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A B S T R A C T 

Magnetic flux tubes such as those in the solar corona are subject to a number of instabilities. Important among them is the kink 

instability that plays a central part in the nanoflare theory of coronal heating, and for this reason in numerical simulations, it is 
usually induced by tightly controlled perturbations and studied in isolation. In contrast, we find that fluting modes of instability 

are readily excited when disturbances are introduced in our magnetohydrodynamic flux tube simulations by dynamic twisting 

of the flow at the boundaries. We also find that the flute instability, which has been theorized but rarely observed in the coronal 
context, is strongly enhanced when plasma viscosity is assumed anisotropic. We proceed to investigate the co-existence and 

competition between flute and kink instabilities for a range of values of the resistivity and of the parameters of the anisotropic and 

isotropic models of viscosity. We conclude that while the flute instability cannot prevent the kink from ultimately dominating, it 
can significantly delay its development especially at strong viscous anisotropy induced by intense magnetic fields. 
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 I N T RO D U C T I O N  

he helical kink instability is a form of ideal magnetohydrodynamic
MHD) instability that occurs in highly twisted magnetic flux tubes
uch as those making up much of the solar corona (Reale 2014 )
nd has been well studied in the coronal context (Hood & Priest
979 ; Hood, Browning & Van der Linden 2009 ; Browning & Van
er Linden 2003 ; T ̈or ̈ok & Kliem 2003 ; T ̈or ̈ok, Kliem & Titov 2004 ;
 ̈or ̈ok & Kliem 2005 ; Bareford & Hood 2015 ; Quinn, MacTaggart
 Simite v 2020c ). Gi ven its energetic non-linear development, it

s considered a potential mechanism for heating the solar corona
hrough the theory of nanoflares (Klimchuk 2006 ; Browning 1991 )
nd a key mechanism in the production of solar flares (Hood & Priest
979 ). Our previous work investigated a twisted magnetic flux tube
lready linearly unstable to the helical kink instability, focussing
pecifically on the effect of anisotropic viscosity on the non-linear
ynamics (Quinn et al. 2020c ). There and in most other investigations
f the kink instability e.g. that of Hood et al. ( 2009 ), a perturbation
s applied to an already significantly twisted flux tube. An alternative
ay to excite the instability (and the way employed here) is to start
ith an initially straight field and apply twisting motions at the
oundaries to form a twisted flux tube which eventually becomes
nstable. This kind of dynamic excitation of the kink instability
epresents more closely the actual evolution of magnetic flux tubes
nd the associated instabilities in the solar corona. In our simulations,
he dynamic twisting of the flux tube reveals an additional instability,
he flute instability, which has been theorized, for example by Priest
 2013 ). While oscillations resembling flute perturbations have been
 E-mail: jamiejquinn@jamiejquinn.com 

d  

s  

i  

Published by Oxford University Press on behalf of Royal Astronomical Socie
Commons Attribution License ( https://cr eativecommons.or g/licenses/by/4.0/), whi
ound in simulations of coronal loops (Terradas, Magyar & Van
oorsselaere 2018 ), to our knowledge, this is the first time the flute

nstability has been investigated computationally in a coronal context.
The flute instability arises in magnetized plasmas where the plasma

ressure gradient is oriented in the same direction as the field line
urvature, that is the pressure and magnetic tension forces compete.
his is similar to the competition between pressure and gravitational

orces which gives rise to the Rayleigh–Taylor instability (RTI).
n MHD terminology, the RTI is a typical example of an ideal
nterchange instability, where magnetic field lines are minimally bent
nd are, instead, exchanged during the evolution of the instability.
he ideal flute instability is another example of an ideal interchange

nstability but confined to a cylindrical geometry, the term ‘flute
nstability’ referring to its likeness to a fluted column. In a twisted flux
ube like a simple, unbraided coronal loop, the magnetic curvature
s al w ays directed tow ards the axis so the tube may be unstable to
uting when the pressure decreases outwards from a high-pressure
ore. Such a pressure distribution is generated in the flux tubes studied
ere as a result of the driving. The appearance of the flute instability
s illustrated by, for example, the pressure contours in Fig. 5 , where
he perturbations follow the pitch of the twisted field. 

In other solar contexts, interchange instabilities can be found in the
orm of ballooning modes in arcades (Hood 1986 ), as the instability
hich forms tubes of specific size in the photosphere (Bunte 1993 ),

nd in the buoyancy of flux tubes (Schuessler 1984 ). Ho we ver, the
ute instability specifically is more commonly studied in fusion
ontexts (Wesson 1978 ; Mikhailovskii 1998 ; Zheng 2015 ). In fusion,
he focus is generally on understanding how a particular plasma
evice may be stabilized to the instability in particular geometries
uch as that of the mirror machine (Jungwirth & Seidl 1965 ) or
n toroidal geometries such as the tokamak (Shafranov 1968 ). The
© 2022 The Author(s) 
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esistive flute instability (also known as the resistive interchange 
nstability) can be excited even when the ideal flute instability 
s stabilized. As a result, this has been given significantly more 
ttention (Johnson & Greene 1967 ; Correa-Restrepo 1983 ). While 
his body of research is useful and applicable in solar contexts, it is

ostly limited to the study of the stability and linear development of
he flute instability, the non-linear development being of secondary 
mportance in the investigation of fusion devices. More detailed 
nvestigations of its non-linear development is required to understand 
ts importance in the context of coronal dynamics and coronal 
eating. The development of the flute instability and its interaction 
ith the simultaneously growing kink instability is the main focus 
f this work and the experiments described here represent an initial 
xploration into the non-linear flute instability in the solar corona. 

In addition to our main goal, of particular interest here is the effect
f anisotropic plasma viscosity, which in the following is found 
o strongly influence the growth of the flute instability. It is well
nown that viscosity in magnetized plasmas (such as those which 
ake up the solar corona) is anisotropic and strongly dependent 

n the strength and direction of the local magnetic field (Hollweg 
986 , 1985 ; Braginskii 1965 ). To take this into account, MacTaggart,
ergori & Quinn ( 2017 ) developed a phenomenological model of
nisotropic viscosity that captures the main physics of viscosity in the 
olar corona as outlined in the analysis of Braginskii ( 1965 ), namely
arallel viscosity in regions of strong field strength and isotropic 
iscosity in regions of very weak or zero field strength. For brevity,
e will refer to this model of viscosity as ‘the switching model’. In
uinn et al. ( 2020c ) and Quinn, MacTaggart & Simitev ( 2021 ), we

mplemented the switching model as a module for the widely used 
eneral MHD code Lare3d (Arber et al. 2001 ), and demonstrated 
ignificant effects of anisotropic viscosity on the development of 
he non-linear MHD kink instability and the Kelvin–Helmholtz 
nstability . More generally , the interest in anisotropic viscosity 
tems from the open question of which heating mechanism (viscous 
r Ohmic) is dominant in the solar corona (Klimchuk 2006 ), an
mportant facet of solving the coronal heating problem. Using scaling 
aws, it has been suggested that viscous heating (generated through 
nisotropic viscosity) can dwarf that of Ohmic heating (Litvinenko 
005 ; Craig & Litvinenko 2009 ). Ho we ver, due to computational
nd observational limitations, this cannot be directly tested, and so 
he influence of other factors such as small-scale instabilities and 
urbulence is relati vely unkno wn (Klimchuk 2006 ). In addition to
irectly heating the plasma, viscosity plays a part in the damping 
f instabilities and waves (Ruderman et al. 2000 ). It is this effect,
e are most interested in here, and it shall be reported that the use
f anisotropic viscosity permits the growth of the flute instability, 
hich is otherwise strongly damped by isotropic viscosity. 
The value of plasma resistivity also affects the development of the 

ute instability because pressure gradients generated through Ohmic 
eating substantially contribute to its growth. Ideally, our simulations 
ould be performed using a realistic coronal resistivity values of 

pproximately 10 −8 (Craig & Litvinenko 2009 ), ho we ver, due to the
issipative nature of numerical schemes (particularly when using 
hock capturing techniques) this is computationally infeasible. To 
 v ercome this limitation, we perform and compare simulations at two
omputationally accessible resisti vity v alues, 10 −3 and 10 −4 , in an at-
empt to extrapolate results towards more realistic values. This com- 
arison runs as an additional theme of the paper, if not a primary aim.
Our article is organised as follows. Section 2 introduces the flute 

nstability and recalls rele v ant background on its linear stability 
nalysis. Section 3 describes the go v erning equations, the coronal 
oop model, and the numerical parameters used. Section 4 presents 
he o v erall dev elopment of the flute instability before proceeding to
ompare simulations in the cases of various viscous anisotropy and 
 arious resisti vity v alues. Here, results are organized by resistivity
alues as this allows to contrast isotropic and anisotropic viscosity 
ases more directly. Section 5 discusses the limitations of the 
imulations, with suggestions for future work, and Section 6 presents 
ur conclusions in the wider context of coronal heating. 

 T H E  FLUTE  INSTABILITY  

n general, the stability of a cylindrical twisted magnetic flux tube is
nalysed using perturbations of the form 

( r, θ, z) = ξ ( r) e i( mθ+ kz−ωt) , (1) 

here ω is the oscillation frequency in time t , m , and k are
he wavenumbers in the azimuthal and axial directions, θ and z, 
espectively, and r is the radial coordinate in cylindrical polars. The
elical kink instability occurs for perturbations where m = 1, k �= 0
nd is the only instability of this form which is a body instability;
hat is, it mo v es the entire body of the flux tube. Perturbations where
 > 1 are termed flute or interchange instabilities. 
When the magnetic field is sheared, as in a twisted magnetic

ux tube, an interchange instability (such as the flute instability) 
s confined to a surface where the peaks and troughs follow the
hear of the field. That is, the instability is confined to the surface
here the perturbation wav ev ector (0, m / r , k ) is perpendicular to

he direction of the field, known as the ‘resonance surface’. In an
xisymmetric twisted flux tube the resonance surface is located at a
adius r specified by 

m 

r 
B θ ( r) + kB z ( r) ≈ 0 . (2) 

The stability of an infinite cylindrical flux tube to perturbations of
he form ( 1 ) is given by the classical Suydam’s criterion (Suydam
958 ) 

B 

2 
z S 

2 

4 
+ 2 rp 

′ > 0 , (3) 

here S = rq 
′ 
/ q is a measure of the shear, q = 2 πrB z / LB θ is the safety

actor for a flux tube of length L and a prime denotes differentiation
ith respect to r (Mikhailovskii 1998 ). This applies to both flute

nd kink instabilities, although many additional effects such as line- 
ying are not incorporated into the corresponding linear analysis. 
he effect of line-tying on the kink instability is investigated by
ood & Priest ( 1979 ). Where ( 3 ) is not satisfied, the flux tube
ay be unstable to perturbations of the form ( 1 ). When m > 1,

he perturbations remain local to resonant surfaces given by ( 2 ).
hen Suydam’s criterion is satisfied and the flux tube is linearly

table, it may still be unstable to non-local perturbations, where the
hear and pressure are small enough that interchange perturbations 
o not need to satisfy ( 2 ). Additionally, the inclusion of resistivity
enerally reduces the stabilizing effect of the shear, permitting 
rowth of a resistive interchange mode, albeit at a significantly 
lower rate than that of the ideal instability (Mikhailovskii 1998 ).
t the values of resistivity studied here, the resistive growth rate is

xpected to be approximately two orders of magnitude less than the
orresponding ideal rate. Furthermore, it will be found that the ideal
inear analysis of Mikhailovskii ( 1998 ) is sufficient for understanding 
he flute instabilities investigated here since the associated flux tubes 
ubstantially fail the criterion ( 3 ). For these reasons, we consider
nly the ideal flute instability. 
While Suydam’s condition gives an indication of the stability of a

ux tube to a given perturbation, the linear growth rate of the ideal
ute instability γ , defined as the imaginary part of ω in ansatz ( 1 ),
MNRAS 512, 4982–4992 (2022) 
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an be determined via a stability analysis analogous to that of the
ayleigh–Taylor instability (Goldston 2020 ). The fastest growing
ode in the r -direction is found to be the longest wavelength mode,
hile the fastest growing modes in the θ -direction are found to
e those with the shortest wavelengths, i.e. large values of m in the
otation of equation ( 1 ). In particular, for all modes with wavelengths
n the θ -direction that are shorter than both the pressure-gradient
cale-length and the radial height of the plasma, the growth rate λ
ends to the limit 

2 = 

2 |∇p| 
ρR c 

, (4) 

here R c is the radius of curvature of the magnetic field. We find that
his expression gives a good estimate of the growth rate of the flute
nstability in our numerical simulations even at moderate values of
 . Equation ( 4 ) only applies when the pressure gradient and radius
f curvature vector are in the same direction; that is, the plasma is
onstrained by a concave magnetic field such that the pressure forces
nd magnetic tension forces are in competition. In a cylindrical,
wisted flux tube, the field is al w ays concave tow ards the central axis
f the tube, so any inwardly directed pressure gradient is potentially
nstable to fluting. 
Throughout this paper, the twisted flux tube generated by the

rivers has a pressure profile which is approximately axisymmetric,
nd independent of z away from the boundaries at z = ±2, and has a
e gativ e gradient, hence |∇p | may be written as −d p /d r . Similarly,
way from the boundaries, the magnetic field has a negligible r
omponent and little dependence on θ and z, allowing the field to be
pproximated as B = (0 , B θ ( r) , B z ( r)) T , in cylindrical coordinates
 r , θ , z). For a twisted field of this form, the radius of curvature is
iven by 

 c = 

1 

| ( b · ∇) b | = 

r 

b 2 θ
, (5) 

here b = B / | B | is the unit vector in the direction of the magnetic
eld and b θ is the component of b in the azimuthal direction. These
pproximations allow the growth rate to be written as 

2 
ideal = 

−2 p 

′ 

ρR c 

. (6) 

his approximation for the growth rate continues to hold while the
ux tube remains relatively axisymmetric, that is while the kink

nstability remains in its linear phase. 
The stability criterion ( 3 ) and the linear growth rate approximation

 6 ) are useful only as a guide and for approximate analysis of the
umerical simulations presented in this work. The precise form of
he equilibrium state and the perturbations needed for the validity of
quations ( 3 ) and ( 6 ) were used by Quinn et al. ( 2020c ). In contrast,
n the experiments reported in the following the system is driven and
nstabilities occur spontaneously due to random perturbations. As a
esult of the driving, the flux tube is also not in static equilibrium
nitially. 

 MA  T H E M A  T I C A L  F O R M U L A  T I O N  A N D  

U M E R I C A L  SET-UP  

e consider the MHD equations for the density ρ, plasma velocity
u , pressure p , magnetic field B , and internal energy ε, in their non-
imensionalized visco-resistive form 

Dρ

Dt 
= −ρ∇ · u , (7a) 

D u 

Dt 
= −∇ p + j × B + ∇ · σ, (7b) 
NRAS 512, 4982–4992 (2022) 
D B 

Dt 
= ( B · ∇ ) u − ( ∇ · u ) B + η∇ 

2 B , (7c) 

Dε 

Dt 
= −p ∇ · u + Q ν + Q η, (7d) 

here η is the non-dimensionalized resistivity, j = ∇ × B is the
urrent density, and the terms Q ν = σ : ∇ u and Q η = η| j | 2 are
iscous heating and Ohmic heating, respectively. The system is
losed by the inclusion of the equation of state for an ideal gas 

 = 

p 

ρ( γ − 1) 
, (8) 

ith the specific heat ratio is given by γ = 5/3. 
Two different models for the viscosity stress tensor σ will be

ompared and contrasted in this study. The first model is the
onventional isotropic (or Newtonian) viscosity stress tensor used
n the vast majority of the existing literature, so that, 

= σiso = νW , (9) 

here ν is the viscous transport parameter, generally referred to as
he viscosity, 

 = ∇ u + ( ∇ u ) T − 2 

3 
( ∇ · u ) I , (10) 

s the rate of strain tensor, and I is the 3 × 3 identity tensor. The
econd model, which is the one of actual interest, is the anisotropic
iscosity stress tensor given by 

= σaniso = ν

[
3 

2 
( W b · b ) 

(
b ⊗ b − 1 

3 
I 
)]

, (11) 

here b is the unit vector in the direction of the magnetic field. 
Expression ( 11 ) is identical to the strong field approximation of

he general anisotropic viscosity tensor derived by Braginskii ( 1965 ).
xpressions ( 9 ) and ( 11 ) arise as asymptotic limits of the more
eneral switching model used in our earlier works (MacTaggart et al.
017 ; Quinn et al. 2020c , 2021 ) which includes both isotropic and
nisotropic contributions and can switch gradually between them
epending on the strength of the magnetic field at a given spatio-
emporal location. For example, in the vicinity of a null point where
he magnetic field becomes weak the isotropic viscosity contribution
ecomes dominant in the switching model. Switching between the
wo limit cases is not rele v ant in this study, where the variations in
he magnetic field are not significantly large. 

The non-dimensionalization of equations (7) is identical to that
sed in the earlier works by Quinn et al. ( 2020c , 2021 ). A typical
agnetic field strength B 0 , density ρ0 , and length scale L 0 are

hosen and the other variables non-dimensionalized appropriately.
elocity and time are non-dimensionalized using the Alfv ́en speed
 A = B 0 / 

√ 

ρ0 μ0 and Alfv ́en crossing time t A = L 0 / u A , respectively.
emperature is non-dimensionalized via T 0 = u 

2 
A m̄ /k B , where k B is

he Boltzmann constant and m̄ is the average mass of ions, here
aken to be m̄ = 1 . 2 m p (a mass typical for the solar corona) where
 p is the proton mass. Dimensional quantities can be reco v ered
y multiplying the non-dimensional variables by their respective
eference value (e.g. B dim 

= B 0 B ). The reference values used here
re B 0 = 5 × 10 −3 T, L 0 = 1 Mm, and ρ0 = 1.67 × 10 −12 kg m 

−3 ,
i ving reference v alues for the Alfv ́en speed u A = 3.45 M ms −1 ,
lfv ́en time t A = 0.29 s, and temperature T 0 = 1.73 × 10 9 K. 
The following initial and boundary conditions are used to form a
agnetic flux tube and excite instabilities by dynamic twisting. The
agnetic field is prescribed as initially straight and uniform, 

B = (0 , 0 , 1) T , (12) 
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Figure 1. Radial velocity profile u r ( r ) and acceleration profile u t ( t ) of the 
driver ( 13 ) for parameters u 0 = 0.15, r d = 5, and t r = 2. 
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n a cube of size [ − 2, 2] 3 , with further test simulations run using
n elongated domain of size 4 × 4 × 20. Initially, the velocity is set
verywhere to u = 0 , the density to ρ = 1, and the internal energy to
 = 8.67 × 10 −4 . This corresponds to a typical coronal temperature
f 10 6 K and a plasma beta of 1.11 × 10 −4 . At the boundaries,
he magnetic field, velocity , density , and energy are fixed to their
nitial values and their derivatives normal to the boundaries are set
o zero except where twisting velocity ‘driver’, described below, is 
rescribed. 
The flux rope is formed by prescribing a slowly accelerating, 

otating flow at the upper z-boundary as 

 = u 0 u r ( r) u t ( t)( −y , x , 0) T , (13) 

here u r ( r ) describes the radial profile of the twisting motion in
erms of the radius r 2 = x 2 + y 2 , 

 r ( r) = u r0 (1 + tanh (1 − r d r 
2 )) , (14) 

here r d controls the radial extent of the driver, u r 0 is a normalizing
actor, and u t ( t ) describes the imposed acceleration of the twisting
otion, 

 t ( t) = tanh 2 ( t/t r ) , (15) 

here the parameter t r controls the time taken to reach the final
riv er v elocity u 0 . The functions u r ( r ) and u t ( t ) are plotted in Fig. 1 .
t the lower boundary, the flow is in the opposite direction. This

orm of dri ver allo ws the system to be accelerated slowly enough
hat the production of disruptive shocks and fast waves is minimal. 
t is una v oidable that some wa ves are produced during the boundary
cceleration; ho we ver, these usefully provide a source of noise which
ventually forms a perturbation. 

The driver velocity is set to u 0 = 0.15, the normalizing factor is
 r 0 = 2.08, and setting r d = 5 corresponds to a driver constrained to
 < 1 and with a peak velocity at r ≈ 0.38. The ramping time is set to
 r = 2, resulting in an acceleration from 0 to u 0 o v er approximately
ve Alfv ́en times. These driver parameters correspond to a peak
otational period of T R = 15.92, the length of time taken for one
ull turn to be injected by a single driver. Both drivers result in twist
eing added at a rate of 2 π every 7.96 Alfv ́en times. The twist profile
cross the entire flux tube develops in such a way that by t ≈ 20,
t is qualitatively similar to those studied by Quinn et al. ( 2020c ),
ood et al. ( 2009 ), and Bareford & Hood ( 2015 ); ho we ver, the length
f the flux tubes differs significantly. This configuration produces a 
-directed tube of increasingly twisted magnetic field that eventually 
ecomes unstable to both the flute instability and the helical kink
nstability. 

The problem formulated abo v e is solved numerically using the
taggered-grid, Lagrangian–Eulerian remap code for 3D MHD 

imulations Lare3D of Arber et al. ( 2001 ), where a new module
or anisotropic viscosity has been included as detailed by Quinn 
t al. ( 2021 ). The resolution used in the current work is 512 grid
oints per dimension, comparable to the highest resolution kink 
nstability studies of Hood et al. ( 2009 ) or medium resolution studies
f Bareford & Hood ( 2015 ). 

 RESULTS  

n an attempt to extrapolate to coronal resisti vity v alues, we focus
he attention on two selected pairs of simulations, one pair where
he background resistivity is set to η = 10 −3 and another where η
 10 −4 . As in the work of Quinn et al. ( 2020c ), only background

esistivity is used. Each pair consists of one simulation using isotropic
iscosity ( 9 ) and another one using the anisotropic model ( 11 ). The
alue of viscosity is set to ν = 10 −4 in all cases. 

The o v erall dev elopment of both the flute and the kink instabilities
s broadly similar for the two values of resistivity and is described
nitially. Similar simulations were performed with a longer flux tube 
f length 20 instead of the tubes with length 4 shown here, and the
esults were found to be qualitatively similar. Focus is then placed
n the detailed description of instabilities in the η = 10 −4 cases, with
he aim of comparing the effects of the two viscosity models. Then
urther features of the η = 10 −3 cases are summarized. 

.1 Mechanism and general development of instability 

nitially and in all cases computed, the twisting at the upper and lower
oundaries gives rise to a pair of torsional Alfv ́en waves that proceed
o travel along the tube from the upper and lower boundaries to their
espective opposite boundaries. The interaction between these waves 
roduces an oscillating pattern in the kinetic energy with a period
f approximately four Alfv ́en times, equal to the time taken for an
lfv ́en wave to traverse the entire length of the domain as visible

arly in Fig. 2 (a). 
As the field continues to be twisted, currents form, due to the

ocal shear in the magnetic field, and heat the plasma through Ohmic
issipation. Due to the radial form of the driver, the magnitude of
he current density is greatest at the axis of the tube, then decreases
adially outwards as seen in Fig. 3 (a). The orientation of the twisting
roduces a current flowing in the ne gativ e z-direction for r � 0.5.
t r ≈ 0.5 (corresponding to the radius of peak driving velocity),

he current switches orientation and is in the positive z-direction in a
MNRAS 512, 4982–4992 (2022) 
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Figur e 2. Kinetic ener gy (a,b) and cumulative heating (c) as a function of time sho wing the de velopment and measured growth rates γ and λ of the flute and 
kink instabilities, respecti vely. Resisti vity v alue is η = 10 −4 and Fig. 2 (b) is an enlarged version of Fig. 2 (a). The cumulative heating 〈 Q ∗〉 , where ∗ is either 
ν for viscous heating or η for Ohmic heating, is the respective heating term integrated both over space and from the initial moment up to the moment t in 
time. The viscous heating associated with the flute instability (that generated before t ≈ 28) is negligible compared to that associated with the kink instability 
(generated after t ≈ 28). While the isotropic model permits greater viscous heating (on the order of two orders of magnitude), the anisotropic model enhances 
Ohmic heating. 

Figure 3. Gradients in the current density generate gas pressure gradients through Ohmic heating. Axial current density (a), Ohmic heating (b), and pressure 
(c) as functions of the radial distance from the tube axis. All plots are from anisotropic cases when t = 20 through the plane z = 0. Note the sign of the axial 
current density j z has been flipped for comparison and the Ohmic heating is given by Q η = ηj 2 . The gas pressure profile of an additional test-case where η = 0 
is also shown. Line types are indicated in the legend. 
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hell where 0.5 � r � 0.8. This form of a twisted field with an inner
ore of current in one direction surrounded by a shell of oppositely
irected current is similar to the current configuration arising due to
he field prescribed by Quinn et al. ( 2020c ). 

This current profile is reflected in the radial Ohmic heating profile
Fig. 3 b) and, consequently, in the radial gas pressure profile (Fig. 3 c).
he highly pressurized core extends to r ≈ 0.2–0.4 (depending
n the value of η) before increasing slightly around r ≈ 0.7. The
econdary bump in gas pressure is due to the outer shell of current.
he gas pressure gradient near the axis provides the outwardly
irected gas pressure force which competes against the binding
ction of the magnetic tension and this provides the mechanism
f flute instability excitation. The magnitude of the gas pressure
radient depends strongly on the value of resistivity η, with lower
 alues producing shallo wer gradients which (as shall be seen) are
ore stable to the flute instability. Indeed, when η = 0, the radial

as pressure profile is nearly flat and the tube stable to the flute 
nstability. 

In all cases unstable to the flute instability, it occurs between t =
0 and t = 30. The continued driving at the boundaries eventually
njects enough twist that the tube also becomes unstable to the kink
nstability. The kink initially develops linearly alongside or shortly
fter the flute instability and then erupts during its nonlinear phase,
ominating the dynamics and disrupting the flute instability. The
nset and the competition of the two instabilities is strongly affected
y the value of η and the viscosity model used. 
NRAS 512, 4982–4992 (2022) 

i  
.2 Instabilities at resistivity η = 10 −4 

e now describe the evolution and competition of flute and kink
nstabilities in case of resistivity η = 10 −4 . Fig. 4 shows the gas
ressure profile of the anisotropic viscosity case ( 11 ) at time moments
 = 26, 28, and 30 and at z = 0. At t = 26, the plasma begins to bulge
ut diagonally from the high-pressure core displaying an azimuthal
avenumber m = 4 as seen in Fig. 4 (a) and indicating the presence
f the flute instability. As the bulges mo v e radially outwards into
ower gas pressure re gions the y e xpand and accelerate, resulting
n the entire gas pressure structure taking the shape of a four-leaf
lo v er (Fig. 4 b). By t = 30, the kink instability has disrupted the flute
nstability and is developing non-linearly as evident in Fig. 4 (c). As is
ypical of non-linear kink development, the tube continues to release
ts stored potential energy in the form of kinetic energy and heat
nd the contained plasma becomes highly mixed. In the isotropic
iscosity case which will not be illustrated by a separate figure,
he flute instability is present but its growth is damped relative to the
nisotropic case, and it is quickly outcompeted by the kink instability
hat dominates the dynamics. 

Fig. 5 shows the effect the viscosity models have on the initial
tages of the flute and kink instabilities in 3D. While the flute
nstability is observed in both cases, it is more pronounced in the
nisotropic case, where it appears to disrupt the inner core of field
ines and, as will be discussed further belo w, slo ws the gro wth of
he kink instability. In the isotropic case, the growth of the flute
nstability is damped relative to the anisotropic case to the extent
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Figure 4. Gas pressure profiles during the development of the flute and kink instabilities. Shown are density plots of gas pressure at z = 0 with η = 10 −4 and 
for the anisotropic viscosity model. Note the difference in colour scale in Fig. 4 (c). The development in the isotropic case is similar. 

Figure 5. Simultaneous development of flute and kink instabilities in the 
isotropic and anisotropic cases illustrated by field lines and gas pressure 
contours. Field lines and contours of gas pressure (where p = 0.3) are plotted 
at t = 28. Also shown is the v elocity driv er u r ( 

√ 

x 2 + y 2 ) at z = 2. The 
flute instability grows in both cases, though faster in the anisotropic case. The 
initial stages of the kink instability can also be observed in the field lines of 
the isotropic case in Fig. 5 (a). 
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hat the kink instability grows uninhibited and quickly disrupts the 
uting. 
Despite the flute instability appearing in the isotropic case 

Fig. 5 a), only in the anisotropic case can phases of linear growth of
he flute and kink instabilities be seen in the kinetic energy profile
s shown in Fig. 2 (b). Here, the growth rates of the two instabilities
re found to be γ = 0.69 for the flute and λ = 2.55 for the kink. The
pparent phases of linear growth as measured from the kinetic energy 
ime series, start at approximately t = 27 for the flute instability and
 = 29.5 for the kink. In the isotropic case, the growth rate of the
ink, λ = 2.97, is larger than in the anisotropic case, while the kinetic
nergy profile shows no evidence of flute instability growth. 

The faster growth of the kink compared to that measured by Quinn
t al. ( 2020c ) is attributed to the relative aspect ratios of the flux tubes.
he tube prescribed by Quinn et al. ( 2020c ) has an aspect ratio of
 a
pproximately 20 compared to the tube studied here which has an
spect ratio of approximately 4. While the total twist is similar in
oth tubes (after the drivers have injected twist up to t ≈ 20) the
mall aspect ratio results in more turns per unit length, leading to a
aster growing instability. 

Prior to the onset of either instability, the flux tube is found to
e linearly unstable to perturbations of the form ( 1 ) at t = 20 via
uydam’s criterion ( 3 ) as shown in Fig. 6 (a). The criterion represents
 balance between destabilizing pressure gradients and stabilizing 
agnetic shear, and in this case, the shear is so small and the pressure

radient so large that the tube is unstable o v er a wide range of radii,
or 0.02 � r � 0.29. Using equation ( 6 ), the linear fluting growth
ate γ is plotted as a function of r at t = 20 in Fig. 6 (b). At any
xed moment, the radial dependence of the flute instability growth 
ate, γ ( r ), is a concave function and peaks at a certain radius that we
enote by r s in Fig. 6 (b) and Table 1 . 
The location r s of the peak fluting growth rate aligns well with

he location of the resonant surface, where the observed perturbation 
ppears to grow (Fig. 4 a) and an estimate of the linear growth rate
an be found by averaging γ over r , giving a theoretical growth rate
f 0.88. 
The flow and pressure profiles in the axial direction z at t = 26

re shown in Fig. 7 (a), and at this moment, they assume the form
f a superposition of the unstable modes with the largest amplitude.
n particular, the fluting perturbation is most easily observed in the
ressure profile and the kink instability is best revealed by either of
he x - or the y -component of velocity which can serve as proxies
or the radial velocity through the axis. Comparing the magnitudes 
f the profiles at this time suggests the flute instability is close to
ransitioning to its non-linear phase while the kink instability is still
ery much in its linear phase. 

The value of k for each instability mode is calculated as k =
 π/ ̃ λ, where ̃  λ is the wavelength of the perturbation, measured as the
ifference between the two peaks closest to z = 0 in Fig. 7 (a) (thus
inimizing the influence of line-tying on the measurement). This 

i ves a v alue of k flute = 22.93 and k kink = 4.57 for the anisotropic
odel and k flute = 22.30 and k kink = 4.41. Using these values, it

s observed that the fluting mode resonates with the field, that is
B θ ( r )/ r + kB z ( r ) ≈ 0, o v er a range of 0.15 � r � 0.225 (Fig. 7 b).
his is in close agreement with the predicted radius of peak linear
ute growth r s seen in Fig. 6 (b). 
Comparing the effect of the viscous models on the modes, in the

sotropic case the fluting mode is damped, while in the anisotropic
ase the kink mode is diminished, explaining why the flute instability
ppears more readily in the anisotropic case (Fig. 2 a). 
MNRAS 512, 4982–4992 (2022) 
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Figure 6. Stability and linear growth rate of the flute instability. In panel 6 (a), 
Suydam’s stability criterion ( 3 ) and its contributing terms are plotted and in 
panel 6 (b) the predicted linear growth rates for the ideal ( 6 ) flute instability 
are plotted. Both plots are produced at t = 20 for η = 10 −4 and using the 
anisotropic model. The location of the peak linear ideal growth rate r s is also 
shown. 
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.3 Instabilities at resistivity η = 10 −3 

ig. 8 shows a prolonged development of the flute instability and
 slow nonlinear development of the kink instability at the higher
esisti vity v alue η = 10 −3 in the case of anisotropic viscosity. Due to
he enhanced Ohmic heating at η = 10 −3 , the gas pressure gradient
s substantially stronger than at η = 10 −4 and the flute instability is
xcited much earlier. Compared to the η = 10 −4 cases, the instability
ccurs further from the axis, at r ≈ 0.16, and the larger gas pressure
radient drives the bulges in profile further from the axis during the
on-linear phase (Fig. 8 a). These bulges continue to extend outwards
nd mix the plasma as they develop. The kink instability can be
bserved displacing the axis of the tube diagonally upwards and to
he right in Fig. 8 (c). At this time in the η = 10 −4 cases, the non-
inear development of the kink was at a later stage of its development
Fig. 4 c). The development of the kink then proceeds slowly, as
t mo v es the axis of the tube further through the mix ed re gion to
v entually be gin the reconnection process with the outer region of
eld that is typical of the instability in this kind of flux tube as was
bserved by Quinn et al. ( 2020c ). 
It is evident from the kinetic energy profile that the flute instability

evelops much earlier than in the η = 10 −4 cases and grows at an
ncreased rate of γ = 1.06 (Fig. 9 b). The kink instability grows at
 rate of λ ≈ 0.15, much slower than that observed in the η = 10 −4 

ases, and much lower than the flute instability. The time period
NRAS 512, 4982–4992 (2022) 
etween t ≈ 28 and t ≈ 32 is identified as the linear stage of the
ink instability by inspecting the de velopment sho wn in Fig. 8 (a).
his is broadly consistent with the tube surpassing a critical twist
f 2.59 π (Hood & Priest 1981 ; T ̈or ̈ok & Kliem 2003 ) between t
 30 and t = 35. One key observation is that, despite the early

nd disrupti ve gro wth of the flute instability, the kink instability still
enerates the bulk of the kinetic energy (Fig. 9 a). 
Due to the influence of the drivers on the kinetic energy, the fluting

rowth rate is difficult to estimate from the kinetic energy profile
s accurately as in the η = 10 −4 cases. Since the kink instability
ccurs after the development of the fluting, its growth rate is similarly
if ficult to gauge. Ne vertheless, it is clear that the flute instability
rows at a rate of the same order as that in the η = 10 −4 cases. It is
lso apparent that the kink instability grows much slower in the η =
0 −3 cases. 
Table 1 summarizes the quantitative differences between the

esults for the two models of viscosity and the two values of the
esistivity. The theoretical average growth rate is computed as the
ean across the radius of the ideal estimate ( 6 ) and is in good

greement with the observed rate in each case, particularly in the
ess resistive case η = 10 −4 which better represents ideal plasma.
he discrepancy between predicted and observed growth rates is
ue, in part, to the growth rate estimate ( 6 ) being derived under
he assumption of asymptotically large values of m � 1, while
he observed mode has a finite value of m = 4. Despite this, the
redicted growth rate is of a similar magnitude to the observed rate.
he location r s of the peak growth rate provides a prediction of where

he instability will initially grow. This radius is used in conjunction
ith the resonance equation ( 2 ), with m = 4, to predict the axial
avenumber of the mode with the greatest linear growth, i.e. the
ode most likely to be observed. Again, these are in good agreement
ith the observed fluting wavenumbers, which are measured at times

ust prior to the accelerated development of the flute instability, that
s at t = 22 when η = 10 −3 and t = 26 when η = 10 −4 . The
ink wavenumber is measured at t = 26 in both cases. Overall, the
greement between predicted and observed growth rates and mode
avenumbers allows us to conclude that the observed instability is

he ideal flute instability and that expression ( 6 ) can be ef fecti vely
pplied to estimate the growth rate of the flute instability within
oronal loops. 

Also listed are estimates for the cumulative heat generated via
iscous and Ohmic heating during the simulations. As is also found
n previous studies of viscous heating in kink instabilities (Quinn et al.
020c ), anisotropic viscous heating is approximately two orders of
agnitude lower than isotropic and the use of anisotropic viscosity

nhances Ohmic heating. 

 DI SCUSSI ON  

erturbing a magnetic flux tube by dynamic twisting of the flow
t the cylinder bases leads to excitation of the flute instability in
ddition to the well-studied kink instability. Our aim in performing
he reported numerical experiments was to explore the flute instability
n a dynamically twisted coronal flux tube, specifically focussing
n the effect of anisotropic viscosity on the development of the
nstability. In addition, we wish to understand the effect the instability
as on the proceeding kink instability, the effect on the o v erall heating
enerated through viscous and Ohmic dissipation, and the effect that
 arying resisti vity has on the de velopment of the flute. Our findings
re discussed below. 

We have found evidence of the flute instability using both models
f viscosity; ho we ver, isotropic viscosity damps the initial gro wth
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Table 1. Quantitati ve dif ferences in the observed perturbations between results with different viscosity models and resistivity 
values η. Measurement times are listed in the main text. 

η = 10 −4 η = 10 −3 

Anisotropic Isotropic Anisotropic Isotropic 

Theoretical average ideal linear growth rate of flute γ 0 .88 0 .88 1 .73 1 .73 
Observed growth rate of flute γ 0 .69 – 1 .06 1 .06 
Observed growth rate of kink λ 2 .55 2 .97 0 .15 0 .15 

Theoretical radius r s of peak ideal flute growth rate 0 .125 0 .125 0 .163 0 .163 

Predicted axial wavenumber k flute 23 .74 23 .52 17 .15 17 .60 
Observed axial wavenumber k flute 22 .93 22 .30 16 .05 16 .05 
Observed axial wavenumber k kink 4 .57 4 .41 3 .44 3 .49 

Cumulative viscous heat at t = 50 1.64 × 10 −2 1 .28 2.89 × 10 −3 0 .370 
Cumulative Ohmic heat at t = 50 3 .06 2 .75 6 .54 6 .27 

Figure 7. Selected flow and pressure profiles and the resonance function 
defined by equation ( 2 ). (a) Gas pressure and velocity profiles in z at the fixed 
point ( r , θ ) = (0.101, 0), assuming the form of the most unstable modes. (b) 
The resonance surface mB θ ( r )/ r + kB z ( r ) as a function of r using the observed 
fluting perturbation wavenumbers. All plots are snapshots at t = 26 where η
= 10 −4 and the viscosity model is anisotropic. 
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uch that it does not dev elop be yond its linear phase before the
aster growing kink instability disrupts the flux tube and halts the 
evelopment of the flute. Given that most numerical studies of the 
ink instability employ isotropic or shock viscosity, this is likely why 
he flute instability has not been previously reported. 

Counter-intuiti vely, the gro wth rate of the kink instability is lower
n the weakly dissipative anisotropic cases, compared to the strongly 
issipative isotropic cases as one would expect the kink instability to 
row more quickly (or at least be unaffected) when using anisotropic 
iscosity. Indeed, the simulations reported by Quinn et al. ( 2020c )
isplay this behaviour, where the kink instability grows faster in the
nisotropic cases. We speculate that it is the presence of the flute
odes that ne gativ ely af fects the gro wth of the kink instability. It

eems unlikely that in the linear regime the flute and kink modes
re able to directly couple, given that the kink instability generally
resents at the axis of a flux tube and the flute at some resonant surface
way from the axis. We believe that, instead of a direct coupling, the
inear kink instability is disturbed by the more complex magnetic field 
onfiguration that arises due to the mixing caused by the nonlinear
evelopment of the flute modes. The complexity in the field can be
een by comparing Figs 5 (a) and (b). 

Beyond the effect on the growth of the two observed instabilities,
he two viscosity models greatly affect both the viscous heating and
hmic heating rates illustrated in Figs 2 (c) and 9 (c). Anisotropic
iscosity is naturally less dissipative than isotropic viscosity and 
enerates approximately two orders of magnitude less total viscous 
eat than isotropic viscosity. This is somewhat offset by anisotropic 
iscosity permitting greater kinetic energy release and enhanced 
ixing, which in turn enhances Ohmic dissipation of heat through 

he generation of strong localized current sheets. The o v erall effect is
hat more heat is generated when the viscosity is anisotropic, similar
o what has been observed in previous work (Quinn et al. 2020c ). In
he context of coronal heating, this is encouraging: the use of a less
issipative viscosity model actually results in greater o v erall heating.
ow this finding generalizes to more realistic coronal resistivities, 

nd whether it holds true for other coronal instabilities, should be the
ubject of further investigations. 

It is difficult to distinguish the effect of the flute instability on the
iscous or Ohmic heating from that of the viscosity itself, particularly
ince the flute instability is quickly disrupted by the kink instability.
o we ver, it can be concluded from the plots of cumulative heat

Figs 2 c and 9 c) that the bulk of the viscous and Ohmic heat is
enerated in the non-linear phase of the kink instability. There is
dditionally some non-negligible Ohmic heating generated prior to 
he onset of the kink; ho we ver, this is attributed to the large-scale
urrents associated with the twist in the field, rather than any currents
reated by the flute instability. This leads us to conclude that the flute
nstability itself has little direct impact on coronal heating, but instead 
an affect the heating rate by slowing the development of the kink
nstability. 

It is likely that the m = 4 azimuthal mode is excited due to
nfluences from the boundaries in the Cartesian box, for example 
hrough the interaction of reflected f ast w aves generated in part
y the driver. Performing a similar experiment in a cylindrical 
MNRAS 512, 4982–4992 (2022) 
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Figure 8. Gas pressure profiles at z = 0 during the development of the flute and kink instabilities in the higher resistivity anisotropic case. The viscosity model 
is anisotropic and η = 10 −3 . In contrast to the case of η = 10 −4 , the non-linear development of the flute instability has time to mix the interior of the flux tube 
before the onset of the kink instability, the growth of which is likely affected by mixing of the plasma. 

Figure 9. Kinetic energy and heating as a function of time in the cases where η = 10 −3 . The results from both viscosity models are shown. The flute instability 
appears earlier than where η = 10 −4 and the growth rate of the kink instability is decreased. The cumulative heating 〈 Q ∗〉 , where ∗ is either ν for viscous 
heating or η for Ohmic heating, is the respective heating term integrated both o v er space and from the initial moment up to the moment t in time. While the heat 
generated via viscous heating is orders of magnitude lower when using anisotropic viscosity, Ohmic heating is enhanced by the use of the anisotropic model. 
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umerical domain, or prescribing a variety of perturbations in the
artesian domain may reveal other, faster growing modes. The
odes may also be influenced by nonlinear coupling between the
 > 1 and m = 1 modes, as is found in the study of kink and flute
scillations (Ruderman 2017 ; Terradas et al. 2018 ). 
As the current distribution, which develops as the flux tube is

wisted, is similar to that found in the initial flux tube configuration
f Quinn et al. ( 2020c ), the question arises why the fluting instability
s not observed in the latter. Although the current distribution
and thus heating and pressure distributions) in the tubes of Quinn
t al. ( 2020c ) may support the flute instability, the tube is initially
erturbed with a motion close to an unstable eigenmode of the kink
nstability, resulting in the instability growing immediately from t
NRAS 512, 4982–4992 (2022) 
 0. In contrast, in the tubes studied here, such a perturbation
ust grow from numerical noise, allowing a secondary, fluting
odes perturbation to also develop and become significant enough to

bserv e. As an e xplorativ e alternativ e to prescriptiv e perturbations,
e recommend the use of numerical noise in the study of coronal

nstabilities. 
Since the main driver of the flute instability is the gas pressure

radient generated through Ohmic heating, it is prudent to ask if the
ame gas pressure gradient could be generated using physical coronal
alues of the resistivity, which are estimated to be approximately η
 10 −8 (Craig & Litvinenko 2009 ), and are thus much smaller than

hose studied here. Additionally, the simulations presented here do
ot incorporate radiation or thermal conduction, two processes which
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ould remo v e energy (and hence reduce gas pressure) from high-
ressure regions in a coronal loop and thus could prevent meeting 
he required conditions for the growth of a flute instability. Indeed, 
t η = 10 −4 the flute instability was more quickly outcompeted by 
he kink instability and appeared to have little impact on the resultant
ynamics, which mirror those of other kink instability studies (Hood 
t al. 2009 ). This suggests that even lower values of resistivity would
esult in flux tubes without any significant flute instability, at least 
or this form of driver and mechanism of gas pressure generation. 
egardless, coronal loops with strong radial gas pressure gradients 
av e been observ ed (F oukal 1975 ), and such loops may be unstable
o the flute instability. Modelling of a prescribed flute-unstable flux 
ube, as opposed to the dynamically stressed loop investigated here, 
ould provide a useful comparison to observ ations; ho we ver, it
ay be difficult to prescribe a tube which is not also susceptible

o kinking. Linear stability analyses of this kind of flux tube (a
ynamically created zero total axial current tube) focus on the kink 
nstability (Browning & Van der Linden 2003 ) so do not provide
uch insight into the potential for fluting without a kink. 
While our results show that a flux tube can be unstable to the flute

nstability and yet the faster growing kink instability can quickly 
ominate when the gas pressure gradient is small enough, the oppo- 
ite case is also observed. A faster growing flute instability appears 
o slow the growth of the kink instability although, importantly, it
oes not fully disrupt the development of the kink. Understanding the 
alance between the non-linear growth rates of the two instabilities 
s important for prediction of whether the flute instability may be 
ound at all in the real solar corona, or whether its realistic growth
ate is too slow compared to that of the kink instability. 

 C O N C L U S I O N  

his paper details the non-linear development of two ideal insta- 
ilities, the kink and the flute instabilities, both of which develop 
aturally in the course of twisting an initially straight magnetic 
ux tube. This provides a different approach to that employed in 

he simulations performed in the earlier study by Quinn et al. 
 2020c ) in that the instabilities are not excited by any prescribed
erturbations but, instead, the field is dynamically driven into an 
nstable state and the perturbations provided by noise in the system.
ot only is the kink instability excited due to the twist in the
eld, but nearly simultaneously a pressure-driven flute instability 
an also be excited in unstable pressure gradients generated by 
hmic heating. Simulations were performed with two values of 

esistivity, η = 10 −3 and 10 −4 , and for two forms of viscosity,
sotropic, and anisotropic. The results pro v e an initial and important
rst step towards understanding non-linear flute instabilities in the 
olar corona. 

It has been shown that the flute instability can be quickly domi-
ated by the kink instability if the kink grows substantially faster than
he flute. Ho we ver, if the flute has time to develop non-linearly, it

ixes the plasma within the flux tube, generating small-scale current 
heets and releasing some magnetic energy. The o v erall effect of
his mixing is to slow the growth of the kink instability. The slowed
rowth of the kink does not appear to significantly impact the kinetic
nergy released during its evolution, only the time o v er which it is
eleased. 

These numerical experiments have provided evidence that the flute 
nstability can occur in twisted magnetic flux ropes and grow at 
imilar rates to the kink instability. Further estimation of the relative 
rowth rates in more realistic coronal loop set-ups is required to fully
nderstand if the flute instability plays a pertinent role in coronal loop
hysics. 
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PPENDIX:  DATA  AVAILABILITY  

 custom version of Lare3d (Arber et al. 2001 ) has been developed,
here a new module for anisotropic viscosity has been included. The
ersion including the new module can be found at https://github.c
m/jamiejquinn/Lare3d , and has been archived by citeQuinn et al.
NRAS 512, 4982–4992 (2022) 
 2020a ). The version of Lare3d used in the production of the results
resented here, including initial conditions, boundary conditions,
ontrol parameters and the anisotropic viscosity module, can be
ound in the repository of citeQuinn et al. ( 2020b ). Associated
unning scripts for generating, building and running simulations on
 cluster is also provided Quinn ( 2022a ). The data analysis and
nstructions for reproducing all results found in this report may be
lso found at https://github.com/JamieJQuinn/coronal- fluting- insta
ility-analysis and has been archived (Quinn 2022b ). 
All simulations were performed on a single, multicore machine

ith 40 cores provided by Intel Xeon Gold 6138 Skylake processor
unning at 2 GHz and 192 GB of RAM, although this amount of
AM is much higher than was required; a conserv ati ve estimate of

he memory used in the largest simulations is around 64 GB. Most
imulations completed in under 2 d. 
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