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Abstract
We initiate the study of C∗-algebras and groupoids arising from left regular representations of Garside categories, a
notion which originated from the study of Braid groups. Every higher rank graph is a Garside category in a natural
way. We develop a general classification result for closed invariant subspaces of our groupoids as well as criteria for
topological freeness and local contractiveness, properties which are relevant for the structure of the corresponding
C∗-algebras. Our results provide a conceptual explanation for previous results on gauge-invariant ideals of higher
rank graph C∗-algebras. As another application, we give a complete analysis of the ideal structures of C∗-algebras
generated by left regular representations of Artin–Tits monoids.

1. Introduction

C∗-algebras generated by partial isometries form a rich class of examples, including C∗-algebras attached
to shifts of finite type [12–14], graph C∗-algebras [58], higher rank graph C∗-algebras [36], C∗-algebras
attached to self-similiar groups [49], and semigroup C∗-algebras [9, 15, 41, 42]. For instance, it was
shown in [26] that every UCT Kirchberg algebra arises in this way. The class of UCT Kirchberg algebras
plays an important role in the Elliott classification programme for C∗-algebras (see [34, 35, 56, 64]).
Spielberg observed that all the classes of C∗-algebras mentioned above can be viewed as special cases of a
general, unifying construction of C∗-algebras generated by left regular representations of left cancellative
small categories [68, 69]. This is a very general construction, as it contains, up to Morita equivalence, all
inverse semigroup C∗-algebras (see [21]). These C∗-algebras come with a distinguished quotient which
is called the boundary quotient. The passage from the C∗-algebra to its boundary quotient is analogous to
the passage from the Toeplitz-type C∗-algebra of a shift of finite type or graph to its Cuntz–Krieger-type
C∗-algebra.

A powerful way to study these C∗-algebras of small categories is to construct a groupoid model and
study properties of the C∗-algebra through a detailed analysis of the groupoid [62, 68, 69]. Actually, there
are two candidates for such groupoid models, which both arise from actions of an inverse semigroup
on a space of certain filters attached to the small category. The inverse semigroup is given by the left
inverse hull, i.e., the smallest inverse semigroup of partial bijections of the small category containing all
left multiplication maps by individual elements of the small category. In [69], a refined (and enlarged)
version of the left inverse hull is considered, leading to the second groupoid model. In both cases,
the filters which give rise to the unit space of the groupoid models are defined on the semilattice of
idempotents of the inverse semigroup and take into account that elements of this semilattice are subsets
of the original small category. The language of inverse semigroups provides an interpretation of the
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distinguished boundary quotient as the tight quotient, which is induced from the subspace of tight filters
(see [23–25]).

It is an interesting observation that in this very general framework, every left cancellative small cat-
egory generates – in an entirely natural and intrinsic way – a dynamical system in terms of an inverse
semigroup action or a groupoid. The same statement applies to the even more general setting of 0-left
cancellative semigroups as considered by Exel and Steinberg [27–30]. Generally speaking, the goal
would be to find a dictionary between properties of the small category, properties of the inverse semi-
group action or groupoid, and properties of the C∗-algebra and its boundary quotient. Indeed, we present
criteria in terms of the underlying small category which completely characterise when the boundary
groupoids – which model the boundary quotients – are Hausdorff, minimal, or effective (or topologi-
cally free). We also establish a sufficient criterion for the boundary groupoid to be locally contractive.
These properties have immediate consequences for the corresponding boundary quotient C∗-algebras
concerning ideal structure and pure infiniteness. Such criteria have been established in the general con-
text of inverse semigroup actions and tight groupoids attached to inverse semigroups in [25], and it turns
out to be fruitful to translate between the work in [25] and our setting of small categories. For instance,
this leads to generalisations of the results in [53], which covers classes of finitely aligned small cate-
gories. In the special case of submonoids of groups, we are naturally led to the following characterisation
of topological freeness of the boundary action:

Theorem A. Let P be a submonoid of a group G and denote by G � ∂� its boundary action (in the
sense of [15, Definition 5.7.8]). Define Gc : = {g ∈ G: (pP) ∩ (gpP) �= ∅ ∀ p ∈ P}.

Then G � ∂� is topologically free if and only if Gc is the trivial group. In this case, ∂C∗
λ
(P) is simple,

and ∂C∗
λ
(P) is purely infinite simple unless P is the trivial monoid.

Gc is always a subgroup of G. Theorem A tells us that this subgroup captures topological freeness of
the boundary action in an arguably more efficient way than the ‘core’ as in [11] (see also [15, Section
5.7]). In this form, with Gc as the key ingredient, our characterisation of topological freeness of the
boundary action has not appeared before, but, as Marcelo Laca and Camila F. Sehnem kindly informed
me, it also follows from [40, Proposition 6.18]. We give a self-contained (and short) proof of Theorem
A in Section 5 (see Theorem 5.23).

At the same time, our study of boundary groupoids arising from left regular representations of small
categories led us to a characterisation of topological freeness of tight groupoids attached to general
inverse semigroups (see Theorem 5.11). To the best of the author’s knowledge, such a characterisation
was not known before.

We also clarify the relationship between the different groupoid models mentioned above and the
analogous variations of the boundary groupoids. For the groupoids themselves, while minimality and
local contractiveness are rather rare phenomena, we succeed in completely characterising, in terms of
the underlying small category, when the groupoids are Hausdorff or effective (or topologically free).
Our criterion for topological freeness is inspired by [40, Theorem 5.9], which treats the special case of
submonoids of groups. Furthermore, we establish a characterisation when the boundary is the small-
est non-empty closed invariant subspace of the character space, and determine in this case when the
boundary groupoid is purely infinite (see Proposition 5.21).

Having identified a natural and unifying general framework, it is important to find classes of small
categories which are general enough so that they cover interesting classes of examples and yet concrete
enough so that a detailed analysis is possible.

The main goal of the present paper is to discuss one such class of small categories called Garside
categories, and in this way contribute to our understanding of C∗-algebras attached to small categories.
The idea behind Garside categories originated from the study of Braid groups and monoids, and of the
more general Artin–Tits groups and monoids. Roughly speaking, Garside structures allow us to carry
over classical results and methods from Braid groups and monoids to more general groups, monoids
or small categories. The concept of Garside categories feature in proofs of the K(π , 1)-conjecture for
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various classes of groups [4, 54, 55]. Recently, a connection has been discovered between Garside
categories and Helly graphs, which has several applications, for instance to isomorphism conjectures
such as the Farrell–Jones conjecture or the coarse Baum–Connes conjecture [32]. We refer the reader
to [18] for more details on Garside categories.

In our context, Garside structures allow us to establish normal forms for filters which form the unit
spaces of our groupoids. This in turn leads to very concrete descriptions of the groupoid models them-
selves. As a result, we succeed in describing all closed invariant subspaces in terms of the underlying
small category.

Theorem B. Let C be a finitely aligned, left cancellative, countable small category and S a Garside
family in C with S∩ C∗ = ∅ which is =∗-transverse and locally bounded. Let Il �� be the groupoid
model for C∗

λ
(C).

There is a one-to-one correspondence between closed invariant subspaces of Il �� and admissible,
H-invariant, max∞


 -closed pairs (T, D) with T⊆S and D⊆ C0.

The reader will find more explanations and details in Section 6 (see Theorem 6.25). The point is that
our description is purely in terms of the Garside family S. We also explicitly characterise which of these
closed invariant subspaces belong to the boundary. In addition, we establish criteria for topological free-
ness and local contractiveness. Again, these properties have consequences for ideal structure and pure
infiniteness of our C∗-algebras. Our analysis is made possible by the key property of Garside categories
that every element admits a normal form, generalising the classical normal form (also called greedy,
Garside or Thurston normal form) of elements in Braid and Artin–Tits monoids. Indeed, as explained in
[18], the general notion of Garside categories (as in [18]) has been designed to allow for this kind of nor-
mal forms. For the purpose of studying groupoids and C∗-algebras, the usefulness of normal forms has
been observed already, for instance in the context of semigroup C∗-algebras of right-angled or spherical
Artin–Tits monoids [10, 11, 46], or of Baumslag–Solitar monoids [67].

As particular examples, we discuss higher rank graphs in Section 7.1. Actually, the starting point
for this paper was the observation that every higher rank graph is a Garside category in a very natural
way. Our results lead to a new interpretation of gauge-invariant ideals (see Lemma 7.5). Moreover, not
only do our results cover the C∗-algebras of higher rank graphs, but they also treat Toeplitz algebras.
Furthermore, our analysis extends to categories arising from self-similar actions on graphs or higher rank
graphs. As another class of concrete examples, we discuss general Artin–Tits monoids. We complete
the study of the ideal structure of their semigroup C∗-algebras, which has been started in [10, 11, 46],
by proving the following result:

Theorem C. Let P be an irreducible Artin–Tits monoid with set of atoms A. If P is spherical, then
Ker∂ =K(�2P) if #A = 1 and K(�2P) is the only non-trivial ideal of Ker∂ if 2 ≤ #A<∞. In the latter
case, Ker∂/K(�2P) is purely infinite simple. If P is not finitely generated and left reversible, then Ker∂
is purely infinite simple. If P is finitely generated and not spherical, then K(�2P) is the only non-trivial
ideal of C∗

λ
(P), and C∗

λ
(P)/K(�2P) is purely infinite simple. If P is not finitely generated and not left

reversible, then C∗
λ
(P) is purely infinite simple.

Here, Ker∂ is the kernel of the canoncial projection C∗
λ
(P) � ∂C∗

λ
(P). In the spherical or left reversible

case, ∂C∗
λ
(P) coincides with the reduced group C∗-algebra of the Artin–Tits group corresponding to P.

In Theorem C, the finitely generated, spherical case is treated in [46], and the right-angled case is treated
in [10, 11]. Our contribution concerns the remaining cases. We can also characterise when C∗

λ
(P) or Ker∂

is nuclear (see also [38, Theorem 4.2]). Moreover, we point out that K-theory for semigroup C∗-algebras
of Artin–Tits monoids has been computed in [44], assuming that the corresponding Artin–Tits group
satisfies the Baum–Connes conjecture with coefficients.

Higher rank graphs and Artin–Tits monoids are just some examples of Garside categories. The reader
will find many more examples in [18].
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Apart from providing a natural class of examples where we can test and develop our understanding of
C∗-algebras attached to small categories, this paper at the same time sets the stage for a detailed analysis
of the groupoids arising from left regular representations of small categories. These groupoids are not
only auxiliary structures to translate between small categories and their C∗-algebras, but they are also
interesting on their own right as they lead to interesting new structures, for instance topological full
groups. Our original motivation which led to the present paper was the natural question left open by
Matui in [48, Section 5.3] whether topological full groups of groupoids attached to products of shifts of
finite type are of type F∞. We answer this question in [45].

2. Preliminaries

Let us recall some basics regarding left regular representations of left cancellative categories,
C∗-algebras generated by these representations and groupoid models for these C∗-algebras. Note that
we view categories – which will all be assumed to be small in this paper – as generalisations of monoids
(as in [70]), so that no sophisticated category theory will be used.

2.1. Left cancellative small categories, their left regular representations and C∗-algebras

Given a small category with set of morphisms C, let C0 be its set of objects. We will identify v ∈ C0 with
the identity morphism at v, so that C0 is identified with a subset of C. Often, we will abuse notation and
simply call C the small category. Let d: C→ C0 and t: C→ C0 be the domain and target maps, so that
for c, d ∈ C, the product cd is defined if and only if d(c) = t(d). This means that our convention is the
same as the one in [69, 70], while it is opposite to the one used in [18] (see [70, Remark 1.1]). For c ∈ C
and S ⊆ C, we set cS : = {cs: s ∈ S, t(s) = d(c)}. Moreover, C∗ denotes the set of invertible elements of
C, i.e., elements c ∈ C for which there exists c−1 ∈ C with c−1c = d(c) and cc−1 = t(c). Note that C∗ is
denoted by C× in [18, 70].

Definition 2.1. A small category C is called left cancellative if for all c, x, y ∈ C with d(c) = t(x) = t(y),
cx = cy implies x = y.

From now on, all our small categories will be assumed to be left cancellative. Let C be such a small
category and form the Hilbert space �2C, with canonical orthonormal basis given by δx(y) = 1 if x = y
and δx(y) = 0 if x �= y. For each c ∈ C, the assignment δx �→ δcx if t(x) = d(c) and δx �→ 0 if t(x) �= d(c)
extends to a bounded linear operator on �2C which we denote by λc. Note that it is at this point, i.e., to
ensure boundedness, that we need left cancellation, which actually implies that λc is a partial isometry.
The left regular representation of C is given by C→ PIsom(�2C), c �→ λc, where PIsom stands for the
set of partial isometries.

Definition 2.2. The left reduced C∗-algebra of C is given by C∗
λ
(C) : = C∗( {λc: c ∈ C} ) ⊆L(�2C).

2.2. Inverse semigroup actions and groupoid models

Let us now describe (candidates for) groupoid models for C∗
λ
(C). First of all, every c ∈ C induces the

partial bijection d(c)C
∼−→ cC, x �→ cx. For brevity, we denote this partial bijection by c again.

Definition 2.3. The left inverse hull Il of C is the smallest inverse semigroup containing the partial bijec-
tions {c: c ∈ C}, i.e., the smallest semigroup of partial bijections of C containing the partial bijections
{c: c ∈ C} and closed under inverses.
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For more details on inverse semigroups, we refer the reader to [15, Section 5.5.1]. For s ∈ Il, we
denote its domain by dom (s) and its image by im (s). Following [15, Section 5.5.1], in case Il contains
the partial bijection 0 which is nowhere defined, ∅ ∼−→ ∅, we say that Il contains zero, and we view Il as
an inverse semigroup with zero. A typical nonzero element s ∈ Il is of the form s = d−1

n cn . . . d
−1
1 c1 for

some di, ci ∈ C with t(ci) = t(di) and d(di) = d(ci+1).

Remark 2.4. Elements of Il are called zigzags in [69].

Definition 2.5. For 0 �= s ∈ Il, define d(s) as the unique v ∈ C0 such that dom (s) ⊆ vC, and define t(s)
as the unique w ∈ C0 such that im (s) ⊆wC.

Such v and w exist because, if s = d−1
n cn . . . d

−1
1 c1, then dom (s) ⊆ dom (c1) ⊆ d(c1)C and im (s) ⊆

im (d−1
n ) ⊆ d(dn)C.

Definition 2.6. The semilattice of idempotents of Il is denoted by J : = {
s−1s: s ∈ Il

} = {
ss−1: s ∈ Il

}
.

Il contains 0 if and only if J contains ∅. In that case we denote ∅ ∈J by 0 again.
Alternatively, we could set J = {dom (s): s ∈ Il} = {im (s): s ∈ Il}. J is the analogue of the set of

constructible right ideals in the semigroup context (see [41]). Multiplication in J (denoted by ef for
e, f ∈J ) corresponds to intersection of subsets of C, and the partial order “≤” on J corresponds to
inclusion of subsets.

At this point, we present a variation of Il, following [69].

Definition 2.7. Let J̄ denote the set of subsets of C of the form e \ ⋃n
i=1 fn for some e, f1, . . . , fn ∈J with

f1, . . . , fn ≤ e.
Let Īl be the set of all partial bijections of C of the form sε for s ∈ Il and ε ∈ J̄ with ε≤ s−1s.

It is easy to see that Īl is again an inverse semigroup, whose semilattice of idempotents is given by J̄ .

Definition 2.8. The space of characters Ĵ is given by the set of non-zero multiplicative mapsJ → {0, 1},
which send 0 ∈J to 0 ∈ {0, 1} in case Il contains 0. Here multiplication in {0, 1} is the usual one induced
by multiplication in R. The topology on Ĵ is given by point-wise convergence.

A basis of compact open sets for the topology of Ĵ is given by sets of the form
Ĵ (e;f) : = {

χ ∈ Ĵ : χ (e) = 1, χ (f ) = 0 ∀ f ∈ f
}
,

where e ∈J and f⊆J is a finite subset. By replacing f by {ef : f ∈ f}, we can always arrange that f ≤ e
for all f ∈ f. We will also set Ĵ (e) : = {χ ∈ Ĵ : χ (e) = 1}. Since vC∩wC= ∅ if v �=w, for every χ ∈ Ĵ
there exists a unique v ∈ C0 with χ (vC0) = 1. In other words, we have Ĵ = ∐

v∈C0 Ĵ (v). As explained
in [15, Section 5.5.1], there is a one-to-one correspondence between elements in Ĵ and filters (on J ),
i.e., nonempty subsets F of J with the properties that 0 /∈F if Il contains 0, whenever e, f ∈J satisfy
e ≤ f , then e ∈F implies f ∈F , and whenever e, f ∈J lie in F , then ef must lie in F as well. To be
concrete, the one-to-one correspondence is implemented by Ĵ � χ �→ χ−1(1) ⊆J .

Following [15, Section 5.6.7] and [69], we now construct a subspace of Ĵ which takes into account
that elements of J are subsets of C. First, let Dλ(C) : = span( {1e: e ∈J } ) ⊆ �∞(C). Here 1e denotes the
characteristic function of e ⊆ C. As explained in [15, Corollary 5.6.28], the spectrum of Dλ(C) can be
identified with the following subspace of Ĵ :

Definition 2.9. Let � be the subspace of Ĵ consisting of characters χ with the property that when-
ever e, f1, . . . , fn ∈J satisfy e = ⋃n

i=1 fi as subsets of C, then χ (e) = 1 implies that χ (fi) = 1 for some
1 ≤ i ≤ n.
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Remark 2.10. Following [15, Corollary 5.6.28], we will view every χ ∈� as a character on Dλ(C),
again denoted by χ . Given ε= e \ ⋃n

i=1 fn ∈ J̄ , we have 1ε ∈ Dλ(C), and we set χ (ε) : = χ (1ε).

Example 2.11. Given x ∈ C, define χx(e) : = 1 if xC≤ e and χx(e) : = 0 if xC �≤ e. It is easy to see that
χx ∈�.

The following is immediate from the definition of the topology of�, using the basis of compact open
sets as defined above.

Lemma 2.12. {χx: x ∈ C} is a dense subset of �.

The following observation is an immediate consequence of [15, Corollary 5.6.29].

Lemma 2.13. We have �= Ĵ if and only if whenever e, f1, . . . , fn ∈J satisfy e = ⋃n
i=1 fi as subsets

of C, then there exists 1 ≤ i ≤ n with e = fi.

Let us now dualise and obtain the following action of Il on Ĵ . A given s ∈ Il induces the partial
homeomorphism Ĵ (s−1s)

∼−→ Ĵ (ss−1), χ �→ s.χ : = χ (s−1 � s). These partial homeomorphism give rise
to an action Il � Ĵ . The same proof as for [15, Lemma 5.6.40] shows that � is Il-invariant, so that we
obtain an Il-action Il �� by restriction. As before, a given s ∈ Il acts via the partial homeomorphism
�(s−1s)

∼−→�(ss−1), χ �→ χ (s−1 � s). Here and in the sequel, given a subspace X ⊆ Ĵ , we set X(e) : =
X ∩ Ĵ (e) and X(e;f) : = X ∩ Ĵ (e;f).

We now set out to describe two candidates for a groupoid model for C∗
λ
(C). First, we set

Il ∗� : = {
(s, χ ) ∈ Il ×�: χ (s−1s) = 1

}
.

Definition 2.14. The transformation groupoid Il �� is given by Il ∗�/∼, where we set (s, χ ) ∼ (t,ψ)
if χ =ψ and there exists e ∈J with χ (e) = 1 and se = te. Equivalence classes with respect to ∼ are
denoted by [ · ], and for s ∈ Il and U ⊆�, we set [s, U] : = {[s, χ ]: χ ∈ U}. Range and source maps are
given by r([s, χ ]) = s.χ and s([s, χ ]) = χ . Multiplication and inversion are defined by [s, t.χ ][t, χ ] =
[st, χ ] and [s, χ ]−1 = [s−1, s.χ ].

We equip Il �� with the unique topology such that for all s ∈ Il, [s,�(s−1s)] is an open subset of
Il �� and the source map induces a homeomorphism [s,�(s−1s)]

∼−→�(s−1s).

As explained in [37, Section 2.1], we call Il �� the transformation groupoid and not the groupoid
of germs (as in for instance [25]) because in other contexts, the groupoid of germs denotes the quotient
of a groupoid by the interior of its isotropy subgroupoid (see for instance [63]).

Now we follow [69, Section 5] and construct a variation of Il ��.

Definition 2.15. We define Il �̄ � : = Il ∗�/∼̄, where we set (s, χ )∼̄(t,ψ) if χ =ψ and there exists
ε ∈ J̄ with χ (ε) = 1 and sε= tε in Īl. Equivalence classes with respect to ∼̄ are denoted by [ · ]∼̄. The
groupoid structure on Īl �� is defined in the same way as for Il ��.

We equip Il �̄� with the unique topology such that for all s ∈ Il, [s,�(s−1s)]∼̄ is an open subset of
Il �̄� and the source map induces a homeomorphism [s,�(s−1s)]∼̄

∼−→�(s−1s).

Remark 2.16. It is straightforward to check that the Il-action on� induces an Īl-action Īl �� such that
the inclusion Il ↪→ Īl induces an isomorphism between the transformation groupoid Īl �� for Īl ��

and Il �̄� given by ll �̄�
∼−→ Īl ��, [s, χ ]∼̄ �→ [s, χ ].

By construction, we have a canonical projection Il ��� Il �̄�. It is easy to see that this projection
induces an isomorphism of the groupoids of germs.
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2.3. Finite alignment

Let us now introduce a condition which allows us to reduce the discussion from general constructible
right ideals to principal right ideals.

Definition 2.17. ([69, Definition 3.2]) C is finitely aligned if for all a, b ∈ C, there exists a finite subset
F ⊆ C such that aC∩ bC= ⋃

c∈F cC.

Remark 2.18. The notion of finite alignment is closely related to the notion of minimal common right
multiple (see [18, Definition 2.38]), which we abbreviate by mcm. Given a, b, c ∈ C, c is called an mcm
if c ∈ aC∩ bC and no proper left divisor d (i.e., an element d ∈ C with c ∈ dC) satisfies d ∈ aC∩ bC. It is
immediate from [69, Lemma 3.3] that C is finitely aligned if and only if for all a, b ∈ C, the set of mcms
mcm(a, b) is non-empty and finite up to right multiplication by C∗.

The following observations are immediate from our definitions (see also [69, Section 3]).

Lemma 2.19. Suppose that C is finitely aligned. Then the following hold:

(i) For all e ∈J there exists a finite subset F ⊆ C such that e = ⋃
x∈F xC, and every ε ∈ J̄ is a finite

disjoint union of sets of the form xC \ ⋃n
i=1 yiC for x, y1, . . . , yn ∈ C.

(ii) Every χ ∈� is determined by Fp : = {xC⊆ C: x ∈ C, χ (xC) = 1}, in the sense that for arbitrary
e ∈J , χ (e) = 1 if and only if there exists xC ∈Fp with xC≤ e. Moreover, a basis of compact
open sets for � is given by sets of the form �(xC;y1C, . . . , ynC).

(iii) Every s ∈ Il is a finite union of partial bijections of the form cd−1, where d, c ∈ C satisfy d(c) =
d(d).

(iv) We have
Il �� = {

[cd−1, χ ]: c, d ∈ C, d(c) = d(d); (cd−1, χ ) ∈ Il ∗�
}

,

Il �̄� = {
[cd−1, χ ]∼̄: c, d ∈ C, d(c) = d(d); (cd−1, χ ) ∈ Il ∗�

}
.

In this sense, finite alignment allows us to reduce to principal right ideals.

2.4. Groupoid models for left regular C∗-algebras

Following [69], we now explain in what sense Il �̄� is a groupoid model for C∗
λ
(C). First of all,

as explained in [69, Section 11], there is a canonical projection �: C∗
r (Il �̄�) � C∗

λ
(C) given by

�(1[s,�(s−1s)]∼̄ )(δx) = δs(x) if x ∈ dom (s) and �(1[s,�(s−1s)]∼̄ )(δx) = 0 if x /∈ dom (s). Moreover, it is shown
in [69, Section 11] that � is an isomorphism if C is finitely aligned or Il �̄� is Hausdorff. We present
a characterisation for the Hausdorff property in Lemma 4.1. After comparing the groupoids Il �� and
Il �̄�, we obtain similar results for Il ��. The reader will also find examples for which � fails to be
injective in [69, Section 11].

2.5. The boundary

Finally, we introduce the boundary, following [15, Section 5.7].

Definition 2.20. Ĵmax denotes the set of characters χ ∈ Ĵ for which χ−1(1) is maximal among all
characters χ ∈ Ĵ .

The same proof as for [15, Lemma 5.7.7] shows that Ĵmax ⊆�. Hence, this justifies the notation
�max : = Ĵmax. The following collects observations about �max, which are proven in the same way as in
[15, Section 5.7].
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Lemma 2.21.

(i) If Il contains 0, then χ ∈ Ĵ lies in �max if and only if for all e ∈J with χ (e) = 0, there exists
f ∈J with χ (f ) = 1 such that ef = 0.

(ii) For all 0 �= e ∈J , there exists χ ∈�max with χ (e) = 1.
(iii) �max is Il-invariant.

Definition 2.22. We define the boundary as ∂� : =�max ⊆�.

By Lemma 2.21 (iii), ∂� is Il-invariant, so that we may form the boundary groupoids.

Definition 2.23. We define the boundary groupoids as Il � ∂� and Il �̄ ∂�.

This also leads to the boundary quotients C∗
r (Il � ∂�) and C∗

r (Il �̄ ∂�).

Remark 2.24. The boundary groupoid Il � ∂� can be identified with the tight groupoid of the left
inverse hull Il, in the sense of [23, 25]. However, an analogous statement does not hold for Il �̄ ∂�.
Indeed, as noted in [69, Section 6], ̂̄J max can be identified with �. It follows that ̂̄J max = ∂ ̂̄J , i.e., ̂̄J max

itself is already closed. It is also easy to see this directly. This means that the tight groupoid of the inverse
semigroup Īl is given by Il �̄�. Thus, Il �̄ ∂� does not have an obvious description as a tight groupoid
attached to an inverse semigroup.

3. Comparison of groupoid models

Let us address the natural question when the groupoids Il �� and Il �̄� are isomorphic. By construc-
tion, there is a canonical projection Il ��� Il �̄�.

First, we collect a few observations which are immediate consequences of our construction.

Lemma 3.1.

(i) The canonical projection Il ��� Il �̄� is an open quotient map.
(ii) The canonical projection Il ��� Il �̄� maps bisections to bisections.
(iii) The identity map on � induces a bijection between subsets which are invariant for Il �� and

subsets which are invariant for Il �̄�.

Lemma 3.2. The canonical projection Il ��� Il �̄� is an isomorphism if one of the following
holds:

(i) C is finitely aligned.
(ii) Il �� is Hausdorff.

Proof. Take (s, χ ), (t, χ ) ∈ Il ∗� with (s, χ )∼̄(t, χ ). Then there exists ε ∈ J̄ with χ (ε) = 1 and
sε= tε.

Suppose that (i) holds. By Lemma 2.19 (i), we may assume that ε= xC \ ⋃n
i=1 yiC for some

x, y1, . . . , yn ∈ C. Then sε= tε implies s(x) = t(x), so that, with e : = xC, se = te. Moreover, χ (ε) = 1
implies χ (e) = 1 since ε≤ e. This shows that (s, χ ) ∼ (t, χ ).

Now assume that (ii) holds. By Lemma 2.12, we can find xi ∈ C with limi χxi = χ . As χ (ε) = 1, we
may assume χxi (ε) = 1, i.e., xi ∈ ε. Setting ei : = xiC, sε= tε implies sei = tei, and thus (s, χxi ) ∼ (t, χxi ).
Because limi (s, χxi ) = (s, χ ) and limi (t, χxi ) = (t, χ ), and since Il �� is Hausdorff, we conclude that
(s, χ ) ∼ (t, χ ).
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For a characterisation of the Hausdorff property for Il ��, see Lemma 4.1.

Remark 3.3. As observed in Section 2.2, the canonical projection Il ��� Il �̄� induces an iso-
morphism at the level of groupoids of germs. Hence if Il �� is effective, the canonical projection
Il ��� Il �̄� must be an isomorphism.

The following is an immediate consequence of the results mentioned in Section 2.4 and Lemma 3.2

Corollary 3.4. If C is finitely aligned or Il �� is Hausdorff, then C∗
r (Il ��) is isomorphic to C∗

λ
(C).

Let us now compare boundary groupoids.

Lemma 3.5. The canonical projection Il � ∂�� Il �̄ ∂� is an isomorphism if one of the following
holds:

(i) The canonical projection Il ��� Il �̄� is an isomorphism.
(ii) Il � ∂� is Hausdorff.
(iii) ∂�=�max.

Proof. It is easy to see that (i) is a sufficient condition. Now take (s, χ ), (t, χ ) ∈ Il ∗� with
(s, χ )∼̄(t, χ ). Then there exists ε ∈ J̄ with χ (ε) = 1 and sε= tε, where ε= e \ ⋃

i=1 fi for e, f1, . . . , fn ∈
J . We first show that if χ ∈�max, then (s, χ ) ∼ (t, χ ): Indeed, χ (ε) = 1 implies that χ (fi) = 0 for all
1 ≤ i ≤ n. By Lemma 2.21 (i), χ (fi) = 0 implies that there exists f ′

i ∈J with χ (f ′
i) = 1 and fif ′

i = 0.
Set f ′ : = f ′

1 · · · f ′
n. Then χ (f ′) = 1 and f ′fi = 0 for all 1 ≤ i ≤ n. We conclude that χ (ef ′) = 1. Moreover,

ef ′ ⊆ ε, so that sef ′ = tef ′. It follows that (s, χ ) ∼ (t, χ ), as desired. This immediately implies that (iii)
is a sufficient condition. To treat (ii), assume now that (s, χ )∼̄(t, χ ) for some χ ∈ ∂�. Then there exist
χi ∈�max with limi χi = χ . We may assume χi(ε) = 1 since χ (ε) = 1. It follows that (s, χi)∼̄(t, χi), and,
by what we just proved, (s, χi) ∼ (t, χi). Since Il � ∂� is Hausdorff, we conclude limi (s, χi) = (s, χ ) ∼
(t, χ ) = limi (t, χi), as desired.

Question 3.6. Do we always have isomorphisms Il ��� Il �̄� and Il � ∂�� Il �̄ ∂�? Most likely
the answer will be negative, in which case it would be interesting to find concrete examples where the
canonical projections fail to be injective.

4. Properties of the groupoids

We characterise when Il �� and Il �̄� are Hausdorff, when Il �� is topologically free, and when
Il �̄� is effective. These properties have consequences for the reduced C∗-algebras of Il �� and Il �̄�

(see Corollary 4.10).
Let us start with the Hausdorff property. The following will be an application of [25,

Theorem 3.15].

Lemma 4.1.

(i) Il �� is Hausdorff if and only if for all s ∈ Il, there exists a (possibly empty) finite subset
{e1, . . . , en} ⊆J with {x ∈ dom (s): s(x) = x} = ⋃n

i=1 ei.
(ii) Il �̄� is Hausdorff if and only if for all s ∈ Il, there exists a (possibly empty) finite subset

{ε1, . . . , εn} ⊆ J̄ with {x ∈ dom (s): s(x) = x} = ⋃n
i=1 εi.
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Proof.

(i) [25, Theorem 3.15] implies that Il �� is Hausdorff if and only if for all s ∈ Il, the subset

{χ ∈�: ∃ e ∈J with se = e and χ (e) = 1} (4.1)

is closed in
{
χ ∈�: χ (s−1s) = 1

}
. The latter statement is equivalent to compactness of the set

in (4.1) because
{
χ ∈�: χ (s−1s) = 1

}
is compact. This in turn is true if and only if there exists

a finite subset {e1, . . . , en} ⊆J with sei = ei for all 1 ≤ i ≤ n and

{χ ∈�: ∃ e ∈J with se = e and χ (e) = 1} =
n⋃

i=1

�(ei). (4.2)

We claim that (4.2) is equivalent to {x ∈ dom (s): s(x) = x} = ⋃n
i=1 ei. As sei = ei, we always

have {x ∈ dom (s): s(x) = x} ⊇ ⋃n
i=1 ei. Assume that {x ∈ dom (s): s(x) = x} ⊆ ⋃n

i=1 ei. Given
χ ∈� together with e ∈J such that se = e and χ (e) = 1, we must have e ⊆ ⋃n

i=1 ei. As χ lies
in�, χ (e) = 1 implies that there exists 1 ≤ i ≤ n with χ (ei) = 1. Hence (4.2) holds. Conversely,
suppose that (4.2) holds. Take x ∈ dom (s) with s(x) = x. Then χx lies in the set on the left-hand
side of (4.2), hence there exists 1 ≤ i ≤ n with χx(ei) = 1. The latter implies that x ∈ ei. This
shows {x ∈ dom (s): s(x) = x} ⊆ ⋃n

i=1 ei, as desired.
(ii) [25, Theorem 3.15] implies that Il �̄� is Hausdorff if and only if for all t ∈ Īl, the subset

{
χ ∈�: ∃ ε ∈ J̄ with tε= ε and χ (ε) = 1

}
(4.3)

is closed in
{
χ ∈�: χ (t−1t) = 1

}
. First, we claim that the latter is equivalent to the statement

that for all s ∈ Il, the subset
{
χ ∈�: ∃ ε ∈ J̄ with sε= ε and χ (ε) = 1

}
(4.4)

is closed in
{
χ ∈�: χ (s−1s) = 1

}
. Indeed, a general element t ∈ Īl is of the form sδ for some

δ ∈ J̄ with δ ≤ s−1s. Now it is straightforward to see that the set in (4.3) coincides with the inter-
section of the set in (4.4) and�(δ). If the set in (4.4) is closed in

{
χ ∈�: χ (s−1s) = 1

}
, then its

intersection with�(δ) must be closed in
{
χ ∈�: χ (s−1s) = 1

} ∩�(δ) = {
χ ∈�: χ (t−1t) = 1

}
.

This shows our claim. Now the rest of the proof is similar as for (i).

In combination with Lemma 2.19, the following is immediate.

Corollary 4.2. Assume that C is finitely aligned. Then Il ��∼= Il �̄� is Hausdorff if and only if
for all c, d ∈ C with d(c) = d(d) and t(c) = t(d), there exists a finite subset {x1, . . . , xn} ⊆ C with
{x ∈ C: cx = dx} = ⋃n

i=1 xiC.

Remark 4.3. Lemma 4.1 and Corollary 4.2 explain the results in [69, Section 7] that Il �̄� is
Hausdorff if C is finitely aligned and right cancellative, or if C embeds into a groupoid. In the first
case, the set {x ∈ C: cx = dx} is either empty or we have c = d, which implies that {x ∈ C: cx = dx} = C.
In the second case, the set {x ∈ dom (s): s(x) = x} is either empty or we have s ∈ J̄ , in which case
{x ∈ dom (s): s(x) = x} coincides with s−1s, where we view the latter as a subset of C.

Let us now consider topological freeness and effectiveness. Recall that an étale groupoid G is called
effective if the interior of its isotropy subgroupoid coincides with the unit space, i.e., Iso(G)◦ = G (0).
Following [37, Definition 2.20], we call an Étale groupoidG topologically free if for every open bisection
γ with γ ⊆ G \ G(0),

{
x ∈ G (0): Gx

x ∩ γ �= ∅}
has empty interior, or equivalently,

{
x ∈ s(γ ): γ x /∈ Gx

x

}
is

dense in s(γ ). By [37, Lemma 2.23], G is topologically free if G is effective, and the converse holds
if G is Hausdorff. Topological freeness for groupoids is of interest because it implies the intersection
properties for essential groupoid C∗-algebras (see [37, Section 7.5] for more information).
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Now we set C∗,0 : = {u ∈ C∗: t(u) = d(u)}, and set C∗,0 �� : = {
[u, χ ] ∈ Il ��: u ∈ C∗,0

}
.

Theorem 4.4. The following are equivalent:

(i) Il �� is topologically free;
(ii) C∗,0 �� is topologically free;
(iii) For all v ∈ C0, u ∈ vC∗v, f1, . . . , fn ∈J with fi � vC for all 1 ≤ i ≤ n, uz ∈ zC∗ for all z ∈ vC \⋃n

i=1 fi implies that there exists x ∈ vC \ ⋃n
i=1 fi with ux = x.

Proof.
(i) ⇒ (ii): C∗,0 �� is an open subgroupoid of Il ��. Thus, an open bisection γ of C∗,0 ��with γ ⊆

(C∗,0 ��) \� is also an open bisection of Il �� contained in (Il ��) \�. Moreover, γ x /∈ (Il ��)x
x

implies that γ x /∈ (C∗,0 ��)x
x. This shows that{

x ∈ s(γ ): γ x /∈ (Il ��)x
x

} ⊆ {
x ∈ s(γ ): γ x /∈ (C∗,0 ��)x

x

}
.

Hence C∗,0 �� is topologically free if Il �� is topologically free.
(ii) ⇒ (i): Assume that Il �� is not topologically free. Then we can find s ∈ Il and an open set

U ⊆�(s−1s) with [s, U] ⊆ (Il ��) \� and [s, U] ⊆ Iso(Il ��). As {χx: x ∈ C} is dense in �, there
exists x ∈ C with χx ∈ U. s.χx = χx implies that s(x) = xu for some u ∈ C∗,0. As [s, χx] �= χx, we con-
clude that u /∈ C0. Set V : =�(xC) ∩ U. V is not empty, so that x−1.V �= ∅. It is easy to see that
[x,�(d(x))]−1[s, V][x,�(d(x))] = [u, x−1.V]. Moreover, [x,�(d(x))]−1[s, V][x,�(d(x))] is contained in
Iso(Il ��) \� because [s, V] ⊆ Iso(Il ��) \�. This means that C∗,0 �� is not topologically free.

(ii) ⇒ (iii): Assume uz ∈ zC∗ for all z ∈ vC \ ⋃n
i=1 fi. Set U : =�(vC;f1, . . . , fn). Then [u, U] ⊆

Iso(C∗,0 ��). As C∗,0 �� is topologically free, there exists χ ∈ U with [u, χ ] = χ , i.e., there exists
e ∈J with χ (e) = 1 and ue = e. χ (vC \ ⋃n

i=1 fi) = 1 implies that e �⊆ ⋃n
i=1 fi. Hence we can choose

x ∈ e \ ⋃n
i=1 fi, and we have ux = x.

(iii) ⇒ (ii): First we claim that (iii) is equivalent to the following stronger statement:
(iii’) For all v ∈ C0, u ∈ vC∗v, e, f1, . . . , fn ∈J with e, f1, . . . , fn ≤ vC and

⋃n
i=1 fi � e, uz ∈ zC∗ for all

z ∈ e \ ⋃n
i=1 fi implies that there exists x ∈ e \ ⋃n

i=1 fi with ux = x.
Indeed, to prove (iii) ⇒ (iii’), take y ∈ e \ ⋃n

i=1 fi and set v : = d(y). By assumption, uy ∈ yC∗,
and hence we have uy = yũ for some ũ ∈ vC∗v. Set f ′

i : = yC∩ fi. Then
⋃n

i=1 f ′
i � yC implies that⋃n

i=1 y−1f ′
i � vC. For every x̃ ∈ vC \ ⋃n

i=1 y−1f ′
i, we have by assumption yũx̃ = uyx̃ ∈ yx̃C∗ and thus

ũx̃ ∈ x̃C∗. Hence (iii) implies that there exists x ∈ vC \ ⋃n
i=1 y−1f ′

i with ũx = x. Then yx ∈ e \ ⋃n
i=1 fi and

uyx = yũx = yx, as desired.
Now assume that (iii’) holds. Let u ∈ C∗,0, U =�(e;f1, . . . , fn), and assume that [u, U] ⊆ Iso

(C∗,0 ��). Then we must have uz ∈ zC∗ for all z ∈ e \ ⋃n
i=1 fi. Hence (iii’) implies that there exists

x ∈ e \ ⋃n
i=1 fi with ux = x. Then χx ∈ U because x ∈ e \ ⋃n

i=1 fi. Moreover, ux = x implies that [u, χx] =
χx ∈�. Hence C∗,0 �� is topologically free.

We now consider Il �̄�. As before, we set C∗,0 �̄� : = {
[u, χ ]∼̄ ∈ Il �̄�: u ∈ C∗,0

}
.

Theorem 4.5. The following are equivalent:

(i) Il �̄� is effective;
(ii) C∗,0 �̄� is effective;
(iii) For all v ∈ C0, u ∈ vC∗v, f1, . . . , fn ∈J with fi � vC for all 1 ≤ i ≤ n, uz ∈ zC∗ for all z ∈ vC \⋃n

i=1 fi implies that ux = x for all x ∈ vC \ ⋃n
i=1 fi.

Proof.

(i) ⇒ (ii) is clear because C∗,0 �̄� is an open subgroupoid of Il �̄�.
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(ii) ⇒ (i): Suppose that Il �̄� is not effective. Then there exist s ∈ Il, U : =�(e;f1, . . . , fn) and
χ ∈ U with [s, U] ⊆ Iso(Il �̄�) and [s, χ ] �= χ . Set ε : = e \ ⋃n

i=1 fi. [s, χ ] �= χ implies that
sε �= ε, i.e., there exists x ∈ ε with s(x) �= x. We have χx ∈ U, and s(x) �= x implies [s, χx] �=
χx. However, s.χx = χx, and thus s(x) = xu for some u ∈ C∗,0 with t(u) = d(u) = d(x). We
deduce x �= xu, i.e., u �= d(x). Set V : =�(x) ∩ U. Then χx ∈ V , so V is not empty. Moreover,
[u, c−1.V] = [x,�(d(x))]−1[s, V][x,�(d(x))] is contained in Iso(C∗,0 �̄�). We have [u, χd(x)] =
[x,�(d(x))]−1[s, χx][x,�(d(x))] ∈ [u, c−1.V] and [u, χd(x)] �= χd(x) because ud(x) �= d(x). It fol-
lows that C∗,0 �̄� is not effective.

To prove (ii) ⇔ (iii), we first show that (iii) is equivalent to the following stronger statement:

(iii’) For all v ∈ C0, u ∈ vC∗v, e, f1, . . . , fn ∈J with e, f1, . . . , fn ≤ vC and
⋃n

i=1 fi � e, uz ∈ zC∗ for all
z ∈ e \ ⋃n

i=1 fi implies that ux = x for all x ∈ e \ ⋃n
i=1 fi.

Indeed, to prove (iii) ⇒ (iii’), take x ∈ e \ ⋃n
i=1 fi and set v : = d(x). By assumption, ux ∈ xC∗,

and hence we have ux = xũ for some ũ ∈ vC∗v. Set f ′
i : = xC∩ fi. Then

⋃n
i=1 f ′

i � xC implies that⋃n
i=1 x−1f ′

i � vC. For every x̃ ∈ vC \ ⋃n
i=1 x−1f ′

i, we have by assumption xũx̃ = uxx̃ ∈ xx̃C∗ and thus ũx̃ ∈
x̃C∗. Hence (iii) implies ũ = ũv= v and thus ux = xũ = x. As x was an arbitrary element of e \ ⋃n

i=1 fi,
we are done.

Now let us prove (ii) ⇔ (iii). C∗,0 �̄� is effective if and only if for all u ∈ C∗,0 and ε= e \ ⋃n
i=1 fi ∈ J̄ ,

[u,�(ε)] ⊆ Iso(C∗,0 �̄�) implies [u,�(ε)] =�(ε). [u,�(ε)] ⊆ Iso(C∗,0 �̄�) holds if and only if uz ∈
zC∗ for all z ∈ ε, whereas [u,�(ε)] =�(ε) holds if and only if uε= ε, i.e., ux = x for all x ∈ ε. We
conclude that (ii) and (iii’) are equivalent.

The following are immediate consequences.

Corollary 4.6. If Il �̄� is effective, then Il �� is topologically free.

Corollary 4.7. Assume that C is finitely aligned.

(i) Il ��∼= Il �̄� is topologically free if and only if for all v ∈ C0, u ∈ vC∗v, c1, . . . , cn ∈ vC \ vC∗,
uz ∈ zC∗ for all z ∈ vC \ ⋃n

i=1 ciC implies that there exists x ∈ vC \ ⋃n
i=1 ciC with ux = x.

(ii) Il ��∼= Il �̄� is effective if and only if for all v ∈ C0, u ∈ vC∗v, c1, . . . , cn ∈ vC \ vC∗, uz ∈ zC∗

for all z ∈ vC \ ⋃n
i=1 ciC implies that ux = x for all x ∈ vC \ ⋃n

i=1 ciC.

We also note the following special case, where our conditions simplify.

Corollary 4.8. Assume that for all v ∈ C0, there exist f1, . . . , fn ∈J with vC \ ⋃n
i=1 fi = vC∗. Then the

following are equivalent:

(i) Il �̄� is effective.
(ii) Il �� is topologically free.
(iii) C∗,0 = C0.

Proof. (i) ⇒ (ii) has been noted above. Let us prove (ii) ⇒ (iii). We have for all z ∈ vC \ ⋃n
i=1 fi = vC∗

that uz = z(z−1uz) ∈ zC∗. Hence, Theorem 4.4 (iii) implies that there exists x ∈ vC \ ⋃n
i=1 fi = vC∗ with

ux = x. Hence, u = uxx−1 = xx−1 = v. (iii) ⇒ (i) is immediate from Theorem 4.5.

Remark 4.9. Theorems 4.4 and 4.5 generalise [40, Theorem 5.9].

In combination with [37, Theorem 7.29] (and the explanations following Theorem 7.29 in [37]), the
following are consequences of our results above.
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Corollary 4.10. If the conditions in Lemma 4.1 (i) and Theorem 4.4 (iii) are satisfied, then C∗
r (Il ��)

has the intersection property.
If the conditions in Lemma 4.1 (ii) and Theorem 4.5 (iii) are satisfied, then C∗

r (Il �̄�) has the
intersection property.

Suppose that C is finitely aligned. If the condition in Corollary 4.2 and one of the conditions in
Corollary 4.7 are satisfied, then C∗

r (Il ��) ∼= C∗
r (Il �̄�) has the intersection property.

Remark 4.11. It is also possible to give a characterisation for minimality of Il �� and Il �̄� by for-
mulating a characterisation when�= ∂� along the lines of [15, Lemma 5.7.19] and then applying our
characterisation for minimality of Il � ∂� and Il �̄ ∂� (see Lemma 5.4).

Remark 4.12. It would also be possible to formulate sufficient criteria for local contractiveness of Il ��

and Il �̄�. However, this happens only in rather special situations (see Proposition 6.32 and Corollary
6.33, for example). For instance, in the setting of Corollary 4.8, Il �� and Il �̄� and are never locally
contractive because the assumptions in Corollary 4.8 imply that {χv} is open for all v ∈ C0.

5. Properties of the boundary groupoid

We characterise when Il � ∂� and Il �̄ ∂� are Hausdorff or minimal, when Il � ∂� is topologically
free, when Il �̄ ∂� is effective, and we give a sufficient condition for local contractiveness of Il � ∂�

and Il �̄ ∂�. These properties have consequences for the boundary quotients (see Corollary 5.20).
Note that if Il does not contain zero, then #C0 = 1 and ∂� degenerates to a point. Because of this, it

suffices in the following to focus on the case when Il contains zero.
We first consider the Hausdorff property. The following is an application of [25, Theorem 3.16]

because Il � ∂� is the tight groupoid of the inverse semigroup Il.

Lemma 5.1. Il � ∂� is Hausdorff if and only if for all s ∈ Il there exist e1, . . . , en ∈J with sei = ei such
that for all 0 �= e ∈J with se = e, there exists 1 ≤ i ≤ n with eei �= 0.

Now we characterise when Il �̄ ∂� is Hausdorff.

Lemma 5.2. Il �̄ ∂� is Hausdorff if and only if for all s ∈ Il there exist ε1, . . . , εn ∈ J̄ with sεi = εi such
that for all 0 �= e ∈J with se = e, there exists 1 ≤ i ≤ n such that eεi �= 0.

Proof. We make use of the identification Il �̄ ∂�∼= Īl � ∂� (see Remark 2.16). [25, Theorem 3.15],
applied to Īl � ∂�, implies that Il �̄ ∂� is Hausdorff if and only if for all s ∈ Īl there exist ε1, . . . , εn ∈ J̄
with sεi = εi such that for all χ ∈ ∂�, ε ∈ J̄ with χ (ε) = 1 and sε= ε, there exists 1 ≤ i ≤ n such that
χ (εi) = 1. We may assume that s ∈ Il in this statement because every s̄ ∈ Īl is of the form sδ for some s ∈ Il

and δ ∈ J̄ , and we can form products of ε and εi with δ. Next, we claim that the statement is equivalent to
the following: For all s ∈ Il, there exist ε1, . . . , εn ∈ J̄ with sεi = εi such that for all χ ∈�max, ε ∈ J̄ with
χ (ε) = 1 and sε= ε, there exists 1 ≤ i ≤ n such that χ (εi) = 1. Indeed, given χ ∈ ∂�, we can always find
ηλ ∈�max with χ = limλ ηλ. We may then assume that ηλ(ε) = 1 for all λ, and then deduce that for all λ,
there exists 1 ≤ i ≤ n with ηλ(εi) = 1. By passing to a subnet if necessary, we arrange that there exists
1 ≤ i ≤ n with ηλ(εi) = 1 for all λ, and thus χ (εi) = 1. Now we claim that our new statement is equivalent
to the following: For all s ∈ Il, there exist ε1, . . . , εn ∈ J̄ with sεi = εi such that for allχ ∈�max, 0 �= e ∈J
with χ (e) = 1 and se = e, there exists 1 ≤ i ≤ n such that χ (εi) = 1. Indeed, given χ ∈�max and ε ∈ J̄
with χ (ε) = 1, Lemma 2.21 implies that there exists e ∈J with χ (e) = 1 and e ≤ ε. Finally, we claim
that our statement is equivalent to the desired one: For all s ∈ Il, there exist ε1, . . . , εn ∈ J̄ with sεi = εi

such that for all 0 �= e ∈J with se = e, there exists 1 ≤ i ≤ n such that eεi �= 0. To see “⇒”, if there
exists 0 �= e ∈J with eεi = 0 for all i, then Lemma 2.21 yields a character χ ∈�max with χ (e) = 1, and
we obtain χ (εi) = 0 for all i. For “⇐”, assume that there exist χ ∈�max, 0 �= e ∈J with χ (e) = 1 and
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se = e such that χ (εi) = 0 for all i. Write εi = ei \ ⋃
f∈fi

f . χ (εi) = 0 implies that χ (ei) = 0 or χ (fi) = 1
for some fi ∈ fi. In the first case, Lemma 2.21 yields e′

i ∈J with eie′
i = 0 and χ (e′

i) = 1. In that case
set gi : = e′

i. In the second case, set gi : = fi. In any case, we obtain χ (gi) = 1 and giεi = 0. Now set
e′ : = e

∏
i gi. It follows that χ (e′) = 1 (and thus e′ �= 0), se′ = e′ and e′εi = 0 for all i.

Our characterisation simplifies in the finitely aligned case.

Corollary 5.3. Suppose that C is finitely aligned. Then Il � ∂�∼= Il �̄ ∂� is Hausdorff if and only if
for all c, d ∈ C with t(d) = t(c), there exist x1, . . . , xn ∈ C with cxi = dxi for all 1 ≤ i ≤ n such that for all
x ∈ C with cx = dx, there exists 1 ≤ i ≤ n with xC∩ xiC �= ∅.

Next, we consider minimality.

Lemma 5.4. The following are equivalent:

(i) Il � ∂� is minimal.
(ii) Il �̄ ∂� is minimal.
(iii) For all non-zero e, f ∈J there exist s1, . . . , sn ∈ Il such that for all e′ ∈J with e′ ≤ e, there

exists 1 ≤ i ≤ n with e′(sifs−1
i ) �= 0.

Proof. (i) ⇔ (ii) follows from Lemma 3. (i) ⇔ (iii) follows from [25, Theorem 5.5].

We record the following characterisation of minimality in the finitely aligned case.

Corollary 5.5. Suppose that C is finitely aligned. Then Il � ∂�∼= Il �̄ ∂� is minimal if and only if for
all v, w ∈ C0 there exist x1, . . . , xn ∈ vC with wCd(xi) �= ∅ for all 1 ≤ i ≤ n, such that for all x ∈ vC there
exists 1 ≤ i ≤ n with xC∩ xiC �= ∅.

This characterisation also appears in [53, Theorem 6.6] (the countability assumption on C in [53] is
not necessary).

Let us furthermore present a sufficient condition for local contractiveness.

Lemma 5.6. Il � ∂� is locally contractive if and only if Il �̄ ∂� is locally contractive.
Il � ∂� is locally contractive if for all 0 �= e ∈J there exists s ∈ Il and f0, . . . , fn ∈J \ {0} such that

fi ≤ es−1s for all 0 ≤ i ≤ n, for all 1 ≤ i ≤ n and f ′ ≤ sfis−1 there exists 0 ≤ j ≤ n with f ′fj �= 0, and f0sfi = 0
for all 0 ≤ i ≤ n.

Proof. The first statement follows from Lemma 3. The second statement is an application of
[25, Theorem 6.5].

As a consequence, we obtain the following sufficient condition for local contractiveness in the finitely
aligned case.

Corollary 5.7. Suppose that C is finitely aligned. Then Il � ∂�∼= Il �̄ ∂� is locally contractive if for
all x ∈ C there exist c, d ∈ C with d(c) = d(d) and y0, . . . , yn ∈ C such that dyiC≤ xC for all 0 ≤ i ≤ n,
for all 1 ≤ i ≤ n and z ∈ C with zC⊆ cyiC there exists 0 ≤ j ≤ n with zC∩ dyjC �= ∅, and dy0C∩ cyiC= ∅
for all 0 ≤ i ≤ n.

Finally, we characterise topological freeness or effectiveness of boundary groupoids. First we present
a general characterisation for topological freeness of tight groupoids attached to inverse semigroups.
To the best of the author’s knowledge, such a characterisation has not appeared before. We work in
the setting of [25]. Let S be an inverse semigroup with zero and E its semilattice of idempotents. As
in Section 2.2, we write Ê for the space of characters of E. As in Section 2.5, we write Êmax for the
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maximal filters on E and ∂Ê : = Êmax ⊆ Ê. Note that ∂Ê is denoted by Êtight in [25]. The action S � Ê is
defined as in Section 2.2 and restricts to an action S � ∂Ê (see also [25], for instance). As in Section 2.2,
we define S ∗ Ê : = {(s, χ ) ∈ S × Ê: χ (s−1s) = 1} and S � Ê : = (S ∗ Ê)/∼, where we set (s, χ ) ∼ (t,ψ) if
χ =ψ and there exists e ∈ E with χ (e) = 1 and se = te. As above, equivalence classes with respect to
∼ are denoted by [ · ]. The groupoid structure is defined as in Section 2.2.

Definition 5.8. Set Sc : = {
s ∈ S: e(ses−1) �= 0 ∀ 0 �= e ≤ s−1s

}
.

Lemma 5.9.

(i) Sc is closed under inverses, i.e., s ∈ Sc implies s−1 ∈ Sc.
(ii) For all s, t ∈ Sc, st also lies in Sc.
(iii) Whenever s ∈ Sc and t ∈ S, we have t−1st ∈ Sc.

Proof. (i) is straightforward to prove. To prove (ii), take 0 �= e ≤ (st)−1(st). Then e ≤ t−1t.
Hence e(tet−1) �= 0. Moreover, e(tet−1) ≤ s−1s. Thus 0 �= e(tet−1)se(tet−1)s−1 = e(tet−1)(ses−1)stet−1s−1 ≤
estet−1s−1. For (iii), take 0 �= e ≤ (t−1st)−1(t−1st). Then e ≤ t−1t, so that 0 �= tet−1 ≤ s−1s. Since s ∈ Sc, we
deduce that tet−1stet−1s−1 �= 0. Hence, it follows that e(t−1stet−1s−1t) �= 0, as desired.

In the following, we write Sc � ∂Ê : = {[s, χ ] ∈ S � ∂Ê: s ∈ Sc}. We start with a preparatory observa-
tion.

Lemma 5.10. We have Sc � ∂Ê ⊆ Iso(S � ∂Ê).

Proof. Take s ∈ S and χ ∈ ∂Ê with χ (s−1s) = 1 and s.χ �= χ . Since Êmax is dense in ∂Ê,
we may assume that χ ∈ Êmax. s.χ �= χ implies that there exists e ∈ E with χ (e) = 1 and
s.χ (e) = 0, i.e., χ (s−1es) = 0. Since χ ∈ Êmax, the analogue of Lemma 2.21 implies that there exists
f ∈ E with χ (f ) = 1 and f (s−1es) = 0. Hence, sfs−1ess−1 = 0. Moreover, χ (s−1s) = 1 implies that
χ (fs−1s) = 1 and thus χ (efs−1s) = 1, so that efs−1s �= 0. Clearly, we have efs−1s ≤ s−1s. Furthermore,
(efs−1s)s(efs−1s)s−1 = fs−1s(efs−1ss−1)ses−1 = 0. We conclude that s /∈ Sc, as desired.

Theorem 5.11. The following are equivalent:

(i) S � ∂Ê is topologically free.
(ii) Sc � ∂Ê is topologically free.
(iii) For all s ∈ Sc, e, f1, . . . , fn ∈ E with fi ≤ e ≤ s−1s for all 1 ≤ i ≤ n such that there exists 0 �= f ≤ e

with ffi = 0 for all 1 ≤ i ≤ n, there exists 0 �= f ′ ≤ e with f ′fi = 0 for all 1 ≤ i ≤ n and sf ′ = f ′.

Proof. (i) ⇒ (ii) follows as in the proof of Theorem 4.4 because Sc � ∂Ê is an open subgroupoid of
S � ∂Ê.

For (ii) ⇒ (i), assume that S � ∂Ê is not topologically free. Then there exists s ∈ S and an open
set U ⊆ ∂Ê with [s, U] ⊆ Iso(S � ∂Ê) \ ∂Ê. Take ψ ∈ Êmax ∩ U and t ∈ S with ψ(tt−1) = 1. Assume that
tst−1 /∈ Sc. Then there exists 0 �= f ≤ (t−1s−1t)−1(t−1s−1t) with f (t−1s−1tft−1st) = 0. By the analogue of
Lemma 2.21, there exists ηt ∈ Êmax with ηt(tft−1) = 1. Thus ηt(t−1t) = 1. Moreover, f (t−1s−1tft−1st) = 0
implies (tft−1)(s−1tft−1s) = 0. Hence if ηt(s−1s) = 1, then s.ηt �= ηt. Applying this reasoning to all t ∈ S
with ψ(tt−1) = 1, we obtain a set {ηt}t ⊆ Êmax with ηt(tt−1) = 1 for all such t. It follows by maximal-
ity that ψ lies in the closure of {ηt}t. As ψ ∈ U, this implies that ηt ∈ U for some t. In particular,
ηt(s−1s) = 1, which implies s.ηt �= ηt. This however contradicts the assumption that [s, U] ⊆ Iso(S � ∂Ê).
We conclude that there exists t ∈ S with ψ(tt−1) = 1 and t−1st ∈ Sc. The latter implies tt−1stt−1 ∈ Sc

by Lemma 5.9. Set V : = U ∩ ∂Ê(tt−1). Then V is not empty because ψ ∈ V . Moreover, we claim
[s, V] ⊆ [tt−1stt−1, V]. Indeed, given ζ ∈ V , we have ζ (tt−1) = 1 as well as ζ = s.ζ , so that ζ (s−1tt−1s) =
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s.ζ (tt−1) = 1. Hence, η(s−1tt−1stt−1) = 1. In addition, tt−1stt−1 = s(s−1tt−1stt−1). This shows that (s, ζ ) ∼
(tt−1stt−1, ζ ), as desired. We conclude that [s, V] ⊆ [tt−1stt−1, V] ⊆ Sc � ∂Ê. Hence [s, V] ⊆ [s, U] ⊆
Iso(S � ∂Ê) \ ∂Ê implies [s, V] ⊆ Iso(Sc � ∂Ê) \ ∂Ê. This shows that Sc � ∂Ê is not topologically free.

(ii) ⇔ (iii): Lemma 5.10 implies Sc � ∂Ê ⊆ Iso(S � ∂Ê). Thus Sc � ∂Ê is topologically free if and
only if every nonempty bisection of Sc � ∂Ê has nonempty intersection with ∂Ê. Every nonempty bisec-
tion contains a basic open set of the form [s, ∂Ê(e;f1, . . . , fn)]. ∂Ê(e;f1, . . . , fn) is not empty if and only
if there exists χ ∈ Êmax with χ (e) = 1 and χ (fi) = 0 for all 1 ≤ i ≤ n. By the analogue of Lemma 2.21,
the latter holds if and only if there exists f ∈ E with f ≤ e and ffi = 0 for all 1 ≤ i ≤ n such that χ (f ) = 1.
Hence we may assume that s, e, f1, . . . , fn are exactly as in (iii). Now [s, ∂Ê(e;f1, . . . , fn)] ∩ ∂Ê �= ∅ if
and only if [s, ∂Ê(e;f1, . . . , fn)] ∩ Êmax �= ∅. We claim that the last statement is equivalent to (iii). Indeed,
if there exists χ ∈ Êmax with χ (e) = 1, χ (f1) = . . .= χ (fn) = 0 and [s, χ ] = χ , then there exists f ∈ E
with f ≤ e, ffi = 0 for all 1 ≤ i ≤ n and χ (f ) = 1. [s, χ ] = χ implies that there exists f̃ ∈ E with χ (f̃ ) = 1
and sf̃ = f̃ . Now f ′ : = f f̃ has the desired properties. Conversely, if (iii) holds, then by the analogue of
Lemma 2.21, there exists χ ∈ Êmax with χ (f ′) = 1. It follows that χ ∈ ∂Ê(e;f1, . . . , fn), and sf ′ = f ′ implies
[s, χ ] = χ .

To complete the picture, we state the following characterisation of effectiveness of Sc � ∂Ê. It follows
from Lemma 5.10 and also appears (implicitly) in [25, Section 4].

Lemma 5.12. Sc � ∂Ê is effective if and only if for all s ∈ Sc, there exist e1, . . . , en ∈ E with ei ≤ s−1s
and sei = ei for all 1 ≤ i ≤ n, such that for all f ≤ s−1s, there exists 1 ≤ i ≤ n with fei �= 0.

The following summarises our findings and combines them with the results in [25, Section 4].

Corollary 5.13. Consider the following statements:

(i) S � ∂Ê is effective.
(ii) Sc � ∂Ê is effective.
(iii) For all s ∈ Sc, there exist e1, . . . , en ∈ E with ei ≤ s−1s and sei = ei for all 1 ≤ i ≤ n, such that

for all f ≤ s−1s, there exists 1 ≤ i ≤ n with fei �= 0.
(iv) S � ∂Ê is topologically free.
(v) Sc � ∂Ê is topologically free.
(vi) For all s ∈ Sc, e, f1, . . . , fn ∈ E with fi ≤ e ≤ s−1s for all 1 ≤ i ≤ n such that there exists 0 �= f ≤ e

with ffi = 0 for all 1 ≤ i ≤ n, there exists 0 �= f ′ ≤ e with f ′fi = 0 for all 1 ≤ i ≤ n and sf ′ = f ′.

Then (i) ⇒ (ii) ⇔ (iii) ⇒ (iv) ⇔ (v) ⇔ (vi). If S � ∂Ê is Hausdorff, then all these statements are
equivalent. If ∂Ê = Êmax, then (i) ⇔ (ii) ⇔ (iii).

Proof. All this follows from what we showed above, except for the very last statement, which follows
from [25, Theorem 4.10].

Corollary 5.13 applied to S = Il yields a characterisation when Il � ∂� is topologically free and a
necessary condition for effectiveness of Il � ∂�. Now we turn to Il �̄ ∂�.

Definition 5.14. We set Ī f
l : = {

s ∈ Īl: ∃ f ∈J with 0 �= f ≤ s−1s
}
.

Lemma 5.15. Given s ∈ Īl, s lies in Ī f
l if and only if s−1 lies in Ī f

l if and only if there exists χ ∈�max with
χ (s−1s) = 1.

Proof. The first equivalence is easy to see. If s−1s = e \ ⋃n
i=1 fi, then existence of χ ∈�max with

χ (s−1s) = 1 implies that χ (e) = 1 and χ (f1) = · · · = χ (fn) = 0. Hence, there exists f ∈J with f ≤ e,
ff1 = · · · = ffn = 0 and χ (f ) = 1 by Lemma 2.21. Thus 0 �= f ≤ s−1s. Conversely, if there exists f ∈
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J with 0 �= f ≤ s−1s, then Lemma 2.21 implies that there exists χ ∈�max with χ (f ) = 1 and thus
χ (s−1s) = 1.

Now we define the analogue of Sc or Ic
l .

Definition 5.16. We define Īc
l : = {

s ∈ Ī f
l : e(ses−1) �= 0 ∀ e ∈J with 0 �= e ≤ s−1s

}
.

The following is the analogue of Lemma 5.9. The proof is similar.

Lemma 5.17.

(i) Īc
l is closed under inverses, i.e., s ∈ Īc

l implies s−1 ∈ Īc
l .

(ii) For all s, t ∈ Īc
l with st ∈ Ī f

l , st also lies in Īc
l .

(iii) For all s ∈ Īc
l and t ∈ Īl with t−1st ∈ Ī f

l , we have t−1st ∈ Īc
l .

As explained in Remark 2.16, we have an identification Il �̄ ∂�∼= Īl � ∂�. In the following, we work
with Īl � ∂�. We set Īc

l � ∂� : = {
[s, χ ] ∈ Īl � ∂�: s ∈ Īc

l

}
.

Theorem 5.18. We have Iso(Īl � ∂�)◦ = Īc
l � ∂�.

The following are equivalent:

(i) Il �̄ ∂�∼= Īl � ∂� is effective.
(ii) Īc

l � ∂�= ∂�.
(iii) For all s ∈ Īc

l there exist ε1, . . . , εn ∈ J̄ with sεi = εi for all 1 ≤ i ≤ n such that for all g ∈J with
0 �= g ≤ s−1s, there exists 1 ≤ i ≤ n with gεi �= 0.

Proof. Let us prove Iso(Īl � ∂�)◦ = Īc
l � ∂�. We first show “⊇”: Take s ∈ Īc

l and χ ∈�max with
χ (s−1s) = 1. As we have seen in the proof of Lemma 5.15, there exists f ∈J with f ≤ s−1s and χ (f ) = 1.
We claim that for all e ≤ f , χ (e) = 1 implies that χ (ses−1) = 1. Indeed, if χ (ses−1) = 0, then Lemma
2.21 implies that there exists e′ ∈J with e′(ses−1) = 0 and χ (e′) = 1. Thus ee′(see′s−1) = 0, while
ee′ �= 0 since χ (ee′) = 1. This contradicts s ∈ Īc

l . Now given g ∈J , s.χ (g) = 1 ⇔ s.χ (sfs−1g) = 1 ⇔
χ (fs−1gs) = 1 ⇒ χ (sfs−1g) = 1 ⇒ χ (g) = 1. Maximality implies s.χ = χ . Hence, s.χ = χ for all χ ∈
∂�(s−1s). Now we show “⊆”: Take s, t ∈ Īl and U = ∂�(tt−1) with U ⊆ ∂�(s−1s) and [s, U] ⊆ Iso(Īl �

∂�). Without loss of generality, we may assume s, t ∈ Ī f
l because of Lemma 5.15. Take χ ∈ U. Then

t−1.χ ((t−1st)−1(t−1st)) = 1. Lemma 5.15 implies that t−1st ∈ Ī f
l . If t−1st /∈ Īc

l , then there exists 0 �= e ∈J
with e ≤ (t−1st)(t−1st)−1 such that e(t−1s−1tet−1st) = 0. Hence (tet−1)(s−1tet−1s) = 0. e ≤ (t−1st)(t−1st)−1

implies e ≤ t−1t, hence tet−1 ∈J . Take ψ ∈�max with ψ(tet−1) = 1. This is possible by Lemma
2.21. Then ψ(tt−1) = 1 and thus ψ ∈ U. In particular, s.ψ =ψ . However, ψ(s−1tet−1s) = s.ψ(tet−1) =
ψ(tet−1) = 1, which contradicts (tet−1)(s−1tet−1s) = 0. We conclude that t−1st ∈ Īc

l . Since there exists
f ∈J with 0 �= f ≤ (t−1st)(t−1st)−1, we have 0 �= tft−1 ≤ tt−1s−1tt−1st−1, which implies tt−1stt−1 ∈ Ī f

l . Since
t−1st ∈ Īc

l , Lemma 5.17 implies that tt−1stt−1 ∈ Īc
l . Finally, [s, χ ] = [tt−1stt−1, χ ] in Īl � ∂� because

χ (s−1tt−1stt−1) = 1 and tt−1stt−1 = s(s−1tt−1stt−1). We conclude that [s, χ ] = [tt−1stt−1, χ ] ∈ Īc
l � ∂�.

This shows “⊆”.
(i) ⇔ (ii) follows from what we just proved. To prove (ii) ⇔ (iii), observe that Īc

l � ∂�= ∂� if
and only if for all s ∈ Īc

l and χ ∈ ∂� with χ (s−1s) = 1, there exists ε ∈ J̄ with ε≤ s−1s, χ (ε) = 1 and
sε= ε. Fix s ∈ Īc

l . By compactness of ∂�(s−1s), we deduce that there are ε1, . . . , εn ∈ J̄ with sεi = εi

for all 1 ≤ i ≤ n such that ∂�(s−1s) = ⋃n
i=1 ∂�(εi). We claim that this last equality is equivalent to the

statement that for all g ∈J with 0 �= g ≤ s−1s, there exists 1 ≤ i ≤ n with gεi �= 0. Indeed, given g ∈J
with 0 �= g ≤ s−1s, Lemma 2.21 provides χ ∈�max with χ (g) = 1. This implies χ (s−1s) = 1 and hence
χ (εi) = 1 for some 1 ≤ i ≤ n. We deduce that gεi �= 0. Conversely, assume that there exists χ ∈ ∂� with
χ (s−1s) = 1 and χ (εi) = 0 for all 1 ≤ i ≤ n. By density, we may assume that χ ∈�max. The proof of
Lemma 5.15 shows that there exists f ∈J with f ≤ s−1s such that χ (f ) = 1. Write εi = ei \ ⋃

j fij for some
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ei, fij ∈J . Either χ (ei) = 0 or χ (ei) = 1 = χ (fij) for some j. In the first case, Lemma 2.21 implies that
there exists gi ∈J with χ (gi) = 1 and giei = 0, which implies giεi = 0. In the second case, set gi : = fij.
Then we also obtain χ (gi) = 1 and giεi = 0. Now define g : = fg1 · · · gn. Then χ (g) = 1 implies g �= 0.
By construction, we have g ≤ s−1s. In addition, we have gεi = 0 for all 1 ≤ i ≤ n.

Let us now specialise to the finitely aligned case.

Corollary 5.19. Suppose that C is finitely aligned.

(i) Il � ∂�∼= Il �̄ ∂� is topologically free if and only if for all c, d ∈ C with d(c) = d(c) and
t(c) = t(d) with the property that for all x ∈ C with cx ∈ dC, we have cxC∩ dxC �= ∅, there exist
y, z1, . . . , zn ∈ C with zi ∈ yC for all 1 ≤ i ≤ n, cy ∈ dC, and with the property that there exists
z ∈ yC with zC∩ ziC= ∅ for all 1 ≤ i ≤ n, such that there exists z′ ∈ C with z′C∩ ziC= ∅ for all
1 ≤ i ≤ n and cz′ = dz′.

(ii) Il � ∂�∼= Il �̄ ∂� is effective if and only if for all c, d ∈ C with d(c) = d(c) and t(c) = t(d),
δ= aC \ ⋃

h ahC for a ∈ C and {ah} ⊆ C finite with the property that δ ⊆ c−1(dC∩ cC) and for
all x ∈ C with xC⊆ δ, we have cxC∩ dxC �= ∅, there exist εi = biC \ ⋃

j bijC (for some bi ∈ C

and finite subset
{
bij

} ⊆ C), 1 ≤ i ≤ n, with the property that εi ⊆ δ and cy = dy for all y ∈ εi for
all 1 ≤ i ≤ n, such that for all z ∈ δ, we have zC∩ εi �= ∅ for some 1 ≤ i ≤ n.

Note that for certain finitely aligned left cancellative small categories, effectiveness of the boundary
groupoid has been characterised in [53, Theorem 6.4].

Corollary 5.20. If the conditions in Lemma 5.1 and Corollary 5.13(iv) for S = Il are satisfied, then
C∗

r (Il � ∂�) has the intersection property. If, in addition, the condition in Lemma 5.4 is satisfied, then
C∗

r (Il � ∂�) is simple. And if, in addition, the condition in Lemma 5.4 and the condition in Lemma 5.6
are satisfied, then C∗

r (Il � ∂�) is purely infinite simple.
If the conditions in Lemma 5.2 and Theorem 5.18(iii) are satisfied, then C∗

r (Il �̄ ∂�) has the intersec-
tion property. If, in addition, the condition in Lemma 5.4 is satisfied, then C∗

r (Il �̄ ∂�) is simple. And if,
in addition, the condition in Lemma 5.4 and the condition in Lemma 5.6 are satisfied, then C∗

r (Il �̄ ∂�)
is purely infinite simple.

Suppose that C is finitely aligned. If the condition in Corollary 5.3 and one of the conditions in
Corollary 5.19 are satisfied, then C∗

r (Il ��) ∼= C∗
r (Il �̄�) has the intersection property. If, in addition,

the condition in Corollary 5.5 is satisfied, then C∗
r (Il � ∂�) ∼= C∗

r (Il �̄ ∂�) is simple. And if, in addi-
tion, the condition in Corollary 5.5 and the condition in Corollary 5.7 are satisfied, then C∗

r (Il � ∂�) ∼=
C∗

r (Il �̄ ∂�) is purely infinite simple.

We also present the following observation, which is inspired by [15, Lemma 5.7.10 and Theorem
5.7.16].

Proposition 5.21. ∂� is the smallest nonempty closed invariant subspace of Ĵ if and only if ∂� is the
smallest nonempty closed invariant subspace of � if and only if for all v, w ∈ C0, we have wCv �= ∅. In
that case, Il � ∂� is purely infinite in the sense of [47, Definition 4.9] if and only if for all v ∈ C0, there
exist a, b ∈ vC with aC∩ bC= ∅.

Proof. First suppose that ∂� is the smallest nonempty closed invariant subspace of �. Then for
every v ∈ C0, the orbit closure of χv contains all of �max. Hence, given w ∈ C0, there exists s ∈ Il such
that s.χv(wC) = 1. It follows that there exists x ∈wC such that s−1(x) is defined and χv(s−1(x)) = 1,
which implies that s−1(x) = u for some u ∈ vC∗. Hence x = s(u) and thus x ∈wCd(u), which implies that
xu−1 ∈wCv.
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Now suppose that for all v, w ∈ C0, we have wCv �= ∅. Take χ ∈ Ĵmax and η ∈ Ĵ arbitrary. Let v ∈ C0

be such that η(vC) = 1. For every e ∈J with χ (e) = 1, take a ∈ e and b ∈ d(a)Cv. Then d(ab) = v, so that
ab.η is defined, and we have ab.η(ab) = 1, which implies ab.χ (e) = 1. Set χe : = ab.η. By maximality,
χ must lie in {χe: e ∈J , χ (e) = 1}.

This concludes the proof of the first part. For the second claim, if there exists v ∈ C0 such that
aC∩ bC �= ∅ for all a, b ∈ vC, then ∂�(v) degenerates to a point and Il � ∂� cannot be purely infinite.
Conversely, given v ∈ C0 and a basic open set U ⊆ ∂�(v) of the form U = ∂�(x;y) for some x ∈ vC,
y⊆ vC, we can find χ ∈ U ∩�max. Lemma 2.21 implies that there exists z ∈ vC such that zC≤ xC
and zC∩ yC= ∅ for all y ∈ y. It follows that every η ∈ ∂� with η(zC) = 1 satisfies η ∈ U. Now take
a, b ∈ d(z)C with aC∩ bC= ∅ and a′ ∈ d(a)Cv, b′ ∈ d(b)Cv. Then aa′C∩ bb′C= ∅ and aa′, bb′ ∈ d(z)Cv.
We conclude that zaa′.U ⊆ U, zbb′.U ⊆ U and zaa′.U ∩ zbb′.U = ∅.

Now let us prove Theorem A. Let P be a submonoid of a group G. Denote by 1 the identity element
of P and G. The remaining part of this section deals with the special case where C= P.

Definition 5.22. We set Gc : = {g ∈ G: (pP) ∩ (gpP) �= ∅ ∀ p ∈ P}.

Theorem 5.23. The boundary groupoid Il � ∂� for P is effective if and only if Gc = {1}.
Proof. We will use the same notation as in [15, Section 5].
First, we show that for all g ∈ Gc and χ ∈ Ug−1 ∩ ∂�, we have g.χ = χ . Without loss of generality, we

may assume that χ ∈�max. χ ∈ Ug−1 implies that there exists f ∈J with g−1(f ) ∈J and χ (g−1(f )) = 1.
Now take e ∈J arbitrary. g.χ (e) = 1 if and only if g.χ (ef ) = 1 if and only if χ (g−1(ef )) = 1. Note that
g−1(ef ) must lie in J as well. Assume that χ (e) = 0. By Lemma 2.21, there exists e′ ∈J with χ (e′) = 1
and e′e = 0. Take x ∈ e′g−1(ef ). Since g ∈ Gc, we know that (xP) ∩ (gxP) �= ∅. However, xP ⊆ e′ and
gxP ⊆ ef ⊆ e. Hence, we obtain a contradiction to e′e = 0. This means that for all g ∈ Gc, {g} × Ug−1 ∩
∂�⊆ Iso(Il � ∂�)◦. So if Il � ∂� is effective, then we must have Gc = {1}.

Conversely, assume that Gc = {1}. If Il � ∂� is not effective, then there exists 1 �= g ∈ G and a
nonempty open set U ⊆ Ug−1 ∩ ∂� with {g} × U ⊆ Iso(Il � ∂�). Take χ ∈ U ∩�max and e ∈J with
χ (e) = 1. Pick an element x ∈ e. g �= 1 implies that x−1gx �= 1, so that x−1gx /∈ Gc. Hence, there exists
p ∈ P with (pP) ∩ (x−1gxpP) = ∅. It follows that (g−1xpP) ∩ (xpP) = ∅. By Lemma 2.21, there exists χe ∈
�max with χe(xpP) = 1. By maximality, χ lies in the closure of {χe: e ∈J , χ (e) = 1}. Hence we can find
χe in U. Now we have 1 = χe(xpP) = g.χe(xpP) = χe(g−1xpP). This contradicts (g−1xpP) ∩ (xpP) = ∅.
We conclude that Il � ∂� must be effective, as desired.

Corollary 5.24. (see [15, Section 5.7]) Let P be a submonoid of a group G. If Gc = {1}, then ∂C∗
λ
(P) is

simple, and ∂C∗
λ
(P) is purely infinite simple unless P = {1}.

Remark 5.25. As Marcelo Laca and Camila F. Sehnem kindly informed me, Theorem 5.23 and
Corollary 5.24 also follow from [40, Proposition 6.18 and Corollary 6.19].

6. C∗-algebras of Garside categories
6.1. Preliminaries on Garside families in small categories

In the following, we give a brief introduction to Garside categories and collect a few facts about Garside
families in small categories which will be needed later on. Our exposition follows [18], where the reader
will find more details (but note that our convention is opposite to the one in [18], as explained at the
beginning of Section 2.1).
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Let C be a left cancellative small category.

Definition 6.1. Given a, b ∈ C, we write a 
 b if a is a left divisor of b, i.e., b ∈ aC. We write a ≺ b if
bC� aC. We write a
∼b if a is a right divisor of b, i.e., b ∈ Ca. We write a≺∼b if Cb � Ca.

We write a =∗ b if a ∈ bC∗ (which is equivalent to aC= bC).

Definition 6.2. C is called left Noetherian if there exists no infinite sequence . . .≺ a3 ≺ a2 ≺ a1. C is
called right Noetherian if there exists no infinite sequence . . .≺∼a3≺∼a2≺∼a1. C is called Noetherian if
it is both left and right Noetherian.

The following notion already came up in Remark 2.18.

Definition 6.3. Given a, b, c ∈ C, c is called an mcm of a and b if c is minimal with respect to 
 among
{d ∈ C: a 
 d and b 
 d}, i.e., a 
 c, b 
 c, and for all d ∈ C with a 
 d and b 
 d, if d 
 c then d =∗ c.

We write mcm(a, b) for the set of all mcms of a, b ∈ C.

It would be more precise to use the term ‘right mcm’. However, there will be no danger of confusion
because left mcms will not appear in this paper.

Definition 6.4. A finite or infinite sequence s1, s2, . . . in C is called a path if d(sk) = t(sk+1) for all k. We
denote this path by s1s2 · · · .

Definition 6.5. Given S⊆ C, we set S� : =SC∗ ∪ C∗.

Definition 6.6. A subset S⊆ C is closed under right comultiples if for all r, s ∈S and a ∈ C with r 
 a,
s 
 a, there exists t ∈S with r 
 t, s 
 t and t 
 a.

Definition 6.7. Suppose S⊆ C is closed under right comultiples, S∪ C∗ generates C and S� is closed
under right divisors.

A path s1 · · · sl ∈S� is called S-normal if for all 1 ≤ k ≤ l − 1 and r ∈S, if r 
 sksk+1 then r 
 sk.
We also call a S-normal path a S-normal word.

For a ∈ C, a S-normal decomposition (or S-normal form) of a is given by a S-normal path s1 · · · sl

in S� with a = s1 · · · sl.
S is called a Garside family if every element in C admits a S-normal decomposition.

Our assumption on S is justified by [18, Chapter IV, Proposition 1.23]. We used a simplified version
of normal decomposition (compare [18, Chapter III] for the general definition), which is allowed because
of [18, Chapter IV, Proposition 1.20]. In the following, wheneverS is understood, we will drop the prefix
‘S-’ (for instance, we will write ‘normal’ instead of ‘S-normal’).

Remark 6.8. If s1 · · · sl is normal, then for all 1 ≤ j ≤ k ≤ l and r ∈S, if r 
 sj · · · sk then r 
 sj (see
[18, Chapter III, Proposition 1.12]).

Remark 6.9. If S is a Garside family, then C∗S⊆S� by [18, Chapter III, Proposition 1.39].

By choosing one representative in each =∗-class, we may (and will) always arrange that for all s1, s2 ∈
S, s1 =∗ s2 implies s1 = s2 (see [18, Chapter III, Corollary 1.34], i.e., S is =∗-transverse.
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Proposition 6.10. (see [18, Chapter III, Corollary 1.27]) If S is a Garside family which is =∗-
transverse, then every a ∈ C \ C∗ admits a unique normal decomposition s1 · · · sl with sk ∈S \ C∗ for
all 1 ≤ k ≤ l − 1 and sl ∈S� \ C∗.

Definition 6.11. Suppose that S is a Garside family which is =∗-transverse. Given a ∈S, we define
‖a‖ : = 0 if a ∈ C∗ and ‖a‖ : = l if s1 · · · sl is the unique normal decomposition of a as in Proposition
6.10.

There are many criteria which ensure that a subset S of C is a Garside family. We mention the
following example.

Proposition 6.12. (see [18, Chapter IV, Corollary 2.26]) Suppose that C is left cancellative and
Noetherian. Then S⊆ C is a Garside family if and only if S∪ C∗ generates C and S� is closed under
mcms and right divisors.

Definition 6.13. Given S⊆ C, s ∈S is called an S-head of a ∈ C if s is a maximal left divisor in S of
a with respect to 
, i.e., s 
 a, and every r ∈S with r 
 a satisfies r 
 s.

If S is a Garside family, then by [18, Chapter IV, Proposition 1.24], every noninvertible element a
of C admits an S-head, which is unique if S is =∗-transverse. In that case, the S-head will be denoted
by H(a).

The following are immediate consequences of [18, Chapter III, Proposition 1.49].

Proposition 6.14. Suppose that S is a Garside family which is =∗-transverse with S∩ C∗ = ∅.
Given a path a1, . . . , an in S, we have H(a1 · · · an) = H(a1 . . .H(an−2H(an−1an)) . . . ). If r1r2 · · · is

a normal path in S and a1 · · · an is a path in S, then the normal form of a1 · · · anr1r2 · · · starts with
H(a1 · · · anr1).

6.2. Classification of closed invariant subspaces

From now on, let C be a countable left cancellative category. Suppose S⊆ C is a subset which generates
C. Given an infinite path w = s1s2 · · · in S, we write wn : = s1 · · · sn, w=n : = sn and w>n : = sn+1sn+2 · · · .
Moreover, we set �∞ : =� \ {χx: x ∈ C}.

Lemma 6.15.

(i) Define a function χw: J → {0, 1} by setting, for all e ∈J , χw(e) : = 1 if wn ∈ e for some n and
χw(e) = 0 otherwise. Then χw ∈�.

Now assume that C is finitely aligned.

(i) Every χ ∈�∞ is of the form χw for some infinite path w in S.
(ii) Given c, d ∈ C with t(d) = t(c) and an infinite path w in S, we have that cd−1.χw is defined

if and only if there exists n such that d 
 cwn. In that case, if we have dxn = cwn, then cd−1.
χw = χcxnw>n .

Proof.

(i) It is immediate that χw is indeed a character satisfying the condition in Definition 2.9.
(ii) Given χ ∈� \ {χx: x ∈ C}, set Fp : = {x ∈ C: χ (xC) = 1}. Write Fp = {x1, x2, . . . }. Now define

w(1) : = x1. For n> 1, since χ (w(n−1)C∩ xnC) = 1, there exists w(n) ∈ mcm(w(n−1), xn) such that
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χ (w(n)C) = 1. Here, we use that C is finitely aligned and χ ∈�. Since χ /∈ {χx: x ∈ C}, we may
assume that w(n) /∈ C∗ for all n. Thus, we can write w(n) = s(n)

1 · · · s(n)
ln . Now set

w : = s(1)
1 · · · s(1)

l1
s(2)

1 · · · s(2)
l2

s(3)
1 · · · s(3)

l3
· · ·

We claim that χ = χw. Indeed, for x ∈ C, χw(xC) = 1 if and only if x 
 w(n) for some n if and
only if χ (xC) = 1. The last equivalence follows from χ (w(n)) = 1 and xn 
 w(n) for all n. Now
our claim follows from Lemma 2.19 (ii).

(iii) cd−1.χw is defined if and only if χw(d) = 1, and hence the first claim follows. If dxn = cwn, then
χw = χdxnw>n . Thus, cd−1.χw = cd−1d.χxnw>n = χcxnw>n .

Definition 6.16. We call a subset S⊆ C locally finite if vS is finite for all v ∈ C0.
We call a subset S⊆ C locally bounded if for every v ∈ C0, there exists no infinite sequence s1, s2, . . .

in vS with s1 ≺ s2 ≺ . . . .
In the following, a finite or infinite word x inS is called normal if x = s1s2 · · · for a normal path s1s2 · · · .
In case x is an infinite normal path, we set ‖x‖ : = ∞. Given two words x = s1s2 · · · and y = t1t2 · · · in
S, equality of words x = y means s1 = t1, s2 = t2, . . . .

Lemma 6.17. Suppose that C is finitely aligned and that S is a Garside family in C with S∩ C∗ =
which is =∗-transverse and locally bounded. Then every χ ∈� \ {

χv: v ∈ C0
}

is of the form χx for some
normal word x. Moreover, given two normal words x and y, we have χx = χy if and only if x = y.

Proof. By Lemma 6.15 (ii), there exists w = r1r2 · · · (where r1, r2, . . . ∈S) with χ = χw. Set s(n)
1 : =

H(wn). As s(n)
1 
 wn+1 and s(n+1)

1 is the maximal left divisor of wn+1, we must have s(n)
1 
 s(n+1)

1 . BecauseS is
=∗-transverse and locally bounded, it follows that the sequence s(1)

1 , s(1)
2 , . . . must be eventually constant,

say eventually equal to s1. We introduce the notation H(w) : = s1. Now define s2 : = H(s−1
1 w), . . . , sn : =

H(s−1
n−1 · · · s−1

2 s−1
1 w), . . . . Set x = s1s2 . . . . By construction, s1s2 · · · is normal. We claim that χ = χx.

Indeed, proceed inductively on n to show that for all n, there exists N(n) such that xn 
 wN(n): This is true
by construction for n = 1. Now suppose that xn 
 wN(n). Then χx−1

n wN(n)w>N(n)
(sn+1) = 1 implies that sn+1 


x−1
n wN(n+1) for some sufficiently big N(n + 1). It follows that xn+1 
 wN(n+1), as desired. Thus, given z ∈ C,

if χx(zC) = 1, then z 
 xn for some n, and hence z 
 xn 
 wN(n), which implies χw(zC) = 1. Let us show
that, conversely, given z ∈ C, if χw(zC) = 1, then χx(zC) = 1. By construction and because of xn 
 wN(n),
the normal form of wN(n) starts with s1s2 · · · sn. It then follows from [18, Chapter III, Proposition 1.14]
that wn ≺ s1 · · · sn = xn. Hence, given z ∈ C, if χw(zC) = 1, then z 
 wn for some n, so that z 
 wn 
 xn,
and thus χx(zC) = 1.

Suppose that x = s1s2 · · · for a normal path s1s2 · · · and y = t1t2 · · · for a normal path t1t2 · · · . If
χx = χy, then χy(s1C) = 1, hence s1 
 yn for some n. But since t1 is the maximal left divisor of yn, this
implies s1 
 t1. By symmetry, we also obtain t1 
 s1. It follows that s1 =∗ t1. As S is =∗-transverse, we
conclude that s1 = t1. Now proceed inductively, applying the previous argument to s−1

1 x = s2s3 · · · and
t−1
1 y = t2t3 · · · , using that χs−1

1 x = s−1
1 .χx = t−1

1 .χy = χt−1
1 y.

From now on, in the remaining part of Section 6, we will assume the following:

Standing assumptions: C is finitely aligned and S is a Garside family in C with S∩ C∗ = ∅ which
is =∗-transverse and locally bounded.

Let W be the set of (nonempty) normal words in S. Then Lemma 6.17 implies that there is a one-to-
one correspondenceW � C0 ∼−→�, w �→ χw, v �→ χv. In the following, to simplify notation, given x ∈ C,
we will denote xC by x.

Lemma 6.18. Given a sequence w(i) ∈W and w ∈W , we have limi χw(i) = χw if and only if for all n, wn

is maximal with respect to 
 among {v ∈ C: ‖v‖ ≤ n, v 
 w(i)
n for almost all i}.
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If S is locally finite, then {χx} is open for every x ∈ C, �∞ is closed, and given a sequence w(i) ∈W
and w ∈W , we have limi χw(i) = χw if and only if for all n, wn = w(i)

n for almost all i.

Proof. The first part follows from the following observations: Given v ∈ C with ‖v‖ ≤ n, we have that
limi χw(i) (v) = 1 if and only if v 
 w(i)

n for almost all i, whereas χw(v) = 1 if and only if v 
 wn.
For the second part, if S is locally finite, we have {χx} =�(x;d(x)S) is open for all x ∈ C and thus

�∞ =� \ ⋃
x∈C {χx} is closed. Moreover, we claim that wn is maximal among {v ∈ C: ‖v‖ ≤ n, v 


w(i)
n for almost all i} with respect to 
 if and only if wn = w(i)

n for almost all i. Indeed, by deleting the
first few elements of the sequence, we may assume that wn 
 w(i)

n for all i. If we do not have wn = w(i)
n

for almost all i, then by passing to a subsequence, we may arrange wn ≺ w(i)
n for all i. Since S is locally

finite, Sn is also locally finite. Hence, by further passing to a subsequence, we may arrange that w(i)
n is

constant, say equal to v. It follows that wn ≺ v, and thus χw(i) does not converge to χw by the first part.
This is a contradiction.

Given a sequence s(i) in S and s ∈S∪ C0, we write limi s(i) = s if s is maximal with respect to 

among

{
r ∈S∪ C0: r 
 s(i) for almost all i

}
.

In the following, we denote Il �� by G.

Proposition 6.19. Suppose that V ⊆W � C0.
Given a normal word in S, w = s1s2 · · · , we have χw ∈ G. {χv: v ∈ V} if and only if for all j, there

exists a sequence v(i) in V such that for all i, there exist ai ∈ C and mi ∈N with ‖v(i)‖<mi or ai ∈ Cd(v(i))
if v(i) ∈ C such that, if we set s(i)

j : = H(aiv(i)
=mi

) in the first case or s(i)
j : = H(ai) in the second case, then

limi s(i)
j = sj.

For w ∈ C0, we have χw ∈ G. {χv: v ∈ V} if and only if w ∈ V or there exists a sequence v(i) in V such
that for all i, there exist ai ∈ C and mi ∈N with ‖v(i)‖<mi or ai ∈ Cd(v(i)) if v(i) ∈ C such that, if we set
s(i) : = H(aiv(i)

=mi
) in the first case or s(i) : = H(ai) in the second case, then limi s(i) =w.

Proof. We prove the first claim, the argument for the second claim is analogous.
For “⇐”, write χṽ(i) : = ai(r

(i)
1 · · · r(i)

mi−1
)−1.χv(i) in the first case and χṽ(i) : = ai(v(i))−1.χv(i) in the second

case. Then χṽ(i) ∈ G. {χv: v ∈ V}. Moreover, the normal form of ṽ(i) starts with s(i)
j . By compactness of

�(t(sj)), we may assume without loss of generality that χṽ(i) converges to χx. Then χx ∈ G. {χv: v ∈ V}.
The assumption limi s(i)

j = sj implies that the normal form of x starts with sj. Now set χw(j) : =
(s1 · · · sj−1).χx. Then the normal form of w(j) starts with s1 · · · sj. Since the normal form of w also starts
with s1 · · · sj, we conclude that limj χw(j) = χw, as desired.

Now we show “⇒”. Without loss of generality, we may assume that j = 1. Assume that we can
find ci, di ∈ C with t(di) = t(ci) and v(i) ∈ V such that limi d−1

i ci.χv(i) = χw. By Lemma 6.15 (iii), we can
write d−1

i ci.χv(i) = χaiv
(i)
>Ni

for some ai ∈ C or d−1
i ci.χv(i) = χai for some ai ∈ Cd(v(i)) (which implies v(i) ∈

C). The normal decomposition of aiv
(i)
>Ni

starts with s(i)
1 : = H(aiv

(i)
>Ni

) in the first case, and the normal
decomposition of ai starts with s(i)

1 : = H(ai) in the second case. Then limi d−1
i ci.χv(i) = χw implies that

limi s(i)
1 = s1, as desired.

Definition 6.20. Let T⊆S and D⊆ C0.

(i) (T, D) is called admissible if for all t ∈T, there exists t′ ∈T such that t t’ is normal or d(t) ∈D.
(ii) (T, D) is called H-invariant if for all a ∈ C \ C∗ and x ∈T∪D with d(a) = t(x), H(ax) lies

in T.
(iii) (T, D) is called max∞


 -closed if for every sequence ti in T, if limi ti exists in S, then limi ti ∈
T∪D.

Definition 6.21. Given X ⊆�, let V ⊆W �D0 be such that X = {χv: v ∈ V}.
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Define T(X) : = {t ∈S: t = v=i for some v ∈ V ∩W and i ∈N} and D(X) : = V ∩ C0 = {
v ∈ C0:

χv ∈ X
}
.

Lemma 6.22. (T, D) is admissible if and only if there exists X ⊆� such that T=T(X) and D=D(X).
(T(X), D(X)) is H-invariant and max∞


 -closed if and only if X is G-invariant and closed.

Proof. For the first claim, to see “⇐”, suppose that t = v=i. Then tv=i+1 is normal if ‖v‖ ≥ i + 1, and
d(s) ∈D if ‖v‖ = i. For “⇒”, given t ∈T, we can inductively construct an infinite normal word in T
starting with t or a finite normal word with d in D.

For the second claim, “⇒” follows from Proposition 6.19. For “⇐”, if X = {χv: v ∈ V} is G-
invariant, then (T, D) is H-invariant because of Proposition 6.14, and if X is closed, then by
compactness of �(v) for all v ∈ C0 and Proposition 6.19, (T, D) is max∞


 -closed, where T=
{t ∈S: t = v=i for some v ∈ V ∩W and i ∈N} and D= V ∩ C0 = {

v ∈ C0: χv ∈ X
}
.

Given (T, D), there is a smallest H-invariant and max∞

 -closed pair (T, D) containing (T, D), which

can be constructed by adjoining elements H(ax) (for a ∈ C \ C∗, x ∈T∪D with d(a) = t(x)) and limi ti

(for sequences ti in T) step by step and taking the union at the end. Similarly, given (T, D), there is a
biggest admissible pair (Ť, Ď) contained in (T, D), which can be constructed by deleting elements t for
which there does not exist t′ ∈T such that t t’ is normal and for which d(t) /∈D step by step and taking
the intersection at the end.

Corollary 6.23. If (T, D) is admissible, then (T, D) is admissible. In addition, (T, D) is obtained by
first adjoining elements H(ax) (for a ∈ C \ C∗, x ∈T∪D with d(a) = t(x)) and then adjoining elements
of the form limi ti, i.e., this process does not have to be repeated.

Suppose that (T, D) is H-invariant and max∞

 -closed. Then (Ť, Ď) H-invariant and max∞


 -closed.

Proof. Let us prove the first claim. By Lemma 6.22, there exists X ⊆� such that T=T(X) and
D=D(X). It now follows from Proposition 6.19 that (T, D) = (T(G.X), D(G.X)), and that (T, D) is
obtained by first adjoining elements H(ax) (for a ∈ C \ C∗, x ∈T∪Dwith d(a) = t(x)) and then adjoining
elements of the form limi ti (i.e., this process does not have to be repeated).

Now we prove the second claim. It follows from the first claim that (Ť, Ď) is admissible. Moreover,
since (T, D) is H-invariant and max∞


 -closed, we must have Ť⊆T and Ď) ⊆D. Hence, by maximality
of (Ť, Ď), we conclude that (Ť, Ď) = (Ť, Ď).

Definition 6.24. Let T⊆S and D⊆ C0. We set X(T, D) : = {χv: v=i ∈T ∀ i ∈N} ∪ {χv: v ∈D}.

Theorem 6.25. The maps X �→ (T(X), D(X)) and X(T, D)(T, D) establish an inclusion-preserving one-
to-one correspondence between G-invariant, closed subspaces of� and admissible, H-invariant, max∞


 -
closed pairs (T, D) with T⊆S and D⊆ C0.

Here, we write (T1, D1) ⊆ (T2, D2) if T1 ⊆T2 and D1 ⊆D2.
Proof. Lemma 6.22 implies that these maps are well-defined. Moreover, Lemma 6.22 implies that

T=T(X(T, D)) and D=D(X(T, D)). Finally, it remains to show that X(T(X), D(X)) = X. “⊇” is clear.
For “⊆”, take χv ∈ X(T(X), D(X)). If v ∈ C0, then χv ∈ X. If v ∈W , then, for all i ∈N with i ≤ ‖v‖, there
exists w ∈W with χw ∈ X and w=i = v=i. It then follows from Proposition 6.19 that χv ∈ X because X is
G-invariant and closed. It is clear that the maps preserve inclusions.

Corollary 6.26. If S is locally finite, then the maps X �→ (T(X), D(X)) and X(T, D)(T, D) establish
an inclusion-preserving one-to-one correspondence between G-invariant, closed subspaces of � and
admissible, H-invariant pairs (T, D) with T⊆S and D⊆ C0.
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Proof. This follows from Theorem 6.25 because every pair (T, D) is automatically max∞

 -closed as

S is locally finite.

Next we characterise G-invariant, closed subsets which are contained in the boundary.

Definition 6.27. Let Dmax be the subset of all v ∈ C0 with vC= vC∗. Define

TMax : = {
t ∈S: ∀ F ⊆ d(t)S with # F<∞, tt̃ ∈S ∀ t̃ ∈ F ∃ x ∈ C with x ∩ t̃ = ∅ ∀ t̃ ∈ F

}
∪ {t ∈S: ∃ finite normal path v and i ≤ ‖v‖with v=i = t and d(v) ∈Dmax} .

Proposition 6.28. We have Dmax =D(�max) and T(�max) ⊆TMax ⊆T(∂�).

Proof. The first claim is clear. Now take t ∈T(�max). Then there exists χw ∈�max with w=i = t. If
w is a finite normal path, then d(w) ∈Dmax. Now suppose that w is an infinite normal path. As �max

is G-invariant, we may assume i = 1. Take a finite subset F ⊆ d(t)S with tt̃ ∈S for all tit ∈ F. Then
χw(tt̃) = 0 for all t̃ ∈ F. By Lemma 2.21, there exists x ∈ C with χw(tx) = 1 and tx ∩ tt̃ = ∅ for all t̃ ∈ F.
Hence, x ∩ t̃ = ∅ for all t̃ ∈ F, and we conclude that t ∈TMax. To show TMax ⊆T(∂�), take t ∈TMax. If
there exists a finite normal path v and i ≤ ‖v‖ with v=i = t and d(v) ∈Dmax, then χv ∈�max and t ∈T(∂�).
Now suppose that for all finite subsets F ⊆ d(t)Swith tt̃ ∈S for all t̃ ∈ F, there exists x ∈ Cwith x ∩ t̃ = ∅
for all t̃ ∈ F. It suffices to show that there exists χw ∈ ∂� with w ∈W and w1 = t. Order all finite subsets
F ⊆ d(t)S with tt̃ ∈S for all t̃ ∈ F by inclusion and find χF ∈�max with χF(tx) = 1. Such χF exist by
Lemma 2.21. By compactness of �(t(t)), we may assume that limF χF = χw ∈ ∂�. Then χF(t) = 1 for
all F while χF(tt̃) = 0 whenever t̃ ∈ F. It follows that w1 = t, as desired.

The following are immediate consequences.

Corollary 6.29. We have (T(∂�), D(∂�)) = (TMax, Dmax). Under the correspondence in Theorem 6.25,
a G-invariant, closed subspace X is contained in ∂� if and only if (T(X), D(X)) ⊆ (TMax, Dmax).

Lemma 6.30. If S is locally finite, then

TMax = {
t ∈S: ∃ x ∈ Cwith x ∩ t̃ = ∅ ∀ t̃ ∈ d(s)S with tt̃ ∈S

}
∪ {t ∈S: ∃ finite normal path v and i ≤ ‖v‖with v=i = tand d(v) ∈Dmax} .

Moreover, TMax =T(�max).

Proof. The first claim follows since # d(t)S<∞ asS is locally finite. For the second claim, it suffices
to show that TMax ⊆T(�max). Given t ∈TMax, take x ∈ C with x ∩ t̃ = ∅ for all t̃ ∈ d(s)S with tt̃ ∈S.
By Lemma 2.21, there exists χw ∈�max (where w ∈W) with χw(tx) = 1. It then follows that w1 = t, as
desired.

6.3. Topological freeness and local contractiveness

Let us establish a sufficient condition for topological freeness.

Proposition 6.31. Let (T1, D1) and (T2, D2) be admissible, H-invariant and max∞

 -closed pairs with

(T1, D1) ⊆ (T2, D2). Set X∗ : = X(T∗, D∗) for ∗ = 1, 2. Assume that vC∗v= v for all v ∈D2 \D1, and that
for all finite normal paths a, b inSwith t(a) = t(b), d(a) = d(b), a1 �= b1 and s ∈T2 \T1 with d(s) = d(a),
there exists t ∈T2 \T1 such that s t is normal and H(at) �= H(bt). Then Il � (X2 \ X1) is topologically free.

Proof. Given c, d ∈ C with d(c) = d(d) and a basic open set U = (X2 \ X1)(x;y) ⊆�(d), where x ∈ C
and y⊆ C is a finite set, we want to show that [cd−1, U] ∩ U �= ∅ or there exists χ ∈ U with cd−1.χ �= χ .
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If there exists a finite normal word w with χv ∈ U, then we must have d(v) ∈D2 \D1, and cd−1.χv =
χv implies that cd−1(v) = vu for some u ∈ d(w)C∗d(w) = d(w) (the last equality holds by assumption).
Hence, cd−1(v) = v and thus [cd−1, χv] = χv.

Now suppose that there is an infinite normal word v with χv ∈ U. Set L : = max {‖y‖: y ∈ y}. Then we
claim that for every normal word v’ with ‖v′‖ ≥ L, v′

L = vL and χv
′ ∈ X2 \ X1 imply that χv

′ ∈ U. Indeed,
given y ∈ y, if χv

′ (y) = 1, then y 
 v′
n for some n, which would imply y 
 v′

L = vL by [18, Chapter III,
Proposition 1.14], contradicting χv(y) = 0. Now if cvL = dvL, then cd−1(vL) = vL and hence [cd−1, χv] =
χv. If cvL �= dvL, then we can find finite normal paths r, a, b with a1 �= b1 such that cvL = ra and dvL = rb.
For s = v=L, there exists by assumption t ∈T2 \T1. Thus, we can find a normal word w with w1 = t
such that χw ∈ X2 \ X1. Since s t is normal, we obtain that vLt is normal, so that χvLw ∈ U. Now write
aw = H(at)za and bw = H(bt)zb for some normal words za and zb. We conclude that

c.χvLw = cvL.χw = ra.χw = r.χH(at)za �= r.χH(bt)zb = rb.χw = dvL.χw = d.χvLw.

Next, we present a sufficient condition for local contractiveness.

Proposition 6.32. Suppose that C is left Noetherian. Let (T1, D1) and (T2, D2) be two admissible,
H-invariant and max∞


 -closed pairs with (T1, D1) ⊆ (T2, D2). Set X∗ : = X(T∗, D∗) for ∗ = 1, 2. Assume
that for every admissible, H-invariant and max∞


 -closed pair (T, D) with (T1, D1) ⊆ (T, D) � (T2, D2),
there exists an infinite normal path inT2 \T. Further suppose that for all finite normal paths c inT2 \T1,
there exists a maximal element s ∈T2 \T1 with respect to 
 together with a normal path p such that cps
is normal and two distinct normal paths q1, q2 such that sq1c and sq2c are normal. Then Il � (X2 \ X1)
is locally contractive.

Proof. As above, suppose that we are given a basic open set U = (X2 \ X1)(x;y) ⊆�(c−1(c ∩ d)), where
x ∈ C and y⊆ C is a finite set. Our first assumption implies that there exists an infinite normal word v
such that χv ∈ U. Set L : = max {‖y‖: y ∈ y} and c : = vL. As shown above, for every normal word v’ with
‖v′‖ ≥ L, v′

L = c and χv
′ ∈ X2 \ X1 imply that χv

′ ∈ U.
Now let {ti} be the minimal elements with respect to 
 among {t ∈S: st ∈T1}. The elements ti exist

because C is left Noetherian. Without loss of generality assume that ti �= tj for all i �= j. Now we claim
that # {ti}<∞. If not, then we show that by passing to a subsequence, we may arrange limi sti = st
for some t ∈S∪ C0. Indeed, if s is not maximal among {r ∈S: r 
 sti for almost all i}, by passing to a
subsequence we may arrange that there exists t′ ∈S with st′ 
 sti for all i. If st’ is not maximal among
{r ∈S: r 
 sti for almost all i}, then we obtain, by passing to a subsequence if necessary, an element
t′ ′ ∈S with t′ ≺ t′ ′ such that st′ ′ 
 sti for all i. Continuing this way, we obtain a sequence t′ ≺ t′ ′ ≺ . . . ,
contradicting our assumption that S is locally bounded. So there exists t ∈S such that st is maximal
among {r ∈S: r 
 sti for almost all i}. It follows that limi sti = st. If t = tj for some j, then st = stj 
 sti

implies tj 
 ti and hence tj = ti by minimality. But ti �= tj for all i �= j. So st ≺ sti for all i. Since (T1, D1)
is max∞


 -closed, we must have st ∈T1. This contradicts minimality of ti unless t = d(s), which would
contradict s /∈T1. So we conclude that # {ti}<∞, say {ti} = {

t1, . . . , tj

}
.

Define V : = {χ ∈ X2(d(s)): χ (ti) = 0 ∀ 1 ≤ i ≤ j}. Given a normal word z in T2 such that χz ∈ V , we
claim that cpsz is normal. Indeed, this follows from H(sz) = s, which is shown as follows: If H(sz) = st ∈
S, then st ∈T2 because (T2, D2) is H-invariant. If st �= s, then st ∈T1 because s is maximal in T2 \T1.
Now H(sz) = st implies that χsz(st) = 1 and hence χz(t) = 1. But χz ∈ V implies that χz(t) = 0, which is
a contradiction. Moreover, H(sz) = s and s ∈T2 \T1 imply that z must be a normal word in T2 \T1. It
follows that cps.V ⊆ X2 \ X1. In addition, we have V �= ∅. Indeed, as s lies inT2 \T1, there exists a normal
word w starting with s, say w = ss1s2 · · · , such that χw ∈ X2. Then s−1.χw = χs−1w, where s−1w = s1s2 · · · ,
must lie in V because s−1.χw(ti) = 1 would imply ti 
 s1 · · · sn for some n and thus sti 
 ss1 · · · sn. But
this, together with sti ∈S, would contradict that ss1s2 · · · is normal.

Our findings imply that cps.V ⊆ U. Now the bisection [cpsq1, cps.V] has source cps.V ⊆ U and range
cpsq1cps.V � cps.V because (cpsq1cps.V) ∩ (cpsq2cps.V) = ∅.
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We derive the following consequences with the help of [6].

Corollary 6.33. Suppose that Il �� is Hausdorff, inner exact in the sense of [2, Definition 3.7] and
[6, Definition 3.5], C∗,0 = C0, and that every admissible, H-invariant and max∞


 -closed pair (T, D) has
the property that for all finite normal paths a, b in S with t(a) = t(b), d(a) = d(b), a1 �= b1 and s ∈T
with d(s) = d(a), there exists t ∈T such that s t is normal and H(at) �= H(bt). Then the map (T, D) �→
〈C0(� \ X(T, D))〉 establishes an inclusion-preserving one-to-one correspondence between admissible,
H-invariant, max∞


 -closed pairs (T, D) with T⊆S and D⊆ C0 and ideals of C∗
r (Il ��).

Suppose, in addition, that C is left Noetherian, and that every admissible, H-invariant and max∞

 -

closed pair (T, D) satisfies the following: For every admissible, H-invariant and max∞

 -closed pair

(T′, D′) with (T′, D′) � (T, D), there exists an infinite normal path in T \T′, and for all finite normal
paths c in T, there exists a maximal element s ∈T with respect to 
 together with a normal path p
such that cps is normal and two distinct normal paths q1, q2 such that sq1c and sq2c are normal. Then
C∗

r (Il ��) is strongly purely infinite.

Proof. Proposition 6.31 implies that Il �� is essentially principal, in the sense of [6, Section 2.1].
Now our first claim follows from [6, Corollary 3.12]. The second claim follows from Proposition 6.32
and [6, Theorem 4.2].

7. Examples

We apply our findings to two concrete classes of examples, higher rank graphs, and Artin–Tits monoids.

7.1. Higher rank graphs

Let P =Zk
0, where Z0 = {0, 1, 2, 3, . . . } denotes the set of nonnegative integers. A higher rank graph is

a small category C equipped with a P-valued degree map, i.e., a functor : C→ P such that the following
unique factorisation property holds: For all c ∈ C with (c) = pq, there exist a, b ∈ C with c = ab, (a) = p,
(b) = q, and if we have c = a′b′ for some a′, b′ ∈ C with (a′) = p, (b′) = q, then a′ = a and b′ = b. Note
that C is automatically cancellative, and we have C∗ = C0.

C∗-algebras attached to higher rank graphs have been introduced in [36]. Given a higher rank graph
C, its C∗-algebra in the sense of [36, 59, 60] is canonically isomorphic to C∗

r (Il � ∂�) (see [31, 68]). In
the following, we want to apply our findings to higher rank graphs. In particular, our goal is to classify
closed invariant subspaces of � and to compare our results with previous work.

First, we need to find a Garside family in C. This will be discussed in [45, Section 6] in more
detail and in a more general context. In the following, we simply summarise what we need in
our specific situation. First, since P is Noetherian, then so is C. Moreover, C has disjoint mcms
in the following sense: Given v ∈ C0 and a, b ∈ vC, take C ⊆ vC such that the canonical projection
C→ C/∼ induces a bijection C

∼−→ (−1(lcm(a, b)) ∩ (aC∩ bC)). Then aC∩ bC= ∐
c∈C cC. Let SP : ={

(0, . . . , 0) �= (p1, . . . , pk) ∈ P: 0 ≤ pj ≤ 1 ∀ 1 ≤ j ≤ k
}
. Let S : = −1(SP). Then S is a Garside family in

C which is always locally bounded.
In the following, we will always assume that C is finitely aligned (which is not automatic in general).

To give an example for a sufficient condition, if v−1(p)<∞ for all v ∈ C0 and p ∈ P, then C is finitely
aligned. Actually, in that case S will be locally finite. Note that in the literature, higher rank graphs with
locally finite S are called row-finite.

Let us now apply the classification of closed invariant subspaces of � in our situation. First observe
that given s, t ∈S, s t is normal if and only if (s) ≥ (t). Moreover, a ∈S is an atom if and only if (a) is
one of the standard generators of P. The following are easy to see.

Lemma 7.1. (T, D) ⊆ (S, C0) is admissible if and only if the following is satisfied:
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(A) For every t ∈T there exists t′ ∈T with (t) ≥ (t′) or d(t) ∈D.
(T, D) ⊆ (S, C0) is H-invariant if and only if the following is satisfied:
(I) For every t ∈T∪D and every atom a with d(a) = t(t), if (a) �≤ (t), then at ∈T, and if (a) ≤ (t) and

t = rs with (s) = (a), then ar ∈T.
(T, D) ⊆ (S, C0) is max∞


 -closed if and only if the following is satisfied:
(C) Given a sequence azi ∈T with (zi) = d ∈ P, if whenever ε≤ d is a standard generator of P and

si 
 zi satisfies (si) = ε, we must have si �= sj for all i �= j, then a ∈T∪D.

With these observations, we obtain the following applications of Theorem 6.25 and Corollary 6.26.
As before, we write G : = Il ��.

Corollary 7.2. Suppose that C is a countable, finitely aligned higher rank graph. Then the maps X �→
(T(X), D(X)) and X(T, D)(T, D) establish an inclusion-preserving one-to-one correspondence between
G-invariant, closed subspaces of � and pairs (T, D) with T⊆S and D⊆ C0 satisfying conditions (A),
(I) and (C).

If, in addition, S is locally finite, then the maps X �→ (T(X), D(X)) and X(T, D)(T, D) establish an
inclusion-preserving one-to-one correspondence between G-invariant, closed subspaces of� and pairs
(T, D) with T⊆S and D⊆ C0 satisfying conditions (A) and (I).

Moreover, Proposition 6.31 yields the following sufficient condition for topological freeness, and
hence also effectiveness since our groupoids are Hausdorff (as C is cancellative and finitely aligned).

Corollary 7.3. Suppose that C is a countable, finitely aligned higher rank graph. Let (T, D) satisfy
(A), (I) and (C). Set X : = X(T, D). Assume that for all finite normal paths a, b in S with t(a) = t(b),
d(a) = d(b), a1 �= b1 and d ∈ (T), there exists t ∈T such that (t) = d and H(at) �= H(bt). Then Il � X is
effective.

Let us now consider the boundary. The following are consequences of Corollary 6.29 and
Lemma 6.30.

Corollary 7.4. Suppose that C is a countable higher rank graph which is locally convex such that S is
locally finite. Then, for all v ∈ C0,

vTMax = vT(�max) = {s ∈ vS: (s) = max {(r): r ∈ vS}} .

Under the correspondence in Corollary 7.2, a G-invariant, closed subspace X is contained in ∂� if and
only if (T(X), D(X)) ⊆ (TMax, Dmax).

Let us compare this last result with the classification of gauge-invariant ideals of higher rank graph
C∗-algebras in [59]. In the following, we write ∂G : = Il � ∂�.

Lemma 7.5. Let C be a countable, finitely aligned higher rank graph. An ideal I of the C∗-algebra
C∗

r (∂G) of C is gauge-invariant if and only if it is induced from an open invariant subspace of ∂�, in the
sense that I = 〈C0(U)〉 = C∗

r (Il � U) for some open, ∂G-invariant subspace U ⊆ ∂�.

Proof. Let θ be the canonical conditional expectation on C∗
r (∂G) given by averaging over the gauge

action. If I is gauge-invariant, then θ (I) ⊆ I. Now the image of θ is given by C∗
r (H), where H is the

subgroupoid of ∂G describing C∗
r (∂G)θ identified in [61]. As H is principal, it follows from [6] that the

ideal θ (I) is induced, i.e., if θ ′: C∗
r (H) � C0(∂�) is the canonical conditional expectation, then θ ′(θ (I)) ⊆

θ (I). So we conclude that 〈θ ′(θ (I))〉 ⊆ I. Now θ ′ ◦ θ is the canonical conditional expectation C∗
r (Il �
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∂�) � C0(∂�), and we always have I ⊆ 〈θ ′(θ (I))〉. As θ ′(θ (I)) is an ideal of C0(∂�), it must be of the
form C0(U) for some open, ∂G-invariant subspace U ⊆ ∂�.

In [59], it was shown that gauge-invariant ideals of C∗
r (∂G) are in one-to-one correspondence to

hereditary, saturated subsets H⊆ C0. The following result enables us to translate between this result in
[59] and Corollary 7.4.

Lemma 7.6. The assignment (T, D) �→H(T, D) : = {
v ∈ C0: ∂�(v) ⊆ ∂� \ X(T, D)

}
defines a one-to-

one correspondence between pairs (T, D) with (T(X), D(X)) ⊆ (TMax, Dmax) satisfying conditions (A)
and (I) and hereditary, saturated subsets H⊆ C0.

Proof. First of all,H(T, D) is hereditary. Indeed, given a ∈ Cwith t(a) =w and d(a)v, where ∂�(w) ∈
∂� \ X(T, D), take an infinite normal word x with χx ∈ ∂� and t(x) = v. Then a.χx ∈ ∂� \ X(T, D) as
t(ax) =w. As ∂� \ X(T, D) is ∂G-invariant, it follows that χx ∈ ∂� \ X(T, D), as desired. Moreover,
H(T, D) is saturated because we have

⋃
v∈H(T,D) Cv∂�⊆ ∂� \ X(T, D).

Now given a hereditary, saturated subset H⊆ C0, define O(H) : = ⋃
v∈H Cv∂�. We claim that ∂� \

X(T, D) =O(H(T, D)). ‘⊇’ is clear. To show ‘⊆’, take an infinite normal word x = s1s2 · · · with χx ∈
∂� \ X(T, D). Then there exists n such that sn+1 /∈T and thus sN /∈T for all N ≥ n + 1. We then claim that
v= d(sn+1) ∈H(T, D). Indeed, if there exists t ∈T with t(t) = v, then (t) = max {(r): r ∈ vS}. It follows
that (t) = (sn+2). Hence sn+1t is normal. Since (T, D) is H-invariant, that would imply sn+1 ∈T, which is
a contradiction. This shows that χx ∈ (s1 · · · snsn+1).∂�(v) ⊆O(H(T, D)), as desired. The conclusion is
that the map (T, D) �→H(T, D) �→O(H(T, D)) is a bijection between pairs (T, D) with (T(X), D(X)) ⊆
(TMax, Dmax) satisfying conditions (A) and (I) and ∂G-invariant, open subsets of ∂�.

Hence, it suffices to show that the map H �→O(H) is injective. We claim that for every hereditary,
saturated subset H⊆ C0, we have H= {

v ∈ C0: ∂�(v) ⊆O(H)
}
. Indeed, ‘⊆’ is clear, and for ‘⊇’, sup-

pose that w ∈ C0 satisfies ∂�(w) ⊆O(H) = ⋃
v∈H C∂�(v). Then, by compactness of ∂�(w), there exist

finitely many ai ∈ C and vi ∈H with ∂�(w) ⊆ ⋃n
i=1 ai.∂�(vi). It follows that {ai} must be exhaustive in

the sense of [65], and thus w ∈H because H is saturated.

Remark 7.7. It would also be interesting to compare our results with the ones in [65] for more general
finitely aligned higher rank graphs.

Finally, we specialise to one vertex higher rank graphs.

Corollary 7.8. Suppose that C is a countable, finitely aligned higher rank graph with one vertex. In that
case S is locally finite if and only if it is finite.

IfS is finite, then Corollary 7.2 yields a one-to-one correspondence between ≥-closed subsets T ⊆ SP

andG-invariant, closed subspaces of�∞, given by T �→ X(−1(T), ∅). Moreover, if for every standard gen-
erator ε of P, #−1(ε) ≥ 2, then Il � (X2 \ X1) is locally contractive for all G-invariant, closed subspaces
X1 � X2 of�∞. Furthermore, if for all finite normal paths a, b in S with t(a) = t(b), d(a) = d(b), a1 �= b1

and d ∈ T , there exists t ∈ C such that (t) = d and H(at) �= H(bt), then Il � X(T) is effective.
If S is infinite, then Corollary 7.2 yields a one-to-one correspondence between ≥-closed subsets

T ⊆ SP and G-invariant, closed subspaces of �, given by T �→ X(T) : = X(−1(T), C0). Moreover, if for
every standard generator ε of P, #−1(ε) ≥ 2, then Il � (X2 \ X1) is locally contractive for all G-invariant,
closed subspaces X1 � X2 of �. Furthermore, if for all finite normal paths a, b in S with t(a) = t(b),
d(a) = d(b), a1 �= b1 and d ∈ T , there exists t ∈ C such that (t) = d and H(at) �= H(bt), then Il � X(T) is
effective.

Remark 7.9. The general results in Theorem 6.25 and Corollary 6.26 can also be applied to monoids
and categories arising from self-similar actions of groups and groupoids on graphs and higher rank
graphs as in [1, 3, 26, 39] (see [45, Remark 7.10]).
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7.2. Artin–Tits monoids

In the following, we analyse reduced C∗-algebras of Artin–Tits monoids using our general approach for
Garside categories. Recall that an Artin–Tits monoid P is given by the following presentation:

P = 〈
A

∣∣ (ab)[ma,b] = (ba)[mb,a] ∀ a, b ∈ A
〉+

,

where A is a set (the set of atoms), ma,b ∈ {2, 3, . . . } ∪ {∞} with ma,b = mb,a, and (ab)[ma,b] denotes
the alternating word abab · · · of length ma,b. If ma,b = mb,a = ∞, then it is understood that (ab)[ma,b] =
(ba)[mb,a] simply means that we do not add a relation involving a and b. For more information about
Artin–Tits monoids and groups, the reader may consult for instance [7, 10, 11]. In the following, given
x ∈ P, we write L(x) : = {a ∈ A: a 
 x} and R(x) : = {a ∈ A: a
∼x}. It was recently shown in [22] (see
also [19]) that there exists a finite Garside family in every finitely generated Artin–Tits monoid.

Theorem 7.10. Let P be a finitely generated, irreducible, non-spherical Artin-Tits monoid and S ⊆ P
a finite Garside family. Suppose T ⊆ S is such that (T , ∅) is admissible, H-invariant and max∞


 -closed.
Then A ⊆ T and hence T = S.

Proof. Let As ⊆ A be maximal such that�As : = lcm {a: a ∈ As} exists. By assumption, As �= A because
otherwise, P would be spherical by [7]. Take t ∈ T arbitrary and form x1 : =�As t. We must have
As =L(x1). Indeed, if b ∈L(x1) and b /∈ As, then lcm(b,�As ) would exist, contradicting maximality of
As. Let A1, . . . , An be the irreducible components of As. We proceed inductively on n. Since As �= A, there
exist a1 ∈ A1 and a2 ∈ A2 together with b1, . . . , bN ∈ A \ As such that ma1,b1 , mb1,b2 , . . . , mbN−1,bN , mbN ,a2 > 2.
For all 1 ≤ m ≤ n, set�m : = lcm {a: a ∈ Am}. We have a1 �
 b1�1�2x1: If a1 
 b1�1�2x1, then ma1,b1 > 2
implies that b1a1b1 
 lcm(b1, a1) 
 b1�1�2x1 and thus b1 
 a−1

1 �1�2x1. We claim that this would imply
b1 
 x1. Indeed, write a−1

1 �1�2 = c1 · · · cl for some c1, . . . , cl ∈ A1 ∪ A2. b1 
 c1 · · · clx1 implies c1b1 

lcm(c1, b1) 
 c1 · · · clx1 and thus b1 
 c2 · · · clx1. Now proceeding inductively, we end up with b1 
 x1,
which is a contradiction. So a1 �
 b1�1�2x1. Similarly, we obtain b1, a1 �
 b2b1�1�2x1, . . ., and finally
bN , bN−1, . . . , b1, a1 �
 a2bNbN−1 · · · b2b1�1�2x1. Set x2 : = a2bNbN−1 · · · b2b1�1�2x1. We conclude that
L(x2) ⊆ A1 \ {a1} ∪ A2 ∪ · · · ∪ An. By [46, Proposition 4.38], there exists a normal path g1 · · · gk in
A1 with L(g1) = {a1} and L(gk) = A1 \ {a1}. Define �(1) : =�2 · · ·�n and A(1) : = A2 ∪ . . .∪ An. Then
L(gj�

(1)) =L(gj) ∪ A(1) and R(gj�
(1)) =R(gj) ∪ A(1) for all 1 ≤ j ≤ k. If we now set g′

j : = gj�
(1), then

g′
1 · · · g′

kx2 is normal. With x3 : = g′
1 · · · g′

kx2, we obtain L(x3) = {a1} ∪ A(1). Let b1, . . . , bN be as above.
We have a1 �
 b1a1x3 as b1 �
 x3, and proceeding inductively, we arrive at bN , . . . , b1, a1 �
 a2bN . . . b1a1x3.
Hence, with x4 : = a2bN . . . b1a1x3, we obtain L(x4) ⊆ A(1). Repeating this process, we arrive at an ele-
ment x of the form pt for some p ∈ P withL(x) = {a} for some a ∈ A. Now suppose that a′ ∈ A is arbitrary.
Since P is irreducible, there exist d1, . . . , dM ∈ A such that ma,d1 , md1,d2 , . . . , mdM−1,dM , mdM ,a

′ > 2. An anal-
ogous argument as above shows that dM, . . . , d1, a �
 a′dM · · · d1ax. Hence, with y : = a′dM · · · d1ax, y is
of the form qt for some q ∈ P, and we have L(y) = {a′}. It follows that H(a′y) = a′ ∈ T , as desired.

Recall that P is called left reversible if pP ∩ qP �= ∅ for all p, q ∈ P. If our irreducible Artin–Tits
monoid P is not finitely generated, P is left reversible if and only if P is the increasing union of finitely
generated, irreducible, spherical Artin–Tits submonoids.

Theorem 7.11. Let P be an irreducible Artin–Tits monoid which is not finitely generated. If P is not left
reversible, then � is minimal.

Proof. Given F ⊆ A, we write PF : = 〈F〉+ ⊆ P. Let U =�(x;y) be a basic open set and F ⊆ A a finite
subset with x ∈ PF, y⊆ PF. As P is not left reversible, we may assume that PF is not left reversible and
thus not spherical. Moreover, as P is irreducible, there exists a finite subset F̄ ⊆ A with F � F̄ such that PF̄

is irreducible. Since PF is not spherical, PF̄ is not spherical, either. This follows from the fact that Artin–
Tits presentations are complete for right reversing by [17], which implies that lcms in PF of elements in
PF coincide with their lcms in PF̄ (see [16, Proposition 6.10]). Now F � F̄ implies that U ∩�F̄,∞ �= ∅.
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Hence, because PF̄ is irreducible and not spherical, Theorem 7.10 implies that U ∩ ∂�F̄ �= ∅ and thus
U ∩�F̄,max �= ∅. By Lemma 2.21, there exists z ∈ PF̄ with x 
 z and z ∩ y = ∅ in PF̄ for all y ∈ y. Now
we again use that Artin–Tits presentations are complete for right reversing by [17], so that lcms in PF̄

of elements in PF̄ coincide with their lcms in P by [16, Proposition 6.10]. It follows that z ∩ y = ∅ in P
for all y ∈ y. By Lemma 2.21, there exists χ ∈�max with χ (z) = 1. Thus, we have found a character χ in
U ∩�max. Hence, ∂�=�.

Let Ker∂ be the boundary ideal, i.e., the kernel of the canonical quotient map C∗
λ
(P) � ∂C∗

λ
(P).

Theorem 7.12. Let P be an irreducible Artin–Tits monoid which is not finitely generated. If P is left
reversible, then Ker∂ is simple. In particular, � \ {∞} is minimal.

Proof. Let F ⊆ A and PF : = 〈F〉+ ⊆ P. Let λ be the left regular representation of P. First we want to
identify C∗

λ
(PF) with the sub-C∗-algebra C∗(λ(PF)) of C∗

λ
(P) generated by the image of PF under λ. The

inclusion PF ⊆ P allows us to view �2PF as a subspace of �2P. Restriction to this subspace induces
a homomorphism C∗(λ(PF)) � C∗

λ
(PF), which restricts to an isomorphism of diagonal subalgebras

D(λ(PF))
∼−→ C(�PF ), where D(λ(PF)) = C∗(λ(PF)) ∩ C(�). Using the commutative diagram

whose vertical arrows are the canonical faithful conditional expectations, a standard argument shows that
the homomorphism C∗(λ(PF)) � C∗

λ
(PF) we just constructed is an isomorphism. Identifying C∗(λ(PF))

with C∗
λ
(PF), we obtain C∗

λ
(P) = ⋃

F C∗
λ(PF), where F runs through an increasing and exhausting family

of finite subsets of A such that PF is irreducible and spherical. Using for instance [5, II.8.2.4], we deduce
that Ker∂ = ⋃

F Ker∂ ,F. Now let J be an ideal of Ker∂ . Then J = ⋃
F J ∩ Ker∂ ,F (again by [5, II.8.2.4]). By

[46, Theorem 4.39], we must have J ∩ Ker∂ ,F ∈ {
(0), KF, Ker∂ ,F

}
, where KF =K(�2PF). If J ∩ Ker∂ ,F =

(0) for all F, then clearly J = (0). If there exists F with J ∩ Ker∂ ,F �= (0), then KF ⊆ J ∩ Ker∂ ,F, and it
follows that for all F̄ with F � F, we have J ∩ Ker∂ ,F̄ = Ker∂ ,F̄ because 〈KF〉Ker∂ ,F̄

�= (0), KF̄ and hence
Ker∂ ,F̄ = 〈KF〉Ker∂ ,F̄

⊆ J ∩ Ker∂ ,F̄. In that case, we conclude that J = Ker∂ , as desired.

Corollary 7.13. Let P be an irreducible Artin–Tits monoid. If P is a finitely generated and spherical,
then �, �∞ and ∂�= {∞} are the only closed invariant subspaces of �. If P is finitely generated and
not spherical, then � and �∞ = ∂� are the only closed invariant subspaces of �. If P is not finitely
generated and left reversible, then � and ∂�= {∞} are the only closed invariant subspaces of �. If P
is not finitely generated and not left reversible, then � is minimal.

Lemma 7.14. Let P be an irreducible Artin–Tits monoid. If P is left reversible, then G acts topologically
freely on every closed invariant subspace of� \ {∞}. If P is not left reversible, then G acts topologically
freely on every closed invariant subspace of �.

Proof. If P is finitely generated and spherical, then the only closed invariant subspaces of � \ {∞}
are� \ {∞} and�∞ \ {∞}. On the first one, the G-action is topologically free because P∗ = {1} implies
that G �� is topologically free. Topological freeness of G ��∞ \ {∞} follows from (the proof of)
[46, Theorem 4.39]. If P is not finitely generated and left reversible, then � \ {∞} is minimal, and
G �� \ {∞} is topologically free because P∗ = {1} implies that G �� is topologically free. If P is
finitely generated and not spherical, then the only closed invariant subspaces of� are� and�∞ = ∂�.
G �� is topologically free because P∗ = {1}. Moreover, it is shown in [11] and also follows from
Theorem 5.23 that G � ∂� is topologically free if P is right-angled, i.e., ma,b ∈ {2, ∞} for all a, b ∈ A.
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If P is not right-angled, then we must have #A ≥ 3, so that we can find a, b ∈ A with 2<ma,b <∞. Let
Pa,b : = 〈a, b〉+ be the submonoid of P generated by a and b and Ga,b its enveloping group. Pa,b is itself
a spherical Artin–Tits monoid. Hence, it follows from [46, Remark 4.6] that Ga,b � (�Pa,b )∞ \ ∂�Pa,b is
topologically free, where �Pa,b denotes the space of characters for Pa,b and ∂�Pa,b its boundary. Thus,
there exists an infinite word w in a, b such that the corresponding character χw,Pa,b in �Pa,b has trivial
stabilizer group in Ga,b. Let χw ∈� be the character given by the same infinite word. If g ∈ G satisfies
g.χw = χw, then it follows that g ∈ Ga,b and hence g = 1. This shows that χw also has trivial stabilizer
group in G. Finally, if P is not finitely generated and not left reversible, then � is minimal, and G ��

is topologically free because P∗ = {1}.

Lemma 7.15. Let P be an irreducible Artin–Tits monoid which is not finitely generated and left
reversible. Then Ker∂ is purely infinite.

Proof. For F ⊆ A, let PF : = 〈F〉+ be the submonoid of P generated by F, and let �F be the space
of characters for PF and ∂�F = {∞F} its boundary. Recall from the proof of Theorem 7.12 that Ker∂ =⋃

F Ker∂ ,F, where F runs through all finite subsets of A. Write �̃ : =� \ {∞} and �̃F : =�F \ {∞F}.
For a finite subset F ⊆ A such that PF is irreducible and spherical, consider a basic compact open subset
U = �̃F(x;y) and 1U the corresponding characteristic function. We claim that for every finite subset F̄
of A with F � F̄ such that PF̄ is irreducible and spherical, 1U is infinite in Ker∂ ,F̄ and hence also in
Ker∂ . The image of 1U in Ker∂ ,F̄ is given by the characteristic function of �̃F̄(x;y). F � F̄ implies that
�̃F̄(x;y) ∩ (�F̄)∞ �= ∅. Then the same argument for local contractiveness in [46, Theorem 4.39] shows
that the image of 1U is infinite in Ker∂ ,F̄, as desired. Now [8, Theorem 4.1] (second countability is not
needed, see [6, Theorem 4.2]) implies that Ker∂ is purely infinite because sets of the form �̃(x;y) for
x ∈ PF, y⊆ PF, where F is an arbitrary finite subset of A such that PF is irreducible and spherical, form
a basis of compact open subsets of �̃.

Let us summarise our analysis of left regular C∗-algebras of Artin-Tits monoids. Our results on ideal
structure and pure infiniteness extend the corresponding results in the right-angled case in [10, 11] and
in the finitely generated, spherical case in [46, Section 4.2].

Corollary 7.16. Let P be an irreducible Artin–Tits monoid. If P is spherical, then Ker∂ =K(�2P) if
#A = 1 and K(�2P) is the only nontrivial ideal of Ker∂ if 2 ≤ #A<∞. In the latter case, Ker∂/K(�2P)
is purely infinite simple. If P is not finitely generated and left reversible, then Ker∂ is purely infinite
simple. If P is finitely generated and not spherical, then K(�2P) is the only nontrivial ideal of C∗

λ
(P), and

C∗
λ
(P)/K(�2P) is purely infinite simple. If P is not finitely generated and not left reversible, then C∗

λ
(P)

is purely infinite simple.
If P is left reversible, then C∗

λ
(P) is nuclear if and only if #A = 1, and Ker∂ is nuclear if and only if

#A ≤ 2. If P is not left reversible, then C∗
λ
(P) is nuclear if and only if P is right-angled (i.e., ma,b ∈ {2, ∞}

for all a, b ∈ A).

Proof. Our claims for finitely generated spherical P follow from [46, Remark 4.8, Theorem 4.39,
Proposition 4.15]. If P is not finitely generated and left reversible, our claims follow from Lemma
7.15 and the same argument as for [46, Proposition 4.15] for the failure of nuclearity. If P is not left
reversible, then our claims follow from Corollary 7.13, Lemma 7.14 and [15, Corollary 5.7.17] because
C∗
λ
(P)/K(�2P) ∼= ∂C∗

λ
(P) if P is finitely generated and C∗

λ
(P) ∼= ∂C∗

λ
(P) if P is not finitely generated. Our

claims about nuclearity follow from [38, Theorem 4.2] or a similar argument as for [46, Proposition
4.15].
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