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Immunotherapy has revolutionized the treatment of many cancer types. However,
pancreatic ductal adenocarcinomas (PDACs) exhibit poor responses to immune
checkpoint inhibitors with immunotherapy-based trials not generating convincing
clinical activity. PDAC tumors often have low infiltration of tumor CD8+ T cells and a
highly immunosuppressive microenvironment. These features classify PDAC as
immunologically “cold.” However, the presence of tumor T cells is a favorable
prognostic feature in PDAC. Intrinsic tumor cell properties govern interactions with the
immune system. Alterations in tumor DNA such as genomic instability, high tumor mutation
burden, and/or defects in DNA damage repair are associated with responses to both
immunotherapy and chemotherapy. Cytotoxic or metabolic stress produced by radiation
and/or chemotherapy can act as potent immune triggers and prime immune responses.
Damage- or stress-mediated activation of nucleic acid-sensing pathways triggers type I
interferon (IFN-I) responses that activate innate immune cells and natural killer cells,
promote maturation of dendritic cells, and stimulate adaptive immunity. While PDAC
exhibits intrinsic features that have the potential to engage immune cells, particularly
following chemotherapy, these immune-sensing mechanisms are ineffective.
Understanding where defects in innate immune triggers render the PDAC
tumor–immune interface less effective, or how T-cell function is suppressed will help
develop more effective treatments and harness the immune system for durable outcomes.
This review will focus on the pivotal role played by IFN-I in promoting tumor cell–immune
cell cross talk in PDAC. We will discuss how PDAC tumor cells bypass IFN-I signaling
pathways and explore how these pathways can be co-opted or re-engaged to enhance
the therapeutic outcome.
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INTRODUCTION

PDAC accounts for more than 90% of pancreatic malignancies and is currently the third leading
cause of cancer-related death in Western countries (Luchini et al., 2016; Pishvaian and Brody, 2017;
McGuigan et al., 2018). High mortality rates are mainly due to late detection, a high level of tumor
heterogeneity, and a desmoplastic immunosuppressive microenvironment (Ryan et al., 2014).
Although advances in treatment have significantly increased 5-year survival rates for many other
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cancer types (Brahmer et al., 2012; Nixon et al., 2018), the overall
5-year survival rate for PDAC is only 10% (Siegel et al., 2021).
Mono- and multi-agent chemotherapy regimens are the standard
treatments. Conventional cytotoxic therapies in PDAC include
the nucleoside analog gemcitabine which may be combined with
the microtubule poison nab-paclitaxel, and FOLFIRINOX
(folinic acid, fluorouracil, irinotecan, and oxaliplatin)
(Mohammad, 2018). Both treatment regimens improve the
overall survival for patients with localized disease but are less
effective for the majority of patients who are diagnosed with
advanced or metastatic disease (Bliss et al., 2014). Improvements
in progression-free survival have been achieved for patients with
BRCA-mutated tumors when PARP inhibitors are used as
maintenance treatment following chemotherapy (Golan et al.,
2019). Therefore, despite incremental advances, there is an urgent
need for new therapeutic approaches.

Immune checkpoint inhibitors (ICIs) are revolutionizing the
treatment of cancer, mainly when used in combination with
chemotherapy or radiotherapy. In ICI-sensitive diseases such
as non-small-cell lung cancer (Lim et al., 2020), head and
neck squamous cell carcinoma (Burtness et al., 2018), and
triple-negative breast cancer (Schmid et al., 2018), combining
chemotherapy and immunotherapy generates durable responses
in a subset of patients (Reck, 2018). Combining standard-of-care
chemotherapy with ICIs has been largely unsuccessful in PDACs
[reviewed in Henriksen et al. (2019)], albeit in trials where
patients were not selected based on any favorable biomarker.

PDAC is generally considered immunologically cold with a
low incidence of tumor-infiltrating lymphocytes (TILs)
(Stromnes et al., 2017; Blando et al., 2019; Gorchs et al., 2019;
Seo et al., 2019), thought to be a result of poor T-priming by the
tumor. Poor T-cell priming or activation in PDAC is commonly
attributed to low neo-antigen content, although PDAC tumors do
have potentially actionable neo-epitopes. Indeed PDAC tumors
with good quality neo-antigens are associated with better
outcomes (Bailey et al., 2016a; Balachandran et al., 2017). How
PDAC tumor cells evade the immune system is unclear. Tumor
cell intrinsic mechanisms play important roles in regulating both
intrinsic and therapy-induced engagement or avoidance of the
innate or adaptive immune systems (reviewed inWellenstein and
de Visser (2018)). Tumor cells can evade the immune system by
reducing antigen processing, cell surface antigen presentation, or
expression of cell surface proteins that engage innate immune
cells. They also secrete growth factors, chemokines, and cytokines
that shape an immunosuppressive microenvironment
(Grivennikov et al., 2010; Gonzalez et al., 2018). In addition to
high tumor T-cell infiltration, “immunologically hot” tumors that
respond well to immunotherapy-based treatment typically
express IFN-I (IFN-α, -β), type II interferons (IFN-II) (IFN-γ),
and high levels of interferon-stimulated genes (ISGs) that sustain
antitumor immune responses (Gajewski et al., 2013; Corrales
et al., 2015; Wang and Wang, 2017). PDAC does not commonly
show high expression of interferons or ISG signatures, but if
tumor-targeted therapies such as chemotherapy or targeted
agents induce robust IFN-I and/or innate responses, immune
system engagement is more likely to occur. Understanding why
this fails in PDAC could guide new therapeutic or patient

selection approaches that will ultimately harness the immune
system to deliver more durable clinical responses.

IFN CASCADE IN TUMORS

The IFN cascade in tumors is complex, as shown in Figure 1.
Type I interferons (IFN-α and -β) can be expressed as a result of
stress damage to tumor cells or stromal cells such as macrophages
(Medrano et al., 2017). Type I interferons stimulate many cells in
the TME driving both tumor cell and immune cell responses
(Zitvogel et al., 2015). The secretion of type I interferons can kill
or senesce tumor cells and directly or indirectly stimulate T cells,
natural killer (NK) cells (Fenton et al., 2021), and potentially
macrophages or dendritic cells to secrete the type II interferon
(IFN-γ). The type II interferon is one marker of cytotoxic
immune effector cells in the TME (Bhat et al., 2017). The IFN
system can be self-enhancing. For example, chemotherapy-
mediated damage may induce the secretion of IFNs from both
tumor cells and cells in the TME amplifying immune cell
activation throughout the tumor (Budhwani et al., 2018).
Understanding the cause and effect in this pivotal cascade is
challenging as both type I and -II interferons drive common
signaling cascades. IFN responses in tumors are commonly
monitored using bulk RNA gene expression signatures which,
in the absence of single-cell sequencing approaches, are unable to
distinguish which cells initiate, or which cells respond to IFN-
driven signals. This complex interplay between cells in tumors
presents different opportunities to drive IFN induction and
activation of antitumor immune cell activity, even when
normal pathways are dysfunctional.

CHEMOTHERAPY AND
IMMUNOMODULATION IN PDAC

Chemotherapeutic agents are first-line standard-of-care
treatments for PDAC. Despite that the combination of
gemcitabine with nab-paclitaxel and FOLFIRINOX increases
efficacy compared to gemcitabine alone, patients’ overall
survival rates remain particularly low, and toxicity limits their
use (Conroy et al., 2011; Von Hoff et al., 2013; Javed et al., 2019).
PDAC patients rapidly develop resistance to chemotherapy
through both tumor cell intrinsic and tumor
microenvironmental factors (Chand et al., 2016). Despite the
limited benefit, there is evidence of chemosensitivity in subsets of
PDAC patients. For instance, several clinical trials report
increased sensitivity to platinum-based chemotherapy in DNA
damage repair (DDR)-deficient patients (Pishvaian et al., 2019;
Golan et al., 2014; O’Reilly et al., 2020; Blair et al., 2018).

In addition to tumor cell cytotoxic activity, chemotherapies
may also potentiate immunomodulatory responses (Bailly et al.,
2020; Piadel et al., 2020). Treatment of PDAC with gemcitabine
has been associated with enhanced T-cell-mediated responses
through increased naive T-cell activation (Plate et al., 2005) and
CD8+ T-cell function, which is in part dependent on dendritic cell
(DC) activity (Plate and Harris, 2004). In addition, following
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gemcitabine or FOLFIRINOX treatment, suppressive immune
populations such as regulatory T cells (Tregs) (Kan et al., 2012;
Homma et al., 2014; Liu et al., 2017; Hui et al., 2021; Sams et al.,
2021) and myeloid-derived suppressor cells (MDSCs) (Suzuki
et al., 2005; Vincent et al., 2010; Eriksson et al., 2016; Wu et al.,
2020a) are downregulated in patients and in preclinical
models. In mice, gemcitabine also increases the
immunogenicity of tumor cells (Liu et al., 2010).
Therefore, global changes in the immune profile of tumors
following treatment can be both direct and indirect.
Consistent with these findings, an in vitro analysis of the
proteasome and immunopeptidome of human PDAC cell
lines showed that gemcitabine induces overexpression of
MHC-I molecules (Gravett et al., 2018) with novel
peptides. Similarly, in KPC tumor-bearing mice, prolonged
treatment with gemcitabine leads to increased MHC-I along
with increased secretion of CCL/CXCL chemokines (Principe
et al., 2020). Gemcitabine and oxaliplatin (the platinum-
based element of the FOLFIRINOX regimen) also induce
the expression of immunogenic cell death-associated
damage-associated molecular patterns (DAMPs) including
ATP and HMGB1 (Hayashi et al., 2020; Smith et al., 2021),
which can signal NK cells and potentiate the innate immune
system. Finally, in PDAC patients, chemotherapy has been
shown to stimulate the immune response by increasing T-cell
response to tumor-associated antigens (Mandili et al., 2020).

The immunostimulatory effects of these chemotherapeutics
highlight their potential use in combination with immuno-
oncology therapies. Especially with ICIs, in vitro and in vivo
studies suggest that gemcitabine increases the expression of
immune checkpoint molecules such as PD-L1 (Principe et al.,
2020; Smith et al., 2021). While favorable changes in the immune
profile of tumors can be seen following treatment, why these
changes do not translate into more sustained benefit alone or in
combination with other therapies remains unclear. This may be
because the impact of chemotherapy on tumor cells is rapidly
reversed or because the TME remodels quickly restraining the
potential benefits. Understanding the kinetics of induction and
recovery in the tumor cells versus TME following chemotherapy
treatment would give useful insights.

TREATMENTS TARGETING IMMUNE
CELLS ALONE ARE NOT ACTIVE IN PDAC

Clinically, antitumor immune responses are stimulated by
therapeutic antibodies that target T-cell checkpoints such as
PD-1/PD-L1 and, to a lesser extent, CTLA-4/B7H4, which act
to inhibit T-cell function. In PDAC, both PD-L1 and CTLA-4 are
upregulated and associated with poor prognosis (Nomi et al.,
2007; Cancer Genome Atlas Resea, 2017). Early trials showed no
beneficial response to ipilimumab (anti-CTLA-4 monoclonal

FIGURE 1 |Overview of IFN-I and IFN-II cascade in tumors. IFN-I (interferons α and β) can be expressed by damaged tumor cells, epithelial and stromal cells (e.g.,
macrophages) as a result of cell damage or stimulation. Secreted IFN-I activates macrophages, NK cells, and T cells, and kills other tumor cells. Cross talk can also be
mediated by DNA or RNA fragments or DAMPs such as cGAMP. T cells produce IFN-II (IFN-γ) that is cytotoxic to tumor cells. Dying tumor cells can release further
DAMPs or cell fragments that further stimulate new macrophages or other innate immune cells (e.g., dendritic cells not shown). IFN = interferon; NK = natural killer;
cGAMP = cyclic guanosine monophosphate; DAMP= damage-associated molecular patterns (Created using BioRender®).
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antibody) in patients with metastatic and locally advanced PDAC
(NCT00112580), although treatment was associated with
advanced toxicity (Royal et al., 2010). These results were
mirrored with another anti-CTLA-4 monoclonal antibody
(NCT02527434), tremelimumab (Sharma et al., 2018). Anti-
PD-L1 monoclonal antibodies showed no objective response in
the 14 PDAC patients in a phase I clinical trial (NCT00729664)
(Brahmer et al., 2012), while disease control (partial response or
stable disease) was observed in 21% of the 29 PDAC patients in
another phase I trial with durvalumab (NCT01693562) (Segal
et al., 2014). Interestingly, PD-1 blockade with pembrolizumab
showed a 62% objective response in a phase II clinical trial in 8
PDAC patients harboring mismatch repair (MMR) deficiency
(NCT01876511) (Le et al., 2015). Pembrolizumab has now been
approved by the Food and Drug Administration (FDA) for solid
tumors harboring MMR defects including PDAC (Le et al., 2017);
however, these only represent about 1% of PDAC patients (Hu
et al., 2018). In the other patients, very limited responses to ICIs
have been observed. Some studies are still ongoing such as a phase
II trial of atezolizumab (NCT03829501), as well as combinations
of antibodies targeting CTLA-4 and PD1/PD-L1
(NCT01928394). Consistent with findings in other tumor
types, it is probable that combination approaches, for example,
with chemotherapy, will be required.

Cell-based vaccines alone or combined with chemotherapy
and ICI present alternative strategies to achieve tumor-targeted
immune stimulation. The granulocyte–macrophage colony-
stimulating factor (GM-CSF)-secreting allogeneic pancreatic
tumor cell vaccine (GVAX) consists of irradiated human
allogeneic pancreatic tumor cells that secrete GM-CSF (Lutz
et al., 2011). It is given as a cellular vaccine to present
pancreatic cancer cell epitopes and also improve antigen
presentation by inducing GM-CSF-mediated maturation of
dendritic cells. Despite showing positive changes in the
immune microenvironment and potential efficacy in early
clinical trials (Lutz et al., 2014), a more extensive phase II trial
in combination with the CTLA4 targeting ICI ipilimumab failed
to show increased clinical benefit (Wu et al., 2020b). Studies like
this which assess immune biomarker changes suggest that while
the activation of immune cells can be achieved in PDAC, they do
not translate into a durable effect. The use of GM-CSF in GVAX
is interesting as it has both positive and negative effects. In
addition to promoting dendritic cell recruitment, increased
GM-CSF can promote pancreatic tumor development
(Pylayeva-Gupta et al., 2012) and drive recruitment of
immunosuppressive immune cells (Bayne et al., 2012).

CHEMOTHERAPY AND IMMUNOTHERAPY
COMBINATIONS IN PDAC

Greatest response to ICI treatment is observed in combination
with chemotherapy. Both chemotherapy and radiotherapy can
increase antitumor immunity by inducing immunogenic tumor
cell death and cell stress signaling pathways, and depleting
immunosuppressive cells or stimulation of T cells to
complement the effects of ICI treatment (Burtness et al., 2018;

Galluzzi et al., 2020; Salas-Benito et al., 2021). In PDAC, the
combination of ICI with chemotherapy is marginally more
effective than monotherapy ICI treatment; however, benefits
remain limited. Combining ipilimumab with gemcitabine in a
phase Ib trial (NCT01473940) resulted in 2 partial responses and
five stable diseases out of 11 patients (Kamath et al., 2020). In a
larger phase I clinical trial that combined tremelimumab and
gemcitabine (NCT00556023), 2 out of 28 PDAC patients showed
a partial response and seven stable diseases (Aglietta et al., 2014).
Chemotherapy in combinations with ICIs compared to
chemotherapy alone conferred longer overall survival in a
clinical trial comprising 58 patients with advanced PDAC (Ma
et al., 2020). Other phase I and Ib trials have combined nivolumab
or pembrolizumab with nab-paclitaxel and gemcitabine. In the
first of these trials (NCT02309177), nearly half of the 50 PDAC
patients had stable disease, 8 partially responded and one
completely responded (Wainberg et al., 2020). In the second
trial (NCT02331251), all patients achieved disease control, of
which 3 showed partial response (Weiss et al., 2018). In a large
phase II clinical study looking at the combination of gemcitabine
and nab-paclitaxel with or without durvalumab and
tremelimumab (NCT02879318), no benefits in terms of
progression-free and overall survival were observed in the 191
metastatic PDAC patients; however, disease response rates were
improved (Renouf et al., 2020).

Overall, chemoimmunotherapy improves response rates in
PDAC compared to ICI or chemo monotherapies; however, these
benefits remain limited and do not impact survival. Hence, the
combination of ICI and chemotherapy is relevant in PDAC, but
further potentiation of the immune system is needed to obtain
significant benefit.

PDAC IMMUNE MICROENVIRONMENT
AND IFN-I

PDAC is characterized by a dense tumor stroma mainly
composed of the extracellular matrix, fibroblasts, and
vasculature (Hosein et al., 2020). It also contains
immunosuppressive cell types such as MDSCs and Tregs,
which accumulate during disease progression to suppress
CD4+ and CD8+ T-cell function, contributing to poor
prognosis (Clark et al., 2007; Bayne et al., 2012; Thyagarajan
et al., 2019; Huber et al., 2020).

Transcriptomic profiling of PDAC has identified 2 broad
consensus subtypes, namely, classical and basal-like, which
largely represent predominant neoplastic gene programs
(Collisson et al., 2011; Moffitt et al., 2015; Bailey et al., 2016b).
Additional transcriptomic subtypes, such as ADEX/exocrine-like
and immunogenic, exhibit significant overlap with the classical
subtype (Bailey et al., 2016b). Deconvolution of bulk
transcriptomic RNAseq data using validated immune cell type
signatures has demonstrated that the 2 consensus subtypes of
PDAC are associated with distinct immune profiles (Bailey et al.,
2016b; Karamitopoulou, 2019; Santiago et al., 2019). The basal-
like subtype is usually associated with an “immune escaping”
phenotype, with high Tregs and suppressive macrophages (M2 or

Frontiers in Cell and Developmental Biology | www.frontiersin.org February 2022 | Volume 10 | Article 8165174

Cattolico et al. Innate Immune Signaling in PDAC

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


m-MDSC) and low cytotoxic T cells (Wartenberg et al., 2018;
Karamitopoulou, 2019). The classical subtype appears relatively
“immune rich,” with lower Tregs and M2 macrophages and a
higher percentage of CD4+ and CD8+ T cells as well as
inflammatory (M1) macrophages (Wartenberg et al., 2018).
IFN-I plays a pivotal role in regulating immunomodulatory
chemokines and cytokines that in turn reshape the tumor
immune microenvironment. In addition, IFN-I upregulates the
expression of MHC-I and antigen presentation (Yang et al., 2004;
Wan et al., 2012), increasing tumor cell recognition by the
immune system. However, the presentation of neoantigens at
the cell surface by MHC-I may be reduced by the targeted
degradation of MHC-I in PDAC cells (Yamamoto et al.,
2020). With respect to immune cells, IFN-I also enhances
antigen presentation and cross-priming of the immune system
as it stimulates DC activation and maturation (Lorenzi et al.,
2011; Binnewies et al., 2019). In PDAC, DCs are rare and
decrease upon disease progression, further limiting antigen

cross-presentation and T-cell activity (Hiraoka et al., 2011).
Similarly, IFN-I mediated activation of NK cell cytotoxicity
(Swann et al., 2007; Bergamaschi et al., 2020) is impaired in
PDAC (Marcon et al., 2020). Tumor-associated macrophages
(TAMs) represent a dominant immune cell population in PDAC.
High levels of the M2 or suppressive macrophage phenotype are
associated with poor prognosis and disease progression
(Kurahara et al., 2011; Candido et al., 2018). IFN-I can
promote the antitumor M1 or inflammatory macrophage
phenotype and enhance phagocytic functions (U’Ren et al.,
2010; Sampson et al., 1991).

The PDAC TME is accepted as being highly
immunosuppressive (Figure 2). Many preclinical studies have
shown the potential for TME modulators to enhance
immunotherapy. Few have yet to translate to the clinic, but a
number of agents targetingmyeloid cells or stromal cells are being
tested clinically with ICI or in chemotherapy/ICI combinations
(Liu et al., 2019; Roma-Rodrigues et al., 2019; Ho et al., 2020;

FIGURE 2 | Key immunosuppressive features of PDAC. PDAC has many features that prevent activation of T cells in tumor. Both tumor cell intrinsic characteristics
(genetic or changes in gene expression) along with tumor microenvironmental factors including suppressive or dysfunction cells all contribute to render
PDAC immunologically “cold” with poor response to treatment. IFN= interferon. MHC-I= major histocompatibility complex class I; TAA= tumor-associated antigen;
CAF= cancer-associated fibroblast; DC= dendritic cell; TAM= tumor-associated macrophage; M-MDSC= monocytic myeloid-derived suppressor cell;
PMN-MDSC= polymorphonuclear myeloid-derived suppressor cell; TAN= tumor-associated neutrophil; Treg= regulatory T cells (Created using BioRender®).
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Zhong et al., 2020). CD4+ and CD8+ T cells are abundant at the
initial stages of PDAC tumor development, and their presence
and activation decrease during disease progression due to an
immunosuppressive microenvironment (Knudsen et al., 2017).
The dense fibroblastic stroma limits T-cell trafficking and access
to the TME. MDSCs and Tregs suppress T-cell activation, which
is already limited by poor antigen cross-presentation. Type I IFNs
induce the secretion of cytokines such as CCL5, CXCL9, and
CXCL10, which can attract T cells (Lorenzi et al., 2011) along
with factors that negatively modulate immunosuppressive
regulatory T cells (Gangaplara et al., 2018), facilitating
effective cytotoxic T-cell functions. However, targeting
different elements of the TME by modulation of myeloid cells
with CXCR2, CCR2, or CSF1R (Steele et al., 2016; Candido et al.,
2018; Nywening et al., 2018; Siolas et al., 2021) or CXCR4
antagonists (Feig et al., 2013; Biasci et al., 2020) can regulate
the TME through changes inmyeloid cells and stroma, improving
preclinical responses to immune checkpoint inhibitors. Myeloid
cells and the stroma can initiate IFN-I responses or be triggered as
a result of tumor cell damage. The suppressive cell phenotypes in
the TME may have limited capacity to enhance IFN-I or other
innate signals. Targeting stromal cells in addition to tumor cells
and T cells with chemotherapy and ICI may yield better clinical
responses.

GENETIC FEATURES OF PDAC MAY
INFLUENCE IMMUNE CELL FUNCTION

PDAC tumors exhibit genetic characteristics that may underpin
the lack of observed intrinsic responses to immune checkpoint
therapy. Mutational heterogeneity is associated with a better
response to ICI (Reuben et al., 2017; Iyer et al., 2021; Vitale
et al., 2021). While PDAC tumors have many low-abundance
mutations, there are four dominant driver mutations, namely,
oncogenic activation of KRAS and inactivation of the tumor
suppressors TP53, CDKN2A, and SMAD4 (Jones et al., 2008).
CDKN2A loss correlates with reduced immune infiltrates in
several tumor types, including PDAC (Siemers et al., 2017).
Retrospective analysis of clinical data in different tumor types
revealed an association of CDKN2A loss with worse overall and
progression-free survival following ICI treatment in combination
with chemotherapy (Horn et al., 2018; Gutiontov et al., 2021).
Preclinically, specific loss of CDKN2A has also induced resistance
to immunotherapy (Gutiontov et al., 2021; Han et al., 2021).
CDKN2A is located on the human chromosome 9p21 locus
(Sasaki et al., 2003), in close proximity to MTAP, JAK2, and a
large cluster region coding for 16 IFN-I genes (Diaz, 1995). Co-
deletion of these genes is common, for example, concomitant
mutation of CDKN2A and MTAP in PDAC is estimated at 26%
according to The Cancer Genome Atlas (TCGA) dataset
(Mavrakis et al., 2016) and may also contribute to resistance
to ICI-based therapy. In melanoma, CDKN2A-associated JAK2
mutation leads to loss of functional IFN-γ signaling which also
limits response to immunotherapy (Horn et al., 2018). CDKN2A
loss results in the activation of CDK4/6 kinases. In preclinical
models, treatment with CDK4/6 inhibitors re-sensitized

melanoma tumors (Jerby-Arnon et al., 2018) and syngeneic
models (Deng et al., 2018) to treatment. In preclinical
pancreatic cancer models, CDK4/6 inhibitors can influence
tumor growth (Chou et al., 2018) and combine to sustain
antitumor effects following chemotherapy (Salvador-Barbero
et al., 2020). Combining the CDK4/6 inhibitor palbociclib and
theMEK inhibitor trametinib not only reduced growth of patient-
derived xenograft models but also enhanced response to PD-1
inhibition in a transplantable tumor model derived from the KPC
model (Knudsen et al., 2021). This suggests that appropriate
combinations with CDK4/6 inhibitors in PDAC may enhance
immune response in tumors with loss of CDKN2A through
tumor-centric and possibly TME mechanisms. In addition, it
is not known whether loss of SMAD4 and p53 and mutation of
KRAS also cooperate with CDKN2A/B loss to further increase the
tumor immune-resistant status. For example, in lung cancer, loss
of the tumor suppressor STK11 is regarded as driving resistance
to both chemotherapy and immunotherapy (Skoulidis et al.,
2018). Interestingly, it is the co-occurrence of a RAS mutation
that renders these tumors most resistant to ICI-based treatments
(Ricciuti et al., 2021). Therefore, given the dominant mutations in
pancreatic cancer, it may be challenging to achieve strong
immune activation.

The IFN-I genes are also expressed on Chr9 (close to
CDKN2A and MTAP) and can sometimes be lost. It is also
possible that even when not deleted, the disruption of other genes
in the locus may reduce gene expression. Tumor cells with
reduced IFN-I expression may evade immune cells due to a
lack of IFN-α and -ß cross talk to the immune system. Loss or
reduction of this central coordinator mechanism for the
tumor–immune interaction would contribute to immune
escape and ICI resistance (Grard et al., 2021), especially in the
context of tumor-targeted combination approaches.

Less than 4% of PDAC tumors comprise mutations in DNA
damage repair genes, such as BRCA1, BRCA2, or PALB2
(Waddell et al., 2015; Bailey et al., 2016b). BRCA1- and
BRCA2-deficient tumors are associated with increased immune
infiltrates in some patients; however, rates of response to ICI are
low (Sønderstrup et al., 2019; Wen and Leong, 2019; Mei et al.,
2020). Recent evidence in mouse models of breast and colorectal
cancers suggests that BRCA2-deficient tumors are more
susceptible to ICI than BRCA1-deficient tumors (Samstein
et al., 2020; Zhou and Li, 2021). ARID1A alteration is found
in about 6% of PDAC patients (Cancer Genome Atlas Resea,
2017) and has been observed to modulate responses to
immunotherapy. In fact, ARID1A deficiency has been shown
to lead to the inactivation of MMR genes, increase in PD-L1
expression, increase in tumor mutation burden through DDR
dysfunction via ATR inhibition, and TIL recruitment and
inflammatory response by IL-6 production (Hu et al., 2020;
Wang et al., 2020). Consistently, ARID1A-mutated patients
showed better response to ICI with prolonged progression-free
and overall survival observed in various solid cancer types,
suggesting that ARID1A deficiency may be a patient selection
biomarker for ICI combinations (Jiang et al., 2020; Okamura
et al., 2020). It is unlikely that mutation status alone will be
sufficient to drive patient segmentation in PDAC; therefore, new
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strategies to define patient subsets for specific combination
treatments will be important.

TRIGGERING INNATE IMMUNE
RESPONSES IN PDAC

To maintain immunological homeostasis, an organism must
discriminate self from non-self. Upon infection, viral nucleic
acids stimulate antiviral responses, but the same innate
pathways can also recognize damaged self-DNA and/or RNA
(Iurescia et al., 2018). Activation or dysfunctional regulation of
proteins involved in these pathways causes disorders known as
interferonopathies, which are associated with increased
interferon production. For example, the Mendelian
autoinflammatory disorder Aicardi–Goutieres syndrome is a
type I interferonopathy caused by mutations in genes such as

TREX1, which plays a pivotal role in endogenous nucleic acid
sensing (Tao et al., 2019; Baris et al., 2021).

Chromosome instability (CIN) is a hallmark of cancer (Pikor
et al., 2013), and damaged DNA within micronuclei has been
demonstrated to induce innate immune responses (Mackenzie
et al., 2017). Although nuclear DNA is shielded from cytoplasmic
nucleic acid sensors by the nuclear membrane, membrane
rupture during mitosis and/or cytotoxic stress can expose
nucleic acids to pattern recognition receptors (PRRs). PRR
stimulation activates the immune system through the
modulation of the tumor cell surface and secreted proteins
(Maciejowski and Hatch, 2020). PDAC is characterized by
DDR deficiency, CIN, and metabolic stress (Bailey et al.,
2016b; Aguirre et al., 2018). These tumor cell intrinsic
properties should trigger canonical innate immune pathways.
However, responses are limited in PDAC because of the
activation of anti-autoimmune regulatory mechanisms that

FIGURE 3 | Canonical nucleic acid-sensing pathways and potential defects in PDAC. (A) Canonical nucleic acid-sensing pathways detect dsDNA or dsRNA
fragments (DAMPs) generated as a result of stress, or following drug treatment, which accumulate in the cytoplasm. dsDNA fragments activate the cGAS-STING
pathway. dsRNA fragments activate the MAVS/RIG-I/MDA5 or other sensing pathways, for example, TRAF3/TRIF. These complexes drive TBK1, resulting in
endogenous type I interferon production and interferon-stimulated gene expression. Nucleic acids along with signaling molecules such as cGAMP can be secreted
by tumor cells and activate nucleic acid-sensing or innate damage-sensing pathways in normal immune or stromal cells. Secreted IFN-I can activate IFN signaling in other
tumor cells. Antigen presentation is upregulated with increasedMHC-I expression. (B) In PDAC, these pathways are disrupted. The cGAS-STING pathway can be lost by
deletion or downregulation. RNA sensing can be inhibited through the upregulation of STAU and ADAR1. cGAMP can be degraded by the upregulation of ENPP1. IFNAR
receptor can be downregulated. Antigen presentation can be inhibited by the downregulation of MHC1 expression. Pathways that are lost or downregulated in PDAC are
shown in gray. NA= nucleic acid; dsDNA= double-stranded DNA; cGAMP = cyclic guanosine monophosphate; IFN = interferon; ISGs = interferon stimulated genes;
IFNAR: interferon α/β receptor; MHC-I = major histocompatibility complex class I (Created using BioRender®).
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facilitate immune evasion and disease progression (Moskovitz
et al., 2003; Waddell et al., 2015; Bailey et al., 2016b).

DNA- AND RNA-SENSING SIGNALING
PATHWAYS IN PDAC

Chemotherapy, radiation, and therapeutics that damage DNA
can prime immune responses through the stimulation of nucleic
acid-sensing pathways. DNA or RNA fragments stimulate innate
immune pathways in the tumor, including the secretion of IFN-I,
which cross talks to immune cells (Figure 3). Double-stranded
DNA (dsDNA) is generally located in the nucleus. However, in
cells with CIN, due to DNA damage and/or defects in DNA
damage repair machinery, cell cycle regulation (Fenech et al.,
2011; Crasta et al., 2012; Sahin et al., 2016), or drug treatment
dsDNA is found in the cytoplasm. Canonically, cytoplasmic
dsDNA is sensed by cGAS (cyclic GMP-AMP synthase), a
DNA-binding protein that catalyzes the production of the
second messenger cGAMP (2′-3′ cyclic GMP-AMP) (Li et al.,
2013). cGAMP interacts with the adaptor protein stimulator of
interferon genes (STING) (Ablasser et al., 2013; Kato et al., 2017),
causing dimerization and translocation from the endoplasmic
reticulum to the Golgi (Ishikawa and Barber, 2008; Ishikawa et al.,
2009). STING activates the kinase TBK1, driving translocation of
the transcription factor IRF3 to the nucleus and inducing the
expression of IFN-I (Liu et al., 2015). This sensing pathway can
also be triggered in non-tumor cells with build-up of cytoplasmic
dsDNA in the TME, with a transfer of dsDNA and/or cGAMP
from tumor to host cells (Schadt et al., 2019; Zou et al., 2021).
STING and TBK1 activation trigger the recruitment of IκB
kinases (IKK), which results in NF-κB pathway activation by
phosphorylation of the inhibitory IκB, thus enabling the
translocation of NF-κB transcription factors to the nucleus
(Abe and Barber, 2014; Yum et al., 2021). Similarly, the NF-
κB and IFN-I pathways can be activated by sensing DNA through
endosomal TLR3 and TLR9 (Kawai and Akira, 2007). The
STING-TBK1 signaling axis has shown functionality in several
PDAC models upon stimulation with STING agonists or
modulators (Jing et al., 2019; Ren et al., 2020; Liang et al.,
2021; Miller et al., 2021). However, it is not clear whether
STING responses are functional in the majority of PDAC
tumors, or whether the pathway is attenuated as tumors
progress. Interestingly, cGAS-STING pathway agonists show
efficacy in preclinical PDAC tumors by targeting macrophages
in the TME (Ager et al., 2021), suggesting that tumor cells or cells
within the TME may respond to activation of this pathway.

RNA sensing allows cells to detect cytoplasmic double-
stranded RNAs and specific single-stranded RNAs, which are
usually signs of viral infection. However, following treatment
(Ranoa et al., 2016), cytoplasmic dsRNAs may accumulate in
treated cells and be recognized by RNA-sensing pathways.
Cytoplasmic dsRNAs are sensed, according to their size and
location, by toll-like receptors such as TLR3 located in
endosomes (Alexopoulou et al., 2001) or cytosolic ubiquitously
expressed RIG-I-like receptors (RLRs) such as RIG-I and
melanoma differentiation associated gene-5 (MDA5)

(Hornung et al., 2006; Kato et al., 2006). The former signals
through the adaptor protein TRIF, while the latter induces the
activation of mitochondrial antiviral signaling protein (MAVS).
Following a cascade of downstream events, both converged on
TBK1, and subsequent IRF3 activation results in IFN-I and NF-
kB responses (Seth et al., 2005; Sun et al., 2006; Kawai and Akira,
2018). These pathways are functional in preclinical models of
PDAC following stimulation by PRR agonists (Duewell et al.,
2014; Metzger et al., 2019). It is therefore possible that triggering
these pathways with radiation or chemotherapy, or directly with
pathway agonists to target STING or RIG-I in both tumor and the
TME could add benefit as part of a combination strategy with ICI.

MECHANISMS REGULATING DNA- AND
RNA-INDUCED IFN RESPONSES IN PDAC

As cancer cells are altered-self cells, recognition by the immune
system can be facilitated by damage-associated molecular
patterns (DAMPs). The term DAMP encompasses a group of
molecules that can signal in a cell-intrinsic manner or trigger
cross talk to the innate immune system after being released from
damaged cells (e.g., cGAMP, DNA or RNA fragments, or
intracellular proteins such as actin, HMGB1, and histones)
(reviewed in depth in Gong et al. (2020)). DAMPs commonly
activate a range of PRRs and trigger IFN-I responses (Teijaro,
2016; Musella et al., 2017) as a result of genetic changes or drug
treatments (Stetson and Medzhitov, 2006; Reikine et al., 2014).
Tumor cells commonly undergo changes that abrogate or make
these sensing pathways less effective or reduce the secretion of
DAMPs.

TREX1 and ENPP1 can antagonize signals resulting from
damaged DNA (Figure 3). Both enzymes are highly expressed
in PDAC (Carozza et al., 2020), and overexpression reduces the
activation of the cGAS-STING pathway. TREX1 is an ER-
associated exonuclease that degrades cytosolic dsDNA and
therefore restrains cGAS-STING activation (Mohr et al., 2021).
ENPP1 is a transmembrane protein with a hydrolase extracellular
domain capable of cleaving a variety of substrates including
cGAMP preventing activation of the cGAS-STING pathway in
surrounding cells (Li et al., 2021). In preclinical studies, cGAMP
plays a role in driving cross talk to the TME following radiation
treatment (Vijayan et al., 2017). Moreover, cGAMP hydrolysis by
ENPP1 results in the formation of AMP, a substrate of NT5E, a
transmembrane hydrolase that catalyzes the formation of
adenosine (Allard et al., 2019) which also drives
immunosuppression in the TME (Stagg et al., 2010; Vijayan
et al., 2017). Whether cGAMP and ENPP1 play a similar role
in PDAC has not been explored in detail.

Epigenetic regulation is another strategy cancer cells use to
modulate response to DAMPs and attenuate PRR activation or
downstream signaling. cGAS and STING are epigenetically
silenced by the methylation of their respective promoter
regions in PDAC (Konno et al., 2018). KRAS and MYC
aberrations, which are among the most common in PDAC,
suppress IFN-I response by inducing binding of the
Myc–MIZ1 complex to IFN regulator promoters (IRF5, IRF7,
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STAT1, and STAT2) (Muthalagu et al., 2020). Posttranslational
modifications such as methylation, phosphorylation,
sumoylation, acetylation, and ubiquitination also modulate
constituents of the cGAS-STING pathway in different cancer
types (Brown et al., 2018; Tan et al., 2018; Wu et al., 2019; Zhang
et al., 2020; Ma et al., 2021). Interestingly, the epigenetic factor
PRMT5, which is upregulated in PDAC and correlates with
poorer survival (Qin et al., 2019), directly methylates cGAS
and limits binding to dsDNA (Muthalagu et al., 2020). It is
possible that inhibiting TREX1 or ENPP1 function could result in
more effective activation of DNA-sensing pathways in specific
subsets of PDAC (e.g., subsets with defects in DNA repair
pathways), or following treatment with chemotherapy or
radiation.

RNA-sensing pathways can also initiate damage signals, and
proteins that prevent sensing of dsRNA can be upregulated in
tumors (Figure 3). For example, the protein STAU1 stabilizes
dsRNA, preventing recognition by RNA-sensing proteins
(Chengjin et al., 2018), while ADAR1 targets modified RNA
fragments, assisting evasion from triggering of RNA-sensing
complexes (Mehdipour et al., 2020). ADAR1 destabilizes
specific inverted Alu repeats in dsRNA motifs by catalyzing
adenosine-to-inosine editing. Alu repeats are a major source of
drug-induced dsRNA, and their destabilization by ADAR1 limits
activation of MDA5 and RIG-I (Pichlmair and Reis e Sousa, 2007;
Liddicoat et al., 2015;Wang et al., 2017; Herbert, 2019). While the
regulation of the RNA-sensing machinery has not been widely
explored in PDAC, ADAR1 is upregulated in PDAC and is
associated with poor prognosis (Sun et al., 2020). Interestingly,
IFN-I also induces tumor cell apoptosis and DAMP release in cell
lines (Kimura et al., 2003; Gómez-Benito et al., 2007; Kazaana
et al., 2019), including PDAC cells (Vitale et al., 2007) (Figure 1).

The potential to harness these pathways to initiate an immune
trigger in PDAC is underexplored. Chemotherapy may trigger
responses in the tumor cells or the TME, while fragments released
from the tumormay stimulate the TME. Given the high density of
macrophage-like cells found in PDAC and the high stromal
content, agonists of DNA- or RNA-sensing pathways could
also play an important role in enhancing more sustained
immune responses in the appropriate treatment regimens.

THERAPEUTIC STRATEGIES TO RESTORE
TUMOR IFN-I OR INNATE RESPONSES IN
PDAC TO MAXIMIZE IMMUNE CELL
ENGAGEMENT

There are a variety of pathways that can be activated or inhibited
to elicit an interferon response. Reducing the presence of DAMPs
is a strategy for cancer cells to evade NA sensing; therefore,
increasing DAMP expression could initiate an effective IFN-I
response. This could be achieved by targeting the DNA damage
response. Conventional treatments such as chemo- and
radiotherapy act as potent DNA-damaging agents that can
induce IFN-I and recruit antigen-presenting cells (Lugade
et al., 2005). PARP inhibition leads to the accumulation of

cytosolic DNA by blocking DNA repair. Recently, the PARP
inhibitor (PARPi) olaparib has been approved by the FDA for the
treatment of BRCA-mutated metastatic PDAC after having
shown promising results in the POLO clinical trial (Golan
et al., 2019). Interestingly, phase II and III clinical trials have
shown PARPi efficacy in patients with non-mutated BRCA1/2
ovarian cancer, suggesting a potential use in a broader spectrum
of patients (Gelmon et al., 2011; Mirza et al., 2016). In
subcutaneous mouse syngeneic tumor models, the
combination of PARPi and anti-PD-L1 treatment increases
therapeutic efficacy in BRCA-deficient tumors (Shen et al.,
2019). In PDAC tumors with BRCA mutation, inhibiting
PARP in combination with ICI may give further enhanced
benefits. This same principle could apply to other PDAC
subtypes with deficient DNA repair pathways, perhaps giving
similar but more sustained IFN-I and innate stimulation than that
achieved with chemotherapy.

Inhibiting the function of ATMwhich repairs double-stranded
breaks also increases cytoplasmic DNA (Zhang et al., 2019),
TBK1 phosphorylation, and IFN-I expression in preclinical
PDAC models. Interestingly, ATM loss of function (which
renders cells dependent on the alternative DNA repair enzyme
ATR) has been associated with an immune-rich phenotype in
PDAC (Wartenberg et al., 2018). Preclinically inhibiting ATR
alone or in combination with PARP inhibition has shown
therapeutic benefit (Dunlop et al., 2020; Dreyer et al., 2021;
Gout et al., 2021; Parsels et al., 2021). Finally, inhibiting
DNA-PK, which facilitates non-homologous end joining in
combination with radiotherapy increases micronuclei
formation and DNA damage, activates IFN-I and increases
CD8+ T-cell response (Ciszewski et al., 2014). Therefore, in
specific patient subgroups, PARP, ATM, ATR, or DNA-PK
inhibitors given chronically (alone or in combination) may
sustain DNA damage to trigger immune engagement. Indeed
targeting these enzymes with more chronic treatment may be
more effective at driving IFN-I and other damage responses than
chemotherapy, which only achieve short transient stimulation of
these pathways (Reisländer et al., 2020).

There are other ways to increase nucleic acid-mediated
activation of DNA damage or stress pathways. Although not
investigated in PDAC, the nucleoside analog 6-thio-DG, which
induces DNA damage and telomerase stress, activates STING,
IFN-I signaling, and CD8+ T cells in colorectal cancer models
(Mender et al., 2020). The DNA-sensing cGAS-STING pathway
can also be targeted directly with agonists. Intratumoral injection
of the STING agonist ADU-S100 combined with radiotherapy
increased tumor interferon-stimulated gene expression and T-cell
infiltration, causing a reduction in local and distal tumor burden
in PDAC murine models (Vonderhaar et al., 2021). Combining
STING agonists with anti-PD-1 also showed promising
antitumor activity in preclinical mouse syngeneic models
(Ghaffari et al., 2018; Kim et al., 2019; Lemos et al., 2020).
STING activation in PDAC can occur within either tumor or
macrophages to drive a response. Despite these promising
preclinical studies, selectively triggering STING also presents
challenges. Overactivation of STING may also drive systemic
toxicity through the release of TNFα and other cytokines andmay
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limit the activation that can be achieved, or the duration of
treatment. Preclinical tool compounds capable of stimulating the
RIG-I RNA-sensing pathway have also shown interesting proof of
concept in PDACmodels (Ellermeier et al., 2013; Bhoopathi et al.,
2014; Das et al., 2019) and may provide an alternate approach in
tumors where the cGAS-STING pathway is not functional.

Activating PRRs or reducing suppression by inhibiting
negative regulators will also drive IFN-I induction. Although
not explored extensively in PDAC, administration of TLR7/8
agonists such as R848 has shown promising results in preclinical
models (Michaelis et al., 2019). However, as with STING agonists,
these agents can be limited by toxicity, requiring careful
scheduling of treatment or the requirement for intratumoral
injection to mitigate toxicity (Mullins et al., 2019). TLR9
agonists SD-10-1 and CMP0001 sensitized ICI-resistant mouse
models of the colon (Wang et al., 2016) and head and neck
squamous cell carcinoma (Sato-Kaneko et al., 2017) to PD-1
blockade. Response was linked to IFN-I stimulation, increase in
interferon-stimulated gene expression, and subsequently
expansion of CD8+ T cells. Approaches to stimulate these
pathways may be worth considering for PDAC to enhance the
triggering of immune responses.

Modulators of the DNA methylation state can cause DNA or
RNA stress within cells. DNA methyltransferase inhibitors
(DNMTi) reduce methylation of endogenous retroelements
(Roulois et al., 2015) and increase levels of cytosolic dsRNA
(Goel et al., 2017). 5-Azacytidine (a DNMTi) induced re-
expression of silenced genes leading to increased T-cell-
stimulating chemokines in vitro and increased T-cell
infiltration in PDAC in vivo models (Ebelt et al., 2020). Effects
of epigenetic modulators can however be context-dependent. The
inhibition of PRMT5 with EPZ015666 increased IFN-I and
cGAMP production upon stimulation with DNA fragments
in vitro (Ma et al., 2021). However, in another study,
EPZ015666 decreased IFN-I expression and impaired
interferon-stimulated gene expression upon stimulation with
poly(I:C) (Cui et al., 2020). Last, consistent with ADAR1 being
associated with dampening RNA-sensing pathways, knockout in
tumor cells conferred vulnerability to immune checkpoint
inhibitors (Ishizuka et al., 2019).

Vaccines or oncolytic viruses can stimulate IFN-I responses,
while delivery of recombinant IFN-α or -β to tumors agonizes the
pathway directly. Early trials with IFN-I conjugates were not
successful, largely due to toxicity issues; however, next-generation
approaches that deliver IFN-I conjugates more safely are being
developed. Tumor vaccines will stimulate broad innate immune
responses. Both cell-based tumor vaccine approaches such as
GVAX (Wu et al., 2020b) and GVAX, and a Listeria-based
vaccine expressing mesothelin (an antigen upregulated in
pancreatic cancer) have been trialed (Le et al., 2019).
Unfortunately, these vaccine-based approaches have not
yielded positive clinical signals. Oncolytic viruses can stimulate
significant IFN-I induction (reviewed in Harrington et al. (2019);
Evgin et al. (2020); Cao et al. (2021); Rosewell Shaw et al. (2021))
and drive sustained T-cell activation. Novel strategies combining
oncolytic viruses with CAR-T therapy are being developed to

drive targeted sustained responses in preclinical pancreatic cancer
tumor models.

There are many different strategies to increase tumor immune
cross talk through IFN-I responses. However, these approaches
are challenging, and therapeutic index is likely to be an issue
requiring careful dose selection clinically and the ability to
focus on specific patient subsets to induce an effective innate
immune response (Konno et al., 2018) (Salvador-Barbero
et al., 2020) (Muthalagu et al., 2020). Moreover, IFN-I
may act differently when induced acutely or with sustained
chronic upregulation. How the IFN-I response is modulated
and for how long needs to be considered as complicated
regulatory mechanisms can have both activating and
suppressive effects, depending on the context.

CONCLUSION

PDAC has limited sensitivity to chemotherapy and resistance to
most current immunotherapy approaches. While
chemoimmunotherapy shows better overall responses than
chemotherapy or immunotherapy alone, this benefit is
marginal for most patients. In PDAC, many mechanisms may
prevent the activation of the immune response, from failure
to sustain tumor damage- and stress-related immune
triggers (e.g., IFN-I release, antigen presentation, or
DAMP release) to indirect resistance in the TME. IFN
responses can however be stimulated with tumor-targeted
treatment (e.g., chemotherapy and DDR inhibitors) or
induced in the TME. Improved clinical responses could
be achieved by enhancing the cross talk between the
tumor and TME through the induction of IFN-I signaling,
and there are promising approaches to achieve this in the
right setting. A number of clinical translational programs
such as Pan Can, ESPAC, and Precision Panc are using
multi-omic assessments of human clinical trial samples to
look at features that influence response to treatment. Studies
such as these can provide new ways to look at where and how
IFN response may be suppressed in patients as well as
identify tumors that may respond well to specific
treatment strategies. This work will contribute to our
understanding of the intrinsic tumor cell-initiated
immunomodulatory pathways in PDAC. Moreover,
focusing on treating subsets of tumors in a biomarker and
mechanism linked way will hopefully enable the field to
identify and build on efficacy signals with more confidence.
Ultimately, this will guide the development of improved
combination strategies that potentiate immune response in
this challenging disease.
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