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Abstract 

Background  

Neuroimaging studies on major depressive disorder (MDD) have identified an extensive 

range of brain structural abnormalities, but the exact neural mechanisms associated with 

MDD remain elusive. Most previous studies were performed with voxel‐or surface‐

based morphometry which were univariate methods without considering spatial 

information across voxels/vertices.  

Methods 

Brain morphology was investigated using voxel‐based morphometry (VBM) and 

source‐based morphometry (SBM) in 1082 MDD patients and 990 healthy controls (HC) 

from the REST-meta-MDD Consortium. We first examined group differences in regional 

grey matter volumes and structural covariance networks between patients and HCs. We 

then compared first episode, drug-naïve (FEDN) patients, and recurrent patients. 

Additionally, we assessed the effects of symptom severity and illness duration on brain 

alterations.  

Results 

VBM showed decreased grey matter volume in various regions in MDD patients including 

the superior temporal cortex, anterior and middle cingulate cortex, inferior frontal cortex, 

and precuneus. SBM returned differences only in the prefrontal network. Comparisons 

between FEDN and recurrent MDD patients showed no significant differences by VBM, 

but SBM showed greater decreases in prefrontal, basal ganglia, visual and cerebellar 

networks in the recurrent group. Moreover, depression severity was associated with 

volumes in the inferior frontal gyrus and precuneus, as well as the prefrontal network. 

Conclusions 

Simultaneous application of VBM and SBM methods revealed brain alterations in MDD 

patients and specified differences between recurrent and FEDN patients, which tentatively 

provide an effective multivariate method to identify potential neurobiological markers for 

depression. 
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Introduction 

Major depressive disorder (MDD) is a common and debilitating psychiatric disorder. It is 

among the leading causes of disability worldwide, with a lifetime prevalence of >16% 

(Kessler et al., 2007). The pathophysiology of major depression remains elusive despite 

intensive efforts made to identify the neurobiological mechanisms. Over the last decades, 

structural magnetic resonance imaging (MRI) has been widely used in investigating 

morphological brain differences in MDD. The two largest meta-analyses based on cohorts 

worldwide in the ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) 

MDD Working Group (Schmaal et al., 2020) have reported specific abnormalities, such as 

thinner orbitofrontal cortex and smaller hippocampal volumes (Schmaal et al., 2017; 

Schmaal et al., 2016). Recent evidence also suggests abnormal grey matter volume and 

cortical thickness in various brain regions (Ancelin et al., 2019; Binnewies et al., 2021; 

Kandilarova, Stoyanov, Sirakov, Maes, & Specht, 2019; Q. Li et al., 2020). To date, 

structural abnormalities in MDD have not been reported consistently across studies. 

Moreover, most previous studies were performed with either voxel‐or surface‐based 

morphometry (Enneking, Leehr, Dannlowski, & Redlich, 2020; Kocsis et al., 2021; Q. Li et 

al., 2020; Serra-Blasco et al., 2021), both of which were univariate methods fail to 

consider spatial information (covariation) across voxels/vertices. 

 

MDD has been investigated as a potentially brain network-based disorder (Gong & He, 

2015; B. J. Li et al., 2018; Menon, 2011). Abnormalities in the structural covariation were 

reported in previous studies (Han et al., 2020; Wu et al., 2017) that calculated the 

correlation between grey matter (GM) volume within predefined regions of interest. 

However, this approach did not fully capture patterns of structural covariation. Recently, 

the source-based morphometry (SBM) has provided a novel approach to examine 

whole-brain structural covariance networks. It is a multivariate, data-driven approach that 

applies independent component analysis (ICA) to segmented GM images and extracts 

clusters of GM voxels covarying across participants as structural networks (Xu, Groth, 

Pearlson, Schretlen, & Calhoun, 2009). SBM could identify covarying networks across 

distinct voxels, rather than focusing on each voxel separately. For brain imaging, SBM 

provides two major advantages: (1) it does not need to predefine regions of interest and (2) 

it separates artifacts and real brain change with high precision (Gupta, Turner, & Calhoun, 

2019). Prior studies suggested that structural covariance patterns of brain regions are 

highly related with functional networks, demonstrating significant spatial overlaps (Spreng 

& Turner, 2013; Zielinski, Gennatas, Zhou, & Seeley, 2010). Recently, researchers 

highlighted that structural networks were enriched with brain local molecular and cellular 

metadata, and that it is connected with more nuanced representations of functional 

networks and properties (Suarez, Markello, Betzel, & Misic, 2020). Using SBM, the 

structural networks have been widely identified in cognitive and affective aspects, such as 

intelligence (Yoon et al., 2017) and suicidal behavior (Harenski, Harenski, Calhoun, & 

Kiehl, 2020), as well as psychiatric disorders including autism (Pappaianni et al., 2018), 

bipolar disorder (Singh, Arya, Agarwal, Shree, & Kumar, 2021), schizophrenia (Gupta et 

al., 2015; Xu et al., 2009), and MDD (Depping et al., 2016; Watanabe et al., 2020; Yang et 
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al., 2021). These findings showcased advantages of SBM in understanding brain 

structural covariations in both healthy and psychiatric populations. 

 

Although previous studies have investigated the structural covariance networks in MDD 

(Depping et al., 2016; Kakeda et al., 2020; Nguyen et al., 2020; Okamoto et al., 2020; 

Watanabe et al., 2020; Wolf et al., 2016; Yang et al., 2021), the exact pattern of 

abnormalities in structural covariance networks remains unclear. While an earlier study 

found decreased volume in the fronto-striatal network, cingulate, and lateral prefrontal 

regions (Depping et al., 2016), extensive abnormalities in the salience network, medial 

temporal lobe network, default mode network, and central executive network have also 

been reported (J. Li et al., 2021; Watanabe et al., 2020). Such inconsistency might be due 

to the clinical heterogeneity in MDD patients and/or small sample size. Several studies 

were conducted with around 20 MDD patients (Depping et al., 2016; Okamoto et al., 2020; 

Wolf et al., 2016), and the largest study to date examined only 145 MDD patients (Yang et 

al., 2021). Small sample size limited the statistical power to detect subtle differences in 

brain structural abnormalities. Furthermore, previous studies were conducted with 

first-episode and drug-naïve (FEDN) MDD patients (Kakeda et al., 2020; Nguyen et al., 

2020; Watanabe et al., 2020) or those with recurrent episodes (Depping et al., 2016). 

However, the differences in structural networks between first-episode and recurrent 

patients remain poorly examined, given that inconsistent patterns of structural 

abnormalities have been reported in the two ENIGMA studies (Schmaal et al., 2017; 

Schmaal et al., 2016). In addition, the relationship between whole-brain structural 

networks and clinical symptoms in MDD has not been well established. To our knowledge, 

only one study has investigated this issue and reported a negative correlation between 

the “cingulate network” and the Hamilton Depression Rating Scale (HAMD) total score 

(Depping et al., 2016). Taken together, these findings highlighted the necessity to explore 

whole brain structural covariance networks in MDD with a focus on the relationship 

between recurrence status and clinical symptoms based on larger well-powered samples.  

 

In this study, we aimed to investigate brain structural abnormalities in regional GM volume 

and structural covariance networks associated with MDD within a large, multi-site sample 

drawn from the REST-meta-MDD Project in China (C. G. Yan et al., 2019). VBM was 

applied to acquire regional GM volumes and a novel SBM approach was carried out to 

obtain structural covariance networks based on GM images. We first compared regional 

GM volume and structural covariance networks between 1082 MDD patients and 990 HCs 

and then examined effects of clinical characteristics (i.e., single vs recurrent episodes, 

symptom severity) on potential brain abnormalities in MDD patients. 
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Methods 

Participants  

A total of 1082 patients with MDD and 990 HCs from 20 sites of the REST-meta-MDD 

consortium were recruited for this study (C. G. Yan et al., 2019). All study sites obtained 

approval from their local institutional review boards and ethics committees. All participants 

provided written informed consent before participation. As reported previously, 

participants were identified as “patients” if he/she had a past or current MDD episode 

according to the DSM-5 or ICD-10 (C. G. Yan et al., 2019). All participants in the HC group 

did not have a prior or current episode of any psychiatric disorder based on ICD-10 or 

DSM-5 at the time of investigation. We excluded 308 participants for the following reasons: 

1) the information on gender, age, or education was unavailable; 2) poor imaging quality 

or bad spatial normalization (via visual inspection); 3) younger than 18 years old; 4) from a 

site with a sample size of patients or controls smaller than 10; and 5) sample replication 

(site S4 was duplicated from site S14). Severity of depression and anxiety in patients was 

assessed using the 17-item Hamilton Depression Rating Scale (HAMD) and the Hamilton 

Anxiety Rating Scale (HAMA) separately in 19 and 10 sites. Finally, we examined 874 

patients from 17 sites with information on duration of illness, 1006 patients from 19 sites 

with HAMD scores, and 637 patients from 10 sites with HAMA scores. According to the 

episode and medical information from 637 patients of 6 sites, 430 patients were first 

episode and drug-naïve (FEDN MDD group) and the rest 207 had experienced more than 

one episode of MDD (i.e., the recurrent group). See Table 1 for detailed information of all 

patients, HCs, FEDN, and recurrent MDD groups. The demographic and clinical 

information for participants in each site was summarized in Table S1.  

 

------------------------------------INSERT TABLE 1 HERE------------------------------------------------- 

 

Data Acquisition 

MRI scans were acquired at each local site. Data acquisition parameters for T1 weighted 

structural images including the scanner, time repetition, and voxel size were replicated as 

in a prior study (C. G. Yan et al., 2019). 

Voxel-based Morphometry Processing 

Structural MRI data for all participants were preprocessed at each site, using the same 

DPARSF protocol (Chao Gan. Yan & Zang, 2010). In brief, a fully automatic technique for 

the computational analysis of differences in regional brain volume throughout the brain 

was conducted using the SPM methods (Statistical Parametric Mapping; Institute of 

Neurology, London, UK). The T1 images in native space were segmented into GM and 
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white matter images and then modulated and spatially normalized using the 

Diffeomorphic Anatomical Registration Through Exponential Lie Algebra (DARTEL) 

toolbox (Ashburner, 2007). To preserve the GM volume within each voxel, the processed 

images were modulated using the Jacobean determinants derived from the spatial 

normalization by DARTEL. The shared modulated GM images were then smoothed using 

an 8 mm full-width at half-maximum Gaussian kernel. 

Source-based Morphometry Processing 

With the preprocessed GM images, we carried out the SBM processing using the GIFT 

toolbox (https://trendscenter.org/software). The number of independent components (ICs, 

i.e. GM structural networks) was 17 (Kakeda et al., 2020). We performed principal 

component analysis using a neural network algorithm (Infomax), which minimized mutual 

information of the network outputs in order to identify naturally grouping and maximally 

independent sources (Bell & Sejnowski, 1995). This process was repeated 20 times in 

ICASSO (http://research.ics.aalto.fi/ica/icasso/) to ensure the consistency and reliability of 

the resulting components. Of the 17 ICs, four were judged as artifacts based on the 

criteria defined by Xu et al. (2009). Recent studies suggested that cerebellar circuits not 

only consisted of motor related networks, but also the networks related to cognition, 

emotion, and depression (D'Mello, Gabrieli, & Nee, 2020; Pierce & Peron, 2020; Sokolov, 

Miall, & Ivry, 2017). Thus, two ICs that mainly included cerebellar networks were also 

subject to subsequent analyses. As a result, a total number of 13 independent 

components were examined (see Supplementary Figure S1).  

 

In the calculation for ICs, all preprocessed images were arrayed into a 2D matrix, with 

each row representing a participant, and each column indicating a voxel. This matrix was 

then decomposed into 2 matrices by the ICA. The first matrix (mixing matrix, size = 2072 x 

13) consisted of one participant per row and an IC per column. It involved “loading 

coefficients” demonstrating how each structural component contributed to the GM 

characteristics of 2072 subjects. The loading coefficients were then transformed 

into z-scores before analyses. The second matrix (source matrix), which specified the 

relationship between the ICs and the voxels, was used for the visualization of components. 

To produce brain maps, the source matrix was reshaped back into a three-dimensional 

brain image and scaled to unit standard deviations (Z maps). 

Statistical analyses 

Voxel-based Morphometry Analysis 

The VBM analyses were performed using the SPM8. Whole-brain GM differences 

between the MDD group and HCs were assessed using the two-sample t-test. Age, 

gender, education, and the scanning site were included as covariates of no interest. This 
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analysis yielded statistical parametric maps based on a voxel-level threshold of p < 0.001. 

The cluster-level family wise error (FWE) correction was applied for multiple comparisons 

(p < 0.05). 

Source-based Morphometry Analysis 

SBM analyses were performed using the SBM statistical tool and Matlab (2019b).  The 

loading coefficients were compared between the MDD group and HCs, using 

two-sample t-tests in SBM. Age, gender, education, and sites were included as covariates. 

Results were corrected with the Bonferroni method at p < 0.05 (i.e. threshold was p < 

0.05/13, 13 means the number of ICs). 

 

In addition, a validation analysis with 30 ICs was conducted as suggested in previous 

studies (Castro et al., 2016; Harenski et al., 2020). Nine components contained sharp 

edges near the boundary of the brain or appeared primarily in regions that do not contain 

GM. Thus, we repeated above analyses for the rest 21 ICs. 

Influence of Recurrence Status 

To examine the influence of recurrence status on GM differences, we compared regional 

GM volume and structural covariance networks (loading coefficients) between FEDN 

MDD and HC participants, recurrent MDD and HC participants, and FEDN MDD and 

recurrent MDD participants. Two-sample t-tests were performed with age, gender, 

education, and sites included as covariates. Bonferroni correction at p < 0.05 was applied 

to VBM and SBM results separately. 

Association with Clinical Characteristics 

Finally, to explore the association between clinical characteristics and structural 

abnormalities in MDD patients, we performed partial correlation analyses for symptom 

severity (HAMD, HAMA) and illness duration. Age, gender, education, and sites were 

included as covariates. Results were corrected with the Bonferroni correction method 

at p < 0.05 (i.e. p < 0.05/n, n represents the number of significant brain regions or 

networks) for VBM and SBM separately. 

Results 

Demographic Results 

Demographic information including age, gender, and education for MDD patients (n = 

1082) and HCs (n = 990) were shown in Table 1 and Table S1. The two groups matched 

on both gender (x2 = 1.48, p = 0.223) and age (t = -1.72, p = 0.085). The HC group 

received significantly more education as compared to MDD group (MDD group = 11.63 ± 

3.71, HC group = 13.25 ± 3.73; t = 1.11, p < 0.001). On average, MDD patients had a 

38-month course of disease and a severe level of symptoms (HAMD = 20.75 ± 7.48).  
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The FEDN and recurrent MDD groups matched on gender, age, and education (Table 1). 

The recurrent MDD group had significantly longer illness duration as compared to the 

FEDN MDD group (FEDN MDD group = 21.60 ± 37.69, recurrent MDD group = 94.67 ± 

87.04; t = -14.78, p < 0.001). However, as compared to the recurrent MDD group, FEDN 

MDD patients scored higher in HAMD (FEDN MDD group = 21.44 ± 5.87, recurrent MDD 

group = 19.10 ± 7.85; t = 4.20, p < 0.001) and HAMA (FEDN MDD group = 21.52 ± 8.75, 

recurrent MDD group = 17.57 ± 8.65; t = 4.39, p < 0.001). 

Voxel-based morphometry 

Group Differences in Grey Matter Regional Volumes 

As compared to HCs, MDD patients showed reduced GM volume in bilateral superior 

temporal cortices (left, MNI x/y/z = -46.5/10.5/-9, cluster size = 293, t = -6.90; right, MNI 

x/y/z = 49.5/13.5/-4.5, cluster size = 141, t = -7.02), dorsal anterior cingulate cortex (MNI 

x/y/z = 0/9/24, cluster size = 435, t = -6.25), right middle cingulate cortex (MNI x/y/z = 

13.5/-21/36, cluster size = 169, t = -6.28), right inferior frontal cortex (MNI x/y/z = 

42/13.5/21, cluster size = 134, t = -6.85), and precuneus (MNI x/y/z = 21/-61.5/42, cluster 

size = 100, t = -5.90). Brain regions and locations of these effects were shown in Figure 1 

and Table 2. No increases of GM volumes were found in MDD patients. 

 

------------------------------------INSERT FIGURE 1 HERE------------------------------------------------ 

 

------------------------------------INSERT TABLE 2 HERE------------------------------------------------ 

 

Influence of Recurrence Status on Grey Matter Regional Volumes 

As compared to HCs (n = 990), neither FEDN (n = 430) nor recurrent MDD (n = 207) 

groups showed any significant difference in GM regional volume (FWE correction). When 

comparing FEDN MDD patients with recurrent MDD patients, no significant difference was 

observed either. Nonetheless, at an uncorrected level of p < 0.05, recurrent and FEDN 

patients showed similar GM atrophy (see Figure S2). 

Association of Grey Matter Regional Volumes with Symptom Severity and Illness 

Duration 

In the MDD patients, partial correlation analyses revealed that increased depression 

severity (HAMD, n = 1066) was negatively correlated with GM volume in the right inferior 

frontal gyrus (r = -0.10, pbonferroni < 0.05) and precuneus (r = -0.12, pbonferroni < 0.05). There 

was no correlation between regional GM volumes and anxiety severity (HAMA, n = 637), 

or illness duration (n = 874).  
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Source-based morphometry 

Group Differences in Grey Matter Networks 

Significant between-group difference was observed in the “prefrontal network” of the ICs 

(Figure 2, Table 3). Regions of the prefrontal network included the middle, superior, 

inferior frontal gyri, and precentral gyrus (Table 4). The average z-score for this 

component in MDD patients (-0.08 ± 0.98) was significantly lower than that of HCs (0.08 ± 

1.02). In the validation analyses based on 30 ICs, the difference in prefrontal network was 

also significant different between MDD patients (-0.074 ± 0.969) and HCs (0.031 ± 1.013). 

In addition, the location of prefrontal network in this comparison, which included the 

middle, superior, and medial frontal cortices (Figure S3), was similar to that emerged from 

the main analyses. 

 

------------------------------------INSERT FIGURE 2 HERE------------------------------------------------ 

------------------------------------INSERT TABLE 3 HERE------------------------------------------------- 

 

Influence of Recurrence Status on Grey Matter Networks 

As compared to HCs (n = 990), the FEDN MDD group (n = 430) showed higher mean 

z-scores in the cerebellar A network (FEDN MDD = 0.21 ± 0.66, HCs = 0.01 ± 1.03; Figure 

2; Table 3) and lower mean z-scores in the superior temporal network (FEDN MDD = 

-0.20 ± 0.96, HCs = 0.04 ± 1.03). Locations of these structural covariance networks were 

shown in the Table 4. 

 

In addition, as compared to HCs (n = 990), the recurrent MDD group (n = 207) showed 

decreased z-scores in two cerebellar networks (network A, recurrent MDD: -0.22 ± 0.99, 

HCs: 0.01 ± 1.03; network B, recurrent MDD: -0.21 ± 1.05, HCs: 0.01 ± 1.02; Table 3), 

basal ganglia network (recurrent MDD: -0.88 ± 1.17; HCs: 0.003 ± 1.00), temporal 

network (recurrent MDD: -0.33 ± 0.95; HCs: 0.04 ± 1.03), prefrontal network (recurrent 

MDD: -0.17 ± 1.10; HCs: 0.08 ± 1.02), and visual network (recurrent MDD: -0.27 ± 0.94; 

HCs: -0.014 ± 1.00), and increased z-scores in parietal network (recurrent MDD: 0.29 ± 

0.95; HCs: 0.04 ± 1.02). See figure 2 and Table 4 for the locations of these structural 

covariance networks. 

 

The recurrent MDD group had significantly lower z-scores than the FEDN MDD group in 

five networks (see Table 3) including the basal ganglia network (FEDN: -0.07 ± 0.75; 

recurrent: -0.88 ± 1.17), visual network (FEDN: 0.08 ± 0.98; recurrent: -0.27 ± 0.94), and 

two cerebellar networks (cerebellar network A: 0.21 ± 0.66 and -0.22 ± 0.99; cerebellar 

network B: 0.14 ± 0.93 and -0.21 ± 1.05). In the prefrontal network, the z-scores in 

recurrent MDD patients (FEDN: 0.08 ± 0.99; recurrent: -0.17 ± 1.10, pbonferroni = 0.06) were 

modestly lower than those in FEDN MDD patients. Validation analyses showed similar 

results (Figure S3). 
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------------------------------------INSERT TABLE 4 HERE------------------------------------------------ 

 

Association of Grey Matter Source Volumes with Symptom Severity and Illness 

Duration 

Partial correlation analyses showed that in the MDD group, increased depression severity 

(HAMD, n = 1066) was negatively correlated with z scores in the prefrontal network 

(r = -0.08, pbonferroni < 0.05). There was no correlation between the prefrontal network and 

either anxiety severity or illness duration. Given that several structural networks were 

different between the FEDN and recurrent MDD patients, we also investigated potential 

correlations in the FEDN MDD group and in the recurrent MDD patients respectively. 

Results showed no correlation between GM networks and either symptom severity or 

illness duration in FEDN and recurrent MDD patients. 

Discussion 

To our best knowledge, this is the largest study to investigate structural covariance 

networks in MDD combining both VBM and SBM approaches in searching for brain 

structural biomarkers for MDD. VBM analyses found reduced GM volume in superior 

temporal cortices, cingulate cortices, inferior frontal cortex, and precuneus in MDD 

patients as compared to HCs. SBM analyses showed lower z-scores in the prefrontal 

network in MDD patients as compared to HCs. In addition, we identified extensive 

differences in structural covariance networks between FEDN and recurrent MDD patients. 

Furthermore, correlations with depression severity were also observed for specific brain 

regions and the prefrontal network. Our identification of abnormalities in the GM volume 

and structural covariance networks heightened the understanding of structural 

mechanisms in patients with MDD and the damages of recurrence on depressed brain 

structure. 

 

The VBM findings showed decreased regional GM volume in the bilateral superior 

temporal cortices, dorsal anterior cingulate cortex, right middle cingulate cortex, right 

inferior frontal cortex, and precuneus in MDD patients. These findings are consistent with 

previous structural research on GM volume, cortical thickness, and surface area in 

depression (Kandilarova et al., 2019; Schmaal et al., 2020; Serra-Blasco et al., 2021; 

Shen et al., 2021). Prior studies suggested that superior temporal regions responsive to 

sad stimuli, and its activation was lower in MDD patients (Fitzgerald, Laird, Maller, & 

Daskalakis, 2008). Dorsal anterior cingulate cortex was mainly associated with cognitive 

processes and evaluation of reward values (Bush et al., 2002; Jahn, Nee, Alexander, & 

Brown, 2016). Damage to the right inferior frontal gyrus impairs the performance on 

behavioral inhibition (Aron, Robbins, & Poldrack, 2014; Rolls et al., 2020). Precuneus is a 

core region of the default mode network, and abnormalities in this region have been 

associated with low self-esteem and high rumination in depression (Cheng et al., 2018). 

Our results also showed that severity of depression symptoms was associated with 
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regional GM volume in the right inferior frontal gyrus and precuneus, which further 

suggest that these structural abnormalities were associated with various domains of 

depression.  

 

Although VBM showed structural abnormalities related to MDD, it failed to detect 

abnormal GM clusters in the comparisons between the FEDN group and the recurrent 

MDD group. Uncorrected brain maps demonstrated that FEDN and recurrent patients had 

a similar trend and distribution of GM atrophy. These results suggested that FEDN and 

recurrent patients had similar abnormalities in local brain regions. To distinguish the 

differences related to episodes, a network perspective would be needed.  

 

The SBM analyses identified thirteen structural covariance networks in total and 

significant differences were found in seven of them, especially the prefrontal network 

(Table 3). The prefrontal network effect was significant in MDD group vs. HCs, recurrent 

MDD vs. HCs and recurrent MDD vs. FEDN MDD group in this large, multi-site sample. 

This network encompassed regions mainly in the prefrontal cortex (Table 4), which has 

been associated with many processes such as cognitive control (Miller, 2000) and 

emotional regulation (Dixon, Thiruchselvam, Todd, & Christoff, 2017). A previous study 

reported abnormal prefrontal networks in FEDN patients as compared to healthy controls 

(Kakeda et al., 2020). In addition, the prefrontal network was negatively associated with 

levels of severity of depression symptoms. Therefore, our findings suggest that 

depression was associated with low structural covarying in prefrontal network. The 

prefrontal regions might not work together cohesively in depressive patients and thus they 

might encounter problems in emotion regulation and attention to negative stimuli (Disner, 

Beevers, Haigh, & Beck, 2011; L. Wang et al., 2008; Zhou et al., 2020).  

 

Other structural covariance networks identified in FEDN MDD vs HCs or recurrent MDD 

vs HCs included basal ganglia network, temporal network, parietal network, visual 

network and two cerebellar control networks. The basal ganglia network has been 

implicated in processing rewards (Haber, 2008; Schultz, Tremblay, & Hollerman, 2000), 

and has been a critical neural marker for antidepressant and neuromodulating 

intervention in MDD and other psychiatric disorders (Bewernick et al., 2010; Schneier et 

al., 2018). The temporal network has been known to engage in emotional memory (Murty, 

Ritchey, Adcock, & LaBar, 2010); the parietal network is thought to play a role in attention 

control (Rohr et al., 2017); the visual network has been associated with visual processing 

biases in MDD (Desseilles et al., 2009). Both structural and functional abnormalities in 

these networks have been constantly observed in patients with MDD (Gong & He, 2015; T. 

Wang et al., 2016). By contrast, the cerebellar control does not have a well-established 

role in current literature of depression, although abnormal volume and function in the 

cerebellum have been reported in MDD (Bogoian, King, Turner, Semmel, & Dotson, 2020; 

Kaiser, Andrews-Hanna, Wager, & Pizzagalli, 2015). Structural abnormalities may 

contribute to decreases in brain functioning levels in affected regions (Paquola, Bennett, & 

Lagopoulos, 2018; Suarez et al., 2020). The abnormalities in structural covariance 

networks supported the idea that MDD might be a brain network-based disorder. A recent 
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review study supported the more reliable biomarkers of psychiatric disorders with a 

network viewpoint (Sullivan, Olsen, & Widge, 2021). Scangos et al. (2021) implemented 

the networks perspective with deep based stimulation, with focal stimulation identifying 

individual symptom-specific biomarker and a treatment region stimulating for symptoms 

improvement. As a result, network mapping and related biomarker stimulation reduced 

depressive symptoms and improved depression status sustainably. Taken together, brain 

structural networks might be valuable as potential intervention and treatment targets, 

especially for those that have been associated with cognition and emotion processes in 

depression. 

 

It is not surprising that there is no direct overlap between the results of VBM and SBM. As 

explained by Xu et al. (2009), SBM differs from VBM in utilizing the interrelationship 

among voxels, spatially filtering artificial sources, capturing covariation of specific sources 

and minimizing the number of comparisons. Previous studies comparing VBM with SBM 

demonstrated that SBM might be more sensitive in detecting structural abnormalities 

(Harenski et al., 2020; Pappaianni et al., 2018; Xu et al., 2009), while opposite findings 

were also reported (Kunst et al., 2019). When compared to surface-based morphometry 

(e.g., cortical thickness), results were also inconsistent (Kunst et al., 2019; Pappaianni et 

al., 2018). In this study, the SBM method revealed effects that were not detected by VBM 

in basal ganglia, occipital lobe, and the cerebellar in the comparisons between FEDN and 

recurrent MDD patients, indicating that SBM might be more sensitive than VBM to 

morphometry abnormalities. Our results are consistent with Xu et al. (2009), as SBM 

could incorporate additional information about the grouping of the regions within several 

distinct, anatomically consistent sources. Future studies could apply SBM to identify 

biomarkers of structural covariance networks in MDD and other neurobehavioral 

disorders. 

 

Another interesting finding was that recurrent MDD patients, as compared to the FEDN 

patients, showed significantly greater abnormalities in the prefrontal network, basal 

ganglia network, visual network, and two cerebellar control networks. In addition, the 

difference in prefrontal network observed in the comparison between MDD group and 

HCs was driven by recurrent MDD participants. These results corresponded to brain 

structural and functional differences between first-episode and recurrent patients that 

were reported in previous literature (Schmaal et al., 2017; Schmaal et al., 2016; C. G. Yan 

et al., 2019). Previous studies suggested that MDD had a high rate of recurrence, with 

approximately 50%-60% of patients suffering recurrence after an initial episode (Burcusa 

& Iacono, 2007; Nobbelin, Bogren, Mattisson, & Bradvik, 2018). Our identification of 

abnormal structural covariance networks in recurrent MDD is a significant contribution to 

understanding recurrent MDD. These results suggest that treatment of recurrent MDD 

patients may need to focus more on brain networks.  

 

The cross-sectional design of the present study prevents it from determining whether the 

abnormalities observed existed before or after MDD. Future longitudinal studies are 

needed to investigate the developmental trajectory of regional volumes and structural 
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covariance networks, and to associate potential differences to symptom profiles and 

treatment responses. The heterogeneity in MDD patients who were recruited across 20 

sites is also expected to be considerable. Whole-group analyses were limited by varied 

recurrence status, medication status, illness duration, and symptoms severity, which were 

tested for in the analyses. As we found, delineating differences in first episode/recurrent 

and other associations would have revealed more neurobiologically characteristics and 

clinically meaningful findings. Finally, as previous studies showed, patterns of brain 

abnormalities and symptom profiles in adults and adolescents with MDD might be 

different (Rice et al., 2019; Schmaal et al., 2017). The data collected in this study does not 

allow a reliable investigation of brain morphometry in adolescents, because of the sample 

size and heterogeneity of sample sources, with 47 adolescent MDD patients from seven 

sites and 19 normal adolescents from two of those sites. Differences in structural 

covariance networks between adolescent MDD patients, adult MDD patients, and HCs 

require further investigation. 

Conclusion 

Our findings suggest that MDD patients exhibit abnormalities in both selected brain 

regions and certain structural covariance networks. VBM showed more scattered brain 

regions as compared to SBM when comparing between the whole MDD group and HCs, 

but SBM found more robust and widespread abnormalities in the recurrent MDD group as 

compared to FEDN MDD. Analysis of clinical characteristics suggests that diverse patient 

populations might present significant confounders in neuroimaging findings in major 

depression. Taken together, the VBM and SBM are expected to reveal different profiles of 

structural abnormalities related to MDD. Future longitudinal studies are needed to 

examine brain changes in regions/networks highlighted in the present study, and to 

establish links between differences in symptom profiles and treatment responses in MDD. 
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Figures and Tables  

Figure 1. Decreased grey matter volume in patients with major depressive disorder 

compared to healthy controls. Results were shown with a voxel-level threshold at p<0.001 

and a cluster-level threshold at p < 0.05 (FWE corrected). Sagittal and axial slices were 

shown with the ICBM52 MNI brain template. 

 

Figure 2. Abnormal structural covariance networks in MDD patients vs. healthy controls, 

and FEDN MDD patients vs. recurrent patients. (A) The loading coefficients of the MDD 

patients in the prefrontal network were significantly lower than those of the healthy 

participants. (B) Compared to FEDN MDD patients, recurrent MDD patients showed lower 

loading coefficients in these five structural covariance networks. 
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patients vs. recurrent MDD patients.   

 







Table 1. Sample characteristics of all depressive patients and healthy controls, and 

subgroup of patients 

 

Variables MDD patients Healthy controls p 
 

FEDN patients Recurrent patients p 

Sample size N = 1082 N = 990   N = 430 N = 207  

Gender (male, N(%)) 404(37.34) 410(41.41) 0.058  145(33.72) 80(38.65) 0.223 

Age (years) 37.23(14.20) 37.45(15.67) 0.732  35.85(12.00) 37.67(13.36) 0.085 

Education (years) 11.63(3.71) 13.25(3.73) <0.001  11.33(3.75) 10.98(3.65) 0.266 

Illness duration (months) 38.34(61.51) - -  21.60 (37.69) 94.67 (87.04) <0.001 

HAMD 20.75(7.48) - -  21.44(5.87) 19.10 (7.85) <0.001 

HAMA 19.09 (9.04) - -  21.52 (8.75) 17.57(8.65) <0.001 

Abbreviation: MDD, major depressive disorder; FEDN, first episode drug naïve; HAMD, 

Hamilton depression rating scale; HAMA, Hamilton anxiety scale. Group differences were 

compared using two sample t-tests or chi-square test (gender only).  

 

 

 

 

 

Table 2. Grey matter volume differences between 1082 patients with major depressive 

disorder and 990 healthy controls 

 

Brain regions Hemisphere Brodmann area 
Cluster 

size 

MNI coordinates 
t-value 

x y z 

Superior temporal cortex left BA38 293 -46.5 10.5 -9 -6.90 

Superior temporal cortex right BA22 141 49.5 13.5 -4.5 -7.02 

Dorsal anterior cingulate cortex / BA24/33 435 0 9 24 -6.25 

Middle cingulate cortex right BA24 169 13.5 -21 36 -6.28 

Inferior frontal cortex right BA46 134 42 13.5 21 -6.85 

Precuneus cortex right BA7 100 21 -61.5 42 -5.90 

Note: These results were corrected with a voxel-level threshold of p<0.001 and a cluster-

level threshold of p < 0.05 (FWE corrected). 

 

 

 

  



Table 3. Differences in structural covariance networks between all MDD patients vs. 

healthy controls, and FEDN patients vs. recurrent patients 

 

MDD group (n = 1082) vs. HC group (n = 990) 

 Name of ICs MDD group Control group Difference F pcorrected 

 prefrontal network -0.08 (0.98) 0.08 (1.02) -0.16 13.10 < 0.01 

FEDN MDD group (n = 430) vs. HC group (n = 990) 

 Name of ICs FEDN MDD group Control group Difference F pcorrected 

 cerebellar control A 0.21(0.66) 0.01(1.03) 0.20 13.00 < 0.01 

 Superior temporal network -0.20(0.96) 0.04 (1.03) -0.24 17.40 < 0.01 

Recurrent MDD group (n = 207) vs. HC group (n = 990) 

 Name of ICs Recurrent MDD group Control group Difference F pcorrected 

 cerebellar control A -0.22(0.99) 0.01(1.03) -0.23 8.75 0.05 

 cerebellar control B -0.21 (1.05) 0.01 (1.02) -0.23 8.35 0.05 

 basal ganglia network -0.88(1.17) 0.003 (1.00) -0.88 124.34 < 0.001 

 temporal network -0.33 (0.95) 0.04 (1.03) -0.38 23.55 < 0.001 

 prefrontal network -0.17(1.10) 0.08 (1.02) -0.25 9.90 <0.05 

 superior temporal network 0.29(0.95) 0.04(1.02) 0.25 10.52 <0.05 

 visual network -0.27(0.94) -0.014 (1.00) -0.25 11.14 <0.05 

FEDN MDD group (n = 430) vs. Recurrent MDD group (n = 207) 

  Name of ICs FEDN MDD group Recurrent MDD group Difference F pcorrected 

 cerebellar control A 0.21(0.66) -0.22 (0.99) 0.43 43.01 < 0.001 

 cerebellar control B 0.14 (0.93) -0.21 (1.05) 0.36 18.98 < 0.001 

 basal ganglia network -0.07(0.75) -0.88(1.17) 0.81 109.99 < 0.001 

 prefrontal network 0.08(0.99) -0.17(1.10) 0.24 7.75 0.07* 

 visual network 0.08(0.98) -0.27(0.94) 0.35 72.76 < 0.001 

Abbreviation: FEDN, first episode drug naïve; MDD, major depressive disorder; HC, healthy 

controls. The z-scores (mean (standard deviation)) of structural covariance networks were 

shown for each group. The p values were corrected using Bonferroni correction at p < 0.05. 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Location of structural covariance networks for which significant differences were 

observed in comparisons between MDD patients vs. healthy controls, FEDN MDD patients 

vs. healthy controls, recurrent MDD patients vs. healthy controls, and FEDN patients vs. 

recurrent MDD patients.  



Anatomical regions Brodmann Area Volume(cc) 

Left/right 

Maximum z value for left/right 

hemisphere 

(MNI coordinates x, y, z) 

Prefrontal network 2,3    

Middle Frontal Gyrus 6, 8, 9, 10, 46 9.9/10.8 4.1 (-25, -3, 50)/4.9 (27, -2, 50) 

Superior Frontal Gyrus 6, 8, 9, 10 2.1/2.6 3.1 (-24, 11, 48)/3.4 (25, 10, 49) 

Inferior Frontal Gyrus 9, 46 1.0/0.6 3.1 (-45, 7, 33)/3.5 (42, 9, 33) 

Precentral Gyrus 6, 9 1.0/0.7 4.1 (-39, 5, 37)/3.8 (40, 8, 37) 

Basal ganglia network 2,3    

Lentiform Nucleus / 4.8/4.0 9.9 (-27, 0, 4)/9.8 (28, 0, 4) 

Extra-Nuclear 13 5.1/4.9 8.0 (-28, 3, 7)/7.8 (31, 3, 3) 

Thalamus / 2.9/2.9 4.4 (-4, -13, 6)/4.6 (6, -11, 6) 

Insula 13, 47 1.7/2.0 4.4 (-33, 9, -2)/3.9 (36, -2, -2) 

Visual network 2,3    

Cuneus 7, 17, 18, 19, 23, 30 12.5/11.5 6.3 (-9, -75, 11)/6.2 (12, -71, 13) 

Middle Occipital Gyrus 18, 19, 37 4.7/2.1 4.4 (-27, -87, 7)/3.1 (31, -81, 10) 

Posterior Cingulate Cortex 23, 30, 31 3.3/3.9 5.8 (-18, -61, 10)/6.3 (21, -58, 10) 

Precuneus 7, 19, 23, 31 5.1/5.4 5.7 (-15, -60, 22)/5.1 (16, -61, 29) 

Lingual Gyrus 17, 18, 19 5.8/5.4 5.3 (-9, -93, 1)/4.9 (3, -77, 5) 

Superior temporal network 2    

Superior Temporal Gyrus 13, 21, 22, 41, 42 7.0/2.9 9.5 (-42, -30, 14)/5.7 (49, -25, 16) 

Insula 13, 40, 41 6.5/6.4 8.1 (-39, -27, 14)/7.2 (43, -25, 16) 

Inferior Parietal Lobule 40 3.6/2.5 5.6 (-53, -37, 23)/5.3 (46, -28, 22) 

Temporal network 1,2    

Inferior Temporal Gyrus 19, 20, 21, 37 5.1/6.0 5.4 (-59, -26, -20)/5.5 (59, -26, -21) 

Middle Temporal Gyrus 20, 21, 22, 37, 38 11.6/12.0 4.9 (-61, -34, -12)/5.1 (64, -33, -12) 

Fusiform Gyrus 20, 36, 37 2.0/1.6 4.6 (-59, -17, -23)/5.0 (59, -19, -24) 

Cerebellar network A 1,2,3    

Inferior Semi-Lunar Lobule / 6.1/6.1 7.1 (-27, -69, -41)/7.1 (27, -69, -41) 

Cerebellar Tonsil / 5.5/4.9 6.5 (-28, -59, -42)/6.5 (30, -60, -42) 

Pyramis (Cerebellum) / 3.4/3.8 5.9 (-31, -75, -34)/6.0 (16, -79, -34) 

Uvula (Cerebellum) / 2.3/2.3 5.5 (-15, -75, -34)/5.3 (12, -79, -33) 

Cerebellar network B 2,3    

Tuber (Cerebellum) / 2.8/2.9 5.7 (-42, -58, -25)/5.9 (43, -60, -25) 

Culmen (Cerebellum) / 11.1/10.9 5.4 (-40, -54, -25)/5.8 (36, -55, -22) 

Declive (Cerebellum) / 10.8/10.2 5.4 (-39, -65, -22)/5.8 (34, -59, -21) 

Uvula (Cerebellum) / 1.6/1.3 4.6 (-36, -64, -25)/4.9 (34, -62, -23) 

Note: 1 indicates significant differences between FEDN MDD patients vs. healthy controls; 
2 indicates significant differences between recurrent MDD patients vs. healthy controls; 3 

indicates significant differences between FEDN MDD patients vs. recurrent MDD patients. 

The volume of voxels in each area is provided in cubic centimeters (cc). 
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