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A B S T R A C T   

Conforming lower-order shell elements based on Reissner-Mindlin plate theory generally exhibit an over-stiff 
response under loading, typically manifested through various forms of locking. A recently developed hierar-
chic optimisation approach addresses locking by enriching the conforming strains with hierarchic strain terms 
towards an objective ‘smoother’ strain distribution afforded by the element, which has proven to be effective in 
relieving shear, membrane and distortion locking in 9-noded quadrilateral shell elements. Nevertheless, in some 
practical structural problems that involve complex geometry, triangular shell elements are required to avoid a 
highly distorted mesh of quadrilateral elements. This paper presents a family of 6-noded Reissner-Mindlin 
triangular shell elements based on the hierarchic optimisation approach. The proposed curved triangular shell 
elements not only effectively alleviate inaccuracies arising from locking, but also embrace the desirable char-
acteristics of spatial isotropy and insensitivity to element distortion. The family of 6-noded triangular elements 
have been incorporated within a co-rotational framework to allow large displacement analysis of thin to 
moderately thick plates and shells. Several numerical examples are finally presented to demonstrate the effec-
tiveness and accuracy of the proposed 6-noded shell element formulation as well as its superior locking-free 
performance compared to existing shell elements.   

1. Introduction 

Displacement-based low-order plate and shell elements usually suf-
fer from locking phenomena, where the element exhibits an over-stiff 
response particularly for very thin plate and shell applications, owing 
principally to the inability of the element to capture the low-order 
deformation modes. The severity of locking is dependent on several 
parameters, including the type of structural analysis problem, the theory 
underlying the associated mathematical model, and the element shape 
and order. Since quadrilateral shell elements are predominantly 
employed for modelling regular structures in many engineering appli-
cations, numerous research efforts have been devoted to establishing 
optimal locking-free quadrilateral elements [1–13]. In some practical 
structural problems that involve complex geometry, however, triangular 
finite elements are inevitably used so as to avoid highly distorted meshes 
of quadrilateral elements. A few studies have been conducted to improve 
the performance of low-order triangular plate and shell elements by 
using various locking-elimination approaches, including 

reduced/selective integration methods [3,14], enhanced displacement 
methods [4,15,16], and assumed strain methods [8,17–22]. Even so, the 
fewer strain modes afforded by the triangular elements and the difficulty 
of fulfilling ‘spatial isotropy’ [18], in comparison with the quadrilateral 
counterparts, present barriers to the development of optimal 
locking-free triangular elements. Furthermore, triangular plate and shell 
elements are mainly used in problems with a complex geometric 
configuration, hence requiring these elements to be insensitive to ir-
regularity in the element shape. Therefore, an effective triangular shell 
element needs to: (i) provide an optimal relief of locking, (ii) preserve 
the isotropic characteristic, and (iii) allow element distortion. 

A hierarchic optimisation approach [13] has been recently proposed 
by the authors for nonlinear shell finite elements, which is an assumed 
strain method that not only addresses shear and membrane locking but 
also alleviates locking due to element distortion. This approach in-
troduces two sets of strain modes: (i) objective strain modes, defined in 
the physical coordinate system and serving as the target strain modes, 
and (ii) hierarchic correcting strain modes, defined in the natural 
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coordinate system for correcting the conforming strains. Accordingly, an 
assumed strain distribution within an element may be expressed as a 
linear combination of either (i) the objective strain modes, or (ii) the 
corrective strain modes that comprise both the conforming and the hi-
erarchic correcting strain modes. By performing mathematical optimi-
sation on the difference between the objective strains and the corrective 
strains over the element domain, the values of the corresponding strain 
parameters can be determined prior to the start of nonlinear analysis, 
while maintaining the same degrees of freedom (DOF) of the underlying 
conforming element. With the successful application of this approach to 
a 9-noded quadrilateral shell element [13], the present paper aims to 
extend its application to a 6-noded triangular shell element, which is 
expected to address the various forms of locking, preserve element 
isotropy and tolerate element distortion. 

In the following sections, the hierarchic optimisation approach is 
firstly outlined, followed by an elaboration of its application to the local 
formulation of a family of 6-noded Reissner-Mindlin shell elements. The 
incorporation of the various local formulations into a co-rotational co-
ordinate system, based on a zero-macrospin definition of the local co-
ordinate system [23], is subsequently presented, which enables the 
application of the proposed elements in geometrically nonlinear anal-
ysis. The performance of the optimised 6-noded elements is finally 
assessed through several benchmark numerical examples, with the ef-
ficiency and relative accuracy compared with other previously devel-
oped triangular shell elements. 

2. Hierarchic optimisation approach 

The locking phenomena in conforming finite elements is generally 
characterised by the degraded approximation of various strains over the 
element domain, principally owing to polluting higher-order strains. 
The hierarchic optimisation approach [13] overcomes locking by 
reconstructing a smoother strain distribution within the element 
domain, which can be regarded as a threefold approach. Firstly, a set of 
smooth strain modes Ψo are defined on the physical element configu-
ration, which form the modal basis for a so-called objective ‘smoothed’ 
strain distribution εo. Secondly, hierarchic correcting strains εh, which 
comprise various higher-order strain modes Ψh beyond those employed 
in the conforming isoparametric element formulation, are defined to 
enrich the conforming strains ε, with the resulting strain combination (ε 
+ εh) denoted as the corrective strains. Finally, mathematical optimisa-
tion is performed at the element level to enforce a best fit between the 
objective strain distribution εo and the corrective strain distribution (ε +
εh) within the element domain, where the strain parameters associated 
with both the objective and hierarchic strain modes can be determined. 
Thus, through a strain transformation process, the conforming strains 
are replaced by either objective strains or corrective strains, leading to two 
respective families of variant elements as elaborated later. 

The hierarchic and objective strains are defined as follows: 

εh =Ψhαh, εo = Ψoαo (1)  

where Ψh and Ψo are the hierarchic and objective strain modes, 
respectively, while αh and αo are the respective associated strain 
parameters. 

The employment of mathematical optimisation leads to a mini-
misation of the difference between the corrective strains (ε + εh) and the 
objective strains εo. Considering the target of optimisation to be a func-
tional integrating the square of this difference over the element domain, 
the strain parameters αh and αo can be obtained for a given set of con-
forming strains ε by solving the following linear system of equations at 
the level of an individual element [13]: 

(2)  

in which Ωe is the physical element domain. 
For isoparametric elements, Gaussian quadrature is employed to 

numerically integrate Eq. (2), resulting in αh and αo being related to the 
strains ε(i) at the Gauss points as follows: 

αh = Γh

⎧
⎪⎪⎨

⎪⎪⎩

ε(1)
⋮

ε(i)
⋮

⎫
⎪⎪⎬

⎪⎪⎭

, αo = Γo

⎧
⎪⎪⎨

⎪⎪⎩

ε(1)
⋮

ε(i)
⋮

⎫
⎪⎪⎬

⎪⎪⎭

(3)  

in which the subscript (i) represents the Gauss point number. 
The determination of the strain parameters αh and αo from the 

conforming strains ε without reference to the element nodal displace-
ment parameters preserves the computational efficiency, particularly for 
nonlinear strain-displacement relationships, and the conforming strains 
are accordingly enhanced with hierarchic higher-order strains towards 
the objective strains. The enhanced strains can be expressed in either the 
corrective or the objective form, where the difference between the two 
alternative approaches reduces with either the hierarchic order or mesh 
refinement [13]: 

ε̃= ε + Ψhαh (Corrective) (4)  

ε̂ = Ψoαo (Objective) (5) 

Considering the above, an assumed strain formulation can be 
derived, with the values of the assumed strains evaluated at the Gauss 
points as follows, depending on the alternative approach: 
⎧
⎪⎪⎨

⎪⎪⎩

ε̃(1)
⋮

ε̃(i)
⋮

⎫
⎪⎪⎬

⎪⎪⎭

= T̃

⎧
⎪⎪⎨

⎪⎪⎩

ε(1)
⋮

ε(i)
⋮

⎫
⎪⎪⎬

⎪⎪⎭

, T̃ = I +

⎡

⎢
⎢
⎣

Ψh(1)
⋮

Ψh(i)
⋮

⎤

⎥
⎥
⎦Γh (Corrective) (6)  

⎧
⎪⎪⎨

⎪⎪⎩

ε̂(1)
⋮

ε̂(i)
⋮

⎫
⎪⎪⎬

⎪⎪⎭

= T̂

⎧
⎪⎪⎨

⎪⎪⎩

ε(1)
⋮

ε(i)
⋮

⎫
⎪⎪⎬

⎪⎪⎭

, T̂ =

⎡

⎢
⎢
⎣

Ψo(1)
⋮

Ψo(i)
⋮

⎤

⎥
⎥
⎦Γo (Objective) (7)  

in which T̃ and T̂ are transformation matrices from conforming strains 
to corrective strains and objective strains, respectively, at the Gauss 
points. 

The above alternative approaches correspond to an assumed strain 
formulation, though the assumed strains are the result of optimisation 
towards a specific target strain distribution afforded by the original 
conforming DOFs, as demonstrated in Ref. [13]. For geometrically linear 
elements, which employ a first-order strain-displacement relationship, 
the assumed strains ̃ε or ̂ε can be directly related to the original DOFs via 
a respective strain operator B̃ or B̂, since ε is readily related to such DOFs 
through the conventional conforming B matrix. For geometrically 
nonlinear elements, however, it is more effective to determine the 
conforming strains and then transform these to assumed strains ac-
cording to Eq. (6) or Eq. (7). 

Unlike other enhanced assumed strain approaches [5,6], the hier-
archic optimisation approach results in two variant element families, 
depending on whether the corrective (C) or objective (O) fields are 
adopted for the assumed strains. Furthermore, while the hierarchic 
correcting strain field εh resembles the enhanced assumed strain in 
previous approaches, its approximation order is not capped to a pre-
scribed distribution but can attain any hierarchic order m. On the other 
hand, the additionally introduced objective strain field εo is similar 
conceptually to an assumed strain field based on sampling at selected 
locations [9–12], but it is different in two ways [13]: (i) it utilises a 
polynomial basis in physical Cartesian coordinates which effectively 
addresses distortion locking in isoparametric element formulations with 
irregular element configuration; (ii) it is recovered via an optimisation 
process that considers the conforming strains ε over the whole element 
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domain rather than at a fixed number of sampling points. The following 
section presents the local formulation of the two variant families of the 
6-noded hierarchically optimised element, denoted by acronyms HmC6 
and HmO6, respectively based on corrective and objective strain fields, 
where m is the hierarchic correction order used for εh. 

3. Optimised 6-noded triangular element in local system 

In this section, the hierarchic optimisation approach is employed to 
address the locking issue in the local formulation of a 6-noded shell 

element based on the Reissner-Mindlin hypothesis. Fig. 1 shows the 
global Cartesian, the local Cartesian, and the area coordinate systems 
used for the 6-noded shell element undergoing large displacements, with 
the associated coordinate systems denoted by (X, Y, Z), (x, y, z), and (L1, 
L2, L3), respectively. A local co-rotational system is used for the shell 
element, so that throughout the deformation history the xy plane of the 
local system is always defined by the three corner nodes 1, 2 and 3, while 
the local z-axis is normal to the xy plane. 

In the following sub-sections, the local kinematics of the 6-noded 
Reissner-Mindlin shell element are firstly presented; subsequently, 

Fig. 1. Coordinate systems and nodal DOFs for 6-noded shell element.  
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hierarchic optimisation of this conforming element is elaborated, and 
adjustments are made to the optimisation approach to enable the pres-
ervation of spatial isotropy for triangular element applications. 

3.1. Local conforming formulation of 6-noded triangular shell element 

In the local formulation, each node corresponds to 5 DOFs, including 
3 local translational DOFs and 2 local rotational DOFs, as illustrated in 
Fig. 1 b for local nodal DOFs at nodes 1 and 5. For an isoparametric 6- 
noded shell element, the local element geometry and displacement 
fields can be interpolated using shape functions Ni that are expressed in 
terms of area coordinates (L1, L2, L3): 

x =

⎧
⎨

⎩

x
y
z

⎫
⎬

⎭
=

∑6

i=1
Ni(L1,L2,L3)xi (8)  

t =

⎧
⎨

⎩

u
v
w

⎫
⎬

⎭
=

∑6

i=1
Ni(L1, L2, L3)ti, r =

{
θx
θy

}

=
∑6

i=1
Ni(L1, L2, L3)ri (9)  

where xi = 〈 xi yi zi 〉T are local nodal coordinates of node i in the 
initial configuration; ti = 〈 ui vi wi 〉T are local nodal translations of 
node i; ri = 〈 θxi θyi 〉T are the local nodal rotations of node i (θxi is the 
nodal rotation about the y-axis and θyi is the nodal rotation about the 
negative x-axis); and the shape functions Ni are expressed in terms of 
area coordinates as follows: 

Ni =Li(2Li − 1), Ni+3 = 4LiLi+ (i= 1 → 3) (10)  

in which the area coordinate Li equals 1 at node i, and reduces linearly to 
0 at edge i− –i+; i+ = mod(i,3)+ 1; and i− = mod(i+,3)+ 1. The area 
coordinates (L1, L2, L3) are related to natural coordinates (ξ, η) by setting 
L1 = 1 − ξ − η, L2 = ξ, and L3 = η, where ξ, η ∈ [0,1]. 

The strain state of the shell element is fully determined by membrane 
strains εm, generalised bending strains εb, and transverse shear strains εs 

as follows: 

εm =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

εx

εy

γxy

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂x

∂v
∂y

∂u
∂y

+
∂v
∂x

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

(
∂z
∂x

+
∂w
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)2

−
1
2

(
∂z
∂x

)2

1
2

(
∂z
∂y

+
∂w
∂y

)2

−
1
2

(
∂z
∂y

)2

(
∂z
∂x

+
∂w
∂x

)(
∂z
∂y

+
∂w
∂y

)

−

(
∂z
∂x

)(
∂z
∂y

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11a)  

εb =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

κx

κy

κxy

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂θx

∂x

∂θy

∂y

∂θx

∂y
+

∂θy

∂x

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11b)  

εs =

⎧
⎨

⎩

γxz

γyz

⎫
⎬

⎭
=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

θx +
∂w
∂x

θy +
∂w
∂y

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(11c) 

It is worth noting that local geometric nonlinearity is allowed for 
through quadratic approximation of the membrane strains, while the 
influence of large displacements is accounted for through 

transformations between the local co-rotational system and the global 
system [23], as elaborated in Section 4. 

3.2. Objective strain modes 

As mentioned in Section 2, the locking issue results principally from 
the inability of an element to generate some of the low-order strain 
modes. In other words, a locking-free finite element should be capable of 
generating all low-order strain modes that are afforded by the element. 
A full set of such strain modes for the 6-noded shell element is given in 
this sub-section, denoted as the objective strain modes. Importantly, the 
objective strain modes are defined in terms of the local physical Carte-
sian coordinates (x, y), rather than the natural coordinates, which 
inherently takes into account the actual element geometry, thereby 
providing a natural treatment of distortion locking. It is also important 
to note that the number of objective strain modes equals the number of 
strain-inducing displacement modes afforded by the 6-noded triangular 
element, hence ensuring that no spurious mechanism is induced. The 
complete set of low-order strain modes specific to the 6-noded triangular 
shell element is given as follows. 

The planar displacements (u, v) for the 6-noded shell element can 
generate three rigid body modes and nine membrane strain-inducing 
modes. Therefore, nine low-order objective planar strain modes Ψm

o 
can be afforded by the element as follows: 

Ψm
o =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂
∂x

0

0
∂
∂y

∂
∂y

∂
∂x

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Φm
o (12)  

where Φm
o are objective planar strain-inducing modes from Pascal’s 

triangle, given by: 

(13) 

The transverse displacement field (w) for the 6-noded shell element 
provides one rigid body mode and five transverse shear strain modes. 
Accordingly, five low-order objective transverse shear strain modes Ψs,z

o 
can be provided by the element, which, together with the associated 
transverse shear strain-inducing modes Φs,z

o , are given by: 

Ψs,z
o =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂
∂x

∂
∂y

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

Φs,z
o , Φs,z

o = 〈 x y x2 xy y2 〉 (14) 

The rotational fields 
(
θx, θy

)
of the 6-noded shell element afford nine 

curvature-inducing modes, with the objective curvature-inducing 
displacement modes Φb

o and the corresponding bending strain modes 
Ψb

o being the same as the planar strain counterparts: 

Φb
o =Φm

o , Ψb
o = Ψm

o (15) 

With four rigid body modes already accounted for in relation to the 
planar and transverse displacement fields, the remaining two rigid body 
modes are generated by combining the two constant rotation modes 
with a linear distribution of the transverse displacement. This leaves one 
rotational mode that generates no curvatures but a linear transverse 
shear strain mode Ψs,θ

o = 〈− y, x〉T, which is not included in Eq. (14). 
Therefore, a complete objective set of transverse shear strain modes is 
given by: 

s s z s
o o o (16) 
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In summary, 24 objective strain modes are defined for the 6-noded 
triangular shell element, including 9 membrane strain modes Ψm

o , 9 
curvature modes Ψb

o and 6 transverse shear strain modes Ψs
o, which 

ensures the correct rank of the element stiffness matrix. These objective 
strain modes are employed in the optimisation approach for addressing 
shear, membrane and distortion locking of the conforming 6-noded shell 
element, as presented in Section 3.3. Note that for isoparametric ele-
ments such as the considered 6-noded shell element, the objective strain 
modes Ψm

o , Ψb
o and Ψs

o are initially defined in terms of physical Cartesian 
coordinates (x, y) for an inherent treatment of locking due to element 
distortion; later on, when hierarchic optimisation of the strains is con-
ducted, these objective strain modes will be expressed in terms of the 
natural coordinates (ξ, η) for performing numerical integration [13]. 

3.3. Elimination of locking 

As evident from Eq. (11c), for an arbitrary bending mode, the rota-
tional displacements (θx, θy) in a conforming 6-noded Reissner-Mindlin 
shell element may generate polluting second-order transverse shear 
strain terms, which disturb the first-order distribution of the transverse 
shear strains (γxz, γyz) afforded by the element and lead to shear lock-
ing. The polluting strain terms generated by (θx, θy) can be filtered out 
by enriching the transverse displacement field (w) with a hierarchic 
transverse displacement field (wh), which is a linear combination of 
higher-order hierarchic transverse displacement modes that are defined 
as polynomial functions of natural coordinates (ξ, η). The hierarchic 
transverse displacement modes Φs

h can be used up to any order, where 
complete cubic and quartic displacement modes are considered for 
instance below: 

wh(ξ, η)=Φs
h αs

h, Φs
h = 〈 Φ3

h Φ4
h ⋯ 〉 (17)  

Φ3
h = 〈 Φ3

h,1 Φ3
h,2 Φ3

h,3 Φ3
h,4 〉 (18)  

Φ4
h = 〈 ξΦ3

h,1 ξΦ3
h,2 ξΦ3

h,3 + ηΦ3
h,2 ηΦ3

h,3 ηΦ3
h,4 〉 (19)  

Φ3
h,1 = ξ3 −

3
2
ξ2 +

1
2

ξ, Φ3
h,2 = ξ2η −

1
2

ξη (20a)  

Φ3
h,3 = ξη2 −

1
2

ξη, Φ3
h,4 = η3 −

3
2
η2 +

1
2

η (20b)  

where Φ3
h and Φ4

h are cubic and quartic hierarchic displacement modes 
for the 6-noded shell element, respectively, and αs

h are the associated 
hierarchic transverse shear strain parameters. 

Accordingly, the hierarchic shear strains are expressed as: 

εs
h =

⎧
⎨

⎩

γxzh

γyzh

⎫
⎬

⎭
=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂
∂x

∂
∂y

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

wh = Ψs
h αs

h, Ψs
h =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂
∂x

∂
∂y

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

Φs
h (21)  

where Ψs
h denotes the hierarchic shear strain modes. 

For curved shell elements, membrane locking may also occur if the 

Fig. 2. Three edge-based strains of 6-noded triangular shell element.  

Fig. 3. Influence of a uniform ‘stretch’ operation on unit square area [23].  

Fig. 4. Zero-macrospin local co-rotational system for 6-noded trian-
gular element. 

Table 1 
Variants of 6-noded shell elements considered.  

Acronym key Strain field Hierarchic order Sampling Gauss points 

CNF6 Conforming – 13 
H2O6 Assumed, Objective – 13 
H3O6 Assumed, Objective 3 13 
H4O6 Assumed, Objective 4 16 
H3C6 Assumed, Corrective 3 13 
H4C6 Assumed, Corrective 4 16 
MITC6* Assumed, MITC6* – 13  
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element undergoes transverse displacement (w), where the local geo-
metric nonlinear strain terms associated with the transverse displace-
ment, as indicated in Eq. (11a), are of higher-order spatial distribution 
than the strain terms that are afforded by planar displacements (u, v). 
Consequently, the curved shell element cannot deform in any arbitrary 
transverse mode (w), as allowed by its transverse DOFs, without 
polluting (εx, εy, γxy) with higher-order terms, resulting in an over-
estimation of the membrane strain energy. The polluting strain terms 
induced by (w) can be offset by enriching the planar displacement fields 
(u, v) with hierarchic planar displacement fields (uh, vh), which contain 

higher-order hierarchic planar modes beyond those used in (u, v). Again, 
the optimisation approach can utilise hierarchic modes up to any order, 
where complete cubic and quartic modes are provided for instance in the 
following: 

hhh m m m
h h h

h h h

u
v

0 0

0 0
(22)  

in which Φm
h contains hierarchic membrane strain-inducing displace-

ment modes in terms of natural coordinates (ξ,η), and αm
h are the asso-

ciated hierarchic planar strain parameters; Φ3
h and Φ4

h are respectively 
the cubic and quartic hierarchic displacement modes given previously in 
Eqs 18–20. 

The resulting hierarchic membrane strains can then be derived from: 

Fig. 5. Various element shapes for zero energy mode test of 6-noded shell element.  

Fig. 6. Geometry of arbitrary 6-noded triangular element for isotropic 
element tests. 

Table 2 
Displacement modes considered in isotropic element test.  

Mode Displacement 
field 

Mode Displacement 
field 

Mode Displacement 
field 

1 u = ax 9 v = ax2 17 θy = axy 
2 v = ay 10 θx = ax 18 θx = ay2 

3 u = ay or v = ax 11 θy = ay 19 θy = ax2 

4 u = ax2 12 θx = ay 20 w = ax 
5 v = ay2 13 θy = ax 21 w = ay 
6 u = axy 14 θx = ax2 22 w = ax2 

7 v = axy 15 θy = ay2 23 w = ay2 

8 u = ay2 16 θx = axy 24 w = axy  

Fig. 7. Patch test for 6-noded shell elements (regular mesh).  

Fig. 8. Patch test for 6-noded shell elements (distorted mesh).  

Fig. 9. A 4 × 4 quarter-model of clamped square plate subjected to uni-
form load. 
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εm
h =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

εxh

εyh

γxyh

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂
∂x

0

0
∂
∂y

∂
∂y

∂
∂x

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

{
uh
vh

}

= Ψm
h αm

h , Ψm
h =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂
∂x

0

0
∂
∂y

∂
∂y

∂
∂x

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Φm
h

(23)  

where Ψm
h represents the hierarchic membrane strain modes. 

As noted in Section 3.2, the objective strain modes are initially 
defined as complete polynomial functions in terms of physical (x, y) 
coordinates, which readily addresses locking due to polluting higher- 
order terms as a result of distortion in the isoparametric element 
shape. For a complete treatment of distortion locking in a shell element, 
it is also necessary to filter out the polluting bending strain terms due to 
element distortion. Although the bending strains exhibit no sign of 
locking for regular element shapes, as implied by Eq. (11b), this is, 
however, not the case for distorted elements, where the non-constant 
Jacobian matrix J results in conforming bending strains that are non- 
polynomial in terms of physical coordinates, thus leading to locking 

Fig. 10. Convergence curves of variants of optimised 6-noded elements for clamped square plate problem.  

Fig. 11. Convergence curves of H3O6 and MITC6* in comparison with MITC6 for clamped square plate problem.  
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due to polluting non-polynomial approximation. The transformation of 
the conforming to assumed bending strains can be shown to be identical 
to that relating the conforming and assumed membrane strains. The 
objective and hierarchic bending strain modes, Ψb

o and Ψb
h, are respec-

tively given by Eqs (15) and (24): 

Ψb
h =Ψm

h (24) 

In order to ensure that the proposed elements pass the constant mode 
patch tests, all hierarchic correcting strain modes require zero mean 
values throughout the element domain [24]. Therefore, an additional 
measure is taken to enforce zero mean constraints on each hierarchic 
strain mode, which is achieved via integration over the physical element 
domain Ωe as follows: 

Ψm
h = Ψm

h −

∫

Ωe Ψm
h dΩe

Ωe , Ψb
h = Ψm

h (25a)  

Ψs
h =Ψs

h −

∫

Ωe Ψs
h dΩe

Ωe (25b) 

Accordingly, the modified hierarchic correcting strain modes Ψm
h , 

Ψb
h, and Ψs

h replace the original modes Ψm
h , Ψb

h, and Ψs
h in performing the 

hierarchic optimisation, as given by: 

ee

r r r r r r
h h h o h h ere
r r r r r r
o h o o o o

r m b s

(26)  

where r denotes the membrane (m), bending (b) or transverse shear (s) 
strain modes; the objective strain modes Ψm

o , Ψb
o and Ψs

o are given by Eqs 
(12), (15) and (16), respectively; and the hierarchic correcting strain 

modes Ψm
h , Ψb

h and Ψs
h are given by Eq (25a-b), respectively. For each of 

the three strain sets, the strain parameters αr
h and αr

o (r = m, b, s) can be 
obtained through numerical integration on Eq. (26), and an assumed 
strain distribution, in the form of Eq. (6) (replacing Ψh (i) with Ψh (i)) or 
Eq. (7), can then be derived depending on the variant element under 
consideration. 

3.4. Spatial isotropy of optimised triangular elements 

The aforementioned hierarchic optimisation approach improves the 
strain distribution via the minimisation of a functional integrating the 
square of the strain error (ε+εh − εo) over the element domain, which is 
not spatially isotropic, as can be inferred from examining the strain 
tensor. The optimisation of transverse shear strains turns out to be 
isotropic, owing to the fact that these strain components transform 
spatially according to a first-order tensor transformation. However, this 
is not the case for the optimisation of either the membrane strains or the 
curvature strains, resulting from a second-order tensor transformation of 
these strains. Since the associated objective functional is not spatially 
invariant, in the sense that it varies when the same component strains 
are transformed to a different system, the resulting element stiffness is 
not invariant to the choice of the local coordinate system, which is un-

Fig. 12. An octant model of cylindrical shell with 6-noded shell elements.  

Fig. 13. Convergence curves of variants of optimised 6-noded elements for cylindrical shell with both ends free.  
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desirable in practical applications [18,23,25]. 
In order to achieve nodal invariance for the optimised 6-noded 

triangular elements, the optimisation of membrane and curvature 
strains can be modified. Herein, rather than enhancing the membrane 
strain components (εx, εy, γxy), the three membrane strains along the 
element edges (ε12, ε23, ε31) are optimised, as illustrated in Fig. 2. The 
objective functional expressed in terms of these strains becomes 
invariant to nodal ordering, leading to the outcome of the optimisation 
process achieving the nodal invariance characteristic. Accordingly, the 
following steps are taken to for the hierarchic optimisation on mem-
brane strains for the 6-noded shell element:  

(i) Transform membrane strains εm to edge-based strains (ε12, ε23,

ε31): 

εΔ =

⎧
⎨

⎩

ε12
ε23
ε31

⎫
⎬

⎭
= ΤΔεm, ΤΔ =

⎡

⎢
⎢
⎣

ĉ2
1 ŝ2

1 ĉ1 ŝ1

ĉ2
2 ŝ2

2 ĉ2 ŝ2

ĉ2
3 ŝ2

3 ĉ3 ŝ3

⎤

⎥
⎥
⎦ (27)   

Fig. 14. Convergence curves of variants of optimised 6-noded elements for cylindrical shell with both ends clamped.  

Fig. 15. Convergence curves of H3O6 and MITC6* in comparison with MITC6 for cylindrical shell with both ends free.  
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where εi i+ (i = 1, 2, 3) is the direct strain in the direction of edge i-i+; ̂ci 

and ŝ i are respectively the cosine and sine values of the angle from the 
local x-axis to the edge i-i+. 

Fig. 16. Convergence curves of H3O6 and MITC6* in comparison with MITC6 for the cylindrical shell problem where both ends are clamped.  

Fig. 17. An octant model of pinched cylindrical shell supported by 
rigid diaphragms. 

Table 3 
Normalised deflections at the point of loading for the pinched cylinder problem.  

Acronym key 4 × 4 8 × 8 12 × 12 

CNF6 0.14 0.49 0.74 
H2O6 0.39 0.71 0.88 
H3O6 0.73 0.92 0.98 
H4O6 0.76 0.92 0.98 
H3C6 0.60 0.89 0.96 
H4C6 0.65 0.91 0.97 
MITC6* 0.44 0.83 0.96 
M6-3 (Bucalem et al. [20]) 0.64 0.90 0.98 
M7-3 (Bucalem et al. [20]) 1.19 1.13 1.10  

Fig. 18. A quarter model of the pinched hemispherical shell with an 18◦

cut-off. 

Table 4 
Normalised deflections at point A for the pinched hemispherical shell problem 
(triangular element meshes).  

Acronym key Regular mesh Distorted mesh 

4 × 4 8 × 8 16 ×
16 

4 × 4 8 × 8 16 ×
16 

CNF6 0.01 0.13 0.42 0.01 0.07 0.26 
H2O6 0.05 0.34 0.70 0.05 0.19 0.49 
H3O6 0.88 0.99 0.99 0.45 0.95 0.99 
H4O6 0.91 0.99 0.99 0.59 0.97 0.99 
H3C6 0.69 0.98 0.99 0.21 0.91 0.99 
H4C6 0.78 0.98 0.99 0.37 0.94 0.99 
MITC6* 0.63 0.95 0.99 0.23 0.84 0.96 
M6-3 (Bucalem et al. 

[20]) 
0.16 0.66 0.87 – – – 

M7-3 (Bucalem et al. 
[20]) 

0.65 0.91 0.96 – – –  
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(ii) The hierarchic and objective strain modes for edge strains, 
denoted as ΨΔ

h and ΨΔ
o , respectively, are obtained from the 

following transformation: 

ΨΔ
h = TΔΨm

h , ΨΔ
o = TΔΨm

o (28)    

(iii) Replacing Eq. (26), the following equation is used for hierarchic 
optimisation on the three edge-based strains (ε12, ε23, ε31): 

ee

T T m T
h h h o h h eme

T T m T
o h o o o o

dd

(29)    

(iv) Thus, as before, parameters αm
h and αm

o are numerically solved for 
using Gaussian quadrature in terms of the conforming strains 
component in the local x-y system: 

αm
h = Γh

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

εm
(1)

⋮
εm
(i)

⋮

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, αm
o = Γo

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

εm
(1)

⋮
εm
(i)

⋮

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(30)   

with the subscript (i) representing the ith Gauss point.  

(v) The enhanced membrane strains (εx, εy, γxy) at the Gauss points 
are then derived in either the corrective or the objective strain 
form: 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ε̃m
(1)

⋮
ε̃m
(i)

⋮

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

= T̃m

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

εm
(1)

⋮
εm
(i)

⋮

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, T̃m = I +

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Ψm
h(1)

⋮
Ψm

h(i)

⋮

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Γh (Corrective)

(31)  

Fig. 19. Pinched hemispherical shell with an 18◦ cut-off (distorted mesh).  

Fig. 20. Annular plate subject to uniform transverse loading.  
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ε̂m
(1)

⋮
ε̂m
(i)

⋮

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

= T̂m

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

εm
(1)

⋮
εm
(i)

⋮

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, T̂m =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Ψm
o(1)

⋮
Ψm

o(i)

⋮

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Γo (Objective) (32)   

The hierarchic optimisation for the curvature strains follows the 
same steps. By modifying the optimisation procedure for membrane and 
curvature strains, whilst retaining the previous procedure in Section 3.3 
for optimising transverse shear strains, a spatially isotropic local 
formulation of a lock-free triangular element is achieved. 

As previously noted, the corrective (C) and objective (O) alternative 
approaches lead to two variants of the 6-noded triangular shell element, 
denoted respectively by HmC6 and HmO6, in which optimisation with 

hierarchic (H) modes up to any complete polynomial order (m = 3, 4, …) 
can be applied. For instance, H3O6 represents an objective strain 
element with 3rd order hierarchic correction modes, while H4C6 rep-
resents a corrective strain element with 4th order hierarchic correction 
modes. It is even possible for the optimisation to be undertaken without 

Fig. 21. Deformed configuration of annular plate.  

Fig. 22. Equilibrium paths of vertical displacement at Point A for 
annular plate. 

Fig. 23. Equilibrium paths of vertical displacement at Point B for annular plate.  

Fig. 24. Equilibrium paths of vertical displacement at Point C for annular plate.  

Fig. 25. Equilibrium paths of vertical displacement at Point A with various 
optimised 6-noded elements for 16 × 1 mesh. 
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hierarchic correction modes, in which case the assumed strains are the 
objective strains that offer a best fit of the conforming strains, leading to 
an element denoted by H2O6. 

4. Zero-macrospin co-rotational coordinate system 

In order to enable large-displacement geometrically nonlinear 
analysis, the local triangular element formulations established in the 
previous section are framed in a co-rotational coordinate system 
employing the ‘zero-macrospin’ definition [23], which excludes 
rigid-body rotations from the local kinematics at the macro element 
level and fulfils the important characteristics of simplicity and nodal 
invariance. The co-rotational system used for the 6-noded triangular 
element is briefly presented in the following. 

Fig. 3 shows a unit square area, defined by orthogonal unit vectors cx 
and cy, which is subjected to a uniform planar ‘stretch’ operation in any 
two orthogonal directions leading to transformed vectors c′

x and c′

y. It 
can be shown that cx is always obtained as the normalised sum of c′

x and 
c′ n

y , where c′ n
y is a planar rotation of c′

y by − π/2, and cy is similarly 

obtained as the normalised sum of c′

y and c′ n
x, where c′ n

x is a planar 
rotation of c′

x by π/2. Accordingly, if cz is known, the remaining vectors 
of the triad are obtained from the stretched vectors as [23]: 

cx =
c′

x + c′n
y⃒

⃒
⃒c′

x + c′n
y

⃒
⃒
⃒
, c′n

y = c′

y × cz, cy = cz × cx (33) 

With reference to Fig. 4, in the initial undeformed configuration of a 
6-noded curved shell element, the unit vector co

z is defined to be normal 
to the element plane formed by the three corner nodes. The orthogonal 

unit vectors co
x and co

y are defined such that co
x is aligned with edge 1–2. 

In the deformed configuration, the unit vector cz is still taken as 
normal to the deformed element plane formed by the corner nodes: 

cz =
v12 × v23

|v12 × v23|
(34)  

where vij is the vector connecting node i to node j in the current 

Fig. 26. Hemispherical shell subject to symmetric concentrated forces at base and 6 × 6 mesh pattern.  

Fig. 27. Deformed configuration of hemispherical shell.  

Fig. 28. Load-displacement curves of radial displacements with different 
meshes of various optimised 6-noded elements. 

Y. Liang and B.A. Izzuddin                                                                                                                                                                                                                   



Finite Elements in Analysis & Design 204 (2022) 103741

14

configuration. 
The stretched vectors c′

x and c′

y for the triangular element are linked 
to the nodal coordinates in the current deformed configuration using an 
expression of the form [23]: 

c′

x = ax1v12 + ax2v23, c′

y = ay1v12 + ay2v23 (35)  

in which the scaling parameters are determined with reference to the 
initial geometric configuration of the element as: 

ax1 = 1
|vo

12|
, ax2 = 0,

ay1 = −
co T

12 co
23

|vo
12|

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − (co T
12 co

23)
2

√ , ay2 =
1

|vo
23|

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − (co T
12 co

23)
2

√

(36)  

co
ij =

vo
ij⃒

⃒vo
ij

⃒
⃒

(37)  

where vo
ij is the vector connecting node i to node j in the initial 

configuration. 
With the stretched vectors c′

x and c′

y obtained according to Eq. (35), 
the rotated unit vectors cx and cy, defining the current orientation of the 
local co-rotational system, can now be established from the inverse 
‘stretch’ operation given by Eq. (33). Details of the transformations 
between the global and local systems are provided in Ref. [23], 
including i) the transformation of global to local nodal displacements, ii) 
the transformation of local to global forces, and iii) the transformation of 
the local to global tangent stiffness matrix. 

It is worth noting that in terms of global DOFs, two approaches are 
applicable: 

- For smooth plate and curved shell surfaces without branched inter-
section, each node utilises 5 global DOFs, including 3 translational 
DOFs and 2 rotational DOFs. At each node, two rotations are suffi-
cient to relate the orientation of the nodal normal in the current 
configuration to its orientation in the initial configuration. There-
fore, for smooth plates and curved shells with no branched inter-
section, at each node, the two components of the nodal normal which 
are smallest in absolute value may be chosen as the two global nodal 
rotational DOFs [23,26].  

- For non-smooth shell surfaces or plate and shell surfaces with 
branched intersection, the nodes along the non-smooth edge or 
branched intersection are associated with 6 global DOFs, including 3 
translational DOFs and 3 rotational DOFs. 

In both approaches, the global nodal rotational DOFs determine the 
orientation of the normal at each of the element nodes, which, along 
with the global nodal translational DOFs, determine the local element 
DOFs described in Section 3.1 according to the current orientation of the 
local co-rotational reference system [23]. 

Finally, it is worth noting that even though the adopted zero macro- 
spin co-rotational system can be applied to large-strain problems, the 
focus of this paper is on its application to small-strain large-displace-
ment problems. 

5. Numerical examples 

The optimised 6-noded shell elements proposed in this paper have 
been implemented in ADAPTIC [27] v2.14.4, which is used hereafter in 
several numerical examples to investigate and demonstrate the effi-
ciency and accuracy of the new shell element variants. For comparison 
purposes, a 6-noded Reissner-Mindlin shell element employing the 
MITC6 strain-mapping scheme [19] for the local element response is 
also considered within the same co-rotational approach for large 
displacement analysis, which is represented by the acronym key 
‘MITC6*‘. The asterisk symbol ‘*’ indicates that there are minor differ-
ences of the element from the original MITC6 element owing to the 
employment of a local co-rotational coordinate system along with a 
second-order strain-displacement relationship, the neglect of the trans-
verse normal strain, and the decoupled mapping of planar strains and 
transverse shear strains, as detailed in Ref. [23]. In presenting the re-
sults, the various element variants are referred to by acronym keys, as 

Fig. 29. Load-displacement curves of radial displacements with different 
meshes of H3O6 and MITC6* elements. 

Fig. 30. Cantilever beam loaded with end moment.  
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listed in Table 1. 

5.1. Basic element tests 

Several basic element tests, including zero energy mode tests, 
isotropic element tests and constant strain patch tests, have been carried 
out to study the behaviour of the optimised 6-noded shell elements 
(H2O6, H3O6, H4O6, H3C6, H4C6) and the MITC6* element. 

In the zero energy mode tests, for each of the considered 6-noded 
element formulations, the stiffness matrix and the corresponding ei-
genvalues are calculated for a given unrestrained 6-noded shell element, 
and the number of zero-eigenvalues is counted. As shown in Fig. 5, both 
regular and irregular triangular element shapes are considered in this 
test. For all the considered element configurations, both the optimised 
elements and the mixed element have exactly 6 zero-eigenvalues of the 
element stiffness matrix, indicating absence of spurious mechanisms. 

Fig. 31. Deformed configuration of cantilever beam at Mmax.  

Fig. 32. Load-displacement curves at cantilever end A with various optimised 6-noded elements.  
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An arbitrarily shaped triangular element, as depicted in Fig. 6, is 
employed for the isotropic element test. Geometric and material pa-
rameters are given as: thickness t = 0.001, Young’s modulus E = 106, 
and Poisson’s ratio ν = 0.2. In this test, 24 sets of strain-inducing 
displacement modes, as listed in Table 2, are respectively imposed to 
the optimised and the mixed 6-noded elements. For each prescribed 
displacement mode, three nodal numbering sequences are used (i.e., 1- 
2-3-4-5-6, 2-3-1-5-6-4, and 3-1-2-6-4-5, respectively), and the total 
strain energy by using each nodal ordering is recorded. It is found that 
for all the optimised and mixed 6-noded elements, the total strain energy 
for each strain-inducing displacement mode is invariant to nodal 
ordering, thus indicating that all the considered element types pass the 
isotropic element test. 

Two patches of triangular elements, adapted from a five- 
quadrilateral-element patch used by MacNeal and Harder [28], are 
used for constant-strain patch tests, where the first patch consists of 
elements with straight edges and mid-side nodes (Fig. 7), while the 
second patch considers a distorted mesh (Fig. 8). Details of the patch 
tests and the associated results are given in Appendix A. It is observed 
that all the optimised 6-noded elements pass the test for both the regular 

and the irregular patch patterns, resulting from the enforcement of zero 
mean on each hierarchic strain mode. The mixed element MITC6* passes 
the constant strain patch tests for the regular element mesh only; sig-
nificant errors are observed in its predictions of strains and displace-
ments for the distorted element mesh. 

5.2. Clamped square plate 

A square plate of dimensions 2L × 2L × t, fully clamped at all four 
edges, is subjected to a uniformly distributed transverse loading p. The 
geometric, material, and loading parameters are given as: L = 1.0, 
Young’s modulus E = 1.7472 × 107, Poisson’s ratio ν = 0.3, and p = 1.0. 
The symmetry of the problem allows the modelling of a quarter of the 
plate with the 6-noded triangular elements, as shown in Fig. 9. The 
boundary conditions along the clamped edges AB and BC and the edges 
OA and OC are given as follows: u = v = w = θx = θy = 0 along edges AB 
and BC, u = θx = 0 along edge OA, and v = θy = 0 along edge OC. The 
convergence rates of the various 6-noded element types are studied in 
this linear problem, where the influence of the (t/L) ratio is also 
investigated. 

Fig. 33. Load-displacement curves at cantilever end A with H3O6 and MITC6* elements.  
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The convergence curves of the optimised 6-noded elements are 
compared with the relative error in the strain energy as a measure of 
accuracy: 

RE =

⃒
⃒Uref − U

⃒
⃒

Uref
(38)  

where: U is the total strain energy of a coarse mesh with a nominal 
element length of he; Uref is the reference value, taken as the strain en-
ergy obtained from a fine 128 × 128 mesh of the H3O6 element. For (t/ 
L) = 0.01, 0.001 and 0.0001, the reference values of Uref are 1.9471 ×
10− 3, 1.9456 and 1.9456 × 103, respectively. 

Fig. 10 presents the convergence results of various optimised trian-
gular elements, which show a general relief of shear locking for all the 
considered (t/L) ratios. The H2O6 element, which uses optimisation 
without hierarchic terms, is not as effective as those with hierarchic 
corrections in remedying shear locking. Besides, the objective alterna-
tive approach, using 3rd or 4th order hierarchic optimisation, is more 
accurate than the corrective alternative, evident from the higher 
convergence rates and the lower levels of relative error associated with 

the H3O6 and H4O6 results in comparison with the H3C6 and H4C6 
results. Note that in the case where (t/L) = 0.01, the H4O6 and the H4C6 
results show a lifted tail after reaching a relatively high accuracy level, 
which can be due to round-off errors and the relative error measure 
employed. 

In Fig. 11, the results of the H3O6 element are also compared to those 
of the MITC6* and the MITC6 [19] elements. It is worth noting that the 
MITC6 [19] results employ the s-norm as a measure of accuracy, given 
as: 

RE=

⃦
⃦uref − uh

⃦
⃦2

s
⃦
⃦uref

⃦
⃦2

s

(39)  

where: uref is the vector of reference nodal displacement values; uh is the 
finite element solution of nodal displacements; ‖ ⋅ ‖

2
s is the s-norm. 

Although Eqs (38) and (39) do not yield equivalence for non- 
conforming formulations, it is still reasonable to compare the results 
of the MITC6 element using the measure of Eq. (39) against the results of 
the other elements using the measure of Eq. (38). Fig. 11 shows that the 
H3O6 results have better accuracy and convergence rate than the MITC6 

Fig. 34. Pull-out of cylindrical shell with free ends.  
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results, although there is a noticeable shift of curves upward as (t/L) 
decreases. It is also shown that the convergence rate of the MITC6* 
solution is much slower for this problem. The small differences between 
the MITC6* and the MITC6 results may be due to round-off errors, 
different accuracy measurement and the formulation differences. 

5.3. Cylindrical shell 

This is another linear elastic benchmark problem for investigating 
the performance of the developed 6-noded shell elements. The cylin-
drical shell depicted in Fig. 12 has a length of 2L, a radius of R, and a 
constant thickness t, and is loaded with a periodic pressure p(θ) =

p0 cos(2θ). The geometric and material properties are given as: L = R =
1.0, E = 2.0 × 105 and ν = 1/3. The amplitude of the pressure is p0 = 1.0. 
Two boundary conditions at both curved ends are considered: a free 
boundary condition corresponding to a bending-dominant problem, and 
a fully clamped boundary condition corresponding to a membrane- 
dominant problem. Due to symmetry, an octant of the model is ana-
lysed with a uniform mesh pattern, as shown in Fig. 12. 

The convergence curves of the optimised 6-noded elements are 
compared, with the relative error in the strain energy as a measure of 
accuracy, as shown in Eq. (38). The strain energy obtained from a fine 
96 × 96 mesh of the H3O6 element is used as the reference strain energy 
Uref . For the case where the cylindrical shell has free ends, the reference 
values of Uref are 2.3480, 2.3337 × 103 and 2.3292 × 106, respectively 
for (t/L) ratios of 0.01, 0.001 and 0.0001; on the other hand, for the case 
where the cylindrical shell is clamped at both ends, the reference values 
of Uref are 8.9607 × 10− 4, 9.3217 × 10− 3 and 9.3954 × 10− 2, respec-
tively, for (t/L) ratios of 0.01, 0.001 and 0.0001. 

Employing Eq. (38) as the relative error measure, the convergence 
performances of various optimised 6-noded elements with free and 
clamped boundary conditions are shown in Figs. 13 and 14, respectively. 

Significant locking is observed in the H2O6 solution, in particular for the 
free edge boundary condition, while the other optimised elements 
exhibit good accuracy and convergence rate, with the H3O6 solution 
providing slightly better accuracy. In Figs. 15 and 16, the H3O6 results 
are compared against the MITC6* results; where the MITC6 solution 
[19] in accordance with the relative error measure of Eq. (39) is also 
presented for comparison. It is observed that the H3O6 and MITC6* 
elements have marginally comparable accuracy and convergence rates 
for the considered boundary conditions and (t/L) ratios. The figures also 
show that the MITC6 element has slower convergence rates and is less 
accurate for thin shells (t/L = 0.0001). 

5.4. Pinched cylinder 

In this linear problem, a cylindrical shell, supported by rigid di-
aphragms at both ends, is subjected to a pair of pinching loads, as 
depicted in Fig. 17. The geometric and material properties are given as: 
L/R = 2, R/t = 100, t = 0.01, E = 3.0 × 108, and ν = 0.3. Each pinching 
load is P = 300. Due to symmetry, an octant model of the cylindrical 
shell is considered with three uniform meshes (4 × 4, 8 × 8, and 12 ×
12) of various 6-noded elements, with an 8 × 8 mesh depicted in Fig. 17. 
The non-dimensional deflection at the point of loading wC = wCEt/P, is 
predicted by each of the numerical models. The predictions of wC with 
various 6-noded shell elements, normalised by the reference value of 
wC,ref = − 164.24, a series solution obtained by Lindberg et al. [29], are 
listed in Table 3. Also provided are the normalised results by Bucalem 
et al. [20], where M6-3 and M7-3 correspond to respectively a 6-noded 
and a 7-noded triangular element employing an assumed strain method. 
The poor predictions given by the conforming meshes indicate signifi-
cant locking. The accuracy of the H3O6 and H4O6 is manifested in a 
very coarse mesh, followed by the H3C6, H4C6, and M6-3 elements. 
Although M7-3 provides a prediction closer to 1.0 in the coarse 4 × 4 
mesh, its prediction improves slower than the other elements, evident 
from persistence of the over-estimation even in a fine mesh of 12 × 12 
elements. 

5.5. Hemispherical shell with an 18◦ cut-out 

Another linear problem is used to assess the performance of the 
proposed quadratic triangular elements. The hemispherical shell 
depicted in Fig. 18 has an 18◦ cut-out on its top and is subjected to an 
orthogonal set of two inward and two outward forces, 2P. The loading 
and geometric and material parameters are given as follows: P = 1.0, R 
= 1.0, t = 0.004, E = 6.825 × 108 and ν = 0.3. Due to symmetry, a 
quarter of the hemispherical shell is modelled with three uniform 
meshes (4 × 4, 8 × 8, and 12 × 12), and the predictions of the radial 
deflection at the point of loading (Point A) are compared for the various 
elements. The displacement predictions by different elements, normal-
ised by the reference value of 0.09355 [20], are listed in Table 4. The 
results with M6-3 and M7-3 by Bucalem et al. [20] are also presented for 
comparison. Again, the H4O6 and H3O6 elements provide better accu-
racy with coarser meshes, followed by their corrective counterparts. 
More distorted meshes, as shown in Fig. 19 for an 8 × 8 mesh, are also 
used to investigate the performance of various elements in overcoming 
distortion locking, where the three nodes (C, D, E) in a regular mesh are 
moved to positions (C′, D′, E′). The accuracy of all element types de-
grades significantly for a 4 × 4 mesh owing to the highly distorted 
element shapes. However, it is observed that an 8 × 8 mesh of the 
optimised elements, in particular H3O6 and H4O6, becomes capable of 
providing good accuracy, while a 16 × 16 mesh of the MITC6* is 
required for comparable accuracy. 

5.6. Annular plate 

This is a large displacement problem where an annular plate is fully 

Fig. 35. Deformed configuration of octant cylindrical shell model at P = 40 
× 103. 
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clamped at one end and subjected to a uniform transverse loading q at 
the other end, as shown in Fig. 20. The geometric and material prop-
erties are specified as: R1 = 6, R2 = 10, t = 0.03, E = 21.0 × 107, and ν =
0.0. The plate is modelled with two meshes of the triangular elements 
(16 × 1 and 32 × 2), with the 32 × 2 mesh depicted in Fig. 20. Fig. 21 
shows the final deformed configuration of the plate. The load-vertical 
deflection response at Points A, B, and C with different meshes and 
different element types is investigated. 

Figs. 22–24 depict the load-displacement curves at points A, B, and C 
with the H3O6 and the MITC6* elements, and a convergent solution of 
the H3O6 using a 64 × 8 mesh is taken as a reference solution. Also 
plotted are the results by Campello et al. [16], who employed the same 
meshes with 6-noded triangular elements that are based on the 
enhanced displacement method. It is observed that the results with the 
H3O6 element are much closer to the reference solution and notably in 
the coarser mesh. As the mesh is refined, the performance of the MITC6* 

element becomes almost comparable to the H3O6 element due to the 
decreased degree of element irregularity. Fig. 25 also compares the 
load-deflection curves at point A with the various optimised 6-noded 
elements for a 16 × 1 mesh. Again, the optimisation approach with an 
objective alternative is more accurate than the corrective alternative. 
Although the H4O6 element yields comparably accurate results with the 
H3O6 element, H3O6 is preferred due to the fewer integration points 
required compared to H4O6. 

5.7. Pinched hemispherical shell 

Fig. 26 depicts a hemispherical shell subjected to two inward and 
two outward forces 90◦ apart at its base. The shell is made of an isotropic 
material with material properties of E = 6.825 × 107 and ν = 0.3. The 
geometric parameters of the hemispherical shell are radius R = 10.0 and 
thickness t = 0.04. The variation of radial displacements at Points A and 

Fig. 36. Load-displacement curves of cylindrical shell model with different meshes of H3O6 and MITC6* elements.  
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B with the point load P is investigated. A quarter-model is employed due 
to symmetry, and two alternative meshes of 6-noded elements are 
employed in the model (each of the three subdomains in the quarter 
model is discretised into 3 × 3 and 6 × 6 mesh patterns, respectively). 
The results by Arciniega and Reddy [30] are used as a reference solution, 
which are obtained by a 2 × 2 mesh of 8th-order tensor-based 81-noded 
elements (Q81) using first-order shear deformation theory. The final 
deformed configuration of the pinched hemisphere is depicted in Fig. 27. 

The results using optimised 6-noded elements are shown in Fig. 28 
for the two meshes. The conforming element CNF6 exhibits considerable 
inaccuracy, persisting even in the finer mesh, which is mainly attributed 
to membrane locking. As stated before, the H3O6 and H4O6 elements 
exhibit superior performance to their corrective counterparts in the 
coarser mesh, and the discrepancy reduces with mesh refinement. In 
Fig. 29, the H3O6 results are compared against the MITC6* solution, 
which again indicates the effectiveness of the H3O6 element in 
addressing locking notably for the coarser mesh. 

5.8. Cantilever beam under end moment 

Fig. 30 depicts a thin cantilever beam subjected to an end moment M. 
The beam is made of an isotropic material with material properties of E 
= 1.2 × 106 and ν = 0.0. The geometric parameters of the cantilever 
beam are: length L = 12.0, width b = 1.0 and thickness t = 0.1. The 
variation of vertical and horizontal displacements at the free beam end 
(wA and uA) with the end moment M is investigated. Two alternative 
meshes of 6-noded elements (1 × 10 and 2 × 20) are employed, with the 
results compared with the reference analytical solution based on the 
moment-curvature relationship, which is given as follows [30]: 

uA

L
=

k
M

sin
(

M
k

)

− 1,
wA

L
=

k
M

(

1 − cos
(

M
k

))

where k = EI
L with I = bt3

12. 
Accordingly, the cantilever beam will roll up to a complete circle at 

an end moment of Mmax = 2πk = 52.360. The final deformed configu-
ration of the cantilever beam under bending for a 1 × 10 mesh of H3O6 
elements is depicted in Fig. 31. 

Fig. 32 depicts the load-displacement curves using different opti-
mised element variants, all of which show good agreement with the 
analytical solution, although the H2O6 element exhibits less accuracy 
for the coarser 1 × 10 mesh. In Fig. 33, the H3O6 and MITC6* results are 
compared against the analytical solution. It is observed that both ele-
ments perform comparably well even for a coarser 1 × 10 mesh. Also 
shown in Fig. 31 a are the results by a 1 × 20 mesh of 8-noded quad-
rilateral solid-shell elements (US-ATFHS8) developed by Li et al. [31], 
which employs an equivalent number of nodal DOFs along the beam 
length direction as the 1 × 10 mesh of 6-noded triangular elements. The 
results show that H3O6 and MITC6* triangular elements yield a com-
parable capability of addressing locking compared to the quadrilateral 
elements, with the latter showing a slightly improved accuracy at very 
large deformations with the use of a smaller element size. 

5.9. Pull-out of a cylindrical shell 

As depicted in Fig. 34, a cylindrical shell with free ends is subjected 
to two opposite loads P. The material and geometric properties are as 
follows: Young’s modulus E = 10.5 × 106, Poisson’s ratio ν = 0.3125, 
length L = 10.35, radius R = 4.953 and thickness t = 0.094. Due to 
symmetry, an octant of the shell is modelled using two meshes (4 × 6 
and 8 × 12) of H3O6 and MITC6*, as illustrated in Fig. 34 b. The vari-
ation of vertical displacement at Point A (wA) and horizontal displace-
ments at Points B and C (uB and uC) with the load P is investigated. The 
converged solution provided by Sze et al. [32] is used as a reference. The 
deformed configuration of the octant model of 8 × 12H3O6 elements at 
P = 40 × 103 is shown in Fig. 35. 

Fig. 36 depicts the load-displacement curves using H3O6 and 
MITC6*, which are compared against the reference solution. Also shown 
in the figure are results given by Wu et al. [33] using an 8 × 12 mesh of 
3-noded triangular flat shell elements (HSDF-PSH3) based on a hybrid 
stress/displacement formulation. The accuracy of the H3O6 and MITC6* 
results for the coarser 4 × 6 mesh reduces to some extent when the 
cylindrical shell undergoes large deformation, specifically for the hori-
zonal displacements uB and uC, while the vertical displacement wA under 
the load P, hence the strain energy of the shell, is accurately predicted. 
This discrepancy at large deformations is mainly attributed to the 
simplified strain-displacement relationship utilised in the local element 
formulation, which is based on the assumption of a shallow shell 
element. At larger loads, some of the elements are excessively deformed 
with excessive local transverse displacements, which renders the 
simplified strain-displacement relationship less accurate. Nevertheless, 
the accuracy of the H3O6 and MITC6* clearly improves with mesh 
refinement, as demonstrated in Fig. 36 b for the finer 8 × 12 mesh, 
which is due to a reduction in the local element transverse displacements 
and the closer compliance with the shallow shell element assumption. 

6. Conclusions 

Locking phenomena result from the inability of the element to 
correctly model lower-order strain modes, depending on the type of 
structural analysis problem, the underlying assumptions of the associ-
ated mathematical model, as well as the element shape and order. This 
paper proposes variants of 6-noded triangular shell elements based on a 
recently developed hierarchic optimisation approach, which remedy 
shear, membrane, and distortion locking by: (i) selecting a set of low- 
order strain modes in terms of physical coordinates as the objective 
strain distributions, (ii) enriching the conforming strains with a set of 
higher-order hierarchic strain modes in terms of natural coordinates, 
and (iii) minimising the strain errors between the objective and the 
corrective strains. 

In the local formulations of the optimised 6-noded elements, the 
hierarchic optimisation approach is applied to the membrane, curva-
ture, and transverse shear strains, respectively, for relieving inaccura-
cies arising from locking phenomena. In order to achieve the desirable 
characteristic of ‘spatial isotropy’, the hierarchic optimisation approach 
is enhanced so that optimisation is applied to the three direct membrane 
and curvature strains along the edge directions, hence resulting in a 
local element response that is invariant to nodal ordering. Furthermore, 
a co-rotational coordinate system is employed for the element variants, 
which allows large displacement analysis of thin-to-moderately thick 
plate and shell applications. 

Several linear and nonlinear numerical examples have been used to 
demonstrate the effectiveness of the variants of optimised 6-noded ele-
ments in the elimination of locking. Among the optimised elements, the 
H2O6 element, which employs no hierarchic strain modes in the strain 
fitting, is still associated with noticeable inaccuracy due to locking, 
which highlights the importance of the inclusion of the higher-order 
strain modes for the 6-noded triangular element. For the same hierar-
chic order, the objective element variant, HmO6, yields better accuracy 
than the corrective alternative, HmC6, with the objective alternative 
based on third order hierarchic optimisation (H3O6) providing the best 
balance between accuracy and efficiency. The performance of H3O6 is 
also comparable to the mixed elements based on the MITC6 formula-
tions, and it even shows better accuracy in coarser meshes with irregular 
element shapes, highlighting its superior ability to relieve distortion 
locking. 
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Appendix A. Constant strain patch tests 

A rectangular patch of ten triangular shell elements, adapted from a five-element patch of quadrilateral elements that was suggested by MacNeal 
and Harder [28], is used herein to examine the membrane and out-of-plane bending behaviour of the optimised and mixed shell elements. As depicted 
in Fig. 7, the geometric parameters of the patch are given as: length a = 0.24, width b = 0.12, and thickness t = 0.001. The patch is made of an elastic 
material with Young’s modulus E = 106 and Poisson’s ratio ν = 0.25. In this mesh, the edges of each element are straight, and the edge nodes are placed 
at the centre of each edge. For the membrane patch test, a constant membrane strain state of εx = εy = γxy = 0.001 is considered, corresponding to the 
prescribed edge displacements as follows: 

u= 10− 3
(

x+
1
2

y
)

, v= 10− 3
(

y+
1
2

x
)

, w= θx = θy = 0 

For the out-of-plane bending patch test, a constant bending strain state of κx = κy = κxy = 0.001 is considered, corresponding to the following 
prescribed edge displacements: 

u= v= 0, w= 10− 3(x2 + xy + y2)

2
, θx = 10− 3

(

x+
1
2

y
)

, θy = 10− 3
(

y+
1
2

x
)

For both the membrane strain and the out-of-plane bending patch tests, the mesh as shown in Fig. 7 with each of the variants of optimised 6-noded 
elements and the MITC6* element could accurately predict the displacements and strains at its internal nodes with 0.0% error, hence indicating that 
all the considered element types pass the patch tests. 

The behaviour of the considered 6-noded elements for a more irregular mesh is also investigated, where the original patch is distorted by shifting 
four edge nodes 13, 14, 15 and 16, either parallel or perpendicular to the edges, and moving the internal node 25 along the x-direction, as illustrated in 
Fig. 8. All the shifts of nodal positions are of a magnitude d = 0.01. The planar displacements at all internal nodes of the patch, along with planar 
strains of the two internal elements evaluated at node 25, are compared against the theoretical values. Results of the constant membrane strain patch 
test using this distorted mesh are listed in Table A.1, which indicate that all the optimised 6-noded elements pass the test owing to the enforcement of 
zero mean on each hierarchic strain mode. The MITC6*, however, fails in the constant strain patch test for this distorted mesh.  

Table A.1 
Relative error in transverse and rotational displacements and curvatures in membrane patch test (distorted mesh).  

Acronym key Maximum error in u Maximum error in v Maximum error in εx Maximum error in εy Maximum error in γxy 

H2O6 0.0% 0.0% 0.0% 0.0% 0.0% 
H3O6 0.0% 0.0% 0.0% 0.0% 0.0% 
H4O6 0.0% 0.0% 0.0% 0.0% 0.0% 
H3C6 0.0% 0.0% 0.0% 0.0% 0.0% 
H4C6 0.0% 0.0% 0.0% 0.0% 0.0% 
MITC6* 8.9% 5.6% 18.5% 11.3% 56.1%  
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