taken into account [24–27]. Further, for the problem consid-
ered here, the size of the database is prohibitively large, and
thus we require an explicit construction of the oracle. There
are therefore two requirements for a speedup in a problem
of interest: There must be no classical algorithm giving an
improvement over a brute force search, and it must be possible
to construct an oracle for the problem considered. Further, the
oracle should be efficient, meaning that the computational cost
of implementing the oracle must scale at most polylogarithmi-
cally in the number of entries in the database.

In this section and elsewhere in the paper, we use the
asymptotic notation O and � common in computing science
to discuss the running time or number of gates required. It
is assumed that the number of gates scales linearly with the
number of operations, so the asymptotic limit of the number
of floating point operations of a classical algorithm is compa-
rable to the asymptotic limit of the number of required gates in
the quantum case [72]. The statement that O( f (N, M )) gates
are required means that the asymptotic scaling of the number
of gates required is upper bounded by the function f (N, M )
of the parameters N , M characterizing the size of the input.
Similarly, �( f (N, M )) denotes a lower bound in the asymp-
totic scaling. Where possible, we also go beyond asymptotic
scaling and give the exact number of operations needed for

particular examples, to illustrate the potential speedup over
classical techniques.

Grover’s algorithm, proposed by Lov Grover in 1996 [12],
is a quantum algorithm providing a polynomial speedup for
search problems compared to classical techniques. A search
problem is one in which the aim is to identify one or more
marked entries, i.e., those satisfying a specified criteria, from
within an unstructured database. For a database with N en-
tries and exactly one marked entry, it is necessary to check
N/2 entries on average before finding the marked entry; thus,
the required search time for a classical algorithm is O(N )
[73]. Grover’s algorithm finds a solution in O(

√
N ) search

time. It was later proved that this is asymptotically opti-
mal; �(

√
N ) queries are required for a quantum algorithm

to succeed with high probability [74]. Grover’s algorithm is
covered in several introductory quantum computing texts, e.g.,
Refs. [72,73,75,76], but for the purposes of clarity we use the
remainder of this section to outline the algorithm.

We begin with some very brief introductory remarks
introducing basic concepts and terminology in quantum com-
puting. The fundamental carrier of quantum information is
the qubit, the analogy to the classical bit. Physically, this
is a quantum system with two orthogonal states, which we
label |0〉 and |1〉, and which are known as computational
basis states. A quantum register is made up of an array of
qubits. Any classical bit string may be encoded into qubits
by encoding in the computational basis, simply by preparing
|0〉 for 0 and |1〉 for 1, known as digital encoding. Quantum
gates are reversible, due to unitarity of quantum evolution,
and any classical reversible logic operation can be directly im-
plemented as a transformation of computational basis states.
Note that reversibility is not a restriction, as any classical
irreversible computational may be performed reversibly, most
straightforwardly by simply retaining copies of the input
[73,75,76]. Finally, it is worth stating explicitly that quantum
algorithms generically are probabilistic, succeeding with high
probability. This is also not a limitation, as the probability of
success can be boosted close to one by a few repetitions of
the algorithm. Some commonly used states and operations are
defined in Appendix A.

Grover’s algorithm establishes a gap in query complexity
between classical and quantum computers in an oracle model,
that is, it assumes access to an oracle, a black box which
computes a desired function but not necessarily a description
of the function itself. The query complexity is then given by
the number of calls required to the oracle. To cast the search
problem as an oracle problem, a function f (x) is defined
which takes the value f (x) = 1 if and only if x is a marked
entry in the database, otherwise f (x) = 0. In the quantum
case, this is implemented by a quantum black box or oracle
Uf that acts as follows on computational basis states:

Uf : |x〉 ⊗ |d〉 	−→ |x〉|d ⊕ f (x)〉, (11)

where ⊗ represents the tensor product and ⊕ is bitwise ad-
dition modulo 2. The first register is an input register; the
state |x〉 represents the input x, stored as a classical bit string
in the computational basis. The second register is an output
register; after application of Uf , the evaluation of the function
is contained here, shifted by the initial bitstring d . The key
difference in the quantum case is that the oracle may be
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FIG. 1. We show how the input state |s〉 changes at different stages of Grover’s algorithm. The two-dimensional space is spanned by the
desired match |w〉 and undesired match |w⊥〉. The solid lines represent the current state and the dotted lines represent the previous states.
(a) The input state, represented by the red line. (b) The state after the oracle is applied, represented by the blue line. (c) The state after the
diffusion operator, represented by the green line.

queried in superposition, that is, the input register may be
prepared in a superposition over all input states. Note that if
the output register is prepared in the state |−〉 [see Eq. (A2)],
the operation given in Eq. (11) is equivalent to the following
procedure, known as phase kickback, on the input register
alone:

Uf : |x〉 	−→ (−1) f (x)|x〉. (12)

Although in the actual algorithm presented later we will need
the output register for the oracle, in the following discus-
sion, we prefer to use Eq. (12) for the oracle evaluation for
simplicity.

In the problem of searching in an unstructured database,
the index of each entry in the database is represented as a
computational basis state |i〉, and the input register is prepared
in an equal superposition over all indices |s〉. Supposing that
there are N entries, the initial state of the input register can be
expressed as

|s〉 = 1√
N

N−1∑
i=0

|i〉, (13)

where 1/
√

N represents the amplitude of each state in the
superposition. This corresponds to an equal initial weighting
of each entry. State |w〉 is used to represent an equal su-
perposition of all the marked entries in the database. In the
following, we will denote the number of marked entries by r .
The equal superposition of all the other entries of the database
is denoted |w⊥〉, which is perpendicular to the state |w〉. In
terms of |w〉 and |w⊥〉, the input state |s〉 may be rewritten as

|s〉 =
√

r

N
|w〉 +

√
N − r

N
|w⊥〉. (14)

Now, to increase the probability of finding one of the correct
solutions, the next steps of Grover’s algorithm are designed to
increase the amplitude of the state |w〉 in the superposition.
Throughout the algorithm, the state of the input register re-
mains within a real two-dimensional vector space spanned by
|w〉 and |w⊥〉. The initial state |s〉 is shown in Fig. 1(a), where

the angle between the states |w〉 and |s〉 is defined as

θ = arcsin (〈w|s〉) = arcsin

(√
r

N

)
. (15)

After applying the oracle Uf , the input state |s〉 is transformed
to

Uf |s〉 = −
√

r

N
|w〉 +

√
N − r

N
|w⊥〉, (16)

which is equivalent to flipping the input state |s〉 with respect
to the horizontal axis |w⊥〉, as represented in Fig. 1(b). This
procedure itself, however, does not make the desired state |w〉
more favorable in the measurement. Therefore, an additional
diffusion unitary operator is applied as the second step, which
is defined as

Us = 2|s〉〈s| − Î, (17)

where Î is the identity operator. Considering the state after-
ward expressed in an orthonormal basis including state |s〉, it
is clear that this operator applies a minus sign to the amplitude
of all states except |s〉. Analogously to the interpretation of the
oracle, this is equivalent to reflecting the state of the register
about the equal superposition state |s〉, as shown in Fig. 1(c).

The overall effect of the Grover operator Ĝ, defined as

Ĝ = UsUf , (18)

is shown in Fig. 1(c), and is equivalent to a rotation operator
in the two-dimensional space spanned by |w〉 and |w⊥〉:

Ĝ =
(

cos 2θ − sin 2θ

sin 2θ cos 2θ

)
. (19)

After applying the Grover operator k times, the input state
would become

Ĝk|s〉 = sin ((2k + 1)θ )|w〉 + cos ((2k + 1)θ )|w⊥〉, (20)

and to maximize the probability of finding one of the de-
sired matches comprising the superposition |w〉, the amplitude
sin ((2k + 1)θ ) should be maximized. Thus, the Grover opera-
tor is applied k times such that (2k + 1)θ ≈ π/2. This means
that if the number r of matching templates is known, for large
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values of N/r:

k ≈ π

4

√
N

r
− 1

2
. (21)

After k applications of Grover’s algorithm, as all matching
templates are in superposition, a measurement of the input
register will return only one of them at random. To obtain
additional matching templates the algorithm must be repeated
r ln r times [77].

D. Quantum counting

In many cases, the number of marked entries, r, is not
known in advance. In this case, there exist variants of Grover’s
algorithm which return a marked entry with O(

√
N/r) ap-

plications of the oracle [78,79]. The most relevant for our
purposes is quantum counting, which uses a well-known prim-
itive in quantum computing, quantum phase estimation [80],
to estimate the eigenvalues ±2θ of the Grover operator intro-
duced in Eq. (19). This, in turn, allows an estimate of r and of
the number of applications of the Grover operator needed to
find a solution with high probability. O(

√
N ) Grover iterations

are sufficient to determine r to an accuracy O(
√

r) with high
probability. We complete this background section with an
outline of quantum counting, and refer the reader again to
Refs. [72,73,75,76] for more information.

Recall that the Grover operator Ĝ acts as a rotation in the
two-dimensional space spanned by |w〉 and |w⊥〉, as given in
Eq. (19). The eigenvectors of Ĝ are

|s+〉 =
( i√

2
1√
2

)
, |s−〉 =

( −i√
2

1√
2

)
, (22)

with eigenvalues of e2iθ and e−2iθ , respectively, and the input
state in Eq. (13) may be written as an equal superposition of
the two eigenstates, |s+〉 and |s−〉:

|s〉 = 1√
2
(|s+〉 + |s−〉). (23)

Given an estimate of θ , an estimate of the number of match-
ing templates can be obtained through Eq. (15). Therefore,
the problem of finding the number of desired templates is
transformed into an eigenvalue estimation problem, which can
be solved using quantum phase estimation [76]. Phase esti-
mation makes use of the quantum Fourier transform (QFT),
which transforms between the computational basis {| j〉} and
the Fourier basis, {| j̃〉} defined as

| j̃〉 = ÛQFT| j〉 =
2p−1∑
l=0

exp

(
i
2π jl

2p

)
|l〉. (24)

where ÛQFT denotes the QFT [75].
In quantum counting, an additional register, which we refer

to as the counting register, is needed to store the estimate
of θ . We denote the number of qubits in the register by p,
which we leave unspecified for now. The counting register
is first initialized in an equal superposition over all possible

computational basis states:

Ĥ⊗p|0〉⊗p = 1

2
p
2

(|0〉 + |1〉) ⊗ ... ⊗ (|0〉 + |1〉) =
2p−1∑
j=0

| j〉.

(25)

Following this, Grover’s operator is applied iteratively to the
input state as before, where now the number of applications
of the Grover gate is controlled by the counting register:

2p−1∑
j=0

C-Ĝ j | j〉 ⊗ |s〉

= 1√
2

(
2p−1∑
j=0

ei2θ j | j〉 ⊗ |s+〉 +
2p−1∑
j=0

e−i2θ j | j〉 ⊗ |s−〉
)

,

(26)

where C-Ĝ j represents applying the controlled Grover’s oper-
ator j times, giving

Û −1
QFT

2p−1∑
j=0

C-Ĝ j | j〉 ⊗ |s〉

= 1

2p+ 1
2

2p−1∑
j=0

2p−1∑
l=0

(
ei2π j( θ

π
− l

2p )|l〉 ⊗ |s+〉

+ ei2π j( π−θ
π

− l
2p )|l〉 ⊗ |s−〉). (27)

A measurement of the counting register in the computational
basis returns an integer value between 0 and 2p − 1, from
which we can now extract the desired estimate of the phase.
Intuitively, constructive interference occurs for those elements
{|l ′〉} for which

θ

π
− l ′

2p
� 0 or

π − θ

π
− l ′

2p
� 0. (28)

We will only be interested in cases in which r � N , and thus
θ � 1. Therefore, the observed measurement outcome, which
we denote b, gives an unambiguous estimate of θ , denoted θ∗
as follows:

θ∗ =
{

bπ
2p , b � 2p−1

π − bπ
2p , b > 2p−1.

(29)

In reality, values of b which differ slightly from the construc-
tive interference condition are possible; an example of the
probability distribution over b is shown in Fig. 2. However,
it may be shown that the measured value b gives an estimate
of θ to m bits of accuracy with a probability of success at
least 1 − ε if p is chosen such that p = m + log2(2 + 1/2ε)
[75]. In quantum counting, an estimate of accuracy at least
O(N−1/2) is required, as θ itself is of this magnitude. Thus m
and p are each of size 1/2 log2 N . The maximum number of
applications of Ĝ is given by 2p, which is therefore O(

√
N ).

From the estimate of θ , it is then possible to estimate r and
k, the number of applications of Ĝ needed to subsequently
retrieve a marked entry with high probability. In the following
sections, we will discuss the choice of p in more detail for the
application to quantum matched filtering, going beyond the
asymptotic analysis.
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FIG. 2. The probability distribution for each output value in the
final measurement on a five-qubit counting register, with two match-
ing entries in a 64-entry database. The two peaks correspond to the
two eigenstates defined in Eqs. (22). Constructive interference only
happens for values close to 2pθ/π or 2p(π − θ )/π , with destruc-
tive interference occurring elsewhere, resulting in this probability
distribution.

III. QUANTUM MATCHED FILTERING ALGORITHM

In the previous section, we introduced matched filtering,
Grover’s algorithm and its extension to quantum counting,
and outlined the computational speed-up promised by quan-
tum algorithms for the process of search in an unstructured
database. A reminder of the nomenclature that was set in
the previous section is provided to the reader in Table I. In
this section we argue that matched filtering for GW detection
provides a natural application of quantum counting. We detail
the pseudo-code of a possible implementation and prove that
we can effectively construct the required oracle. We will also
compare the computational cost of the quantum approach with
the classical cost, taking account of the cost of the oracle
evaluation, to evaluate overall complexity in each case and
the relative speedup.

As discussed in the previous section, matched filtering in-
volves comparing data (originally) in the form of a time series
against templates drawn from a template bank, searching for
one or more matches above a predetermined threshold. The
templates for GW data analysis are well modeled by general
relativity, and rather than performing comparisons against a

TABLE I. Nomenclature used throughout the text to describe
variables used to perform Grover’s algorithm and quantum counting,
where inferred variables are denoted by the ∗ subscript.

Variable Description

r True number of matching templates
b̃ The noninteger counting register value corresponding to r
k Number of Grover operations corresponding to r
2θ Rotation in state space corresponding to r
b Observed counting register outcome
r∗ Number of matching templates corresponding to b
k∗ Number of Grover operations corresponding to r∗
2θ∗ Rotation in state space corresponding to r∗

Algorithm 1. Grover’s gate complexity: O(M log M + log N )

1: function GROVER’S SEARCH ALGORITHM N , |D〉, ρthr

2: procedure ORACLE CONSTRUCTION

3: Creating templates:
4: for all i < N , do
5: |i〉|0〉 ← |i〉|Ti〉
6: Comparison with the data:
7: |i〉|D〉|Ti〉|0〉 ← |i〉|D〉|Ti〉|ρ(i)〉
8: if ρ(i) < ρthr, then
9: f (i) = 0
10: else
11: f (i) = 1

|i〉|D〉|Ti〉|ρ(i)〉 ← (−1) f (i)|i〉|D〉|Ti〉|ρ(i)〉
12: Disentangling registers:
13: (−1) f (i)|i〉|D〉|Ti〉|ρ(i)〉 ← (−1) f (i)|i〉|D〉|Ti〉|0〉
14: (−1) f (i)|i〉|D〉|Ti〉|0〉 ← (−1) f (i)|i〉|D〉|0〉|0〉
15: procedure DIFFUSION OPERATOR

16:
∑

(−1) f (i)|i〉 ← ∑
(2|i〉〈i| − Î)(−1) f (i)|i〉

previously populated database, these are calculated as part of
the matched filtering procedure. Indeed the number of tem-
plates can be so large that precalculating and storing these
in a database may have prohibitive memory requirements,
even in the classical case. Thus a preloaded database is not
necessary for a quantum implementation, avoiding the need
for a large amount of data to be loaded into qRAM. Further,
the steps needed to construct an oracle which determines
whether or not a given template is a match are already part of
the classical data analysis, and including these explicitly does
not diminish the speedup of the quantum approach, which we
outline below.

We note that the cost of an oracle call (i.e., a single SNR
calculation) is not negligible; this scales with the observing
time period and the frequency bandwidth over which the data
is analyzed and must be taken into account in a full complexity
analysis. Grover’s algorithm does not speed up this step, and
one might wonder whether a more sophisticated approach
could give a speedup here also. We return to this in the dis-
cussion and compare our quantum counting based approach
to related tasks from the literature. What quantum counting
can do is improve the dependence of the overall computa-
tional cost on the number of templates, making previously
intractable searches possible. In particular, as it is the spacing
of templates, and therefore the overall number of templates
required, that determines the sensitivity of the search, a quan-
tum implementation of matched filtering based on quantum
counting promises to enable the detection of signals too weak
to detect by classical data processing techniques.

A. Oracle construction

We propose two applications of quantum counting to GW
matched-filtering: one to determine whether there is a match
at all, which is often the problem of interest in GW matched
filtering, and the other to retrieve a matching template in the
case in which there is at least one match. To apply quantum
counting in each case, we first require an oracle to perform
matched filtering with a predefined threshold. Thus we begin
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by detailing in Algorithm 1 the pseudocode to construct the
Grover’s gate.

We begin with some preliminaries: Recall that the number
of templates is denoted by N , and the number of data points in
the time series by M. We choose a digital encoding, i.e., to rep-
resent the data and templates as classical bits encoded in the
computational basis. Standard techniques exist to convert any,
in general, irreversible classical logic circuit to a reversible
one, which may readily be implemented on a quantum com-
puter by replacing classical reversible gates by their quantum
equivalents [72,74]. In general, some scratch space is needed
to aid in performing all calculations reversibly. We outline
a specific implementation, making use of four registers: one
data register which must be of size (number of qubits) linear
in M, and one index register, which requires log2 N qubits. For
intermediate calculations, we specify also one register to hold
the computed template, which must be of size linear in M, and
one to hold the computed SNR value, which does not scale
with N or M and is O(1). We discuss the space requirements
further in Sec. VII.

The basic element of Grover’s algorithm is a search over
an index into a database, and an oracle construction must
calculate the template from the index i, proceed to calculate
the SNR, and, finally, perform the check against the threshold
value. We denote the number of gates needed to compute
a template waveform from its parameters by k1.1 As each
template consists of M data points, this takes time linear in
M. The number of gates needed to calculate the SNR between
a template and the data is denoted k2. From the introduction
in Sec. II B, this requires time O(M log M ). Finally, checking
whether the result is above a given threshold ρthr, as defined
in Sec. II B, takes O(1) gates, and is denoted k3. In this
way, to compute the match against all templates, we need
N (k1 + k2 + k3) steps, which is the total classical cost. Con-
sequently, the total computational complexity of the classical
algorithm is O(NM log M ).

To construct a quantum algorithm, we require all the same
steps, but in addition we need to erase the intermediate cal-
culations to disentangle the index register from everything
else to complete the oracle application. The pseudocode for
Grover’s gate is given in Algorithm 1 .

Discussion: The following is the explanation for each step
and the related computational cost for Algorithm 1.

Oracle construction:
Step 0: Initialization [cost: O(M + log N )]. The initial

state is comprised of four registers,

|ψ0〉 = 1√
N

N∑
i

|i〉I |0〉T |D〉D|0〉ρ, (30)

where the subscripts I , T , D, and ρ represent the indices,
templates, data, and the SNR register, respectively. Load-
ing the data takes time linear in M, while initializing the

1We also need to specify the mapping from index to template
parameters. For reasons of clarity, we have not included this step
explicitly here, but note that efficient algorithms exist (see Ref. [81]),
which add a modest complexity O(polylogN ). We discuss template
placing in the examples in Secs. V A and VI.

index register to an equal superposition requires O(log N )
gates [75].

Step 1 (lines 3–5): Creating templates [cost: O(M )]. Cal-
culating the templates from the index is performed in
superposition over all index values at a cost of k1 ∼ O(M )
gates. The state after this step would be

|ψ1〉 = 1√
N

N∑
i

|i〉I |Ti〉T |D〉D|0〉ρ. (31)

Step 2 (lines 6–11): Comparison with the data [cost:
O(M log M )]. The cost of calculating SNR between the
template and the data is k2 ∼ O(M log M ). Finally, we com-
pare this result to a predetermined threshold to determine
the value of f (i); the function that determines whether a given
template is a match or not at a cost of k3 ∼ O(1). After this
step, the state becomes

|ψ2〉 = 1√
N

N∑
i

(−1) f (i)|i〉I |Ti〉T |D〉D|ρ(i)〉ρ. (32)

Step 3 (lines 12–14): Disentangling registers [cost:
O(M log M )]. The diffusion operator part of Grover’s gate
must act on the index register alone. If the index register is
entangled with any other register, it will not have the desired
effect. Therefore, we need to erase the computation of ρ(i)
and Ti to remove any correlation between these registers
and the index register. The erasure process is the reverse of
the generation process. Accordingly, another k1 + k2 cost is
generated. The state after this step is

|ψ3〉 = 1√
N

N∑
i

(−1) fi |i〉I |0〉T |D〉D|0〉ρ. (33)

Step 4 (lines 15 and 16): Applying the diffusion operator
[cost: O(log N )]. This step is unique to the quantum algorithm
and requires O(log N ) quantum gates [82].

Total cost: The total cost for a single oracle call is therefore

O(M log M + log N ). (34)

B. Signal detection

Now that we have constructed the required oracle for quan-
tum matched filtering, we can readily apply quantum counting
to problems of relevance to GW data analysis. Our application
will first focus on whether there is a signal existing in the data,
a common example in matched filtering. Once it has been
identified that a signal is present, a full Bayesian parameter
analysis to determine the properties of the source must be
performed separately [83,84]. Quantum counting returns r∗,
an estimate of the number of matches, and so is ideally suited
to this task.

To identify if there is a signal, we are interested in four
conditional probabilities: a true negative, the probability of
correctly returning that there is no template with an SNR
above the predetermined threshold when there is no such tem-
plate existing in the template bank, P(r∗ = 0|r = 0); a false
negative, the probability of identifying that there is no match
when indeed there is no template in the template bank with
an SNR above the predetermined threshold, P(r∗ = 0|r >
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Algorithm 2. Signal Detection Complexity:
O(

√
N (M log M + log N ))

1: p ← number of precision digits
2: N ← number of templates
3: i ← index of templates
4: ρthr ← threshold
5: |0〉 ← Data |D〉
6: procedure QUANTUM COUNTING (p, N , |D〉, ρthr)
7: Creating the counting register:
8: |i〉 ← |0〉p|i〉
9: |0〉p|i〉 ← 1

2p/2 (|0〉 + |1〉)p ⊗ |i〉
10: Controlled Grover’s gate:
11: for all j < 2p do
12: a ← j
13: repeat
14: Algorithm 1 GROVER’S GATE (N , |D〉, ρthr ), a − −
15: until a == 0
16: 1

2p/2 (|0〉 + |1〉)n ⊗ |i〉 ←
1

2(p+1)/2

∑
(e2iθ j | j〉 ⊗ |s+〉 + e−2iθ j | j〉 ⊗ |s−〉)

17: Inverse quantum Fourier transform:
18: 1

2(p+1)/2

∑
(e2iθ j | j〉 ⊗ |s+〉 + e−2iθ j | j〉 ⊗ |s−〉) ←

1
2p+1/2

∑ ∑
(ei2π j( θ

π − l
2p )|l〉 ⊗ |s+〉 + ei2π j( π−θ

π − l
2p )|l〉 ⊗ |s−〉)

19: Measurement (b):
20: if b = 0, then
21: return ‘There is no match.’
22: else r∗ ← Round[N sin( b

2p π )2]
23: if r∗ = 0, then
24: r∗ ← 1

0); a true positive, the probability of identifying that there
are templates with a SNR above the predetermined thresh-
old when there exists such templates in the template bank,
P(r∗ > 0|r > 0); and a false alarm, the probability of iden-
tifying that there are templates with a SNR above the
predetermined threshold when there no such template exists
it template bank, P(r∗ > 0|r = 0). The terms defined here
differ from the standard definitions, where the different types
of errors depend on whether or not a signal is present in the
data and not if templates match. Classical algorithms in signal
detection make classification errors due to uncertainty in the
data and model, while quantum algorithms have additional
uncertainty introduced by their probabilistic nature. It is these
classification errors that are made by this additional uncer-
tainty that we are concerned with in this paper. The rate of
classification errors due to the data and model uncertainty in
this algorithm is the same as the classical case.

Recall that quantum counting returns an integer b, between
0 and 2p − 1, from which we can estimate θ and therefore r. If
there are no matches, perfect constructive interference occurs
for b = 0 in Eq. (27) and b = 0 is returned with certainty.
Thus, identifying whether or not there is a signal present
simply requires us to check whether b = 0 or b �= 0. There
will be some probability of returning b = 0 in cases where
there are in fact one or more matches, resulting in a false neg-
ative output of the algorithm. This may be made exponentially
small through a constant number of repetitions. The resulting
pseudocode is detailed in Algorithm 2. As discussed earlier,
2p is required to be O(

√
N ) to give a sufficient accuracy to

distinguish θ from zero. At the end of this subsection, we
discuss further the impact of the choice of p on the probability
of a false negative.

Discussion: The following is the explanation for each step
and the related computational cost for Algorithm 2.

Signal detection:
Step 0: Initialization [cost: O(M + log N )]. This is the

same as step 0 in Algorithm 1.
Quantum counting:
Step 1 (lines 7–9): Creating counting register [cost:

O( 1
2 log N )]. This step involves applying a Hadamard gate to

each qubit incuring a cost of p.
Step 2 (lines 10–16): Controlled Grover’s gate [cost:

O((M log M + log N )
√

N )]. The cost is given by the largest
number of iterations of Grover’s gate needed, 2p − 1.

Step 3 (lines 17 and 18): Inverse quantum Fourier trans-
form (cost: O((log N )2) [73]).

Step 4 (lines 19–24): Measurement [cost: O( 1
2 log N )].

The cost of measurement is 1 for each counting qubit. For
the actual measurement we obtain a value b. According to
Eq. (29), we can calculate an estimate of the number of
matching templates r∗ based on Eq. (15). When there is no
matching template, the probability of b being measured as 0
is 1. Therefore, any other observed value of b resulting in zero
matching templates can be disregarded and thus corresponds
to an estimate of one matching template.

Total cost:

O
(√

N (M log M + log N )
)
. (35)

We conclude by discussing the effect of the choice of p on
the probability of a false negative, denoted δn. According to
the discussion in Sec. II D, p can be written as

2p = c
√

N, (36)

and the following discussion is on the choice of the constant c
and its effect on the probability of a false negative. We will use
well-known bounds from the literature to motivate a particular
choice of c, and therefore p. This is not a unique choice but
rather a convenient one for which we can readily bound δn.

To avoid triggering a false negative, the outcome of mea-
surement of the counting register b should not be 0. According
to Ref. [78], if b̃ is defined as either θ2p/π or (2p − θ2p/π )
(note that this is not in general an integer value), then the
measured value b differs from b̃ by |b − b̃| � 1 with a proba-
bility at least 8/π2. Therefore, choosing p such that b̃ − 1 > 0
ensures that the probability of a false negative is at most
1 − 8/π2. With this choice, Eqs. (15) and (28) thus give the
following restriction on p:

2p > π

√
N

r
. (37)

This restriction is most stringent when r = 1. Therefore, we
obtain a lower bound for the choice of number of counting
qubits:

2p > π
√

N . (38)

With this choice of p we can obtain a slightly tighter bound
on the false negative probability as follows. From Eq. (B3),
the probability of a false negative when there exists one or
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more templates can be expressed as

δn = P(b = 0|r > 0) = 1

22p

N sin2(2pθ )

r
� 1

22p

N

r
. (39)

With the choice in Eq. (38), this probability is inversely pro-
portional to r, and for all r is bounded by

δn <
1

π2
. (40)

We conclude that the signal detection algorithm based on
quantum counting has a false alarm probability of 0 under all
conditions, and a false negative probability of 1/π2, given the
condition in Eq. (38) is met.

If the false negative rate is δn for each run, by repeating the
whole procedure � times, the probability of obtaining b = 0
every time is δ�

n. Therefore, the total tolerance of our proce-
dure would be δ�

n < π−2�. With a repetition logarithmic to its
tolerance, the total complexity of the procedure is O(�π

√
N ).

In GW research, practical applications normally involve
between 104 to 1012 templates [22,85]. With the lower bound
of the number of templates, 104, p can be chosen to be 9
according to Eq. (38). In the classical case, the computational
cost is approximately 104 oracle evaluations, while in the
quantum case, 512 evaluations suffice for a single run of
the signal detection algorithm. There is therefore an order of
magnitude difference in cost even for cases with the lowest
number of templates. The upper most extreme case that has
been analyzed has 1012 templates, in which p would be cho-
sen as 22, resulting in a computational cost of around 107

oracle evaluations. As a specific example, for a false nega-
tive probability of π−12 � 10−6 (one in a million), a total of
6 × 222 � 3 × 107 evaluations are required. To reduce this to
a one in a billion chance of a false negative, nine repetitions
of the algorithm are needed, or a total of around 4.5 × 107

oracle evaluations. This is orders of magnitude smaller than
the classical cost of 1012.

C. Retrieving matched templates

In the case of a successful signal detection (the identifi-
cation of 1 or more matching templates), we might wish to
further examine its corresponding parameters using (one of)
the matching templates. In this section, we will provide a
pseudo algorithm to retrieve one or all matching templates.

The procedure to retrieve matching templates is based on
Grover’s algorithm in Algorithm 1 and the result r∗ of Al-
gorithm 2. This is not the only way to retrieve a matching
template given an unknown number of matches [79], but
we anticipate that for most applications the signal detection
algorithm would run first to determine whether there is any
match above threshold. In any potential subsequent attempt
to retrieve a matching template, it is then natural to use the
estimate r∗ already obtained.

Discussion: The following is the explanation for each step
and the related computational cost for Algorithm 3. Template
retrieval:

Step 0 (lines 6 and 7): Calculating the number of repetitions
[cost: O(1)]. The output r∗ from Algorithm 2 is imported into
Algorithm 3, and we then calculate the number of required
repetitions of Algorithm 1 from Eq. (21).

Algorithm 3. Template retrieval complexity:
O(

√
N (M log M + log N ))

1: N ← number of templates
2: i ← index of templates
3: ρthr ← threshold
4: |0〉 ← Data |D〉
5: r∗ ← number of matched templates
6: Calculating the number of repetitions:

7: k∗ ← Round[ π

4

√
N
r∗ − 1

2 ]

8: procedure RETRIEVE ONE TEMPLATE

9: repeat
10: Algorithm 1 GROVER’S GATE (N , |D〉, ρthr), k∗ − −
11: until k∗ == 0
12: Output:
13: icorrect

Procedure 1 (lines 8–13): Retrieve one template [cost:
O(

√
N/r∗(M log M + log N ))]. Grover’s algorithm, Algo-

rithm 1, will be repeated k∗ times to achieve the desired
template index. The value of k∗ according to our previous
discussion will be O(

√
N/r∗).

The total cost of Algorithm 2 and retrieving one template
combined is

O(
√

N (M log M + log N )
√

N ). (41)

Procedure 2 : Retrieve all matched templates. In the case
where all the matched templates are required to be found, it is
not as trivial as repeating Procedure 1 r (assuming r∗ ≈ r)
times because it samples with replacement. It is, instead,
a coupon collector problem [77], which requires �(r log r)
repetitions of Procedure 1. As long as the number of match-
ing templates is smallcompared with the total number of
templates in the bank, the complexity is the same for both
procedures.

We conclude this section by discussing the overall prob-
ability of failing to return a matched template following
this procedure. Note that if this probability is less than 0.5,
then with a constant number of repetitions, it can be made
negligibly small to ensure successful retrieval of a matched
template.2

Without loss of generality, we consider in the following
analysis only one eigenvalue in Eq. (27), corresponding to
|s+〉. The corresponding probability distribution for different
measured values b is given in Appendix B. In any given run of
the procedure, the probability of returning a matched template
according to Eq. (20) is therefore given by

P(match) = | sin((2k∗ + 1)θ )|2, (42)

where k∗ is the number of Grover’s applications calcu-
lated through Eq. (21) from outcome b of Algorithm 2 and
corresponding estimates θ∗, r∗. Using Eq. (B2), the over-
all probability of failing to retrieve a matched template is

2There is nothing special about 0.5 here, as long as the probability
of failure is bounded away from 1 this is enough; 0.5 is a convenient
choice.
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FIG. 3. The red dotted line corresponds to the probability dis-
tribution for each state in a five-qubit counting register, with two
templates matching in a 64-template bank corresponding to one
eigenvalue defined in Eqs. (22). The black line is plotted according
to Eq. (B2) as a continuous function. Each peak contains one b state
with a width of 1, except for the central peak which has the two most
probable b states and a width of 2. The upper integer b state to b̃ is
referred to as b′ with the lower as b′′. The curve peaks at either 2pθ/π

or 2p(π − θ )/π depend on which eigenvalue the curve corresponds
to, and is labeled b̃.

given by

P(fail) =
2p∑

l=0

P(fail|b = l )P(b = l )

= 1

22p

2p∑
l=0

(
sin(2pθ )

sin(θ − π l
2p )

)2

| cos ((2kl + 1)θ )|2,
(43)

where kl is the number of repetitions of Grover’s algorithm
when b = l .

Let b′ be the closest integer larger than 2pθ/π , i.e., b′ =
�2pθ/π� = 2pθ/π + ε, where 0 � ε � 1; and b′′ the closest
integer smaller than 2pθ/π such that b′′ = 2pθ/π − (1 − ε).
b′ and b′′ are also the most probable values; recall that the
probability that the measured b value falls into the interval
of |b − b̃| � 1 is larger than 8/π2 [78]. This is illustrated in
Fig. 3 based on Eq. (B2), where the central peak contains the
two most probable b states.

Now an upper bound for P(fail) is given by only consid-
ering the probability of successfully retrieving a template for
these two most probable outcomes:

P(fail) < P(b′)P(fail|b′) + P(b′′)P(fail|b′′)

+ (1 − P(b′) − P(b′′)).
(44)

Now, to estimate P(fail|b′), note using Eq. (21) that

kb′ =
[

π

4θ∗
− 1

2

]

= π

4θ∗
− 1

2
± εk,

= 2p−2

b′ − 1

2
± εk, (45)

where in the second line 0 � εk � 0.5, and in the third line
we have used Eq. (29). In the context of GW searches, i.e.,
N � r, the small angle approximation can be applied and
consequently, θ ≈ √

r/N . Thus,

(2kb′ + 1)θ = 2p−1

b′ θ ± 2εkθ

= b̃

b′
π

2
+ O

(√
r

N

)
, (46)

from which we obtain using Eq. (42),

P(fail|b′) = 1 − | sin((2kb′ + 1)θ )|2

=
∣∣∣∣cos

(
b̃

b′
π

2

)∣∣∣∣
2

+ O

(√
r

N

)

=
∣∣∣∣cos

(
b′ − ε

b′
π

2

)∣∣∣∣
2

+ O

(√
r

N

)

=
∣∣∣sin

( ε

b′
π

2

)∣∣∣2
+ O

(√
r

N

)
. (47)

We can also rewrite P(b′) as follows:

P(b′) = 1

22p

(
sin(2pθ )

sin(θ − πb′
2p )

)2

= 1

22p

(
sin(b̃π )

sin
(

π
2p ε

))2

�
(

sin(επ )

πε

)2

, (48)

where in the last line we have used the small angle approxi-
mation for πε/2p, and b̃ = b′ − ε. With similar arguments for
b′′, the bound becomes

P(fail) <1 −
(

sin(πε)

πε

)2(
cos

( ε

b′
π

2

))2

−
(

sin(π (1 − ε))
π (1 − ε)

)2(
cos

(
1 − ε

b′′
π

2

))2

+ O

(√
r

N

)
. (49)

Recall from Eq. (38), we choose p = �log2(π
√

N )�. It is
convenient to express this as p = log2(π

√
N ) + εp, where

0 < εp < 1. Therefore, b̃ may be written

b̃ = 2pθ

π

= π
√

N2εp

π

√
r

N

= 2εp
√

r. (50)

Recall that b′ = �b̃�, and so b′, ε become

b′ = �2εp
√

r�; ε = �2εp
√

r� − 2εp
√

r. (51)

Thus for each r we can write Eq. (49) in terms of a single
parameter, εp, between 0 and 1 (neglecting the O(

√
r/N )

term). We optimize this numerically and plot the bound for
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FIG. 4. This shows for large N the joint probability of obtaining
outcome b and subsequently failing to retrieve a matched template is
bounded by 0.45 for different number of matching templates r.

various values of r in Fig. 4. In all cases this is less than
0.453, the value found numerically for r = 1, ensuring the
probability of successfully retrieving a template is no smaller
than

P(success) � 0.547. (52)

Note that for large r (but still requiring r � N),

P(fail|b′) � P(fail|b′′) � sin2

(
1√
r

π

2

)
� O

(
1

r

)
,

and thus we can expect the bound on the probability of failure
to decrease with r to a limit given by

P(fail) < 1 − P(b′) − P(b′′) + O

(
1

r

)

= 1 − 8

π2
+ O

(
1

r

)
. (53)

We here provide a specific example of the total probabil-
ity of failing to retrieve a matching template corresponding
to Eq. (43) in Fig. 5. This example has a template bank
of 217 templates, with r = 9, a real GW signal GW150914
that will be discussed in Sec. V. The total failing probabil-
ity P(fail) ≈ 0.34 < 0.5. Therefore, with a constant number
of repetitions of Algorithms 2 and 3, we are guaran-
teed with a matched template returned at a complexity of
O(

√
N (M log M + log N )

√
N ). This is less than the classical

cost of O(NM log M ). Therefore, we conclude that our quan-
tum algorithm offers a

√
N speed up with a practical oracle

when the number of matching templates is small compared
with the total number of templates in the bank.

IV. EXAMPLE USING QISKIT

In this section, we will present our proof of principle
model of template matching on a quantum computer us-
ing IBM’s Qiskit library [41] and their quantum computer
simulator ibmq_qasm_simulator.3 For the uninitiated reader,

3The QasmSimulator back end is designed to mimic an actual
device. It executes a Qiskit QuantumCircuit and returns a count

FIG. 5. For the case of a template bank with 217 templates, and
r = 9, the joint probability of obtaining outcome b and subsequently
failing to or succeeding at retrieving a matched template are plotted
in blue and yellow, respectively. The total probability of P(fail) ≈
0.34 < 0.5.

Appendix A details relevant quantum computing fundamen-
tals that are referred to throughout the following section.

Matching to real GW data requires a much larger quantum
processor than is currently available; in Sec. V we will present
a classical simulation of matching to actual detector data using
Python. Later, we also discuss the space requirements of the
matched filtering algorithm. Here, to demonstrate the basic
features of a realization on a quantum processor, we imple-
ment a simplified algorithm in which we imagine the data is
an n-bit string and the templates are all possible n-bit strings.
This means that the templates themselves are identical to the
index, and there is no need to explicitly perform the template
generation steps (Algorithm 1, Step 1). We consider that a
template is a match to the data if the bit strings are identical,
however, to simulate the possibility of nonexact matches, we
disregard the q lowest order bits and require only the n − q
highest order bits to match. The choice of q is analogous
to the choice of threshold SNR value ρthr in the main algo-
rithm. The proof of principle demonstration presented here is
thus an example of string matching, a problem considered in
Refs. [17–19].

The data consists of an n-qubit string stored in binary form
in the data register |D〉, where the first q qubits are ignored
allowing for 2q matching templates among 2n total templates.
Hadamard gates are used to initialize the template register |T 〉
to store a superposition of all possible n-bit templates. The
output qubit |d〉 in Eq. (11) is stored in the ancilla register
|A〉. An extra counting register with p qubits is added for the
quantum counting procedure.

In our template-matching oracle, which is presented in
Fig. 6, we match the template register and the data register
qubit-by-qubit using CNOT gates. In the case of an exact
match, all the qubits in the template register would be turned
into state |0〉. Therefore, after bit flipping, we can use a

dictionary containing the final values of any classical registers in the
circuit.

023006-12



QUANTUM ALGORITHM FOR GRAVITATIONAL-WAVE … PHYSICAL REVIEW RESEARCH 4, 023006 (2022)

FIG. 6. Quantum circuit diagram for our multiple-template
matching oracle and the diffusion operator, which are separated by
the vertical dashed line. The |D〉 and |T 〉 variables represent the data
and template registers, respectively, and |A〉 is the ancilla qubit. The
numbers label the ith qubit in the respective register. To simulate
multiple matches, the oracle does not act on the first q qubits. When
there is only one matching template, q would be 0.

multiple-control-NOT gate to realize phase kickback on the
ancillary qubit initialized into the |−〉 state. The diffusion
operator is constructed by a combination of Hadamard gates,
NOT gates, and a Cn-Z gate, and is illustrated in Fig. 6.

In GW searches, the true signal parameters will lie some-
where within the template bank parameter space and no
template will be identical to the signal. Therefore, a prede-
termined ρthr is chosen as the threshold in Algorithm 1. The
number of templates possessing ρ over this threshold, if there
are any, is unknown. Since the optimal number of applications
of Grover’s search algorithm is dependent on the number of
templates with ρ over the threshold, we need to apply the
quantum counting algorithm first.

To demonstrate a proof of principle of our algorithm, we
implement this simplified version with a range of qubits for
data and omission, allowing for multiple templates matching.
For each pair n, q, we run the quantum counting algorithm
first, in order to estimate the number of matches r, and then
Grover’s algorithm to find a match. From the output of the
quantum counting algorithm, we take the most probable value
of b to calculate an estimated r∗ and k∗ for the template
retrieval phase. For each algorithm, the experiment is trialed
2048 times and the output of the simulator gives a set of prob-
abilities calculated from the number of occurrences of each
possible measured value. The results are presented in Table II.
The number of counting qubits, p, is based on Eq. (38). When
the number of qubits for the data, n, is small, p is close to
n. However, as n increases, the difference between n and p
increases as well, allowing us to maintain the speedup of√

N discussed in Sec. III. The parameters k∗ and k are the
estimated and true number of applications of Grover’s gate
needed, given by the quantum counting process by Eqs. (29)
and (21) with r = 2q, respectively. The probability of the
search process returning us with one of the matched templates
given the most probable value of b is over 78% in all cases,
and the estimated number of templates, r∗, differs from the
actual number of matched templates, 2q, by no more than 2.

TABLE II. Trial runs of our algorithm with 2048 iterations on ibmq_qasm_simulator. We compare the number of iterations Grover’s
algorithm should apply and the number of matched templates based on the measured result, to their theoretical counterparts across a range
of data with different number of qubits with various number of omitted qubits in the matching process. We also state the P(Success) as the
probability of our algorithm returning us with a matched template in the final search in each case. The number of counting qubits is the
minimum allowed by Eq. (38) to minimise the false negative rate, δn.

ignored data counting measured Grover’s est. No. Grover’s
qubits length qubits count iter. est. templates iter. theo. P(Succ.)
q n p b k∗ r∗ k

5 5 30 4 1 4 0.9995
6 5 1 6 1 6 0.9961

0 7 5 1 8 1 8 0.9956
8 6 1 12 1 12 1
9 7 2 17 1 17 0.9990
5 5 3 2 3 3 0.9092
6 5 30 4 2 4 0.9985
7 6 61 5 3 6 0.96191 8 6 2 8 2 8 0.9961
9 7 125 10 3 12 0.9365
10 7 126 17 2 17 0.9995
5 5 4 1 5 2 0.7885
6 5 29 2 5 3 0.9072
7 6 60 3 5 4 0.89262 8 6 61 5 6 6 0.9688
9 7 124 7 5 8 0.9429
10 7 125 10 6 12 0.9395
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FIG. 7. The measurement of the quantum counting process for
six-qubit data matching with a five-qubit counting register. The first
qubit is ignored to allow for two templates matching. The theoreti-
cally most probable outcome b in this case, according to Eqs. (28),
should be either 2 or 30. The most probable measurement result is
11110, which in decimal is 30.

A specific instance is illustrated in Figs. 7 and 8. This
case corresponds to n = 6, q = 1, and the data is fixed to
be 000110. q = 1 means that we look to find templates that
match at least the last five qubits, i.e., 000110 and 000111.
This is the same scenario as the analytical example we pre-
sented in Fig. 2, and described in Sec. II D. The result of
the quantum counting process is shown in Fig. 7, where we
can see that the measured values corresponding to the two
eigenvalues from Eqs. (22) are the most probable to be ob-
tained. Converting the state indices from binary to decimal,
our result is a bimodal distribution with two modes: 2 and 30

FIG. 8. The measurement of Grover’s search process for six-
qubit data matching. The data is set as 000110 and the lowest qubit
is ignored to allow for two templates matching. With four iterations
suggested by the quantum counting process as a numerical output,
the two templates that meet the matching criteria are returned with
a probability higher than 99% altogether after 2048 trials on the
ibmq_qasm_simulator.

FIG. 9. Whitened time-series data (black) of the gravitational
wave event GW150914 sampled at 4096 Hz after a 20 Hz high-pass
filter overlaid by a signal template (orange) with component masses
m1 = 35.6 M� and m2 = 30.6 M� and with zero aligned spin, taken
from Ref. [87]. The signal can be more clearly seen in the 0.25 s plot
in the upper panel.

are the locations of the mode peaks with a standard deviation
less than 2. Both cases correspond to an estimate of 4 for k∗,
the same as the true value of k calculated from the real number
of templates. Although this result does not exactly equal that
given in Fig. 2, the fact that this algorithm is performed on a
quantum simulator with a limited number of runs needs to be
taken into consideration.

In Fig. 8, we show the result of Grover’s search process
based on the result from Fig. 7, in which the two match-
ing templates are recovered with high probability in relation
to other templates. Since they form an equal superposition,
the two matched templates are assigned approximately equal
probability. After performing 2048 trials of simulation in our
results, the two matched templates altogether constitute a suc-
cess probability >99%.

V. EXAMPLE SEARCH FOR GW150914

We now consider how this method can be used in the
context of GW astronomy, namely, the detection of the first
GW event GW150914 [42]. In this more complex scenario,
the data and template bank sizes are too large to be analyzed
using IBM’s Qiskit library, but we can compute the amplitudes
of quantum states that correspond to the template and counting
register at various stages of the algorithm described in Sec. III.
This is carried out on Python code that is publicly available
on Github [86]. The gravitational wave strain time-series data
that we choose to analyze is from the LIGO Hanford detector
and is centered around the GW150914 event time (GPS time
1126259462.4). It is 28 s in duration and sampled at a rate of
4096 Hz. The data is initially whitened and passed through a
high-pass filter with a 20 Hz lower cutoff frequency. The re-
sulting time series is shown in Fig. 9 in black. An approximate
matching template is plotted overlaying the data in orange.
We perform our analysis on a bank of 217 templates covering
the four-dimensional search space defined by the component
masses m1,2 and the aligned spin magnitudes s1,2 of the
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binary system. We search these templates to find instances that
correspond to matching templates.

We first consider applying the SIGNAL DETECTION proce-
dure of Algorithm 2 to determine if a signal is present in
the data, and acquire an estimate on the number of matching
templates in Sec. V A. In Sec. V B, we show how to continue
the analysis by using the TEMPLATE RETRIEVAL procedure of
Algorithm 3 to obtain matching templates.

A. Signal detection

First, |ψ0〉 from Eq. (30) is initialized and the strain data
is stored in |D〉. The indices for each of the N templates
are represented by |i〉 and are put into superposition with the
2p states in the counting register as described in Algorithm
2 lines 7–9. The controlled Grover’s operator is applied to
|ψ0〉 as described by Algorithm 2 lines 10–16 to compare the
templates to the data using Algorithm 1 as a subroutine. The
templates are created from |i〉 to produce |Ti〉 as described
in lines 3–5 of Algorithm 1. Here this is done by using a
lookup table that is computed prior to the analysis [85] that
accepts a given index as a key and returns the set of pa-
rameters {m1, m2, s1, s2} corresponding to the template. The
parameters are then given to the phenomenological waveform
model IMRPHENOMD to produce the template [60,88,89]. For
a quantum computer implementation, we anticipate that this
step would not be performed using such a lookup table, as
this would rely on using qRAM. Instead, an algorithm is
required that maps the N template indices to their respective
locations in the parameter space. The details of this algorithm
are beyond the scope of this paper but can be based on exist-
ing classical algorithms, such as those used for lattice-based
template placement [71,81,90–92], as any classical algorithm
can be performed on a quantum computer and made reversible
with at most polynomial overhead [74].

For each template in the bank, the oracle calculates ρ for
each time step using Eq. (10) and applying the FFT to produce
{ρi(t1), . . . , ρi(tM )} where M = 28 × 4096 is the number of
time steps. A classical search algorithm is also written into
the oracle to find ρmax

i = max({ρi(t1), . . . , ρi(tM )}). We then
simulate the phase kickback as described in Eq. (12), giving
f (i) = 1 if template i is a matching template, corresponding to
ρmax

i � ρthr and f (i) = 0 otherwise (nonmatching template).
This can be written explicitly as

f (i) =
{

1 if max
(

2
M�t

∣∣FFT
( Q̃c,i ( f )h̃( f )

Sn( f ))

)∣∣) � ρthr

0 else.
(54)

On a quantum computer, this function is evaluated for all
templates in parallel, but is repeated 2p − 1 times across the
counting register. The number of counting qubits is set to
p = 11, which is the fewest number of qubits in the counting
register to meet the condition set in Eq. (37). The probability
amplitude of states that correspond to matching templates over
each of these operations given GW150914 data is illustrated
in Fig. 10 for the analysis repeated with ρthr = 8, 12, 16, 18.
Over successive iterations the probability amplitude of the
states change according to Eq. (20) with θ defined in Eq. (15).
With larger ρthr, there are fewer matching templates r and
the period of the probability amplitude’s sinusoidal variation
over the counting register states consequently increases. As all

FIG. 10. Probability amplitude of a single matching template
over applications of the controlled Grover’s gate specified in lines
10–16 of Algorithm 2 for the four instances of ρthr = 8, 12, 16, 18
given GW150914 data and with p = 11. Larger ρthr decreases the
number of matching templates and therefore increases k. As all
matching templates are amplified equally for each case, for a case
with fewer matching templates, the total amplitude is divided into
fewer equal parts, leading to a larger amplitude for a matching
template in comparison to cases with more matching templates.

matching templates are amplified equally with each applica-
tion, the probability amplitude is divided between fewer states
with larger ρthr, which leads to the variations in the amplitude
scale seen in Fig. 10.

The amplitudes of the states that correspond to nonmatch-
ing templates evolve in a similar sinusoidal fashion as the
matching states as shown in Fig. 10 but out of phase. This
is illustrated in Fig. 11, where the probability of recovering
a matching template P(Match) (solid line) is compared to

FIG. 11. The probability of returning a matched template (solid
line) and nonmatching templates (dashed line) after the template
register is measured after k successive applications of Grover’s op-
eration given the case of ρthr = 18 from Fig. 10. The probability
amplitude of matching templates follows the sinusoid shown in
Fig. 10 for ρthr = 18 while that of nonmatching templates follow
the same sinusoid but with a π/2 phase shift. The probability of
returning a matching template is first maximized after k Grover’s
operations.
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FIG. 12. The probability of different outcomes b of measuring
the counting register after the inverse quantum Fourier transform is
applied to the states in Fig. 10. This process is described by lines 17
and 18 for the different cases of ρthr given p = 11. The distributions
are compared to the corresponding value of b̃ (dotted). The proba-
bility distributions corresponding to the two eigenvalues of Grover’s
operator are closer to 2p−1 for cases with more matched templates
(lower ρthr). Cases with fewer matched templates are closer to the
extremities of the range of b and have an increased probability of not
identifying any matched templates, corresponding to P(b = 0). This
probability can be reduced by repeating the algorithm.

the probability of recovering a nonmatching template (dashed
line) over successive applications of Grover’s operator for the
case of ρthr = 18. Initially, all states are equally probable so
the probability of returning a matching template is r/N , and
evolve according to Eq. (42) over Grover’s operations. The
probability of returning a matching template is increased by
applying Grover’s operator successively until a maximum is
reached after k applications as defined in Eq. (21).

An estimate of the number of matching templates can be
made from quantum counting as described in lines 17 and
18 of Algorithm 2 by applying the inverse QFT across the
counting register states {| j〉} to obtain {|l〉}. Figure 12 displays
the probabilities of each outcome b after a measurement is
performed on the counting register for the different cases
shown in Fig. 10 with p = 11. The probability of different
outcomes after measuring the counting register for the four
different cases are compared to the noninteger value b̃, defined
by the exact solutions of Eqs. (28), and plotted with a dotted
line in Fig. 12. The most probable outcome corresponds to
b′ or b′′ for each case, where the form of the distributions
are governed by Eq. (B2). The outcome of measuring the
counting register can equally be represented in terms of a
prediction of the number of matching templates according to
Eqs. (15) and (28) as shown in Fig. 13 for the example cases.
For each ρthr considered, the distributions peak near the actual
number of matching templates. Notably, the probability of
obtaining an outcome that corresponds to a nonzero number
of matching templates is much greater than the probability
of an outcome corresponding to zero matching templates for
all cases. This is equivalent to the probability of obtaining an
outcome other than b = 0 in Fig. 12. Obtaining an outcome
of b = 0 given the case where there are matching templates

FIG. 13. The probability distributions of outcomes from measur-
ing the counting register from Fig. 12 transformed to estimates on the
number of matching templates r∗ for each of the different cases of
ρthr. The distributions are compared to the true number of matching
templates r (dotted).

is a false negative, the probability of which is governed by
Eq. (40). Therefore, the rate of false negatives (made in ad-
dition to that produced from the classical matched filtering
approach) can be reduced by repeating the SIGNAL DETEC-
TION procedure. This should be compared to the case where
there are no matching templates to identify. In this case, the
measurement of the counting register always results in b = 0
corresponding to no matching templates. This negates the pos-
sibility of the analysis producing additional false alarms to the
classical matched filtering approach as P(r∗ > 0|r = 0) = 0.
If we only wish to determine if a signal is present in the data or
not, then the analysis can stop at this stage after the counting
register is measured. The cost of determining this outcome
requires 2p − 1 enquiries of the oracle, in comparison to the
∼O(N ) calculations of {ρ(t1), . . . , ρ(tM )} from Eq. (10) in the
classical case.

B. Retrieving matching templates

Similar to how the number of matching templates is es-
timated from the counting register’s measurement outcome
in Sec. V A, the optimal number of Grover’s operations is
estimated using Eq. (21). Figure 14 shows the probability of
obtaining different values of k∗ from the measurement for the
same cases of ρthr = 8, 12, 16, 18 used in the previous section,
and shows that the distributions peak around k, indicated by
the dotted line. Figure 14 is truncated at (2p−1 − 1)/2, so
as to exclude the outcome corresponding to zero matching
templates and only consider outcomes of b > 0.

Given the resulting k∗, the TEMPLATE RETRIEVAL proce-
dure in Algorithm 3 can be applied to obtain a matching
template. This involves again initializing |ψ0〉 from Eq. (30)
and applying GROVER’S GATE in Algorithm 1 to this state
iteratively k∗ times. This is done to maximize the probability
that measuring the template register will return an index that
corresponds to a matching template as illustrated in Fig. 11.
Each state that corresponds to a match will be amplified
equally so the probability of obtaining any given matching
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FIG. 14. The probability distributions of outcomes from measur-
ing the counting register from Fig. 12 transformed to estimates on the
optimal number of Grover’s applications k∗ for each of the different
cases of ρthr. The probabilities are compared to the true k (dotted) for
each case.

template is uniform. For a given k∗, the probability of obtain-
ing a matching template is governed by Eq. (42).

Figure 15 shows the template states that are amplified
from the Grover’s operations in their corresponding positions
in the parameter space for each of the different ρthr cases
from Sec. V A. The component masses m1 and m2 of each
binary system are compared to the system’s effective spin
χeff = (s1/m1 + s2/m2)/(m1 + m2), a reparameterization of
the component spins that adequately expresses their effect on
the template waveforms in a single parameter. The color of the
template markers indicate the maximum ρthr that correspond
to them meeting the matching criteria. Note that all templates
that correspond to a high ρthr are a subset of lower ρthr values,
such that all templates plotted are matches for ρthr = 8 but
only those marked in red correspond to ρthr = 18. The size of
the template labels is scaled to the log probability of obtain-
ing the index of that template from the measurement (where
each matching template is obtained with equal probability of
P(Match)/r), assuming the most probable k∗ Grover’s oper-
ations from Fig. 14 are applied. The classically calculated
maximum ρ across all the templates is found to be 19.05 and is
highlighted in the figure. This maximum ρ template coincides
with one of the templates that correspond to a match with
ρthr = 18.

It must be highlighted that nonoptimal outcomes of
measuring the counting register will often occur, and the cor-
responding k∗ used in the TEMPLATE RETRIEVAL procedure
will not maximally amplify the matching template states and
increase the probability of failing to retrieve a template as
explored in Sec. III C. Even given k∗ = k, there is a nonzero
probability of failing to retrieve a template. Therefore, the
template that corresponds to the index of a retrieved matching
template must be compared to the data using the standard
classical method to confirm that a true matching template
has been retrieved, by comparing the resulting ρ to ρthr. If
a matching template was retrieved, then an estimate of the
time of arrival and distance can be made by simply fitting the
template to the data. If a matching template is not retrieved,

then the TEMPLATE RETRIEVAL algorithm should be repeated.
Although repeating the algorithm if a match is not found does
not add to the asymptotic complexity of the algorithm, which
remains O(

√
N ), we are also interested in the pre-factors for

a rigorous comparison between classical and quantum algo-
rithms. In the remainder of this section, we explore strategies
to retrieve a template given a nonzero probability of failure,
and benchmark these against the classical case.

If the TEMPLATE RETRIEVAL procedure fails to return a
matching template, then we can choose to repeat the algorithm
given the same k∗ until a matching template is found. Given
the ρthr = 18 case with p = 11, we carry out 10 000 simu-
lations of measuring the counting register after the SIGNAL

DETECTION procedure to obtain k∗, before repeating TEM-
PLATE RETRIEVAL for each k∗ until a matched template is
found. The number of times f [from Eq. (54)] is evaluated for
each simulation is tallied in the red histogram of Fig. 16 with a
mean indicated by the red dashed line. This can be compared
to the number of times f is evaluated in the classical search
case where the function is called upon for every template, in-
dicated by the black dotted line. An alternative approach after
repeated failures to retrieve a matching template may be to
assume the given k∗ is suboptimal, and to reapply the SIGNAL

DETECTION procedure for another k∗ to use. We caution that as
the computational cost of the SIGNAL DETECTION procedure is
at least ∼4 times more costly than TEMPLATE RETRIEVAL the
tolerance to the number of failed applications of TEMPLATE

RETRIEVAL should be � 1. To illustrate this, a further 10 000
simulations are made as before, but the SIGNAL DETECTION

procedure is repeated to give a new k∗ for each application
of the TEMPLATE RETRIEVAL procedure, corresponding to a
fail tolerance of 1. The number of f evaluations of these
simulations using this extreme method is shown in the blue
histogram of Fig. 16 and can be seen to have a much greater
cost than the method without a fail tolerance. The intervals be-
tween adjacent blue histogram bins correspond to the factors
of 2p − 1, the number of f evaluations in applying SIGNAL

DETECTION to obtain the new k∗. Interestingl,y the mean num-
ber of f evaluations for this extreme case is still significantly
less than the classical case of calculating f for all templates.
While some choice of failure tolerance may somewhat reduce
the tail of the distribution above ∼2(2p − 1), this corresponds
to a fraction of ∼0.01 of the simulations when no failure
tolerance is applied and is therefore insignificant for this case
where N/r = 217/9 and p = 11.

For the case when all matching templates are desired, then
the step described previously must be repeated as described
in step 6 of Sec. III, which leads to matching templates being
sampled with replacement. This step would be costly for low
ρthr with a large proportion of matching templates, which may
occur for a loud signal and a low ρthr used for detection.
However, a procedure can be made using these algorithms
as subroutines to obtain matches with a high ρ while search-
ing using a low ρthr; a low ρthr can initially be assumed for
the search specified in Sec. V A, and given a measurement
corresponding to P(r∗ > 0), the value of r∗ obtained can be
assessed. If r∗ � 1, and the signal is presumed to be loud,
then the steps in Sec. V A can be repeated with larger ρthr.
This can be repeated to optimize the choice of ρthr until the
desired number of templates is obtained. The corresponding
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FIG. 15. The positions of templates in the bank that have their corresponding states amplified after applying Grover’s operator k∗ times to
an initially equal superposition of template states for ρthr. Here k∗ is assumed to be the most probable k∗ from the outcome probabilities shown
in Fig. 14. The templates are scattered across the binary system’s component masses m1 and m2 as well as the effective spin χeff. The template
marker size is proportional to the log probability of obtaining that template state from a measurement of the template register. With increasing
ρthr, the matching templates cluster more tightly together and around the template found to have the maximum ρ out of all the template (found
from a classical search).

value of k∗ from this step can then be used to amplify the
matching templates. However, each step of this optimization
approach requires applying the more computationally costly
SIGNAL DETECTION procedure and therefore should be made
as to minimize the number of steps, which is a point for future
work.

VI. APPLICATION: CONTINUOUS WAVES

The toy model example using Qiskit and the realiztic prac-
tical example applied to the GW150914 data serve primarily

as demonstrations of the method. The most impactful ap-
plication of this algorithm for gravitational-wave (GW) data
analysis is for problems where the optimal matched filter-
ing approach is intractable via current classical computing.
The continuous GW case is such a problem due to the vast
numbers of templates required to cover the search space
for unknown continuous wave sources to perform a fully
coherent search. A fully coherent search is one in which the
match between template and data assumes phase coherence
for the duration of the data span. Semicoherent approaches use
shorter data segments, requiring significantly less templates,
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FIG. 16. The number of evaluations of f required to retrieve
a matching template for 10000 simulations given the GW150914
example with ρthr = 18 and p = 11. The red histogram corresponds
to simulations where the value of k∗ from the SIGNAL DETECTION

procedure is assumed for TEMPLATE RETRIEVAL, which is repeated
until a matching template is found. The blue histogram depicts simu-
lations where the quantum counting algorithm is repeated to obtain a
new k∗ for each application of the TEMPLATE RETRIEVAL algorithm.
The mean for both extreme methods of ∼2, 418 and ∼5, 575 (red,
blue dashed lines respectively) are compared to the classical case
where all 217 templates are evaluated (dotted line).

and then incoherently combine results from each segment.
This latter approach is computationally feasible but has re-
duced sensitivity.

If performing a fully coherent search for a continuous GW
signal, the simplest model to assume for the time-varying
signal phase as defined at the solar system barycenter (SSB)
can be further expressed as the Taylor expansion

�(tSSB, �θ ) = φ0 + 2π
∑
k=1

fkt k
SSB

k!
, (55)

where fk is the kth derivative of the phase with respect
to the solar system barycentre (SSB) time. We further re-
quire the transformation between the times defined at the
(SSB) and the detector frame which we represent as

tSSB = t + �r(t ) · n(α, δd) + δtparallax + δtShapiro

+ δtEinstein + δtbinary. (56)

The first term here (the Roemer delay) is the dominating
contribution to the timing correction. This term is due to the
varying position of the detector �r(t ) as the Earth spins and
the orbits the Sun relative to the position of the source on
the sky. We denoted the source position by the unit vector
n(α, δd) dependent on the right ascension α and declination
δd. For observations of length ∼1 year, it is orbital motion,
in particular, that then dictates the number and density of
templates that are required on the sky parameters.

A rigorous calculation of the parameter-space metric gov-
erning the sky and the GW frequency and its derivatives can
be found in Ref. [70] when applied to the so-called F -statistic
[62]. This statistic is the maximum likelihood ratio for a
given template location analytically maximized over the four

amplitude parameters (the received strain amplitude h0, the
initial reference phase φ0, the polarization angle ψ , and the
inclination angle ι) governing a continuous signal. A useful
approximation of the number of required templates can be
obtained by considering the allowed variation in each of the
search parameters that would lead to a 1 radian phase differ-
ence over the course of an observation. This is based on the
fact that such a phase difference between signal and template
would result in a tolerable level of SNR loss for a coherent
analysis. This order of magnitude calculation gives us

N ∼ 2 × 1028

(
f

1kHz

)2( T

1year

)3(
� f

1Hz

)(
� f1

10−9Hz s−1

)
(57)

as the total number of templates to search the entire sky over a
1Hz frequency band at 1kHz. Typical searches are performed
on small subbands analyzed in parallel on ∼1000 node com-
puting clusters.

In a similar fashion to the technique used in the compact
binary coalescence (CBC) search to optimize the search over
time of arrival, the FFT can be used to optimize the search
over the intrinsic frequency f0. Hence the template bank can
be divided into the Cartesian product between frequency tem-
plates and the remainder, where the overall classical search
cost is linear in the number of templates over the sky and
frequency derivative,

Nsky, f1 ∼ 1020

(
f

1kHz

)2( T

1year

)2(
� f1

10−9Hz s−1

)
, (58)

but the joint cost of calculating the detection statistic for a
single sky and frequency derivative value, over all possible
intrinsic frequencies scales as O(Nf0 log Nf0 ), where

Nf0 ∼ 2 × 108

(
T

1year

)
. (59)

The total number of templates in this simple scenario, even
when considering a narrow band 1Hz search is many orders
of magnitude greater than the number searched in previous
analyses (in Ref. [22], the total number of templates searched
was ∼1014 which also included templates over the second fre-
quency derivative f2). Hence, the fully coherent all-sky search
over frequency and frequency derivative for one year of data
is currently completely infeasible using classical computing.

We have shown that the quantum approach offers a speedup
of O(

√
Nsky, f1 ) in the number of calculations required. How-

ever, the big O notation refers to asymptotic scaling and tells
us nothing about the prefactors, which could be different in the
classical and quantum cases. To claim an expected improve-
ment for a particular case, we need to be a bit more precise.
To be specific, for the calculation of the detection statistic, the
quantum algorithm requires precisely the same steps as the
classical algorithm but requires these to be done in a reversible
way, and in addition requires the reversal of the calculation to
be performed each time to disentangle these registers from the
index register. Standard techniques may be used to construct
reversible versions of classical Boolean circuits, which may
be implemented directly as quantum circuits. Any classical
circuit with T gates and S bits may be converted to a reversible
circuit with O(T 1+�) gates and O(S log T ) bits. Specifically,
for any � > 0 it is possible to construct a reversible circuit
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in which the number of gates required is upper bounded by
3T 1+� [72]. We thus neglect the factor T �, which may be
made arbitrarily small, leading to a factor of 3 in the number
of gates required. The requirement to erase the intermediate
calculations adds a further factor of 2, thus there is a factor
of 6 in the number of gates required for the detection statistic
calculation in the quantum algorithm compared to the classi-
cal algorithm.

Classically, to be certain there is no signal, we need to
check against all templates, so we require Nsky, f1 such calcu-
lations. In the quantum algorithm to determine whether there
is a match or not, we choose p to be the smallest integer larger
than p = log2(π

√
N ), requiring around π × 1010 iterations.

This gives a false negative with probability at most 1/π2. As
discussed, � repetitions of the whole procedure reduce the
probability of a false negative to π−2�. Thus, e.g., a false
negative probability of order 10−6 requires six repetitions.
Finally, the inverse Fourier transform and measurement steps
result in an addition of a logarithmic number of gates and may
be neglected. Overall, for a false negative probability of 10−6,
we therefore require around 2 × 1011 iterations, each of which
requires a factor of 6 more gates than the classical calculation.
The overall number of gates needed is of order 1012T , com-
pared to 1020T classically, representing a reduction by a factor
of 108 in the number of operations required.

VII. DISCUSSION

We have presented a quantum algorithm for matched filter-
ing for GW data analysis. Our algorithm, based on Grover’s
search algorithm, offers a square-root speedup in the com-
putational cost of searching through a large template bank.
As the number of templates is the limiting factor regarding
computational feasibility in GW analysis for certain astro-
physical signals, this is a natural application of Grover’s
algorithm. The key theoretical insight that we have used is
that for problems of astrophysical interest, the templates are
readily computable from theoretical models, and need not be
prestored in a database, thus eliminating the need for qRAM.
This allows us to construct an oracle, which is readily used in
Grover’s algorithm, and its extension in quantum counting, to
determine whether there are templates that produce an SNR
above a given threshold, and to find matching templates.

We have presented proof-of-principle demonstrations of
template matching on IBM Qiskit, and through a Python sim-
ulation applied to actual GW data. We have also discussed the
application to continuous wave searches, currently infeasible
with classical techniques. We have focused on applications to
GW data analysis, but the algorithm presented here could of
course be readily applied to any template matching problem in
which the number of templates is much bigger than the size of
any one template, and in which the templates can be calculated
efficiently.

As we are still some way from scalable, error-corrected
quantum processors, it is worth outlining the space
requirements of our algorithm, as well as the gate complexity.
With N templates and signal data consisting of M time steps,
we require a counting register of size �log2 π + 1

2 log2 N�
qubits, an index register of log2 N qubits, and two registers
of 64M qubits (if each time sample is stored as a floating

point number, using 8 bytes, or 64 classical bits): one to
store the data, and one to store a template corresponding to
each index. Recall that these are stored in superposition, so
only one template register is needed. In addition, to produce
the templates and perform the matched filtering calculation
reversibly, we introduce a modest space overhead logarithmic
in M. The dominant contribution to the overall space needed is
therefore the size of the data. For the example given in Sec. V,
this is 28 seconds of data at 4096 Hz, giving M = 28 × 4096.
With 8 bytes for each data point, our algorithm becomes
feasible with an error-corrected device with a few Megabytes
of memory. For fully coherent searches over longer data sets,
this increases linearly, and the continuous wave application
discussed in section VI requires around 3Gb of memory. The
current state of the art is around 50–100 physical qubits [3,93].
Nonetheless, IBM’s ambitious quantum hardware road map
aims for over 1000 qubits by 2023, in their proposed Condor
processor, a device that they view as “a milestone that marks
our ability to implement error correction and scale up our
devices” [93].

We note also that we have discussed so far only the gate
complexity. In the first error-corrected devices, quantum gate
operations will be much slower than their classical coun-
terparts, due to both intrinsic gate operation times and the
overhead introduced by quantum error-correction. Quadratic
speedups, such as that discussed here, do not seem to be
promising for runtime advantages for modest fault-tolerant
devices [94]. Taking this into account, combined with the
quite demanding space requirements outlined above, we do
not claim this as a near-term application. However, in the
medium to long term with improvements in quantum hard-
ware and in error correction, quantum algorithms have the
potential to offer significantly improved sensitivity in GW
searches.

This represents just the first step in constructing possible
applications of quantum computation to GW data analysis.
Employing Grover’s algorithm to speed up the search for a
match within a large template bank is the first natural step
in exploring connections between the two fields. Possibilities
for improvement could be to incorporate prior knowledge
into the initial state prepared, giving higher weighting to
templates considered a priori more likely. This has already
been explored classically [95,96], and as long as the resulting
superposition may be prepared efficiently, such approaches re-
main amenable to amplitude amplification [97]. The speedup
relative to the classical case would remain quadratic but the
overall efficiency of both algorithms can be improved.

Another possibility is employing amplitude encoding to
store the data and templates. In amplitude encoding, the am-
plitude of the data at a given time point is stored as the
amplitude of a quantum state. This would significantly re-
duce the space requirements from an O(M ) qubit processor
to O(log M ). The advantage of the digital encoding we have
used here is that arithmetic operations needed to produce
the templates and compute the SNR to check for a match
above threshold are readily translated from classical circuits.
The required matching is more challenging using amplitude
encoding, and would likely add to the complexity of this step.
A final possibility is to apply machine-learning techniques,
either in digital or amplitude encoding, to analyze GW data.
This seems promising as machine learning is considered a
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FIG. 17. The Pauli gates expressed in a quantum circuit.

promising area of study for applications for NISQ devices
[25]. Classical machine-learning techniques are beginning to
be employed in GW detection [98,99] as well as other GW
areas [100], and we expect that more sophisticated quantum
machine learning techniques may yield further quantum ad-
vantages. Exploring the possibility of amplitude encoding,
and of quantum machine learning are, however, left for future
work. As we fully enter the era of GW astronomy, better
performing and more efficient data processing techniques will
be needed to fully exploit this new window on the universe.
In parallel, as we embark on an era of quantum computational
advantage, we anticipate a fruitful interplay between the two
fields in harnessing the new computational capabilities offered
by this emerging technology.
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APPENDIX A: QUANTUM GATES

A quantum computer is roughly composed of three parts:
(1) quantum registers to store qubits, (2) a series of quantum
gates to perform unitary transformations on the input states,
and (3) the measurement procedure to read out the final result.

The qubits have only two orthogonal states, similar to clas-
sical computation. The computational basis states are labeled
by the associated binary string. They are often represented by
column vectors as

|0〉 =
[

1
0

]
, |1〉 =

[
0
1

]
. (A1)

The other pair of orthogonal states frequently used are |+〉
and |−〉, defined as

|+〉 = 1√
2

(|0〉 + |1〉) = 1√
2

[
1
1

]
, |−〉 = 1√

2
(|0〉 − |1〉)

= 1√
2

[
1

−1

]
. (A2)

Quantum gates are normally represented by unitary matri-
ces. The quantum gates only applied to one qubit are called
single-qubit gates and the ones involving multiple qubits are
called multiple-qubit gates.

One set of the most frequently used single-qubit gates are
the Pauli gates, whose matrix forms are the associated Pauli
matrices. They rotate the qubit by π radiance around the
corresponding axis on the Bloch sphere. The Pauli-X operator
is of particular interest because it functions as the classical
NOT gate. They are represented in a quantum circuit diagram
shown in Fig. 17.

FIG. 18. The Hadamard gate expressed in a quantum circuit.

Another important single qubit gate is the Hadamard gate,
which interchanges the states between the computational basis
and the |+〉 and |−〉 basis,

Ĥ = 1√
2

[
1 1
1 −1

]
, (A3)

and is represented in a quantum circuit as shown in Fig. 18.
The multiple-qubit gates used in this paper are controlled

gates, which are often written as Cn-U . A controlled gate act
on the state of two types of qubits: the control qubits and the
target qubits. The operation will be applied to the target qubit
if and only if all the n control qubits are in state |1〉. One
example would be the CNOT gate,

ÛCNOT =

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎦, (A4)

and its corresponding quantum circuit expression is shown in
Fig. 19.

APPENDIX B: PROBABILITY OF FALSE NEGATIVE

Recall the state of the register after inverse Fourier
transform |ψ6〉 in Eq. (27). Without losing generality, only
one eigenstate is considered for the analysis. According to
Eq. (27), the probability of a certain |b〉 measured in the
whole state would simply be twice of the probability of that
in one eigenstate. To consider the amplitude for the measured
state |b〉 for eigenstate |s+〉, we can sum up all its amplitude
across a:

1

2p

2p−1∑
a=0

ei2πa( θ
π

− b
2p )|b〉 = 1

2p

ei2π2p( θ
π

− b
2p ) − 1

ei2π ( θ
π

− b
2p ) − 1

|b〉

= 1

2p

sin
(
π2p

(
θ
π

− b
2p

))
sin

(
π

(
θ
π

− b
2p

)) eiπ (2p−1)( θ
π

− b
2p )|b〉. (B1)

The probability of state |b〉 would be

P(b) = 1

22p

(
sin

(
2pθ

)
sin

(
θ − bπ

2p

))2

. (B2)

From the discussion in Sec. III A, the only state situation
will trigger a no signal result is when |b〉 = 0. According to
Eq. (B2), the probability of false negative is

P(r∗ = 0|r > 0) = P(b = 0)

= 1

22p

( sin
(
2pθ

)
sin(θ )

)2
. (B3)

FIG. 19. The CNOT gate expressed in a quantum circuit.
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