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CL3D: Camera-LiDAR 3D Object Detection With
Point Feature Enhancement and

Point-Guided Fusion
Chunmian Lin , Daxin Tian , Senior Member, IEEE, Xuting Duan , Member, IEEE, Jianshan Zhou ,

Dezong Zhao , Senior Member, IEEE, and Dongpu Cao

Abstract— Camera-LiDAR 3D object detection has been exten-
sively investigated due to its significance for many real-world
applications. However, there are still of great challenges to
address the intrinsic data difference and perform accurate feature
fusion among two modalities. To these ends, we propose a
two-stream architecture termed as CL3D, that integrates with
point enhancement module, point-guided fusion module with
IoU-aware head for cross-modal 3D object detection. Specifically,
pseudo LiDAR is firstly generated from RGB image, and point
enhancement module (PEM) is then designed to enhance the
raw LiDAR with pseudo point. Moreover, point-guided fusion
module (PFM) is developed to find image-point correspondence
at different resolutions, and incorporate semantic with geometric
features in a point-wise manner. We also investigate the incon-
sistency between localization confidence and classification score
in 3D detection, and introduce IoU-aware prediction head (IoU
Head) for accurate box regression. Comprehensive experiments
are conducted on publicly available KITTI dataset, and CL3D
reports the outstanding detection performance compared to
both single- and multi-modal 3D detectors, demonstrating its
effectiveness and competitiveness.

Index Terms— 3D object detection, camera-LiDAR fusion, deep
learning, autonomous driving, intelligent transportation systems.

I. INTRODUCTION

RECENT years, 3D object detection has received more
and more attention on both industry and academia, due

to its various applications in many fields such as autonomous
driving. With the advancement of deep learning and convolu-
tional neural network (CNN), 2D object detection technique
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has achieved remarkable progress in efficient network archi-
tectures [1], [2], hierarchical feature presentations [3], [4]
and outstanding performance [5], [6]. Therefore, numerous
image-based object detection methods have been developed
for 3D object localization [7]–[9], whereas monocular 3D
object detector suffers from false positives owing to the lack
of depth information of object. As an alternative, LiDAR
sensor can provide more robust geometric feature that is
applicable to describe the spatial structure of object in the
3D scene [10], [11]. Consequently, many LiDAR-based 3D
detection methods are developed, and they can be roughly
divided into two classes. On one hand, PointNet [10] architec-
ture directly consumes the raw LiDAR for geometric feature
learning, and spatial feature maps are further utilized for
proposal generation and 3D bounding-box regression [12],
[13]. On the other hand, researchers focus on regular represen-
tation by converting the raw point cloud into grid format (i.e.
voxel), and thus efficient CNN architecture can be adopted for
3D object detection [14]–[16]. However, without the help of
semantic feature, it is still difficult to distinguish the adjacent
objects if they have similar geometric structure. Furthermore,
because of the inherent sparisity and orderless of point cloud,
LiDAR-only detectors easily suffer from false detection in
far-away and small objects, as shown in Fig.1. Generally,
neither image-based nor LiDAR-only methods present satis-
factory performance in the challenging physical world.

Therefore, researchers are increasingly interested in fusing
multi-modal information and exploiting the complementary
among different sensors for more robust and accurate detection
performance. Camera and LiDAR are two widely used sensors
in 3D object detection community. The former captures RGB
image with dense object semantics, while the latter provides
reliable point cloud information for describing the geometric
structure of object. Combining these two modalities would
capture both semantic and geometric feature representations,
and can result in more promising detection results. Currently,
there are several camera-LiDAR 3D object detection meth-
ods that perform image-point feature aggregation via various
fusion strategies and architectures, such as multi-view feature
fusion [17], [18], continuous convolution fusion [19], multi-
task fusion [20], point-wise fusion [21], [22], cross-view
spatial feature fusion [23], proposal candidate fusion [24],
etc. As demonstrated in Fig.1, current works mostly perform
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Fig. 1. The existing problems in 3D object detection. (a) Sparisity of LiDAR. the LiDAR point is too sparse for faraway car to distinguish. (b) Imperfect
Correspondence. most fusion methods fail to find perfect image-point corrspondence, and thus result in false or missing detection. (c) Inconsistency in
Object Detection. the misalignment between localization accuracy and classification confidence commonly exists in 3D object detection. Best viewed in color.

coarse fusion via spatial transformation, which leads to infor-
mation loss and quantization error inevitably. And without
accurate point-wise correspondences, these methods generally
report marginal performance gains. Consequently, it is still
of great challenge to develop an effective cross-modal fusion
method for 3D object detection.

To solve these problems, we propose a camera-LiDAR 3D
object detector named CL3D, that is a two-stream architecture
with point enhancement module (PEM), point-guided fusion
module (PFM) and IoU-aware head (IoU Head). On one
hand, point enhancement module combines the pseudo rep-
resentation generated from RGB image with the raw LiDAR
for point feature enhancement. One the other hand, point-
guided fusion module exploits image-point correspondences
to aggregate multi-level semantic with geometric features,
resulting in more representative cross-modal features under
different resolutions. Furthermore, we investigate the inconsis-
tence between localization confidence and classification score
as illustrated in Fig.1, and develop a simple yet effective
IoU-aware prediction head (IoU Head) for accurate 3D box
regression. Extensive experiments are conducted on publicly
available KITTI dataset [25], and our proposed CL3D presents
competitive detection accuracy and significant performance
gains over single- and multi-modal 3D detection methods.

Overall, the contributions in this work can be summarized
as follows:

1) We generate pseudo point directly from RGB image,
and fuse it with the raw LiDAR by point enhancement
module (PEM), which can enhance point feature representation
effectively.

2) Point-guided fusion module (PFM) is proposed to find
perfect correspondence between image and point, and we
perform point-wise feature aggregation to produce more dis-
criminative multi-modal feature at various resolutions.

3) The misalignment between localization confidence and
classification score is investigated, and we design IoU-aware
prediction head (IoU Head) for the IoU calculation between
each ground-truth and predicted box.

4) We integrate PEM, PFM and IoU Head into a two-stream
architecture for camera-LiDAR 3D object detection, termed

as CL3D. Extensive experimental results on KITTI dataset
demonstrate the effectiveness and competitiveness of CL3D,
with the promising detection performance and considerable
improvements.

The remainder of this paper is organized as follows: we
review related works in Section II, and introduce the proposed
method CL3D in Section III; experimental analysis and con-
clusions are presented in Section IV and V, respectively.

II. RELATED WORKS

In this part, we would briefly review the development of
3D object detection and the inconsistency problem between
localization and classification in object detection.

A. Camera-Based 3D Object Detection
Many researches extends the pipeline of 2D object detection

to 3D detection task, that directly performs 3D bounding-
box regression and confidence prediction from 2D camera
image [26]–[31]. For instance, [26] infers monocular 3D
bounding box with RGB semantics and contextual information
(i.e. size, location, shape, etc.). Reference [8] imposes geo-
metric constraints on the 2D bounding box, and produces 3D
result with object pose from a single frame. Furthermore, [28],
[29] defines the notion of pseudo LiDAR for mimicking the
LiDAR signal, and generates a set of pseudo point from images
by depth estimation algorithm and coordinate transformation.
And LiDAR-based methods are further applied for 3D object
localization. To further investigate the potential of pseudo-
LiDAR representation, [30], [31] propose an end-to-end train-
ing pipeline with more accurate depth estimation method to
facilitate monocular 3D detection performance. Although RGB
image contains rich and dense channel features, it is still
difficult to achieve satisfactory 3D detection accuracy due to
the lack of reliable depth information.

B. LiDAR-Based 3D Object Detection
LiDAR-based 3D object detection have rapidly developed

owing to the advantage of point cloud representation in
describing the 3D structure of object. Recent works can be



roughly classified into two folds. On one hand, PointNet 
architecture [10], [11] directly consumes the raw point cloud, 
and predicts 3D bounding box from pre-defined region propos-
als [13], [32]–[34]. Benefited by powerful spatial representa-
tion of raw LiDAR, STD [32] proposes a new spherical anchor, 
and converts point cloud from sparse to dense representation 
for robust 3D detection. 3DSSD [13] develops a novel 3D 
single-stage object detector with feature fusion sampling strat-
egy and box prediction network. In [33], the authors designs 
triple attention modules for multi-level point feature fusion, 
and coarse-to-fine regression branch is further utilized for 
accurate 3D pedestrian localization. On the other hand, voxel 
representation is also extensively investigated, that quantifies 
point cloud into regular grid format (i.e. voxel) and adopts 
efficient CNN architecture for 3D object detection [34]–[36]. 
Inspired by VoxelNet [36], [37] designs part-aware and part-
aggregation modules for intra-object point feature encoding 
and box refinement. Moreover, PV-RCNN [16] explicitly com-
bines both 3D voxel convolution and keypoint representation 
to learn more discriminative feature maps to improve 3D 
detection performance. CenterPoint [38] is an anchor-free 
framework that adopts voxel-based feature encoder for simul-
taneous 3D object detection and tracking. These LiDAR-based 
approaches achieve state-of-the-art 3D detection performance, 
however, they easily suffer from semantic ambiguity and false 
positive results particularly in faraway or similar objects.

C. Camera-LiDAR 3D Object Detection

Multi-modal 3D detection is an emerging research interest,
and various camera-LiDAR fusion methods are investigated
for representation enhancement and performance gains [20],
[22], [23], [39], [40]. To be specific, Frustum-PointNet [39]
obtains 3D bounding-box prediction results by extruding a 3D
viewing frustum from 2D object region proposal. MMF [20]
introduces multi-task applications, and utilizes ground esti-
mation and depth information to facilitates 3D detection
performance. Inspired from continuous convolution [19],
PI-RCNN [22] proposes point-based attentive continuous-
convolution fusion (PACF) module to aggregate cross-modal
features effectively. In [23], authors explore the importance of
fusing camera-LiDAR feature map from different locations,
and design cross-view spatial feature fusion and adaptive
gated fusion modules for cross-modal 3D object detection.
Nevertheless, these methods mostly align image-point feature
via projection transformation, which leads to information loss
and quantization error inevitably. And due to the sparsity of
LiDAR signal, imperfect image-point correspondences would
also degrade the 3D detection performance to some extent.

D. Inconsistence in Object Detection
The inconsistence in object detection implies the misalign-

ment between localization accuracy and classification score,
that is an essential issue widely explored in 2D detection
community [41]–[45]. IoU-Net [43] calculates the IoU metric
between each prediction and the matched ground-truth box,
and formulate it as an objective for box refinement. In [44],
a single-stage 2D detector with IoU-aware branch is designed

to improve the localization accuracy. Moreover, the author
investigates the effect of loss function for detection perfor-
mance, and proposes IoU-balanced classification loss [45]
to assign the positive example with better IoU and higher
classification score simultaneously. However, this imbalanced
problem has not received enough attention in 3D detection
research yet. Recently, 3D IoU-Net [46] considers the box
matching strategy and proposes the IoU alignment method to
improve 3D-IoU prediction. CIA-SSD [47] presents IoU-aware
rectification module to correct the prediction error between the
localization confidence and classification score. In this work,
we would also investigate this inconsistence between local-
ization and classification, and provide a simple yet effective
solution to alleviate this problem.

III. CL3D: CAMERA-LIDAR 3D OBJECT DETECTION

As illustrated in Fig.2, the overall architecture of CL3D
mainly contains point enhancement module, image and point
backbone, point-guided fusion module and refinement net-
work. Detailed information would be introduced as follows.

A. Point Enhancement Module

As mentioned above, pseudo LiDAR is an effective
representation that improves 3D detection performance
significantly. It generates directly from RGB image via depth
estimation and spatial coordinate transformation, which indi-
cates pseudo point would contains dense semantics from
RGB channels. Therefore, we attempt to generate pseudo
representation from RGB image and enhance the raw LiDAR
feature via point enhancement module (PEM).

Specifically, we adopt the pretrained pyramid stereo match-
ing network (PSMNet) [48], that takes a pair of input images
to calculate the disparity map, with the size of 375 × 1242.
And subsequently, 3D coordiantes of each pixel are derived
from the left camera coordinate system via the following
formulations Eq.1-Eq.3:

m = (u − cu) × b

D(u, v)
(1)

n = (v − cv ) × t

fv
(2)

t = fh × b

D(u, v)
(3)

where (m, n, t) denotes the 3D coordinate value corresponding
to each pixel (u, v) in image plane; cu and cv define the
pixel location of camera center; fh and fv are the horizontal
and vertical focal length, respectively; D(u, v) presents the
disparity map generated by PSMNet, and b is the horizontal
offset between a pair of images. To alleviate the noise inter-
ference, we further disregard the pseudo point with abnormal
height, and set the reflectance to 1.0 for each point. As pre-
sented in Fig.3, the generated pseudo LiDAR can be denoted
as

{
(mi , ni , ti )i=(1,...,M)

}
, where M denotes the number of

effective pseudo point (100k∼400k).
As illustrated in Fig.4, point enhancement module (PEM)

is further designed to enhance the raw LiDAR with pseudo
representations. To be specific, the dense pseudo LiDAR



Fig. 2. Overview of CL3D architecture. (1) Image Backbone: adopts four convolutional layers to learn semantic feature map hierarchically, and simultaneously
recovers the size of feature map via de-convolution for multi-scale semantic feature fusion. (2) Point Enhancement Module (PEM): combines pseudo point
generated from RGB image and raw LiDAR signal to alleviate the sparisity of LiDAR and enhance point cloud feature. (3) Point Backbone: contains four set
abstraction layers to aggregate point features in the neighboring region, followed by four feature propagation layers to project point cloud back into the original
space. (4) Point-guided Fusion Module (PFM): finds image-point correspondence under different resolutions, and fuse semantic and geometric feature in
a point-wise manner. (5) Refinement Network: utilizes pairs of set abstraction and feature propagation layers for proposal refinement. And multi-task head
introduces IoU-aware Head (IoU Head) to calculate the IoU between each ground-truth and predict box. Best viewed in color.

Fig. 3. The genereted examples of pseudo LiDAR according to the training data in KITTI. The original, depth image and pseudo LiDAR are listed in left,
middle and right column, respectively. Best view in color.

is firstly sub-sampled according to the calibration matrix,
and we concatenate it

(
Q = (m, n, t) ∈ R

N×3
)

with the raw
LiDAR P = (x, y, z) ∈ R

N×3 in a point-wise manner.

Considering the differences in coordinate permutation, e.g.
Q

⊕
P and P

⊕
Q, we feed two N × 6 point vectors into

independent fully-connected architectures to capture global



Fig. 4. Schematic diagram of point enhancement module (PEM). At first, the pseudo LiDAR is sub-sampled and combined with the raw LiDAR, with respect
to the 3D coordinate. We then feed two N × 6 vectors (N stands for the number of points), i.e. Q

⊕
P and P

⊕
Q, into fully-connected blocks to obtain

global feature responses QW and PW , respectively. Through the softmax function, activation probability σ is produced to present the importance of feature
channel. Finally, we reweight two feature branches by the element-wise product operation, and concatenate them to generate the point enhancement result.
Best viewed in color.

responses QW and PW in the high-dimensional feature space,
respectively. To exploit the more significant feature informa-
tion, two 256-dimensional representations are concatenated
and flattened into one vector before the softmax function. The
activation probability σ is regarded as a weighting parameter
to evaluate the discriminability of feature channel. Finally,
we reweight both point features by product operation, and
aggregate them to obtain the point enhancement result in
an element-wise concatenation. The whole process can be
mathematically described as Eq.4-Eq.6.

QW = W Q
2

(
W Q

1

(
Q P (4)

PW = W P
2

(
W P

1

(
P Q (5)

FE = σ QW (1 − σ) PW (6)

where N is the number of point cloud, σ presents the softmax
function, W∗

1 and W ∗
2 are the weight parameters of fully-

connected layers,
⊕

denotes the element-wise concatenation,
and FE implies the point enhancement result. The introduction
of pseudo point provides dense RGB channel semantics for the
raw LiDAR feature enhancement. More importantly, the PEM
design can reweight the significance of different point channels
adaptively, thus resulting in more robust and discriminative
feature representations.

B. Image and Point Backbone

As depicted in Fig.2, we propose a two-stream architec-
ture to encode image and point features, respectively. To be
specific, image backbone has four convolutional blocks, each
of which contains two 3 × 3 convolutions with residual
connection, followed by batch normalization (BN) and ReLU
activation function. In each block, the second convolution
is with stride 2 to downsample the resolution of feature
map and enlarge the receptive field simultaneously. And four
de-convolution layers are further utilized to recover the object
details, and multi-scale image feature maps are generated with
dense semantics.

For point backbone, we adopt PointNet++ [11] archi-
tecture, that contains four set abstractions with a scale of
4096, 1024, 256 and 64 for adaptive point feature aggre-
gation under increasing contextual scales. After that, four
feature propagation layers project the sub-sampled points back
into the original space. In this way, geometric correlation
between local and global points can be explored, and we
would perform multi-modal feature fusion under different
resolution.

C. Point-Guided Fusion Module
As demonstrated in Fig.5, we propose point-guided fusion

module (PFM) to find better image-point correspondence for
perfect multi-modal fusion. Specifically, we project each point
onto the image feature map via calibration matrix to obtain
point-wise pixel correspondence. To consider the effect of
adjacent pixels, bilinear interpolation is further utilized to
capture local semantic features for each point. This process
can be mathematically described as follows Eq.7: where I
is the bilinear interpolation function, M is the calibration
matrix, FP is the point feature, FI defines the point-wise
correspondence on the image plane, and

⊗
denotes the

element-wise multiplication.

FI = I
(

M
⊗

FP (7)

After that, each point and its pixel correspondence are fed
into fully-connected layers, respectively, and we adopt sigmoid
function δ to compress the feature vector into the range of
[0, 1]. This can be regarded as an attention mechanism that
enforces the model to pay more attention to the significant
image feature region. The joint feature map Fjoint is finally
obtained by concatenating two feature maps in an element-
wise manner. We denote Fadd as the feature addition result,
and the whole process is formulated in Eq.8-Eq.9:

Fadd = W P
2

(
W P

1 FP + W I
2

(
W I

1 FI

)
(8)

Fjoint = FP

(
FI

⊗
δ (Fadd) (9)



Fig. 5. Schematic diagram of point-guided fusion module (PFM). After
finding point-wise image correspondences via calibration matrix and bilin-
ear interpolation, LiDAR and point-wise image features are fed into two
fully-connected layers respectively. We adopt sigmoid function to squeeze
the feature vector into [0, 1], and the joint feature map is obtained by
concatenating point and the updated image features in an element-wise
manner. Noted that FC denotes fully-connected layer.

We totally introduce five PFMs into two-stream architecture
at different resolutions: four PFMs are set between point and
image backbones, to constructs the relationship of each pair
of point abstraction and convolutional feature map; and the
other PFM is utilized to fuse the final image and point feature
representations.

D. Refinement Network

As the previous works [12], [40] described, we also
apply non-maximum suppression (NMS) algorithm to choose
high-quality proposals for the box refinement stage. To be
specific, we keep 8000 proposals generated by our two-stream
architecture according to the classification confidence, and
randomly select 512 points from each proposal as the corre-
sponding feature representation that feeds into box refinement
network.

The refinement network consists of three set abstraction
layers with a group size of 128, 64 and 32 to learn rep-
resentative feature descriptor from each proposal, and three
parallel branches with two cascaded 1 × 1 convolution layers
for object classification, regression and IoU-aware prediction
respectively. Commonly, classification branch predicts object
confidence score, and regression branch is responsible for
measuring localization accuracy. To consider the inconsistence
problem between classification and localization, we addition-
ally design IoU-aware prediction head (IoU Head) in parallel
with box regression and classification branches, to calculate

the IoU between each ground-truth and predicted box. Noted
that a sigmoid activation function is utilized in the IoU Head to
ensure the value is between 0 and 1. During training, we jointly
optimize three branches; and in the inference, confidence score
is multiplied by the IoU value of each predicted box for
ranking all detections in NMS and average precision (AP)
computation procedure. Therefore, this simple design can
alleviate the misalignment between classification score and
localization accuracy effectively, and we would describe its
effect on performance improvement in the ablation study.

E. Loss Function
We adopt multi-task loss function to jointly optimize CL3D

architecture. Overall, the total loss L can be formulated
as Eq.10:

L = Lreg + Lcls + Ldir + Liou (10)

Specifically, we firstly parameterize the 3D ground-truth
box as (xg, yg, zg, lg, wg, hg, θg), where (xg, yg, zg) denote
the center coordinate of bounding box in 3D space, (lg, wg, hg)
define the size of bounding box, and θg is the yaw rotation
along the z-axis. Correspondingly, the 3D prior box can be
described as (xa, ya, za, la, wa, ha, θa). Therefore, the resid-
ual vector �r= (�x,�y,�z,�l,�w,�h,�θ ) in 3D box
regression box can be computed as Eq.11:

�x = xg − xa

da
, �y = yg − ya

da
, �z = zg − za

da
,

�l = log(
lg

la
), �w = log(

wg

wa
), �h = log(

hg

ha
),

�θ = θg − θa, da = w2
a + l2

a (11)

We utilize Smooth-L1 function to calculate regression loss
Lreg for positive predictions Npos , and the expression is
described as Eq.12:

Lreg = 1

Npos i

SmoothL1(�r) (12)

For classification loss Lcls , we adopt focal loss [49] to
alleviate the foreground-background imbalance problem. The
formulation is presented as Eq.13: where pi denotes the
confidence score for i -th box, hyperparameter α = 0.25 and
γ = 2.

Lcls = 1

Npos i

−α(1 − pi )
γ log(pi) (13)

As for direction loss Ldir , we use bin-based loss following
the PointRCNN [12], which predicts the centroid coordinate
and regresses its offset for each bin. We also calculate IoU
loss Liou by introducing binary cross-entropy function, which
can be mathematically described as Eq.14. The Igt denotes
target IoU that is computed between positive prediction and
ground-truth box, and Ip is the predicted IoU for each detected
box.

Liou = 1

Npos i

−Igt log(Ip) (14)



TABLE I

3D AP PERFORMANCE OF CL3D AND THE STATE-OF-THE-ART DETECTORS ON KITTI TEST SPLIT. NOTE THAT ALL 3D DETECTION METHODS IN
KITTI LEADERBOARD ARE RANKED BY THE AP PERFORMANCE AT MODERATE LEVEL WITH THE IOU THRESHOLD OF 0.7. THE ABBREVIATE

OF ’M’, ’L’ AND ’C+L’ DENOTE THE ’MODALITIES’, ’LIDAR-ONLY’ AND ’CAMERA-LIDAR’, RESPECTIVELY

IV. EXPERIMENTS

A. Dataset and Implementation Details

1) Dataset: KITTI dataset [25] is one of the most popular
benchmark of 3D object detection for autonomous driving,
which contains 7481 training and 7518 test samples, respec-
tively. Here, we further divide training set into train split
with 3712 examples and val split with 3769 examples, as com-
monly done in previous work [17]. For fair comparison,
we also follow the official evaluation protocol, and adopt
average precision from 40-point precision-recall (PR) curve as
the evaluation metric. For model evaluation, We would provide
the 3D detection performance of CL3D and the state-of-the-art
3D detectors under three difficulties (i.e. easy, moderate and
hard) on both validation and test split.

2) Inplementation Details: For point backbone, the range of
input LiDAR is limited to [0, 70.4]× [−40, 40]× [−1, 3]m in
LiDAR coordinate, and we randomly subsample 16384 points
as input. Moreover, image backbone takes RGB image with a
size of 1280×384 pixels as input. Based on NVIDIA TITAN
RTX GPUs, the overall architecture is trained using ADAM
optimizer with the batch size 12 from the initial learning rate
1e-3 for 80 epochs, and cosine annealing strategy is adopted
to decay the learning rate. The weight decay and momentum
factor are set to 0.002 and 0.9, respectively.

3) Data Augmentation: Considering the modality difference
between image and point cloud, it is challenging to guarantee
the precise pixel-point correspondence after spatial augmen-
tated transformation [22]. Consequently, we do not perform
data augmentation during training, which is different from
many LiDAR-only or camera-LiDAR methods as mentioned
above.

1The method remarked by ‘FusionDetv1’ on the online KITTI leaderboard
corresponds to the proposed ’CL3D’ in this work.

TABLE II

3D CAR AP PERFORMANCE OF CL3D AND THE STATE-OF-THE-ART

DETECTORS ON KITTI VAL SPLIT. THE ABBREVIATE OF ’M’, ’L’
AND ’C+L’ DENOTE THE ’MODALITIES’, ’LIDAR-ONLY’ AND

’CAMERA-LIDAR’, RESPECTIVELY

B. Evaluation Results on KITTI Dataset

We adopt PointRCNN [12] as the baseline, and compare
our proposed CL3D to the state-of-the-art 3D detectors on
test split of KITTI benchmark, as seen in Table I. Generally,
CL3D achieves prominent 3D detection performance, and
outperforms the baseline by a large margin. For instance,
it improves the PointRCNN by 2% − 8% AP on car class
and 2% − 4% AP on cyclist class at three different levels,
respectively.

Compared to other camera-LiDAR 3D detectors, CL3D
reports top 3D detection perofrmance particularly in car and
cyclist classes, e.g., 80.28% and 76.21% car AP, 62.02%
and 55.52% cyclist AP at moderate and hard levels, which
surpasses over other multi-modal detectors substantially. Con-
sidering the difficulty level classified by the size, occlusion



TABLE III

THE 3D DETECTION PERFORMANCE IMPROVEMENTS PROVIDED BY DIFFERENT LIDAR SIGNALS AND FEATURE COMBINATION METHODS ON KITTI
VAL SPLIT. NOTED THAT THE ACCURACY GAINS ARE DRAWN IN RED COLOR IN THE BRACKETS

TABLE IV

ABLATION STUDIES OF EACH COMPONENT OF CL3D ON KITTI VAL SPLIT. NOTED THAT THE PERFORMANCE GAINS PROVIDED BY EACH COMPONENT

ARE HIGHLIGHTED IN RED COLOR IN THE BRACKETS. PL DENOTES THE PSEUDO LIDAR

and truncation of object in KITTI dataset, remarkable 3D AP
results indicate the significant detection performance of CL3D
in such difficult scenes. Furthermore, CL3D runs at 10 FPS
in an inference, which performs better or on par with these
cross-modal methods in terms of detection speed. We assume
that feature concatenation in PEM and point-wise projection in
PFM might be time-consuming, and detailed runtime analysis
would be explored to speed up 3D object detection in the
future.

As for LiDAR-only detectors, PV-RCNN [16] is one of the
state-of-the-art (SOTA) 3D detectors on KITTI benchmark,
and our CL3D is slightly inferior to it by 1.15% and 0.61%
car AP at moderate and hard levels, respectively. Moreover,
CL3D still presents better performance than other LiDAR-only
method, i.e., Part-A2, with 1.79% and 2.70% AP gains on car
class at middle and difficult levels. However, there is a large
performance gap in pedestrian class between CL3D and other
SOTA algorithms. Due to the feature ambiguity and similarity
between pedestrian and other instances (e.g., traffic pole),
our CL3D easily suffers from false positives in pedestrian
detection. Moreover, it is assumed that inaccurate image-point
correspondence occurred in certain location might confuse the
model and lead to poor detection results. We would investigate
these problems and provide a solution for more robust and
accurate performance in the future work.

Furthermore, we also evaluate the 3D detection performance
on val split of KITTI dataset. For simplicity, we just elaborate
3D AP performance on car class in Table II. It is clear that
CL3D still offers remarkable performance gains over the base-
line, and outperforms all cross-modal methods by a significant
margin, demonstrating its effectiveness and competitiveness.

Finally, we visualize the predicted boxes achieved by CL3D
on KITTI test split in Fig.6, and accurate detection results can
be observed even in occluded or crowded scenes.

C. Ablation Studies
Ablation studies are conducted to investigate the effect of

each component for the final detection performance. All exper-
iments are performed on KITTI val split, and we list the
3D car detection results in Table III and Table IV. Notably,
the baseline PointRCNN [12] achieves 87.07%, 77.83% and
72.18% car AP in three difficulty levels. We would append
pseudo LiDAR and point enhancement module (PEM), point-
guided fusion module (PFM) and IoU head, to evaluate the
contribution to 3D detection result respectively.

1) Pseuo LiDAR and Point Enhancement Module (PEM):
We measure the effectiveness of various LiDAR signals and
feature aggregation methods for 3D detection performance.
As tabulated in Table III, the combination of pseudo LiDAR
and PEM achieves the outstanding performance gains over
other counterparts, which improves the baseline by 0.57%,
1.35% and 1.56% in easy, moderate and hard levels, respec-
tively. When adopting the raw LiDAR with PEM, the per-
formance is slightly inferior to that of our method, which
implies the channel semantics within RGB image would be
complementary with geometric information of the raw LiDAR,
and the pseudo signal is preferable to 3D object detection.
Moreover, incorporating the pseudo LiDAR with simple fea-
ture concatenation only brings in marginal improvements, and
it demonstrates the significance reweighting mechanism in
PEM can be indeed beneficial to learn more discriminative
features and to facilitate the detection accuracy.



Fig. 6. The visualization results achieved by CL3D on KITTI test split. We list a pair of RGB image and its corresponding LiDAR in each row. Accurate
and robust detection results in such occluded or crowded scenes demonstrate the effectiveness and competitiveness of CL3D.

2) Point-Guided Fusion Module (PFM): We additionally
introduce PFM to aggregate multi-scale image and point
features, and 2.09%, 3.89% and 4.76% AP gains in three

difficulties can be seen in Table IV. The substantial improve-
ments describe the effectiveness of PFM and the advantage of
point-wise fusion manner. It can provide perfect image-point



correspondence on the feature map, and combines semantic 
with geometric information to localize the object accurately 
in various scenes.

3) IoU-Aware Head (IoU Head): We finally add IoU Head 
in parallel with the localization and classification branches. 
Compared with the baseline, it totally leads to 3.20%, 5.31%
and 6.65% boosts in APEasy , APModerate  and APHard  , 
respectively. We argue that the design of IoU Head alleviates 
the misalignment problem between localization confidence and 
classification score, and simultaneously promotes to generate 
high-quality 3D detection boxes.

V. CONCLUSION

In this paper, we build up a novel camera-LiDAR 3D 
detection architecture termed as CL3D, with pseudo LiDAR 
and point enhancement module (PEM), point-guided fusion 
module (PFM) and IoU-aware prediction Head (IoU Head). 
Particularly, pseudo LiDAR is generated directly from RGB 
image, and we propose point enhancement module to incor-
porate it with the raw LiDAR, which alleviates the inherent 
sparsity of LiDAR and enhances point feature representation. 
Point-guided fusion module is designed to aggregate semantic 
and geometric information under different resolutions in a 
point-wise manner. To alleviate the inconsistence between 
localization accuracy and classification confidence, we further 
introduce IoU head to calculate the similarity between each 
ground-truth and predicted boxes. Comprehensive experiments 
are performed on the publicly available KITTI dataset, and 
our CL3D reports competitive 3D detection performance com-
pared to the-state-of-the-art (SOTA) single- and cross-modal 
detectors. More importantly, CL3D presents great improve-
ments over the baseline in ablation studies, demonstrating the 
effectiveness of each components.

However, there is a huge performance gap between CL3D 
and other SOTA methods particularly in pedestrian detection. 
We assume feature ambiguity or misalignment severely dam-
ages the detection accuracy, and in the future, an effective 
solution would be developed to eliminate this problem. More-
over, we also focus on designing more lightweight module for 
efficient multi-modal 3D detection task.
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