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Clarifying Assumptions About Artificial Intelligence Before
Revolutionising Patent Law

This paper examines several widespread assumptions about artificial intelligence, particularly machine learning,
that are often taken as factual premises in discussions on the future of patent law in the wake of ‘artificial ingenuity’.
The objective is to draw a more realistic and nuanced picture of the human-computer interaction in solving technical
problems than where ‘intelligent’ systems autonomously yield inventions. A detailed technical perspective is pre-
sented for each assumption, followed by a discussion of pertinent uncertainties for patent law. Overall, it is argued
that implications of machine learning for the patent system in its core tenets appear far less revolutionary than is of-
ten posited.

I. Introduction
1. The controversy: A tool or more than a tool?
2. The purpose and scope of the analysis

II. Clarifying the assumptions
1. A human states a problem – an ML system solves it
2. ML systems learn ‘complex rules’ based on ‘simple

rules’
3. ML systems are autonomous, non-deterministic and

unpredictable
4. ML is a ‘black box’
5. ML is a ‘general-purpose technology’
6. ML is a ‘general-purpose method of invention’
7. One ML algorithm – many inventions

III. Synthesis and research outlook
1. ML as computational techniques of problem-solving
2. Implications for patent law

Abbreviations
AI (artificial intelligence); ANN (artificial neural net-
work); DL (deep learning); EA (evolutionary algo-
rithm); GP (genetic programming); EPC (European
Patent Convention); EPO (European Patent Office);
GPT (general purpose technology); GPT-3 (Generative

Pre-trained Transformer 3); HLEG-AI (High-Level
Expert Group on Artificial Intelligence); ML (machine
learning); RL (reinforcement learning); RNG (ran-
dom number generator)

I. Introduction

1. The controversy: A tool or more than a tool?
The European Commission’s initiative ‘Promote the
Scientific Exploration of Computational Creativity’
launched in 2013 defines computational creativity as a
‘burgeoning area of creativity research that brings to-
gether academics and practitioners from diverse disci-
plines, genres and modalities, to explore the potential of
computers to be autonomously creative or to collaborate
as co-creators with humans’.8 From an engineering
perspective, the aspiration is ‘to construct autonomous
software artifacts that achieve novel and useful ends that
are deserving of the label “creative”’.9

Some researchers share the view that artificial intelli-
gence (AI) is ‘no longer a tool’, not even ‘a very sophisti-
cated tool’.10 Stephen Thaler refers to an artificial neural
network (ANN)-based system invented and patented by
him in 1997 as the ‘creativity machine’ and claims that it
can ‘perform imaginative feats that extend beyond
technological invention into the realms of aesthetics
and emotions’.11 More recently, Thaler designated the1 MA, LLM, Dr iur, Senior research fellow at Max Planck Institute for

Innovation and Competition, Munich, Germany; daria.kim@ip.mpg.de.
2 BSc, MSc, Dr, Chief Technical Officer at Aignostics; PostDoc at
Charit�e Institute of Pathology, Berlin, Germany.
3 BSc (Hons), MSc (Engineering and Data Science); Chinese University
of Hong Kong, Department of Physics (formerly).
4 Dr, Junior Research Group Leader supported by the BMBF program
for Women in AI, Faculty of Computer Science and Mathematics, Chair
of Data Science, University of Passau, Germany; the Institute for
Artificial Intelligence Research and Development of Serbia.
5 Dr, Assistant Professor at Department of Computer Systems,
Universidad Polit�ecnica de Madrid, Spain.
6 Dr, Lecturer at the School of Computing Science, College of Science
and Engineering, University of Glasgow, UK.
7 Dr-Ing, Research and Teaching Associate at the Faculty of Computer
Science, Otto von Guericke University Magdeburg, Germany.

8 <https://cordis.europa.eu/project/id/600653> accessed 8 October 2021
(emphasis added).
9 ibid.
10 Laura Butler, ‘World First Patent Applications Filed for Inventions
Generated Solely by Artificial Intelligence’ (1 August 2019) <https://
www.surrey.ac.uk/news/world-first-patent-applications-filed-inventions-
generated-solely-artificial-intelligence> accessed 21 May 2021 (citing
Adrian Hilton, Director of the Centre for Vision, Speech and Signal
Processing at the University of Surrey).
11 US patent 5,659,666 ‘Device for the autonomous generation of useful
information’.
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ANN-based system DABUS,12 also previously patented
by him,13 as an inventor in two patent applications.14

Thaler is not original in his intention to enhance the sta-
tus of computational systems. The mathematician Doron
Zeilberger, for instance, often credits a computer – which
he named Shalosh B. Ekhad – as his co-author.15

In contrast, others have viewed mathematics as ‘a fun-
damental intellectual tool in computing’, computers as a
tool in mathematical problem-solving, and Shalosh B.
Ekhad as Doron Zeilberger’s pseudonym.16 Commentators
have expressed reservations regarding the ability of AI
systems to invent autonomously,17 arguing that the asser-
tion that ‘machines have been autonomously generating
patentable results for at least twenty years’18 is ‘simply
wrong’;19 that AI techniques are tools in a (human) inven-
tor’s hands;20 and that ‘fully autonomous creation or in-
vention by AI does not exist, and will not exist for the
foreseeable future’.21 In the realm of artistic expression it
has been argued that ‘[c]omputers do not create art, peo-
ple using computers create art’;22 that ‘all “computer-gen-
erated art” is the result of human invention, software
development, tweaking, and other kinds of direct control
and authorship’; and that ‘the human is always the mas-
termind behind the work’.23

Notably, the anthropomorphisation of AI has been
criticised within the AI community itself.24 As one profes-
sor of computer science once observed, a researcher who
employs a ‘wishful’ language endowing computers with
understanding and intentionality when referring to com-
puter programs and data structures is misleading the gen-
eral public and, ‘most prominently [. . .] himself’.25

Studies show that the anthropomorphised depiction of AI

can affect the human perception of AI systems, particu-
larly the level of trust and the attribution of responsibility
in automated driving26 and even the allocation of credit
for AI-generated artistic output.27 AI researchers caution
that ‘we must be careful’ about anthropomorphising AI,
which is ‘math, statistical analysis and pattern-match-
ing’,28 and that the pervasive use of anthropomorphic
language ‘inadvertently promotes misleading interpreta-
tions of and beliefs about what AI is and what its capaci-
ties are’, and can also ‘have epistemological impact on the
AI research community itself’.29

2. The purpose and scope of the analysis
The assumption that AI has already replaced30 – or is
about to replace31 – human creators and inventors
prompted the arguments that the output ‘autonomously’
generated by such systems does not and should not merit
IP protection.32 The perception that AI systems are auton-
omous agents endowed with problem-solving, decision-
making and inventive capabilities33 provoked several
reformist proposals concerning patent law, including
abolishing the patent system altogether,34 recognising AI
as an inventor35 and replacing a ‘POSITA’ (a person ordi-
narily skilled in the art) with a ‘MOSITA’ (a machine

12 <http://imagination-engines.com/iei_dabus.php#DABUS%20Patent>
accessed 21 May 2021.
13 US patent 10,423,875 ‘Electro-optical device and method for identify-
ing and inducing topological states formed among interconnecting neural
modules’.
14 European patent application 18275163; European patent application
18275174.
15 <https://sites.math.rutgers.edu/~zeilberg/papers1.html> accessed 21
May 2021.
16 Zhiwen Hu and others, ‘Shalosh B. Ekhad: A Computer Credit for
Mathematicians’ (2020) 122 Scientometrics 71, 93.
17 Dan L Burk, ‘AI Patents and the Self-Assembling Machine’ (2021)
105 Minn. L. Rev. Headnotes 301, 317 (pointing out that ‘[a]sserting
that AI tools are either inventors or infringers is equally absurd and can
only be based on ignoring the human hand at work behind the AI’). See
also Rose Hughes, ‘Is It Time to Move On from the AI Inventor Debate?’
(IPKat, 2 December 2020) <https://ipkitten.blogspot.com/2020/12/is-it-
time-to-move-on-from-ai-inventor.html> accessed 21 May 2021.
18 Ryan Abbott, ‘I Think, Therefore I Invent: Creative computers and
the future of patent law’ (2016) 57(4) B.C.L. Rev. 1079, 1081.
19 Mark Summerfield, ‘The Impact of Machine Learning on Patent Law,
Part 2: “Machine-assisted inventing”’ (Patentology, 21 January 2018)
<https://blog.patentology.com.au/2018/01/the-impact-of-machine-learn
ing-on_21.html> accessed 21 May 2021.
20 Peter Blok, ‘The Inventor’s New Tool: Artificial Intelligence – How
Does It Fit in the European Patent System?’ (2017) 39(2) E.I.P.R. 69, 73;
Burk (n 17) 317 ff; Daria Kim, ‘“AI-Generated Inventions”: Time to Get
the Record Straight?’ [2020] GRUR International 443, 455.
21 P Bernt Hugenholtz and others, Trends and Developments in
Artificial Intelligence: Challenges to the Intellectual Property Rights
Framework (European Commission 2020) 6, 116.
22 Aaron Hertzmann, ‘Can Computers Create Art?’ (2018) 7(2) Arts 1,
2, doi: 10.3390/arts7020018 (emphasised in the original).
23 ibid.
24 Donald Clark, Artificial Intelligence for Learning: How to Use AI to
Support Employee Development (Kogan Page 2020) 30-31 (referring to
the anthropomorphisation of AI as a ‘dangerous tendency’ and ‘a type of
category mistake’).
25 Drew McDermott, ‘Artificial Intelligence Meets Natural Stupidity’
(1976) 57 ACM SIGART Bulletin 4, at 4.

26 Adam Waytz, Joy Heafner and Nicholas Epley, ‘The Mind in the
Machine: Anthropomorphism Increases Trust in an Autonomous
Vehicle’ (2014) 52 Journal of Experimental Social Psychology 113.
27 Ziv Epstein and others, ‘Who Gets Credit for AI-Generated Art?’
23(101515) iScience (2020), doi: 10.1016/j.isci.2020.101515.
28 Clark (n 24) 231.
29 Arleen Salles, Kathinka Evers and Michele Farisco,
‘Anthropomorphism in AI’ 11 AJOB Neuroscience 88, 93 (2020). See
also ‘Open Letter of to the European Commission. Artificial Intelligence
and Robotics’ para 2 <http://www.robotics-openletter.eu/> accessed 21
July 2021 (warning that an understanding of AI as ‘self-learning’ is ‘su-
perficial’ and reflects ‘an overvaluation of the actual capabilities’ of AI
systems). See generally David Watson, ‘The Rhetoric and Reality of
Anthropomorphism in Artificial Intelligence’ (2019) 29 Minds and
Machines 417.
30 Abbott (n 18) 1081 (assuming that ‘machines have been autono-
mously generating patentable results for at least twenty years’).
31 See eg Daniele Fabris, ‘From the PHOSITA to the MOSITA: Will
“secondary considerations” save pharmaceutical patents from artificial
intelligence?’ (2020) 51 IIC 685, 690 (stating that ‘in the near future, AIs’
computational power is likely to supplant human research ability’, and
that ‘more and more inventions might soon be made by a machine rather
than by a human being’ (referencing Ryan Abbott)). See also Liza
Vertinsky and Todd M Rice, ‘Thinking About Thinking Machines:
Implications of Machine Inventors for Patent Law’ (2002) 8(2) B. U. J.
Sci. & Tech. L. 574, 586 (stating that the ‘notions of scarcity and unique-
ness of inventive talent will dissipate as computers make the process of
invention cheaper and more readily available to people without special
skills’).
32 See eg Shlomid Yanisky-Ravid and Xiaoqiong (Jackie) Liu, ‘When
Artificial Intelligence Systems Produce Inventions: The 3A era and an al-
ternative model for patent law’ (2018) 39 Cardozo L. Rev. 2215, 2216
(arguing that the ‘traditional approach to patent law in which policy
makers seek to identify the human inventor behind the patent is [. . .] no
longer relevant’). See also Martin Stierle, ‘A De Lege Ferenda Perspective
on Artificial Intelligence Systems Designated as Inventors in the
European Patent System’ [2021] GRUR International 115, 116, note 18
(referencing divergent views on the relevance of the patent system in view
of the inventive potential of AI).
33 Below (nn 44, 45, 152-156, 334-337) and the accompanying text.
34 Yanisky-Ravid and Liu (n 32) 2222. See also Tim W Dornis,
‘Artificial Intelligence and Innovation: The End of Patent Law as We
Know It’ (2020) 23 Yale Journal of Law & Technology 97 (predicting
that ‘[w]ith the advent of [AI] the end of patent law is near’ and stating
that ‘humans no longer stand at the center of the creative universe – we
are no longer the masters of innovation’).
35 See eg Ryan Abbott, ‘The Artificial Inventor Project’ (2019) 6 WIPO
Magazine <https://www.wipo.int/wipo_magazine/en/2019/06/article_
0002.html> accessed 25 September 2021 (arguing that AI ‘should be
listed as an inventor’ in order to ‘protect the moral rights of traditional
human inventors and the integrity of the patent system’).
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ordinarily skilled in the art).36 Claims that computers au-
tonomously generate inventions have extended beyond
the legal scholarship37 and entered litigation.38

On closer inspection, the polarisation of the discourse on
patent law and AI ostensibly stems from divergent under-
standings of AI techniques and state of the art research on
AI. As for the normative perspective, there can hardly be
room for disagreement on the point that, if inventions
could indeed be generated by computers autonomously,
the need for the patent system and its design would need to
be fundamentally reconsidered. The question is, precisely,
whether the anthropomorphised depictions of AI and its
claimed capabilities can be taken for granted as a basis for
legal analysis and policy recommendations.

In this article, we take a close look at a set of wide-
spread assumptions about AI – more specifically, machine
learning (ML) – that are often taken as factual premises
in the discussions on the future of patent law in the wake
of ‘artificial ingenuity’. The common denominator is that,
if taken at face value, such assumptions prompt a radical
update of the patent system, if not call into question its
very existence. The objective is to draw a more realistic
and nuanced picture of the human-computer interaction
in solving (technical) problems than the one where AI
‘spits out’ inventions ‘after a button press’.39 While it is
generally recognised that ML is not a ‘magic’ tool,40 sev-
eral technical aspects require clarification to understand
more precisely their implications for patent law.

The discussion focuses on ML techniques41 – in partic-
ular, ANNs and genetic programming (GP)/evolutionary

algorithms (EAs)42 – given their increasing application in
technical problem-solving such as technical constraint-
satisfaction and constraint-optimisation problems.43 By an
‘AI/ML system’, this paper refers to the combination of
software and hardware necessary to implement an AI/ML
method.

As for the legal context, the analysis draws mainly on
European patent law, with occasional recourse to other
jurisdictions. At the same time, the technical aspects of AI
discussed in this paper concern the basic tenets of
patent law that can be relevant for any jurisdiction
dealing with the implications of AI for patent law and
policy. Besides the much-debated issue of the genesis
and allocation of inventor’s rights in inventions
allegedly ‘generated’ by AI, the scope of the analysis
includes substantive patent law questions such as pat-
ent eligibility, the sufficiency-of-disclosure require-
ment and standard, the definition of a skilled person
and the fulfilment of the inventive step requirement.
More broadly, we reflect on the role of patent protec-
tion given the general-purpose-technology nature of
ML. Part II discusses each assumption according to a
threefold structure: first, an assumption and chal-
lenges it provokes for patent law are stated; second, a
detailed technical perspective is presented; third, pat-
ent law uncertainties are revisited and clarified in
light of the technical explanation. Part III situates
the question of whether AI is a tool or ‘more’ than a
tool within a broader context of research in cognitive
science and puts the implications of AI for deonto-
logical and economic underpinnings of patent law
into perspective.

II. Clarifying the assumptions

1. A human states a problem – an ML system
solves it
Narratives about ML might create an impression that a
mere statement of what needs to be achieved without
how that should be done can be enough for a computer
to accomplish a task. For instance, EAs are vested with a

36 Fabris (n 31).
37 For an overview, see Hugenholtz and others (n 21) 100 ff.
38 Recent judgments at the time of writing include: Thaler v Comptroller
General of Patents Trade Marks and Designs [2021] EWCA Civ 1374
(21 September 2021); Stephen Thaler v Andrew Hirshfeld, Performing
the Functions & Duties of the Under Sec’y of Com. for Intell. Prop. &
Dir. of the United States Pat. & Trademark Off., et al., No. 1:20-cv-903
(LMB/TCB), 2021 WL 3934803 (E.D. Va. 2 September 2021); Thaler v
Taiwan IP Office (TIPO), Administrative decision No. 2021-Xing-
Zhuan-Su-3 of Intellectual Property and Commercial Court of Taiwan
(Aug 2021); Thaler v Commissioner of Patents [2021] FCA 879 (30 July
2021).
39 Robin C Feldman and Nick Thieme, ‘Competition at the Dawn of
Artificial Intelligence’ in Björn Lundqvist and Michael S Gal (eds),
Competition Law for the Digital Economy (Edward Elgar Publishing
2019) 71, 77.
40 See eg Tanja Dimitrov and others, ‘Autonomous Molecular Design:
Then and Now’ (2019) 11 ACS Applied Materials & Interfaces 24825,
24832; Kat Jercich, ‘AI Isn’t Magic’ (Healthcare IT News, 9 September
2020) <https://www.healthcareitnews.com/news/emea/ai-isnt-magic>
accessed 21 May 2021; Gil Press, ‘Deep Learning Pioneer Yoshua Bengio
Says AI Is Not Magic and Intel AI Experts Explain Why and How’
(Forbes, 20 September 2019) <https://www.forbes.com/sites/gilpress/
2019/09/20/deep-learning-pioneer-yoshua-bengio-says-ai-is-not-magic-
and-intel-ai-experts-explain-why-and-how/> accessed 21 May 2021;
Kalev Leetaru, ‘Today’s Deep Learning “AI” Is Machine Learning Not
Magic’ (Forbes, 14 November 2018) <https://www.forbes.com/sites/
kalevleetaru/2018/11/14/todays-deep-learning-ai-is-machine-learning-
not-magic/> accessed 21 May 2021; Will Knight, ‘AI Is Not “Magic
Dust” for Your Company, Says Google’s Cloud AI Boss’ (MIT
Technology Review, 8 November 2018) <https://www.technologyre
view.com/2018/11/08/139151/ai-is-not-magic-dust-for-your-company-
says-googles-cloud-ai-boss/> accessed 21 May 2021; Alex Reichenbach,
‘Artificial Intelligence is Applied Calculus, Not Magic’ (Medium, 6
February 2018) <https://medium.com/1517/artificial-intelligence-in-the-
modern-era-bdf599737247> accessed 21 May 2021; Andrew Farah, ‘AI
Is Not Magic; It’s Manual Labor (& Math) – How We Built An Accurate
People Counter’ (Medium, 6 June 2018) <https://medium.com/density-
inc/ai-is-not-magic-its-manual-labor-math-how-we-built-an-accurate-peo
ple-counter-e00408ea30de> accessed 21 May 2021.
41 There is no universally accepted classification of AI methods and tech-
niques. Given that GP can be applied as an ML technique to the same
problems as ANNs, this article refers to GP and EAs as ML techniques.

At the same time, it should be noted that, besides ML, GP can be applied
in other fields such as automatic programming.
42 As the name suggests, these methods follow the principles and mecha-
nisms of biological evolution. Accordingly, the search for a better solu-
tion to a problem is often based on the principle that ‘the fittest survives’
– the solutions with better quality have higher chances to be used further,
whereby ‘quality’ is assessed in terms of a solution’s proximity to the op-
timum. EAs comprise three main categories: evolution strategies, evolu-
tionary programming and genetic algorithms. While all three use
essentially the same conceptual framework, they differ in the representa-
tions of individuals and schemes for implementing fitness evaluation, se-
lection and search operators. In evolution strategies, an individual can be
represented as a vector of real numbers; in evolutionary programming
each individual is taken as a pair of real-valued vectors; genetic algo-
rithms use ‘binary representation [whereby] each individual will be repre-
sented by a number of binary bits, 0 or 1’. Xin Yao, ‘Evolutionary
Computation. A Gentle Introduction’ in Ruhul Sarker, Masoud
Mohammadian and Xin Yao (eds), Evolutionary Optimization.
International Series in Operations Research & Management Science, vol
48 (Springer 2003) 27, 29-34.
43 Constraint satisfaction refers to a subtype of search problem where
the goal is to allocate values to the variables so that the pre-specified con-
straints are satisfied or proven impossible to satisfy, given that the search
space is finite. A constraint-optimisation problem combines constraint
satisfaction with an objective function to be optimised. Dana S Nau,
‘Artificial Intelligence and Automation’ in Shimon Y Nof (ed), Springer
Handbook of Automation (Springer 2009) 249, 253.
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genie’s capability to solve technical problems – a human
only needs to make a wish.44 According to the High-Level
Expert Group on Artificial Intelligence (HLEG-AI), AI
systems are ‘goal-directed, meaning that they receive the
specification of a goal to achieve from a human being and
use some techniques to achieve such goal’.45

a) Patent law uncertainties

(i) Inventorship

If a human could merely state a problem that AI systems
could solve ‘on their own’, there would be a strong argu-
ment that not only the allocation of inventor’s rights but
the need for the patent system in the first place would
need to be fundamentally reassessed. Some legal scholars
argue that the patent system should be eliminated ‘alto-
gether’46 in the age of artificial ingenuity. Others suggest
applying rules on employee inventions to ‘AI-generated’
inventions, provided that an ‘electronic personality’ can
be attributed to AI.47 Before such policy proposals can be
considered, it is necessary to clarify whether ‘making a
wish’ might be sufficient to solve a problem by AI.

(ii) Inventive step/non-obviousness

The perception that the most significant input by a human
subsists in merely supplying a problem, which is then
solved by AI, might prompt an analogy with the so-called
‘problem inventions’. Under the EPO approach, the ap-
preciation of an unrecognised technical problem can con-
fer an inventive step, even if the claimed solution is
‘retrospectively trivial and in itself obvious’,48 provided
that the problem could not have been ‘readily posed’ by
any skilled person.49 To consider the aptness of the anal-
ogy, let us first clarify whether the human role in ML, in
fact, subsists solely in posing a problem.

b) The problem-solving capacity of ML systems from a
technical perspective

(i) An algorithm as an explicit and specific problem-solving
route

The assumption that a mere statement of a goal suffices
for a computer to solve a problem is largely inaccurate –
otherwise, we would have had a ready-to-deploy vaccine
against SARS-Cov-2 as soon as we realised it was

urgently needed.50 While telling a computer ‘what’ to do
without ‘how’ has long been an aspiration of research on
automated programming, it is considered ‘unrealistic,
at least in the foreseeable future’.51

The ‘how’ in ML – and any computer-implemented
process in general – is represented by computational oper-
ators and configurations that determine the sequence of
computational states, through which the given inputs are
transformed into the desired output. In computer science,
an algorithm is defined as ‘a finite set of rules that gives a
sequence of operations for solving a specific type of
problem’. It is distinguished by the following features:
definiteness (each step is precisely, rigorously, and unam-
biguously specified); input (a set of data is provided
before the procedure starts); output (the procedure gener-
ates ‘a nonempty set of results’); finiteness (the procedure
consists of a finite number of steps); and effectiveness
(‘operations must all be sufficiently basic that they can in
principle be done exactly and in a finite length of time by
someone using pencil and paper’).52 This definition holds
for ML algorithms as they specify a sequence of steps on
how a model for a particular problem should be devel-
oped. These steps are precise, rigorous and unambiguous
and are clearly defined by logical reasoning, conditional
structures and loops. While the process might seem to be
running ‘by itself’ to an outsider, the designer of an ML
system knows what a computer is supposed to do at each
step. Neither conventional nor quantum computers can
deviate from a given algorithm. Furthermore, it should be
noted that ML algorithms can work ‘off the shelf’ only
in limited cases and usually require special-purpose
adjustment.53

(ii) How are problems specified in ML?

The definition of ML as techniques allowing ‘an AI sys-
tem to learn how to solve problems that cannot be pre-
cisely specified’54 is somewhat confusing. To translate a
real-life problem into something that can be processed and
solved by a computer, a problem essentially needs to be
expressed in an abstract way – by using a formal notation
(a mathematical model, functions, logic rules, etc.) – that a
computer can decipher and implement. In optimisation

44 Robert Plotkin, The Genie in the Machine: How Computer-
Automated Inventing Is Revolutionizing Law and Business (Stanford
Law Books 2009) 2-3.
45 High-Level Expert Group on Artificial Intelligence (HLEG-AI), ‘A
Definition of AI: Main Capabilities and Scientific Disciplines’ 7 (18
December 2018) <https://ec.europa.eu/futurium/en/system/files/ged/ai_
hleg_definition_of_ai_18_december_1.pdf> accessed 21 May 2021
(emphasis added).
46 Yanisky-Ravid and Liu (n 32) 2222. See generally Dornis (n 34).
47 Jan Phillip Rektorschek and Tobias Baus, ‘Protectability and
Enforceability of AI-Generated Inventions’ in Kai Jacob, Dierk Schindler
and Roger Strathausen (eds), Liquid Legal. Towards a Common Legal
Platform (Springer 2020) 459, 475 (suggesting that the extension of the
concept of inventor to AI would require the establishment of an ‘elec-
tronic personality’ for AI worldwide; under that condition, ‘an assign-
ment to the “employer” could also be regulated [if AI systems] create
inventions “in the exercise of their employment”’).
48 See Case T 2/83, decision of 15 March 1984, ECLI:EP:BA:
1984:T000283.19840315, point 6 of the Reasons; case T 0764/12, deci-
sion of 18 February 2014, ECLI:EP:BA:2014:T076412.20140218, point
4.7.5 of the Reasons.
49 Case T 0109/82, decision of 15 May 1984, ECLI:EP:BA:
1984:T010982.19840515, point 5.1 of the Reasons.

50 At the same time, it is acknowledged that AI techniques can be ap-
plied in the discovery and development of vaccines and treatments
against SARS-Cov-2. See Arash Keshavarzi Arshadi and others,
‘Artificial Intelligence for COVID-19 Drug Discovery and Vaccine
Development’ (Front. Artif. Intell., 18 August 2020), doi: 10.3389/
frai.2020.00065 (pointing out that ‘leveraging computational models ca-
pable of filtering and generating reliable therapies can significantly speed
up [. . .] discovery efforts’). According to the authors, employing ANNs
and supervised learning methods ‘has proven to be a vital game-changer
when used for the purpose of virtual filtering and de novo design’.
However, ‘to achieve the desired performance in such intelligent meth-
ods, one requires the knowledge to recognize the most relevant biotargets
in addition to a large-scale training dataset’. ibid.
51 Michael O’Neill and Lee Spector, ‘Automatic Programming: The
Open Issue?’ (2020) 21 Genetic Programming and Evolvable Machines
251. The authors hold that GP is unlikely to be ‘sufficient, or at least on
its own the most efficient method, to fully realise automatic program-
ming, or at least the most appropriate or efficient method to achieve all
the necessary functions that an automatic programming system requires’.
ibid 256.
52 Donald E Knuth, The Art of Computer Programming, vol 1 (3rd edn,
Addison-Wesley Professional 1997) 4-6. The condition of finiteness can
be omitted by embedding a ‘while loop’, a command that will be continu-
ously implemented as long as a condition remains true.
53 As discussed in detail below at II.6.b.
54 HLEG-AI (n 45) 4 (emphasis added).
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problems55 where one seeks to maximise or minimise cer-
tain values of interest, a problem is typically defined as an
objective function that assigns numerical values to certain
outcomes, such as a cost function in ANNs or a fitness
function in GP/EA.

What is not ‘precisely specified’ in ML is the solution. To
give a simple example, assume that we do not know which
number multiplied by 4 produces 16 (a problem). To convey
this problem to a computer, we express it as 4*x¼ 16. One
approach would be to brute force by testing all possible val-
ues of x until value ‘4’ is reached. An ML-based approach
would be to provide a relevant56 annotated (labelled) dataset
of mathematical operations and build a model that will derive
x¼ 4 from the observed cases. To guide the process of deriv-
ing x, one would need to specify a cost function providing a
mathematical measure of how close or far-off a trained model
is from the actual data. A third approach would be to use an
optimisation algorithm to perform a ‘guided search’ by alter-
ing the solution based on the proximity to the number 16.
No labelled data would be required for that, but one would
need to model 4*x – 16 as a fitness function to be minimised.
Irrespective of which method is used, deriving the ‘non-pre-
cisely specified’ output in ML is akin to solving a mathemati-
cal equation when the exact solution is not known ex ante.57

(iii) (Non-)explicit programming in ML

Arthur Samuel is credited with coining the term ‘machine
learning’.58 He is also falsely59 said to have defined ML
as a ‘field of study that gives computers the ability to
learn without being explicitly programmed’.60 To clarify,
ML algorithms themselves are explicitly programmed. As
noted above, the general definition of an algorithm as a
procedure that is specified precisely, rigorously and un-
ambiguously applies to ML algorithms as well.61

As discussed above, what is not ‘explicitly pro-
grammed’ in ML is the output. The optimisation of ML
model parameters is governed by the inputs and configu-
rations set up before an algorithm is implemented on a
computer. In the case of ANNs, for instance, one needs to
provide a relevant pre-processed dataset and configure
the hyperparameters62 that, in turn, determine the model
parameters (weights and biases). Thus, one could say that

a human does not directly (‘explicitly’) program the out-
put. This concerns the core distinction between two types
of AI: rule-based63 and learning-based systems. However,
with both approaches, human input is decisive for the
computational output.64

(iv) ‘High-level’ statements in GP

GP is defined as ‘an automatic method for solving prob-
lems’65 that starts with ‘a high-level statement of the
requirements of a problem and attempts to produce a
computer program that solves the problem’.66 ‘High-level
requirements’ refer to multiple, often conflicting optimisa-
tion constraints and considerations, including the require-
ments regarding robustness and stability of a solution.67

Such requirements are expressed as a fitness function that
provides ‘the search’s desired direction’.68 Besides, muta-
tion and recombination operators strongly impact the
performance of EAs.69 These configurations operational-
ise the iterative process of search and improvement until
the optimal solution is found, or constraints are proved
impossible to satisfy, or other termination criteria ap-
ply.70 In other words, ‘high-level statements’ do not mean
the absence of human guidance on how computation
should be implemented.

In sum, the assumption that ML systems can solve
problems without human guidance does not hold. If a
problem is solved through computation, it means that the
combination of inputs and instructions, irrespective of the
level of granularity, is sufficient for finding the solution.
This echoes Herbert Simon’s observation that solving a
problem ‘simply means representing it so as to make the
solution transparent’.71

c) Patent law uncertainties revisited

(i) Implications for the inventorship

In view of the above, it appears clear that ML systems
do not replace human problem-solving skills, and the as-
sumption that an ML system can solve a given problem
by itself is unfounded.

As a general principle, a normative analysis should
be undertaken if there is genuine uncertainty about the
appropriateness of the existing legal order. Hence, the
currently applicable definitional criteria for inventorship
should serve as a starting point. As the study by

55 Most ML methods are based on optimisation.
56 In this case, the relevant instances could be those that produce
number 4.
57 On the predictability of ML output, see below at II.3.b.iv.
58 Arthur L Samuel, ‘Some Studies in Machine Learning Using the Game
of Checkers’ (1959) 44(1.2) IBM Journal of Research and Development
210.
59 Maria Schulda, Ilya Sinayskiya and Francesco Petruccione, ‘An
Introduction to Quantum Machine Learning’ (2015) 56 Contemporary
Physics 172, 183, note 2 (observing that it is ‘interesting to note that al-
though quoted in numerous introductions to machine learning, the origi-
nal reference to the machine learning pioneer’s most famous statement is
very difficult to find [as authors] either refer to other secondary publica-
tions, or falsely cite Samuel’s seminal paper from 1959’).
60 See eg Issam El Naqa and Martin J Murphy, ‘What Is Machine
Learning?’ in Issam El Naqa, Ruijiang Li and Martin J Murphy (eds),
Machine Learning in Radiation Oncology. Theory and Applications
(Springer 2015) 3, 6 (referencing the paper by Samuel (above (n 58)) (em-
phasis added).
61 Above (n 52) and the accompanying text.
62 Model hyperparameters refer to configurational settings that deter-
mine the structure of an ANN (such as the number of hidden nodes and
layers) and how the network is trained (such as the learning rate, the loss
function, an activation function and execution framework).
Hyperparameters are provided to an ANN before training; model param-
eters (weights and biases) are inferred from the training data.

63 Rule-based AI systems generate predefined outcomes based on the
given set of rules coded by a programmer.
64 On (non-)determinism in ML, see below at II.3.
65 John R Koza, Martin A Keane and Matthew J Streeter, ‘Automated
Synthesis by Means of Genetic Programming of Complex Structures
Incorporating Reuse, Parameterized Reuse, Hierarchies, and
Development’ in Rick Riolo and Bill Worzel (eds), Genetic Programming
Theory and Practice. Genetic Programming (Springer 2003) 221, 222.
66 ibid.
67 John R Koza and others, Genetic Programming IV. Routine Human-
Competitive Machine Intelligence (Springer 2003) 58.
68 ibid 12.
69 Holger H Hoos and Thomas Stützle, ‘Stochastic Local Search
Algorithms: An Overview’ in Janusz Kacprzyk and Witold Pedrycz (eds),
Springer Handbook of Computational Intelligence (Springer 2015) 1085,
1097 (further noting that ‘much research in EAs has been devoted to the
design of effective mutation and recombination operators’).
70 Termination criteria commonly used in ML include the maximum
time, the number of created solutions and the predefined quality of a
solution.
71 Herbert A Simon, The Sciences of the Artificial (2nd edn, MIT Press
1981) 153.
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Shemtov72 on the concept of inventorship in the context
of AI concludes, ‘[c]reative or intelligent conception of
the invention, or contribution thereto, is a feature that
runs either explicitly or implicitly throughout the defini-
tion of inventorship in all of the [examined] jurisdic-
tions’.73 To meet this requirement, the ‘engagement in the
conception phase [should go] beyond the provision of ab-
stract ideas on the one hand, and mere execution of those
provided by others on the other hand’74 and should be
made ‘on an intelligent and creative level rather than fi-
nancial, material or mere administrative level’.75 The sub-
sequent analysis will rely on this standard as a general
guiding principle,76 while it is acknowledged that jurisdic-
tions might differ in fleshing out the concept of the
inventor.

Conceptualisation is about abstract thinking, a capabil-
ity even the ‘most sophisticated AIs in the world today
have trouble with’.77 To solve problems through compu-
tational modelling, including in the fields of technology
and engineering, one needs to grasp a problem and gain
‘an extensive understanding of mathematical structures in
order to match them to the problem at hand’.78 One also
needs to define accurate assumptions, boundaries and
parameters that reflect and characterise inherent proper-
ties of a system or process being modelled, etc. Such cog-
nitive activities can refer to the conceptualisation phase of
computational problem-solving that precedes program-
ming and algorithm implementation.79 As noted above,
ML algorithms usually require special-purpose applica-
tion. Hence, in situations where ML is used in the inven-
tive process, it appears appropriate to refer to the
decision-making in applying ML techniques to a technical
problem at hand as a proxy for the ‘intelligent engage-
ment’ in invention conception.

Accordingly, as long as the use of problem-solving
tools and techniques is not prejudicial to allocating the
inventor’s rights to a human, the person making neces-
sary decisions as to how to solve a technical problem by
applying ML can and should be deemed an inventor, or a
co-inventor (where such process involves joint human

effort), provided that the co-inventorship criteria are ful-
filled.80 In contrast, the one who develops the basic algo-
rithm of a general-purpose nature – such as
backpropagation81 – but is not involved in its application
to a specific task should not be regarded as an inventor.
Furthermore, even though the inventorship standard ap-
plied to humans cannot be directly transposed to human-
computer interaction, the underlying principle that the
mere implementation of instructions should not suffice
for the inventor entitlement can counteract the claim that
the computer should be recognised as a standalone
inventor.82

As clarified in the preceding section, human input in
ML is not confined to giving a problem to a computer.
However, a normative doubt might arise about whether
such input should be deemed sufficient relative to the
computer’s contribution, often depicted as overshadow-
ing the human role in terms of complexity and signifi-
cance. Section II.2 will address the assumption underlying
such doubt in detail.

(ii) Implications for the inventive step requirement

The inaptness of the analogy with ‘problem inventions’

Given that it is the appreciation of a problem – not how it is
solved – that can confer an inventive step in the case of
‘problem inventions’,83 the use of ML techniques in develop-
ing an invention (problem-solving) would not be a relevant
factor for assessing obviousness. While one could argue
that identifying a problem and solving it should not be ap-
praised equally when assessing inventive step, this is not an
AI-specific issue and, therefore, it is not analysed here.

Knowledge and skills in ML should be factored into the
definition of a skilled person where relevant

To fulfil the inventive step requirement, an invention must
represent an achievement that lies beyond the reach of a
hypothetical practitioner with ‘average’ skills. The exami-
nation is fact-specific and methodologies differ among na-
tional patent offices. In the EPO’s practice, the crux of the
assessment is whether a skilled person, having regard to
state of the art, would (i.e. not just could) have arrived at
‘something falling within the terms of the claims, and thus
achieving what the invention achieves’.84

72 Noam Shemtov, A Study on Inventorship in Inventions Involving AI
Activity (EPO 2019).
73 ibid 19. In particular, the study examined the applicable provisions in
the US, China, Japan, Republic of Korea, the UK, Germany, France and
Switzerland. In addition, the Russian Civil Code (art 1347) defines the
‘author of an invention’ as ‘a citizen whose creativity has led to the crea-
tion of such a result’.
74 Shemtov (n 72) 19.
75 ibid (emphasis added).
76 The argument that the inventorship requirement for ‘intelligent con-
tribution’ might not always be fulfilled in practice is not discussed here,
given that this is not an AI-specific issue. See Burk (n 17) 307 (pointing
out that ‘existing patent law already has the formalist quandary well in
hand [as] patent doctrine has never hesitated to bestow inventorship, and
subsequently patents, on serendipitous discoveries’).
77 David Newman and Oliver Blanchard, Human/Machine. The Future
of Our Partnership with Machines (Kogan Page 2019) 201. See also Lene
Pettersen, ‘Why Artificial Intelligence Will Not Outsmart Complex
Knowledge Work’ (2019) 33(6) Work, Employment and Society 1058
(arguing that ‘[a] great deal of knowledge work concerns highly complex
problem solving and must be understood in contextual, social and rela-
tional terms’; that such ‘aspects have no generic nor universal rules and
solutions and, thus, cannot be easily replaced by artificial intelligence or
programmed into computer systems, nor are they constructed based on
models of the rational brain’).
78 Tony Hürlimann, Mathematical Modeling and Optimization. An
Essay for the Design of Computer-Based Modeling Tools (Springer
1999) 30.
79 For an overview of computational problem-solving stages, see Kim (n
20) 449-450.

80 In the absence of a statutory definition, the co-inventorship criteria
might be defined in case-law. For instance, the German Patent Act (s 6)
does not specify the eligibility criteria for the joint inventorship but states
that, where two or more persons have jointly made an invention, the
right to the patent shall belong to them jointly. According to the case-
law, the co-inventor status shall not be recognised only where a contribu-
tion had almost no impact on the overall success and was therefore insig-
nificant for the claimed solution, or where a contribution resulted from
instructions of an inventor or third parties. At the same time, for the co-
inventorship to be acknowledged, the contribution in and of itself does
not need to fulfil all criteria of patentability. Bundesgerichtshof, decision
of 18 June 2013 – X ZR 103/11, para 8.
81 On ‘general-purpose’ components of ML, see below at II.5.b.
82 The assumption that ML systems ‘make decisions’ and do not merely
implement instructions is examined in detail below at II.3.b.
83 Provided that a problem is not obvious to a skilled person; above (nn
48-49).
84 Guidelines for Examination in the European Patent Office (March
2021) [hereinafter EPO Guidelines for Examination], pt G-VII, ss 4, 5.3
<https://www.epo.org/law-practice/legal-texts/html/guidelines/e/g_vii_4.
htm> accessed 21 May 2021.
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As clarified, ML systems do not solve problems ‘on
their own’ but can be applied as computational problem-
solving techniques. Accordingly, skills and knowledge in
ML should be factored into the definition of a skilled per-
son85 when assessing the obviousness of inventions that
could or would86 have been developed by applying ML.
The gradual integration of ML techniques into a skilled
person’s arsenal of tools is inevitable, given the broad ap-
plicability of ML techniques on the one hand and the ex-
pectation that the skilled person is ‘involved in constant
development in the relevant technical field’87 on the other
hand. Given that ML (as computational problem-solving
techniques based on optimisation and modelling) is
broadly applicable across technological and engineering
fields,88 technical experts in such fields would often coop-
erate with ML researchers and data scientists when devel-
oping or improving technical solutions. Such situations
could fall within the ambit of the current EPO methodol-
ogy, as it allows the definition of a skilled person to be
extended to an interdisciplinary team of skilled
practitioners.89

Accordingly, in instances where a technical problem
underlying the claimed invention could have been solved
through ML, inventive step should be assessed through
the lens of an interdisciplinary team availed inter alia of
knowledge and skills in ML, in addition to knowledge
and skills in the field of technology to which the problem
underlying an invention pertains.90 For that, the assess-
ment would need to establish that a skilled person from
the field of a technical problem91 would be prompted ‘to
seek a solution’ and ‘look for suggestions’92 in the field of
ML. The combination of knowledge – even from remote
technical fields93 – in the definition of a skilled person is
not excluded, which can accommodate the diversity of

ML applications. Notably, not only can a skilled person
search for ‘clues’ in a different technical field, but they
can also transfer a technology, provided that such trans-
fer involves ‘routine experimental work’.94 Conversely,
an inventive step can be acknowledged where technology
transfer requires efforts beyond routine work, such as sci-
entific research.95 To summarise, the EPO assessment
methodology, in principle, allows to integrate skills in
ML into the definition of an interdisciplinary team of
skilled persons. Accordingly, the patent examiner would
need to establish objectively, first, whether the skilled per-
son would be motivated to look for suggestions in the
field of ML and, second, whether the ‘routine’ application
of ML would allow the skilled person to arrive at ‘some-
thing falling within’ the claims of the invention at issue.

2. ML systems learn ‘complex rules’ based on
‘simple rules’
In his book Genie in the Machine, Robert Plotkin
observes that some AI techniques can ‘discover complex
rules and patterns [. . .] given only an abstract problem
definition and simple rules for generating and evaluating
possible solutions to the problem’.96 For instance, provid-
ing an airflow equation to an AI system would suffice to
produce a car frame.97 Silver et al. report that they used
‘the simplest possible search algorithm’ to develop
AlphaGo Zero, a program which eventually achieved ‘su-
perhuman performance, winning 100–0 against the previ-
ously published, champion-defeating AlphaGo’.98 They
conclude that ‘it is possible to train [an RL system] to su-
perhuman level, without human examples or guidance,
given no knowledge of the domain beyond basic rules’.99

a) Patent law uncertainties

(i) Inventorship

The accounts presented above can create an impression
that remarkable achievements can be accomplished with
surprisingly negligible intellectual effort. Besides, the term
‘learning’ can create an impression that computers gradu-
ally become independent.100 Even though it was already
clarified under Assumption 1 that ML researchers do not
merely state a problem but essentially configure a
problem-solving route to the solution, one could still
doubt whether human input should be viewed as suffi-
cient to merit the inventor entitlement.101

85 The EPO Guidelines for Examination define a ‘person skilled in the
art’ as ‘a skilled practitioner in the relevant field of technology who is
possessed of average knowledge and ability and is aware of what was
common general knowledge in the art at the relevant date’. EPO
Guidelines for Examination, pt G-VII, s 3 <https://www.epo.org/law-
practice/legal-texts/html/guidelines/e/g_vii_3.htm> accessed 29 July 2021
(with further references).
86 The ‘could-would’ language alludes to the EPO patent examination
methodology of assessing an inventive step, the so-called ‘could-would’
approach. See EPO Guidelines for Examination, pt G-VII, s 5.3 <https://
www.epo.org/law-practice/legal-texts/html/guidelines/e/g_vii_5_3.htm>
accessed 29 July 2021.
87 ibid.
88 See Kim (n 20) 446 (with further references).
89 EPO Guidelines for Examination, pt G-VII, s 3 <https://www.epo.
org/law-practice/legal-texts/html/guidelines/e/g_vii_3.htm> accessed 29
July 2021.
90 Jurisdictions differ in the extent to which different technical fields can
be considered when a skilled person’s relevant knowledge and skills are
defined for the purpose of inventive step/obviousness assessment.
Regarding the US approach, see eg Brenda M Simon, ‘The Implications
of Technological Advancement for Obviousness’ (2013) 19 Mich.
Telecomm. & Tech. L. Rev. 331, 356 ff (discussing the limits on combin-
ing analogous prior art in situations where ‘cognitive technologies’ might
be applied in the inventive process).
91 Under the EPO’s problem-solution approach, ‘the starting point for de-
fining the appropriate skilled person is the technical problem to be solved
on the basis of what the closest prior art discloses’. Case T 422/93, deci-
sion of 21 September 1995, ECLI:EP:BA:1995:T042293.19950921, head-
note, para 1.
92 EPO Guidelines for Examination, pt G-VII, s 3 <https://www.epo.
org/law-practice/legal-texts/html/guidelines/e/g_vii_3.htm> accessed 29
July 2021.
93 ibid (pointing out that a skilled person might be ‘expected to look for
suggestions in neighbouring and general technical fields [. . .] or even in
remote technical fields, if prompted to do so’ (with further references)).

94 Fr�ed�eric Bostedt and others (eds), Case Law of the Boards of Appeal
of the European Patent Office (9th edn, EPO 2019) 205-206 (albeit refer-
ring to the transfer of technology from a neighbouring field in the context
of defining a person skilled in the art in the field of biotechnology).
95 Case T 0441/93, decision of 27 March 1996, ECLI:EP:BA:
1996:T044193.19960327, point 47 of the Reasons.
96 Plotkin (n 44) 80 (emphasis added).
97 ibid 105.
98 David Silver and others, ‘Mastering the Game of Go without
Human Knowledge’ (2017) 550 Nature 354, https://doi.org/10.1038/
nature24270.
99 ibid 358 (emphasis added).
100 This argument is addressed below at II.3.b.
101 See eg Tim W Dornis, ‘Of “Authorless Works” and “Inventions
without Inventor” – The Muddy Waters of “AI Autonomy” in
Intellectual Property Doctrine’ 14 (2021) <https://papers.ssrn.com/sol3/
papers.cfm?abstract_id=3776236> accessed 21 May 2021 (observing
that ‘it is often overlooked that, in many scenarios of AI creativity and in-
ventiveness, there no longer exists a sufficient nexus between a human
actor’s input to and the result of a creative or inventive AI process’).
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(ii) Inventive step/non-obviousness

The alleged simplicity of human input in ML can bear on
the assessment of obviousness of an invention. If only
trivial knowledge and skills on the human’s part could
suffice to solve a technical problem through ML,102 one
would question whether the purpose of the inquiry into
inventive step – to discern the achievements beyond those
requiring average knowledge and skills – is still relevant,
or whether any invention actually or potentially103 result-
ing from the application of ML should prima facie be
deemed obvious.104

Before these legal implications can be examined, let us
clarify what exactly ‘learned rules’ mean in the ML con-
text and how human and computer’s contributions can
be compared in terms of simplicity or complexity, if at all.

b) The simplicity of human input vs complexity of ML
outcome from a technical perspective

(i) The term ‘learning’

Whether computers can ‘learn’ depends on how one
defines ‘learning’. As a cognitive phenomenon, learning
comprises ‘inductive knowledge acquisition, behavior
generation, and intelligence aggregation’.105 The extent
to which human and computer’s learning processes can
be comparable can hardly be ascertained, given that hu-
man learning alone cannot be considered to be fully un-
derstood. As for the analogy between ML and human
learning, current ML approaches based on ‘statistical in-
duction over massive training sets’ are viewed to ‘radi-
cally differ’ from human-like learning.106 In this regard,
the pervasive use of the anthropomorphic language, ‘ex-
acerbated by the ML literature itself’,107 has been
criticised for ‘inadvertently promot[ing] misleading inter-
pretations of and beliefs about what AI is and what its ca-
pacities are’ among the general public.108

In computer science, a ‘learning automaton’ refers to a
system that can be trained ‘to associate with each context
the particular action which maximises payoff’.109 If by
learning, one means that a system can improve its perfor-
mance over time based on an in-built feedback mecha-
nism, one can say that computers can learn, but they do

so within the pre-specified rules and boundaries.
However, a more appropriate terminology in the case of
ANNs would be ‘inferring’ a numeric function or ‘fitting’
data into a model.110

(ii) ‘Learned rules’

There is no specific technical definition of a ‘rule’ in ML.
The views cited above111 assume a distinction between
the ‘rules’ determining ML process and the ‘learned rules’
as ML output. The former can refer to instructions on
how to build a model from the input data; the latter can
be understood as an immediate output of ML (a numeric
model derived from the input data based on the ‘given
rules’). Such model can be deemed as ‘learnt rules’ if it
determines how a prediction is generated in supervised
ML. In RL, what is ‘learnt’ (calculated) is a ‘policy’112

which determines which action to take.
Important is that the calculation of the numeric output

through ML is guided113 by the pre-programmed instruc-
tions and setup configurations. In this regard, the
portrayals of ML techniques as ‘self-learning’114 or ‘self-
teaching’ networks115 is not accurate. ML systems are
products of software engineering. For instance, even
though the developers of AlphaGo did not impart to the
system ready-made ‘rules’ as to when to make which
move,116 they provided inputs, including data and com-
putational operators (mathematical functions),117 that
determined how the moves maximising the long-term
reward were computed.

Furthermore, if the ‘learned rules’ refer to the correla-
tions inferred from the training data, it would not be ac-
curate to refer to such correlations as ‘rules’, as long as
the causes behind the revealed regularities are not ex-
posed or as long as it remains unclear why the inferred

102 Plotkin (n 44) 106.
103 See Blok (n 20) 71 (noting that where AI ‘becomes a standard tool
for routine work, the abilities of the average skilled person are assumed
to have improved accordingly [and hence], patents will not be granted if
the invention is obvious to the average skilled person equipped with the
artificial intelligence application, even if the inventor did not use artificial
intelligence’).
104 See generally Ryan Abbott, ‘Everything Is Obvious’ (2018) 66
U.C.L.A. L. Rev. 2.
105 Yingxu Wang and others, ‘Cognitive Intelligence: Deep Learning,
Thinking, and Reasoning by Brain-Inspired Systems’ (2016) 10(4)
International Journal of Cognitive Informatics and Natural Intelligence
1, 2 (with further references).
106 Pat Langley, ‘The Computational Gauntlet of Human-Like
Learning’ 1 <http://www.isle.org/~langley/papers/gauntlet.aaai22.pdf>
accessed 22 September 2021. The paper describes those characteristics of
human learning that ‘provide strong constraints on computer artifacts
designed to exhibit human-like learning’ and concludes that ‘human
learning displays qualities that are seldom addressed by current work on
data-intensive induction’. ibid 4.
107 Epstein and others (n 27) 3.
108 Salles, Evers and Farisco (n 29) 93.
109 PC Bressloff and J Stark, ‘Neural Networks, Learning Automata and
Iterated Function Systems’ in Anthony J Crilly, Rae A Earnshaw and
Huw Jones (eds), Fractals and Chaos (Springer 1991) 145, 146.

110 For instance, in the course of supervised ML an algorithm infers a
model that correlates inputs (independent variables) with outputs (depen-
dent variables). In unsupervised ML an algorithm searches for the best
fitting of the input data (akin to pattern finding). Both types of learning
are guided by objective functions. Bhanu Yerra, ‘Objective Functions
Used in Machine Learning’ (Medium, 2 March 2019) <https://medium.
com/@bhanuyerra/objective-functions-used-in-machine-learning-9653a7
5363b5> accessed 21 May 2021.
111 Above (nn 96-99) and the accompanying text.
112 A ‘policy’ in RL refers to a ‘mapping from perceived states of the en-
vironment to actions to be taken when in those states’. Richard S Sutton
and Andrew G Barto, Reinforcement Learning: An Introduction (2nd
edn, MIT Press 2018) 7 (further noting that, in some cases, the policy can
be represented by ‘a simple function or lookup table, whereas in others it
may involve extensive computation such as a search process’).
113 On (non-)determinism in ML, see below at II.3.
114 See eg Massimo Craglia (ed), Artificial Intelligence. A European
Perspective (Publications Office of the European Union 2018) 64.
115 Curtis EA Karnow, ‘Foreword’ in Woodrow Barfield and Ugo
Pagallo (eds), Research Handbook of Artificial Intelligence and Law
(Edward Elgar 2018) xviii, xx.
116 Peter Remmers, ‘Would Moral Machines Close the Responsibility
Gap?’ in Birgit Beck and Michael Kühler (eds), Technology,
Anthropology, and Dimensions of Responsibility, vol 1 (JB Metzler
2020) 133, 139 (with further references).
117 The core elements of RL are: reward signals (represented by stochas-
tic functions); a value function (specifying which actions are beneficial in
the long run); a policy (which can also be represented by a function); and
a model (predicting next state and next reward, given the current state
and an action). Based on these operators, a set of environment and agent
states, a set of actions taken by the agent, probability of transition from
one state to another under certain action and the immediate reward fol-
lowing the transition from one state to another are computed. Sutton and
Barto (n 112) 7-9.
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correlations may or may not work when applied to new
data.118 Consider the recent achievement of AlphaFold
credited with ‘solving’ the protein folding problem in mo-
lecular biology. The problem of protein folding subsists
in understanding the rules governing the relationship
between the structure of a protein and its amino-acid
sequence. Despite what the media headlines touted,119

AlphaFold has not ‘cracked’ the protein folding problem
– it revealed ‘nothing about the mechanism of folding,
but just predicts the structure using standard machine
learning [. . .] being trained on the 170,000 or so known
structures in the Protein Data Base’.120 Meanwhile, the
‘why’ behind protein folding remains ‘a black box’.121

(iii) The alleged simplicity of given rules vs complexity of
‘learned’ rules

Robert Plotkin argues that computers do not always ‘op-
erate according to the adage “garbage in, garbage
out”’,122 and AI systems can ‘follow [given] simple rules
to discover complex rules’.123 In his book, he refers to GP
as an ‘artificial invention technology’.124

Solving a problem through GP consists of two phases,
namely preparatory steps, and executional steps (the
implementation of an algorithm).125 As defined by Koza
et al., preparatory steps are ‘problem-specific and do-
main-specific steps that are performed by the human user
prior to launching a run of the problem-solving
method’.126 In contrast, executional steps are ‘automati-
cally executed during a run of the problem-solving
method’.127

Furthermore, Koza et al. introduce the concept of an
‘artificial-to-intelligence ratio’ (an ‘AI ratio’), where ‘I’
refers to the knowledge provided by a human expert in a
particular field, and ‘A’ indicates the value added by the
genetic programming.128 Some problems can require ‘a
small amount’ of ‘I’,129 while others can involve ‘non-triv-
ial amount’ of ‘I’.130 Where ‘A’ is high and ‘I’ is low, GP
is considered to have delivered a ‘human-competitive’

result.131 As problems differ in complexity, they can
require varying levels of knowledge and skills in GP.

However, issue can be taken regarding both the con-
cept of ‘artificial-to-intelligence ratio’ and the notion of
‘human-competitive’ results. First, to measure an ‘artifi-
cial-to-intelligence ratio’, one needs to draw a line be-
tween the output of running a GP algorithm and
‘intelligence that is supplied by the human applying the
method to a particular problem’.132 The preparatory
steps in GP include defining ‘the set of terminals [. . .], the
set of primitive functions for each branch of the to-be-
evolved computer program, the fitness measure (for ex-
plicitly or implicitly measuring the fitness of candidate
individuals in the population), certain parameters for con-
trolling the run, a termination criterion and method for
designating the result of the run’.133 As iterative search
techniques,134 genetic algorithms evolve a candidate pop-
ulation according to the given search operators until the
fitness function is satisfied or other termination criteria
apply.135 In this view, ‘the problem-specific preparatory
steps’ done by a human are determinative of the outcome
of implementing an algorithm on a computer. If so, it
appears pointless to split up the two phases to define
which contributes more to the solution.

Second, even if one wanted to compare a human versus
a computer’s contributions in terms of their ‘complexity’,
what would be a suitable objective measure? For instance,
should the complexity of a mathematical function, which
can be both the input and the output of ML, be measured
by its length, the amount of energy consumed by the hu-
man brain as opposed to computational power, or how
many operations are necessary to derive it? One could say
that it is equally simple for a computer to execute instruc-
tions, irrespective of whether it calculates y¼ 2x or
y¼ 10xˆ3þ 4x-2xˆ2þ 777xˆ21. For a human, devising
computational instructions can vary in complexity
depending on the problem to be solved and the level of
expertise.

In GP, the design of a well-suited problem-specific fit-
ness function and selection of the problem representation
and genetic operators are not trivial tasks. In the case of
ANNs, even if a standard algorithm can be applied ‘off
the shelf’, hyperparameters136 need to be attuned by a re-
searcher, and this might or might not be straightforward
depending on the problem at hand.137 Setting the right
hyperparameters for an ANN and defining a value func-
tion in RL are decisive for the computational outcome.
Furthermore, the selection of input data, which predeter-
mines the ‘learned’ correlations, should not be down-
played. The selection and preparation of training datasets
require expertise and a keen understanding of the prob-
lem at hand. Both AphaGo and AlphaFold involved a
team of highly skilled engineers and researchers; in both
cases, a computer alone could not have achieved results
without complex design decisions on the human part.138

118 As discussed later, the absence of ‘ready-made’ knowledge in an
ANN causes its perception as a ‘black box’. See II.4.b.
119 Ian Sample, ‘DeepMInd AI Cracks 50-Year-Old Problem of Protein
Folding’ The Guardian (London, 30 November 2020) <https://www.the
guardian.com/technology/2020/nov/30/deepmind-ai-cracks-50-year-old-
problem-of-biology-research> accessed 21 May 2021; Ewen Callaway,
‘It Will Change Everything. AI Makes Gigantic Leap in Solving Protein
Structures’ (Nature, 30 November 2020) <https://www.nature.com/
articles/d41586-020-03348-4> accessed 21 May 2021.
120 Philip Ball, ‘Behind the Screens of AlphaFold’ (Chemistry World, 9
December 2020) <https://www.chemistryworld.com/opinion/behind-the-
screens-of-alphafold/4012867.article> accessed 21 May 2021. See also
Brigitte Nerlich, ‘Protein Folding and Science Communication: Between
Hype and Humility’ (Making Science Public, 4 December 2020) <https://
blogs.nottingham.ac.uk/makingsciencepublic/2020/12/04/protein-folding-
and-science-communication-between-hype-and-humility/> accessed 21
May 2021.
121 Ball (n 120).
122 Plotkin (n 44) 80.
123 ibid (emphasis added).
124 ibid.
125 Koza and others (n 67) 10.
126 ibid (emphasis added).
127 ibid.
128 Koza and others define ‘AI ratio’ as a ratio ‘of that which is delivered
by the automated operation of the artificial method to the amount of in-
telligence that is supplied by the human applying the method to a particu-
lar problem’. ibid 4 (emphasised in the original).
129 ibid 419, 482.
130 ibid 412.

131 ibid 112.
132 ibid 4.
133 ibid 10.
134 ibid 29.
135 On global and local optima and the role of randomisation in ML,
see below (nn 342-344) and the accompanying text.
136 For an explanation, see above (n 62).
137 Below (n 325) and the accompanying text.
138 This is the authors’ reading of the report by Silver and others (n 98).
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In sum, if instructions provided by a human are deci-
sive for the computational outcome, they are probably
not ‘garbage’139 but rather illustrate the adage that a
genius subsists in making complex ideas simple.140

(iv) The tendency to put a spotlight on an algorithm

As noted by Pat Langley, research papers on automated
discovery ‘typically give the algorithm center stage, but
they pay little attention to the developer’s efforts to
modulate the algorithm’s behavior for given inputs’.141

Such tendency can be observed both in mass media and
research papers. As one commentator points out, while
RL – the approach applied in training AlphaGo – might
be viewed as ‘one of the closest things that looks any-
thing like [Artificial General Intelligence], beautiful de-
mos of learned agents hide all the blood, sweat, and
tears that go into creating them’.142 For research
papers, the tendency to bring an ML system to the fore-
front is, in a way, natural and unavoidable. A paper
should report the results and therefore presents an algo-
rithm and results achieved with it as they are, not the
process that has led to the system design. Usually, the
researcher would not describe how much thinking and
effort was devoted to creating an algorithm before
reaching the version that works, or how many attempts
failed before a model was tuned correctly.

c) Patent law uncertainties revisited

(i) Inventorship

At the outset, it is worth noting that the ‘simplicity’ of ar-
riving at an invention, de lege lata, has not been prejudi-
cial to the genesis or allocation of the inventor’s rights.143

It might simply be impossible to objectively assess in
terms of complexity the mental process of conceiving an
idea – ‘the formation in the mind of the inventor, of [the]
idea of [an] invention’.144 The argument de lege ferenda
that inventor’s rights should not be allocated to a human
applying ‘self-learning’ AI systems appears to be some-
what fairness-based, given the seeming triviality of the
human input relative to the alleged complexity of a
computer’s contribution. However, as clarified in the pre-
ceding section, ML output is the function of human deci-
sion-making in applying ML. Such decision-making can
merit the inventor entitlement under both the criterion of
an intelligent conception of an invention145 and fairness
considerations.

(ii) Inventive step/non-obviousness

When confronted with the allegations regarding the sim-
plicity of human input in solving tasks through ML, one
needs to be aware of the hindsight problem. As a cogni-
tive phenomenon, the hindsight bias refers to a ‘tendency
to judge events to be more predictable, knowable, and
certain in hindsight than in foresight’.146 In patent law,
an invention might, at first sight, appear obvious because,
once ‘a new idea has been formulated, it can often be
shown theoretically how it might be arrived at, starting
from something known, by a series of apparently easy
steps’.147 The EPO methodology stipulates that patent
examiners ‘must be wary of ex post facto analysis [and]
seek to make a “real-life” assessment of [the] relevant fac-
tors’.148 The principle of avoiding the foreknowledge of
an invention is embedded within the ‘problem-solution
approach’,149 which instructs to start the analysis from
the closest prior art reference and formulate the technical
problem addressed by an invention so ‘as not to antici-
pate the solution’.150

Given that the ‘simplicity’ of human input in ML can-
not be alleged in general, the obviousness of inventions
which could or would have been developed with the aid
of ML can only be assessed on a case-by-case basis. As
will be discussed later, solving problems through ML can
involve considerable decision-making.151 Hence, the mere
existence of ML methods applicable to technical prob-
lems, by itself, does not render obsolete the purpose of in-
ventive step assessment to discern whether practitioners
from the relevant technical fields with average knowledge
and skills could or would have arrived at the claimed
invention.

3. ML systems are autonomous,
non-deterministic and unpredictable
Some legal scholars assume that AI is ‘capable of defining or
modifying decision-making rules autonomously’152 and can
‘determine for themselves the means of completing their
goals’.153 AI systems are often depicted as performing ran-
domly. For example, an ANN makes ‘a random guess’ re-
garding the output;154 the training of AlphaGo Zero started
reportedly from ‘completely random behaviour and contin-
ued without human intervention’.155 One legal scholar
submits that AI refers to the ‘so-called non-deterministic
algorithms: computer programs whose function and output

139 Above (n 122) and the accompanying text.
140 Albert Einstein is credited with a saying: ‘Genius is making complex
ideas simple, not making simple ideas complex’. This principle echoes the
maxim ‘truth is simple’, see Thomas W Körner, The Pleasures of
Counting (Cambridge University Press 1996) 192.
141 Pat Langley, ‘The Computational Support of Scientific Discovery’ in
Georgios Paliouras, Vangelis Karkaletsis and Constantine D Spyropoulos
(eds), Machine Learning and Its Applications. ACAI 1999. Lecture
Notes in Computer Science, vol 2049 (Springer 2001) 231, 234.
142 ‘Deep Reinforcement Learning Doesn’t Work Yet’ (Sorta Insightful,
14 February 2018) <https://www.alexirpan.com/2018/02/14/rl-hard.
html> accessed 21 May 2021.
143 See Burk (n 17) 307 ff. On serendipitous inventions, see also below
(n 160) and the accompanying text.
144 As defined in the US case-law: Townsend v Smith 36 F.2d 292, 295
(CCPA 1929).
145 On this criterion, see above (nn 73-75) and the accompanying text.

146 Neal J Roese and James M Olson, ‘Counterfactual Thinking’ in
Lynn Nadel (ed), Encyclopedia of Cognitive Science (John Wiley & Sons
2006) doi: 10.1002/0470018860.s00504.
147 EPO Guidelines for Examination, pt G-VII, s 8 <https://www.epo.
org/law-practice/legal-texts/html/guidelines/e/g_vii_8.htm> accessed 29
July 2021.
148 ibid.
149 The effectiveness of this methodology is not at issue here.
150 Case T 0422/93, decision of 21 September 1995, ECLI:EP:BA:
1995:T042293.19950921, headnote, para 2.
151 Below at II.6.b.
152 Ugo Pagallo and others, ‘The Rise of Robotics & AI: Technological
Advances & Normative Dilemmas’ in Marcelo Corrales, Mark Fenwick
and Nikolaus Forgó (eds), Robotics, AI and the Future of Law (Springer
2018) 1, 6.
153 Ryan Abbott, ‘The Reasonable Computer: Disrupting the Paradigm
of Tort Liability’ (2018) 86 Geo. Wash. L. Rev. 1.
154 WIPO, ‘Background Document on Patents and Emerging
Technologies’ SCP/30/5, para 21 (28 May 2019) <https://www.wipo.int/
edocs/mdocs/scp/en/scp_30/scp_30_5.pdf> accessed 21 May 2021.
155 Silver and others (n 98) 355.
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are not exclusively determined by human creators’.156 A
corollary of such assumptions is the allegedly ‘surprising’ ef-
fect of the output of AI/ML systems.

While the perceived autonomy of AI systems might
have crucial implications for various regulatory frame-
works, such as personal data protection, consumer
protection, transparency and product liability, it poses
distinct issues for patent law. In either case, legal chal-
lenges are triggered by the assumption that AI-based sys-
tems have the capacity to ‘decide’ and that humans have
limited or no control over such decision-making.

a) Patent law uncertainties

(i) Inventorship in relation to a patentable outcome of the
allegedly autonomous or non-deterministic computational
process

The purported autonomy of ML systems can cast doubt
on whether a human applying AI to a problem should be
credited for finding a solution. For instance, Thaler
describes his patented invention – ‘Device for the autono-
mous generation of useful information’ – as a device that
‘allows for the totally autonomous generation of new
concepts, designs, music, processes, discovery, and
problem-solving using recent developments in the area of
artificial neural network (ANN) technology’.157 Relying
on Thaler’s depiction of DABUS, one judge has recently
held that he is ‘simply recognising the reality by according
artificial intelligence the label of “inventor”’.158

It is worth noting here that the (perceived) randomness159

of a process leading to a patentable invention, de lege lata,
has not been a material factor for the genesis or allocation
of the inventor’s rights. Consider, for instance, serendipitous
solutions160 or ‘a-ha’ moments (which are, nevertheless,
regarded to be preceded by the orientation, preparation and
incubation stages of creative thought161). Uncertainty de
lege ferenda can arise if one assumes that the task of finding
a solution to a problem ‘is handed over to the non-
deterministic evolution of the algorithm’,162 and that ‘the
nexus between the human contribution to the search process

and the ultimate finding of a solution is severed during the
AI’s evolution and transformation’.163 The view that AI sys-
tems can yield solutions that ‘cannot be predicted by pro-
grammers, operators, or any other entities involved’164 led
some legal scholars to argue that the allocation of patent
rights to a human might no longer be justified.165 Accounts
crediting ML systems with making ‘brilliant moves’ not un-
derstood by humans166 and delivering ‘flummoxing’167

results that ‘[a]lmost no human pro would’ve thought of
it’168 might create an impression of a computer’s ‘cogni-
tive superiority’ and a dissipating causal link between
the human input and computational output.

In other words, the contention is that ‘non-determinis-
tic’ algorithms imply the lack of causality between human
input and computational outcome. If determinism is de-
fined as a ‘doctrine that all phenomena are causally deter-
mined by prior events’,169 even switching on a computer
can be viewed as a ‘prior event’ that causes computation.
However, if a problem is then solved by the computer ‘on
its own’, one would doubt whether allocating the inven-
tor’s rights to a human is justified. Even though it was
already clarified under Assumptions 1 and 2 that ML
systems do not solve problems ‘by themselves’, a technical
perspective on a computer’s ‘autonomy’ and the relation-
ship between determinism, randomisation and human
guidance in ML would be welcome.

(ii) The assessment of inventive step in situations where
the outcome of a randomised ML process is claimed within
an invention

Expectations of success of a skilled person
Even if human decision-making in ML cannot be ex-
cluded, the mixed contribution by allegedly ‘autono-
mous’ or ‘non-deterministic’ AI systems and humans in
the process of solving a technical problem raises the
question of how such ‘autonomy’ or ‘non-determinism’
should be factored into the assessment of inventive
step. Under the EPO’s approach, for an invention to be
deemed obvious, it is sufficient to establish that a
skilled person would have arrived at the invention fol-
lowing the prior art teaching with a reasonable expec-
tation of success.170 Notably, where a technique
involves randomness (e.g. mutagenesis) and where
chance can play ‘a key role in the achievement of suc-
cess, as no form of control can be exerted over the

156 Dornis (n 101) 4 (with no references).
157 US patent 5,659,666 ‘Device for the autonomous generation of use-
ful information’ (emphasis added).
158 Thaler v Commissioner of Patents (n 38) para 126. Some scholars
assume that ‘[w]e are facing a new era of machines “acting” indepen-
dently, with no human being behind the inventive act itself’ (Yanisky-
Ravid and Liu (n 32) 2216), and that AI systems ‘take over the active
part of cognitive processes [and] are not under the full control of a hu-
man user’ (Jan-Hendrik Heinrichs, ‘Artificial Intelligence in Extended
Minds: Intrapersonal Diffusion of Responsibility and Legal Multiple
Personality’ in Birgit Beck and Michael Kühler (eds), Technology,
Anthropology, and Dimensions of Responsibility, vol 1 (JB Metzler
2020) 159, 171).
159 In the sense of happening by chance rather than according to a par-
ticular method. Cambridge Dictionary, ‘Random’ <https://dictionary.
cambridge.org/dictionary/english/random> accessed 21 May 2021.
160 For instance, decaffeinated coffee was accidentally discovered in
1904 and patented in 1906 (US patent 897,840 ‘Preparation of coffee’,
granted on 1 September 1908). Drug discovery was dominated until
1980 by ‘random screening’ that relied primarily on serendipity. See
Giovanni Dosi and Mariana Mazzucato, ‘Introduction’ in Mariana
Mazzucato and Giovanni Dosi (eds), Knowledge Accumulation and
Industry Evolution. The Case of Pharma-Biotech (Cambridge University
Press 2006) 1, 4. See also Burk (n 17) 308 (discussing in the context of AI
the doctrine of simultaneous conception and reduction to practice and
conception as recognition of an invention in the case of serendipitous or
unforeseen inventions).
161 Dennis Coon and John O Mitterer, Introduction to Psychology:
Gateways to Mind and Behavior (Cengage Learning 2012) 292.
162 Dornis (n 101) 22-23.

163 ibid 23.
164 Yanisky-Ravid and Liu (n 32) 2225 (emphasis added).
165 ibid 2228 (noting that human ownership over inventions developed
by AI systems is ‘questionable’). See also Vertinsky and Rice (n 31) 575
(assuming that ‘machines [. . .] originate novel solutions not imagined by
their human operators, transforming the invention process in ways not
easily accommodated within the current US patent system’).
166 Cade Metz, ‘How Google’s AI Viewed the Move No Human Could
Understand’ (WIRED, 14 March 2016) <https://www.wired.com/2016/03/
googles-ai-viewed-move-no-human-understand> accessed 21 May 2021.
167 ibid (further noting that David Silver, researcher at DeepMind who
led the development of AlphaGo, ‘had no more insight’ into the moment
than anyone else witnessing the match when move 37 arrived).
168 Matt McFarland, ‘What AlphaGo’s Sly Move Says About Machine
Creativity’ The Washington Post (Washington, 15 March 2016) <https://
www.washingtonpost.com/news/innovations/wp/2016/03/15/what-alpha
gos-sly-move-says-about-machine-creativity/> accessed 21 May 2021.
169 Albert Ellis, Mike Abrams and Lidia Abrams, Personality Theories.
Critical Perspectives (SAGE Publications 2009) 245.
170 Bostedt and others (n 94) 200 (with further references).
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[course of] events’,171 it is not considered ‘appropriate
to attempt to evaluate the expectation of success’.172

Accordingly, the assessment of inventive step in situa-
tions where the output of an ML method involving ran-
domisation is claimed within an invention raises a two-fold
question: (i) whether a human can exercise control over
achieving such output; and (ii) if so, how the use of random-
isation can affect a skilled person’s expectations of success
in solving a problem through ML (provided that the rele-
vant skilled person is versed in ML173).

A surprising effect of an invention

Furthermore, in some jurisdictions, a ‘surprising’ or
‘unexpected’ effect of an invention over the prior art
can be considered as an indication of an inventive step
(non-obviousness). The Patent Cooperation Treaty
Examination Guidelines instruct that, in situations
where the claimed invention holds a considerable tech-
nical value attributed to one or more of the claimed
technical features and provides an advantage over the
prior art ‘which is new and surprising [. . .], the exam-
iner should be hesitant in raising a negative determina-
tion that such a claim lacks inventive step’.174 Under
the EPO approach, an unexpected effect over the prior
art might confirm an inventive step.175

The developers of a NASA antenna report that the an-
tenna ‘evolved’ by applying an evolutionary algorithm
had ‘an unusual organic-looking structure, one that
expert antenna designers would likely not produce’.176 As
pictured by Plotkin, to produce a car frame, one ‘can just
provide an airflow equation’ to an AI system.177 Later,
when assessing that car frame under the non-obviousness
standard, a patent examiner would determine, ‘quite cor-
rectly, that [the] car frame would not have been obvious
to an automotive engineer of ordinary skill [because] the
frame has a shape that is surprising to automotive
engineers and violates the principles [they] learned in
engineering school [which] makes it a classic case of a
nonobvious design’.178 The contention is, thus, that ‘sur-
prising’ technical solutions resulting from the application
of ML can be deemed inventive (non-obvious) under the
existing legal standard, even where they, in fact, resulted

from the application of a routine technique and ‘merely
by applying ordinary skill’.179

(iii) The fulfilment of the sufficiency-of-
disclosurerequirement in situations where an ML method
involving randomisation is claimed as an invention

The requirement of sufficiency of disclosure means that
an invention needs to be disclosed in a patent application
in a manner reproducible by a skilled person without un-
due burden.180 At issue is whether randomisation in ML
poses a challenge to fulfilling this requirement in
situations where an ML-based method is claimed as an
invention.181 An analogy with ‘non-deterministic’ bio-
technological inventions182 was drawn in this regard. In
particular, it was hypothesised that ML-based techniques
face a similar challenge regarding reproducibility and
plausibility of an invention as in the case of biological
materials which ‘variability is unavoidable’.183 The
European patent system, for instance, provides for a de-
posit system for such inventions.184 Before the necessity
of a similar instrument can be contemplated for inven-
tions claiming ML techniques, it should be clarified how
the use of randomisation in ML can affect the reproduc-
ibility of ML methods.

Before the above-outlined legal implications can be
examined further, let us clarify in what sense ML output
might be ‘unpredictable’, if at all.

b) A technical perspective on autonomy, (un)predictability
and (non-)determinism of ML systems

(i) The term ‘autonomy’ is used mistakenly in the sense of
‘automation’

In everyday discourse and technical literature on AI, the
terms ‘autonomy’ and ‘automation’ are sometimes used
interchangeably.185 However, there is a significant con-
ceptual and technical difference.

171 Case T 0737/96, decision of 9 March 2000, ECLI:EP:BA:
2000:T073796.20000309, point 11 of the Reasons (emphasis added).
The invention at issue related to astaxanthin-producing yeast strains,
methods for their preparation, methods for their cultivation and methods
for isolating the astaxanthin from the yeast cells; the technical problem to
be solved was defined as ‘the provision of Phaffia rhodozyma mutants
producing increased yields of the carotenoid pigment astaxanthin’. ibid
point 5 of the Reasons.
172 ibid point 11 of the Reasons.
173 On factoring ML skills into the definition of a skilled person, see
above (nn 85-89) and the accompanying text.
174 ‘Patent Cooperation Treaty (PCT) International Search and
Preliminary Examination Guidelines’ PCT/GL/ISPE/10 para 13.17 (30
April 2020) (emphasis added).
175 Case T 181/82, decision of 28 February 1984, ECLI:EP:BA:
1984:T018182.19840228.
176 Jason D Lohn, Gregory S Hornby and Derek S Linden, ‘An Evolved
Antenna for Deployment on Nasa’s Space Technology 5 Mission’ in
Una-May O’Reilly and others (eds), Genetic Programming Theory and
Practice II, vol 8 (Springer 2005) 305, 311. See Plotkin (n 44) 80 (assum-
ing that an AI system can ‘discover complex rules and patterns that its
human programmer never imagined’).
177 Plotkin (n 44) 105.
178 ibid 106 (emphasis added).

179 ibid (further observing that ‘[b]ut little does the patent examiner
know you were able to produce this surprising result merely by applying
ordinary skill because you used software that doesn’t shy away from try-
ing designs human engineers of ordinary skills have mental roadblocks
against trying’ (emphasised in the original)). Whether the assumption
that a car frame can be generated by AI by ‘merely applying ordinary
skills’ is not at issue here. On the decision-making involved in applying
ML, see below at II.6.
180 EPC, art 83. The reproducibility requirement was developed in the
case-law of the EPO. See case G 1/03, decision of 8 April 2004, ECLI:EP:
BA:2004:G000103.20040408, point 2.5 of the Reasons (with further
references to case-law). Under the EPO’s approach, reproducibility of an
invention is a material factor for the requirement of sufficiency of disclo-
sure if the technical effect is expressed as a technical feature of the claim,
since such features characterise the claimed subject matter. See case T
1079/08, decision of 19 April 2010, ECLI:EP:BA:2010:T107908.20100
419. In contrast, where an effect is not expressed in a claim, its reproduc-
ibility would be considered under the inventive step assessment.
181 Core elements of ML (algorithms, numeric models and computer
programs) are excluded from patentability, insofar a patent application
relates to such subject matter ‘as such’. EPC, art 52. See also EPO
Guidelines for Examination, pt G-II, s 3.3.1 <https://www.epo.org/law-
practice/legal-texts/html/guidelines/e/g_ii_3_3_1.htm> accessed 21 May
2021.
182 WIPO (n 154) para 72.
183 ibid.
184 EPC, rule 31.
185 An example of commonplace misuse of the term ‘AI autonomy’ is
one of the top applications of ML – ‘autonomous driving’, which should
be more accurately called ‘automated driving’. On this point, see Kim (n
20) 447, note 61.
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Autonomy implies self-governance and self-determina-
tion,186 the existence and the ability to exercise free will
concerning own decision-making and behaviour.187 To
what extent humans and computers can be comparable in
this regard has been a contested issue and perhaps cannot
be stated conclusively.188 While no universally accepted
definition of autonomy exists,189 philosophers distinguish
between two aspects: autonomy as ‘the negative condition
of freedom from the external constraints’190 and ‘the posi-
tive condition of a self-determined will’.191 One could say
that neither humans nor computers are free from absolute
constraints, such as gravity. However, as far as man-made
rules are concerned, humans have in many situations at
least a theoretical possibility not to comply as a manifesta-
tion of self-determination (whether or not non-compliance
is a rational choice is a different question). In contrast,
computers cannot ‘decide’ to violate human-imposed con-
straints – in other words, constraints in programming are
inherently inviolable. In computer science, an ‘automaton’
means a machine or mechanism that either reacts to a ‘pre-
determined set of rules or adapts to the environmental
dynamics in which it operates’ to accomplish a goal.192 In
either case, it is bound by the pre-programmed instruc-
tions.193 The interaction with the real world perceived
through the sensors might cause the loss of control over an
AI system by its designer or user, but the lack of control
would be attributed to the environment’s unpredictability
and not to a computer’s capacity for ‘self-determination’.

Automation means that a task can be carried out with-
out direct human intervention during its implementa-
tion.194 For that, however, the computational process
needs to be conceptualised and configured by a human in
the first place. AI systems can automate operations such as
data processing or mathematical optimisation to the extent
that such tasks can be modelled as computational processes
executed without direct human intervention during the
implementation phase.195 The conceptualisation phase
includes identifying a problem to be solved through

computation, problem abstraction (i.e. reducing a problem
to the elements and relations necessary for understanding
and solving it) and its formal representation (e.g. mathe-
matical expressions). While computer programming
becomes increasingly automated, conceptualisation is car-
ried out by humans, and it is difficult to see how computers
can substitute human intention, aspiration, insight and
decision-making in the conception phase.196

In popular media, one comes across anthropomorphic
depictions of AlphaGo, such as:

drawing on all its other training with millions of
moves generated by games with itself, AlphaGo
came to view Move 37 in a different way. It came
to realize that, although no professional would play
it, the move would likely prove quite successful.
It discovered this for itself [. . .] through its own pro-
cess of introspection and analysis. [. . .] AlphaGo
learned to discover new strategies for itself, by play-
ing millions of games between its neural networks,
against themselves, and gradually improving. [. . .]
In other words, AlphaGo knew this was not a move
that a professional Go player would make.197

While it is understandable that popular media outlets use
language that appeals to a broad audience, such depiction
of AlphaGo can be confusing for the lay audience. The
use of anthropomorphic language – ‘came to view’, ‘came
to realise’, ‘discovered for itself’ – approximates the AI
performance to cognitive processes and creates an impres-
sion of an independent agency. At the same time,
researchers point out that vesting computers with ‘self-de-
termination’, ‘independence’, ‘freedom’ and the ability to
choose a course of action ‘for own reasons’,198 is mislead-
ing199 and ‘potentially dangerous’.200 In technical terms,
the system’s ‘realisation’ and ‘discovery’ subsist in calcu-
lating the probability of whether a certain move will be
successful based on the given reward and value functions.

ML systems might come across as ‘non-deterministic’ or
‘random due to a lack of understanding of cause-and-effect
relationships and a lack of resources for controlling sources
of variability’.201 Such perception of ML can illustrate
the notion of ‘deterministic chaos’ where deterministic
laws govern seemingly random systems.202 In reality,
the term autonomy used in the context of computers
‘does not mean that machines are free in the choices that
they make [because] the conditions for deciding on how
to proceed are carefully set by human actors’.203

186 The word is derived from the Greek autos (self) and nomos (law).
Online Etymology Dictionary, ‘Autonomy’ <https://www.etymonline.
com/word/autonomy> accessed 21 May 2021.
187 Sara Goering, ‘Autonomy’ in Carl Mitcham (ed), Encyclopedia of
Science, Technology, and Ethics (Macmillan Reference 2005) 155, at
155.
188 Among other aspects, the biological basis of free will remains an
open-ended inquiry. On this subject, see eg Theodosius Dobzhansky, The
Biological Basis of Human Freedom (Columbia University Press 1956);
Chris Willmott, Biological Determinism, Free Will and Moral
Responsibility: Insights from Genetics and Neuroscience (Springer
2016); Peter Tse, The Neural Basis of Free Will: Criterial Causation
(MIT Press 2013).
189 Remmers (n 116) 139 (observing that defining ‘autonomy’ is ‘a com-
plicated affair’).
190 Goering (n 187) 155 (with further references).
191 ibid.
192 John Oommen and Sudip Mistra, ‘Cybernetics and Learning
Automata’ in Shimon Y Nof (ed), Springer Handbook of Automation
(Springer 2009) 221, at 221.
193 A computer might break the default rules given certain conditions,
but it would still be bound by the pre-programmed instructions defining
such conditions; an accidental ‘violation’ can occur if the programmer
made a mistake in defining the constraints.
194 See eg Shimon Nof, ‘Automation: What It Means to Us Around the
World’ in Shimon Y Nof (ed), Springer Handbook of Automation
(Springer 2009) 13, 22.
195 Gopinath Rebala, Ajay Ravi and Sanjay Churiwala, An
Introduction to Machine Learning (Springer 2019) 1 (defining AI as ‘a
field of computer science that studies algorithms and techniques for auto-
mating solutions to complex problems that are hard to program using
conventional programming methods’).

196 As explained above at II.1.b, humans not only state a problem but
conceive a problem-solving approach.
197 Metz (n 166) (quoting David Silver, one of the developers of
AlphaGo) (emphasis added).
198 Remmers (n 116) 139 (emphasised in the original).
199 ibid (further noting that such depictions divert attention from ‘genu-
ine issues’).
200 Watson (n 29) 434.
201 Alkan Donmez and Johannes A Soons, ‘Impacts of Automation on
Precision’ in Shimon Y Nof (ed), Springer Handbook of Automation
(Springer 2009) 117, 119 (emphasis added) (further pointing out that a
closer examination can reveal that seemingly random results are deter-
mined by factors imperceptible to an observer).
202 Britannica, ‘Chaos Theory’ <https://www.britannica.com/science/
chaos-theory> accessed 21 May 2021.
203 Merel Noorman and Deborah G Johnson, ‘Negotiating Autonomy
and Responsibility in Military Robots’ (2014) 16 Ethics Inf Technol 51,
53.
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(ii) A ‘decision’ as the choice of an option from a set of
possibilities

If AI systems do not have autonomy in decision-making
in the sense of ‘self-determination’ free from the human-
imposed constraints, what does a ‘decision’ mean in the
ML context?

There is no particular technical definition of a ‘deci-
sion’ or ‘decision-making’ in ML. While the HLEG-AI
defines AI as systems that can ‘reason’ and ‘decide’,204

it notes that ‘AI researchers use mostly the notion of ratio-
nality [to refer] to the ability to choose the best action to
take in order to achieve a certain goal, given certain crite-
ria to be optimized and the available resources’.205 Thus,
in general terms, a ‘decision’ can then be understood
as the choice of the most suitable option from a set of pos-
sibilities, given the instructions.206

(iii) ‘Decision-making’ of AI systems is a function of the
decision-making of their designers

In a policy document, one comes across statements that
‘AI-based products can act autonomously by perceiving
their environment and without following a set of pre-de-
termined [. . .] instructions, [whereby] their behaviour is
constrained by the goal they are given and other relevant
design choices made by their developers’.207 ‘Without fol-
lowing a set of pre-determined instructions’ means in this
context that the human does not provide explicit instruc-
tion, e.g. ‘in situation A, perform action B’, but a system
calculates which action is more optimal based on the
given mathematical functions and data. One could say
that the inferred ‘rules’ or ‘decisions’ as to which action
to take are not provided explicitly and directly by the hu-
man user. For instance, instead of being programmed to
‘turn left if there is a wall’, a system’s performance is
based on the probability estimation, e.g. based on the
training data, the probability of succeeding is 35 per cent
if turning right and 65 per cent if turning left. Such proba-
bilities result from complex mathematical calculations in-
volving numerous features and variables guided by the
objective function. While an ML model performs in a
way it was trained to perform, its performance is not pre-
defined ex ante explicitly and directly by the designers;
instead, it is numerically derived from training data
through mathematical optimisation, the process set up
purposefully and methodically by humans.

Thus, contrary to the assumption that ML-based sys-
tems can have ‘freedom to decide which path to take to
achieve the given goal’,208 there is no decision made by a
computer in the sense of ‘freely choosing’ computational
steps. A ‘decision’ as to whether this weight should be
smaller or bigger than it was in the previous iteration
depends on the optimisation algorithm.209 A ‘decision’ in
the model optimisation is, thus, nothing more than purely
mathematical calculations based on the given functions.
In GP and EAs, what is ‘decided’ is which candidate solu-
tion will survive to the next generation or be mated for re-
combination or mutation. Such choices are made based
on the selection operators and the fitness values of the
population individuals (solution candidates).

A computer does not have a choice whether to perform
computations or not, or whether to deviate from the given
instructions. Where an RNG is used, there is no freedom
for a computer to select a ‘random’ number other than
what was ‘seeded’ by a human.210 Neither do quantum
computers have the freedom to decide but can only re-
spond to the signals from the external environment (and
one might further ponder to what extent the environment
is deterministic). In this regard, the depiction of ML tech-
niques as ‘self-learning’ or ‘self-teaching’ networks211 is
inaccurate.212

The bottom line is that the ‘decision-making’ of AI sys-
tems is a product of the decision-making of their design-
ers. Consider an example where one tries to understand
why a self-driving car caused an accident. As one com-
mentator explains, the true answer will be not because a
car ‘decided’ to do so, but because ‘it applied a transpar-
ent and deterministic computation using the values of its
parameters, given its current input, and this determined
its actions’, whereby ‘those particular parameters are the
result of the model that was chosen, the data it was
trained on, and the details of the learning algorithm that
was used’.213

(iv) ML output is predictable

If ‘predictable’ means that something happens in a way
that one expects,214 ML algorithms and models cannot be
viewed as delivering ‘unpredictable’ outcomes. First of
all, the task for which an algorithm is deployed or a
model is developed is known upfront. Second, the process
of deriving the output is also known and transparent. At
the heart of ML is the process of optimising an objective
function and, even if the exact numeric values optimising
the objective function might be unknown ex ante, it is cer-
tain that such values will be derived based on input data
according to an algorithm and predefined configurations,
such as model hyperparameters in ANNs, or mutation
and recombination operators in GP. Given that

204 HLEG-AI (n 45) 7 (defining AI as ‘systems designed by humans that,
given a complex goal, act in the physical or digital world by perceiving
their environment, interpreting the collected structured or unstructured
data, reasoning on the knowledge derived from this data and deciding
the best action(s) to take (according to pre-defined parameters) to achieve
the given goal’ (emphasis added)). Furthermore, a ‘learning rational AI
system’ is depicted as ‘a rational system that, after taking an action, eval-
uates the new state of the environment (through perception) to determine
how successful its action was, and then adapts its reasoning rules and de-
cision making methods’. ibid 3.
205 ibid 1-2 (emphasis added).
206 For instance, if the information derived through sensors is that the
floor is dirty, the best action (‘decision’) by an ML-based system for auto-
matic floor cleaning would be to activate the cleaning, otherwise the best
action would be to stay still. HLEG-AI (n 45) 3. The detection of whether
the floor is dirty or not depends on how an ANN model was trained.
ibid 4.
207 European Commission, ‘Report on the safety and liability implica-
tions of Artificial Intelligence, the Internet of Things and robotics’
COM(2020) 64 final 6, note 34 (emphasis added).

208 HLEG-AI (n 45) 7 (emphasis added).
209 Training an ANN is often based on the gradients of the error that an
ANN makes.
210 For a detailed explanation, see below (nn 220-223) and the accom-
panying text.
211 Karnow (n 115) xx.
212 On the (non)-determinism in ML, see below at II.3.b.v.
213 Dallas Card, ‘The “Black Box” Metaphor in Machine Learning’
(Towards Data Science, 5 July 2017) <https://towardsdatascience.com/
the-black-box-metaphor-in-machine-learning-4e57a3a1d2b0> accessed
21 May 2021.
214 Cambridge Dictionary, ‘Predictable’ <https://dictionary.cambridge.
org/dictionary/english/predictable> accessed 21 March 2021.
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computers cannot violate instructions,215 there is nothing
fundamentally unpredictable about the computational
output. The application of randomisation does not make
the outcome unpredictable. In ANNs, a good training
setup would yield quite similar models, no matter how
initial weights are randomised. In GP, the output can be
more sensitive to randomisation,216 but it is ‘expected’ be-
cause it is known how the optima are to be found within
the given search space.

If predictability is understood as ‘the state of knowing
what something is like’,217 one could say that where
ANNs or EAs are applied in technical design and engi-
neering, the exact visual representation when numeric
values are converted into the attributes of a technical
design might not be imagined before implementing an
algorithm and might perhaps cause a surprising effect.218

However, one would argue that such visual representa-
tion might be equally surprising if humans had completed
the same computations on paper. To emphasise, every-
thing that a computer does – be it inferring a function
from the input data according to an objective function or
evolving the fittest solution given the optimisation param-
eters – can be done by a human capable of performing
mathematical calculations without a computer, except for
it would take a prohibitively long time. If humans can
perform the same computational operations and arrive at
the same numeric values, one cannot say that such values
are ‘unpredictable’.

(v) (Non-)deterministic algorithms in computer science

In computer science, an algorithm is deterministic if, given
the same input, the output of implementing an algorithm
is the same. A truly non-deterministic computational pro-
cess would be one where choices among possible succes-
sive computational states are executed subject to no
predefined conditions. As researchers point out, ‘in any
random process the presence of deterministic computa-
tional structures can never be ruled out’ and ‘complete
randomness is an information theory abstraction
only’.219

Two methods are currently used to introduce random-
ness in computation – physical and computational.220

Physical methods use naturally occurring sources of en-
tropy (such as nuclear decay or atmospheric noise);221

computational methods use an algorithm that generates a
strand of numbers from an initial ‘seed’222 serving as an
input to a mathematical function.223 The latter type is
also known as ‘pseudo-random’ number generators since
the ‘seed’ is chosen by a human, while a mathematical
function controls the process of generating numbers. Such

method is a state-of-the-art technique most commonly ap-
plied in ML today. Both physical and computational
methods are deterministic in the sense that the same input
would produce the same outcome (which, in the case of
natural sources of entropy, might be difficult or impossi-
ble to ensure in practice). In neither case can a computer
‘decide’ by itself to choose a different number.

The key reason for applying randomisation is that the
route to the solution (optimum) can be shorter with dif-
ferent starting points.224 Therefore, when implementing
an algorithm, researchers usually try different initial con-
ditions because the search result can depend on the start-
ing point.225 Very complicated problems (‘NP-Hard
problems’) cannot be solved with the current computer
power in a reasonable time. Non-deterministic algorithms
do not guarantee to find the optimum, but they can pro-
vide a near-optimum solution within a suitable period.
To emphasise, there is nothing extravagant about what
an RNG does – programmers could select random num-
bers manually (by rolling dice, for example), but that
would be overwhelming and inefficient, given how many
random numbers might be required.

(vi) Randomisation and reproducibility

The output of implementing the same algorithm will dif-
fer if an RNG produces different numbers, which can oc-
cur if, for instance, an algorithm was executed at two
different points of time and the timestamp served as the
‘seed’. However, if the function and the seed are identical,
then the sequence of generated random numbers will
be the same. Consider the example of the initialisation
of weights in an ANN coded in Python as w¼numpy.ran-
dom.randn. Even though the code does not specify the ex-
act number, the computer will extract a mathematical
function from the library that would initialise the weights
in response to this instruction. On the outside, this may
look like a ‘random’ process, but from a library writer’s
perspective, or the designer of the random generator pro-
gram, the process is neither random nor unexplainable.
Libraries get modified and updated, which can be one of
the factors of model irreproducibility. However, if the
same library version is used and other conditions are
observed, the same outcome can be obtained. RNGs are
also broadly applied in GP, particularly in the initialisa-
tion of the population, the recombination of solutions,
selection and mutation.226 All these instances are

215 As explained above (nn 192-193) and the accompanying text.
216 On global and local optima in GP, see below (342-344).
217 Cambridge Dictionary, ‘Predictability’ <https://dictionary.cam
bridge.org/dictionary/english/predictability> accessed 21 March 2021.
218 Above (nn 176-178) and the accompanying text.
219 Wang and others (n 105) 7-8.
220 Shri VK Jain, Cryptography and Network Security (Khanna Book
Publishing 2017) 251-252.
221 Luis L Bonilla, Mariano Alvaro and Manuel Carretero, ‘Chaos-
based True Random Number Generators’ (2016) 7 J Math Industry 1.
222 A typical example is a timestamp. If no function and seed are speci-
fied, the number generation will depend on a library.
223 A common pseudorandom generator uses the function x_(nþ1) ¼ (a
* x_n þ c) mod (m), where x_0 is the seed and a, c < m are numbers de-
fined by the RNG. As long as one has the seed x_0, it is possible to repli-
cate the conditions for generating the same random numbers.

224 Optimisation algorithms are based on the same principle as the
‘warm-cold’ game, where one searches for a hidden object guided by
feedback based on the proximity to the goal. Even though in principle,
the desired goal can be reached from any position (provided that it is lo-
cated within the search space), the choice of the starting location can af-
fect the length and the route of the search process.
225 The following example can illustrate that the initial position in ran-
domisation is important. Assume our goal is to reach the highest peak of
the Alps. The initial conditions are: we are dropped somewhere in the
Alps (the random initialisation), we do not have the full map of the Alps,
and we cannot see. Given these constraints, we can make our way by try-
ing all directions that go upwards. We can use only the information we
can perceive in our immediate vicinity to make the best guess. Even if we
always make the best ‘local’ decision (the upward direction), the path
could turn out to be leading us farther away from the actual peak.
226 On the application of RNGs in GP/EAs, see Ivan Zelinka and others,
‘Do Evolutionary Algorithms Indeed Require Random Numbers?
Extended Study’ in Ivan Zelinka and others (eds), Prediction, Modeling
and Analysis of Complex Systems. Advances in Intelligent Systems and
Computing, vol 210 (Springer 2013) 62.
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deterministic and reproducible as long as an RNG is
known and the initial seed is fixed.

Conditions of reproducibility of ML models are spe-
cific to an algorithm and a technique applied. If one keeps
due records of all relevant information – the algorithm’s
code, the RNG used and the seed for an RNG, etc. – the
output of ML methods is completely reproducible. As for
the training data, it might be sufficient to describe the
training dataset (size, selection criteria, etc.) to build an-
other model with comparable performance (in terms of
accuracy, precision, etc.) as the original model, without
providing the actual training dataset used to train the
original model.

(vii) Randomisation, human control and researchers’
expectations of success

ML algorithms, such as backpropagation and EAs, are
based on optimisation through iterative search guided by
an objective function. In other words, if the optimisation
time were unlimited, the optimum could be found irre-
spective of the particular random numbers – even random
search would find the optimum if it had infinite time,
provided such optimum or optima exist within the given
search space. Even though the training of AlphaGo in-
cluded randomisation, success was determined by how
the computational process was set up by researchers, in-
cluding the value and reward functions, according to
which the probability of successful moves was estimated.

The relationship between randomisation and research-
ers’ expectations of success is not straightforward.
Randomisation does not guarantee that the optimum
will be found, no matter what. Applying the wrong ML
method to a problem will not lead anywhere; an
algorithm can get ‘stuck’ in a local optimum.227

Randomisation is a part of ML, but it requires expert
knowledge of ML and understanding of the problem at
hand to configure a computational process.228 In general,
one can be more confident if a technique was successfully
applied in the past to a problem with similar mathemati-
cal properties. Whether the use of randomisation can in-
crease a researcher’s confidence in solving a problem is
highly individual to the respective application, given that
success usually depends on multiple factors.

c) Patent law uncertainties revisited

(i) Inventorship

In view of the foregoing, the contention that ‘neither pro-
gramming nor data training will directly effectuate or
shape the outcome of the search’229 does not hold. Quite
the opposite, it is precisely the inputs and the overall com-
putational set-up that ‘shapes’ the outcome of ML. Given
that randomisation does not indicate the absence of hu-
man guidance and decision-making in ML, the assump-
tion that inventing is ‘handed over’ to non-deterministic
ML systems appears unfounded.

Neither does there seem to be a reason why predictabil-
ity of ML output should be a material factor for allocat-
ing inventor’s rights de lege ferenda in situations where
application of ML might lead to a patentable invention.
First, this criterion would be contrary to the very notion
of invention as a solution to a problem230 – a goal that is
not ‘immediately attainable’.231 Second, predictability of
results and human guidance are not linearly related: even
a carefully set up process, such as a scientific experiment
conducted according to a study protocol, can produce
results that might not be envisaged by researchers ex
ante.232 The unpredictability of ML output could cast a
normative doubt as to whether the inventor’s rights
should be allocated to a human if it could indicate the
computer’s ability to generate ‘innovative outcomes inde-
pendently, rather than merely by following digital
orders’.233 As clarified in this and the preceding sections,
such contention is unfounded as far as current ML techni-
ques are concerned. The fact that the precise numeric val-
ues are unknown before implementing an ML algorithm
is not more relevant for the allocation of inventor’s rights
than in cases where other mathematical optimisation
methods or model-based techniques are applied in techni-
cal problem-solving.

(ii) The assessment of expectations for success as a factor of
inventive step/non-obviousness

Expectations of success of a skilled person
In contrast to biological processes where, ‘as in a lottery
game, the expectation of success always ranged irratio-
nally from nil to high’,234 the use of randomisation in ML
does not appear to exclude the possibility of assessing a
skilled person’s expectations of success. AI systems are
about configuring multiple elements in view of the
pursued objective – once the elements are configured
correctly, one would have reasonable expectations of
success. Randomisation can affect the duration and the
computational route but not the existence of optimum or
optima within the given search space. Thus, expectations of
success would depend on the ability of a skilled person to
configure the ‘right’ computational setup to find them.
Accordingly, in situations where the claimed invention could
have been developed by applying ML, it needs to be assessed
whether a skilled person235 following the prior art teaching
would have applied an ML method in that particular way
that would lead to the claimed invention. As will be dis-
cussed later, there can be substantial room for decision-
making preceding the implementation of an algorithm,

227 This can happen because an algorithm searches for the global opti-
mum without the ‘full picture’, making decisions based on the ‘local’ in-
formation, as the example of searching for the highest peak of the Alps
illustrates (above n 225).
228 As discussed more in detail below at II.6.b.
229 Dornis (n 101) 22.

230 There is no statutory definition of an invention under international
or European patent law. Under European patent law, an invention is un-
derstood as a technical solution to a technical problem, which is reflected
in the so-called ‘problem-solution’ approach to the inventive step
assessment.
231 George Polya, Mathematical Discovery: On understanding, learning,
and teaching problem solving (John Wiley & Sons 1962) 117.
232 Burk (n 17) 316 (observing that ‘[t]he fact that the output may be
unexpected or unpredictable does not remove human causality from their
operation’).
233 Yanisky-Ravid and Liu (n 32) 2220.
234 Case T 0737/96, decision of 9 March 2000, ECLI:EP:BA:
2000:T073796.20000309, point 11 of the Reasons.
235 On factoring ML skills into the definition of a skilled person, see
above (nn 85-89) and the accompanying text.
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which might pose a challenge regarding how the obvious-
ness of such decisions can be objectively assessed.236

A surprising effect of an invention

Whether an effect is surprising or expected needs to be
assessed vis-à-vis the relevant prior art on a case-by-case
basis. Therefore, it cannot be alleged across the board
that ML techniques generate inventive (non-obvious) sol-
utions because they are ‘surprising’ in the abstract. Under
the EPO approach, a surprising effect in the case of chem-
ical inventions can be demonstrated by way of a compar-
ative test with the structurally closest prior art to the
subject matter of the invention:237 the greater the struc-
tural difference, ‘the less unexpected are any differences
in their effects’.238

An unexpected effect alone does not automatically con-
fer the presence of an inventive step – other factors need
to be considered, such as whether it would be obvious for
the skilled person to combine the prior art teachings in
expectation of an advantageous effect.239 An invention
would lack an inventive step not only where the results
are ‘clearly predictable’ but also where a skilled person
would follow the teaching of the prior art with a reason-
able expectation of success.240 For instance, where an in-
vention claims numeric parameters of a technical device
obtained by applying the state-of-the-art optimisation
method, and where indications in the prior art suggest
that ‘favourable results might be obtained by the method
of calculation applied’, the effect of the claimed solution
would not be considered ‘surprising’.241 For that, the ap-
plied method needs to be disclosed in a patent application
or identified otherwise in the course of the patent
examination.

While the result of applying known equations242 can
be inferred relatively straightforwardly, ML techniques
require multiple elements to be configured to accomplish
a task. Even if it might be known from the prior art that a
technical problem at issue could have been solved
through ML, the assessment of inventive step would need
to examine in light of individual circumstances whether
ML would have been applied by an average skilled person
in such a way that it would lead to the claimed
invention.243

(iii) Implications for the sufficiency-of-disclosure
requirement

As clarified, ML methods incorporating randomisation
are, in principle, reproducible as long as their application
is properly documented. In this view, the analogy between
ML output and non-deterministic biological inventions is

inapt and the reproducibility of ML models can, in princi-
ple, be ensured without a deposit system.

Assessment of sufficiency of disclosure is based on a
patent application as a whole. Even if two ANN models
trained with the same algorithm and hyperparameters
might slightly differ due to the initial randomisation of
weights, such variations within the claimed process would
not be material for fulfilling the disclosure requirement,
as long as ‘the claimed process reliably leads to the de-
sired products’.244 Accordingly, for inventions comprising
inter alia245 an ML model – e.g. where the functioning of
a technical system is enabled through predictions gener-
ated by a trained ANN model246 – the exact numeric
model would not need to be reproduced, provided that
the disclosed process allows the skilled person to imple-
ment the claimed training process.247

4. ML is a ‘black box’
AI systems248 are often called ‘black boxes’ – and even a
‘magical black box of code’249 – that can generate output
without providing ‘any information about what exactly
makes them arrive at their predictions’.250

a) Patent law uncertainties

(i) Inventorship where an invention results from an
‘unexplainable’ or ‘unpredictable’ process

It is worth noting that, de lege lata, explainability of the
inventive process has been relevant for inventorship. Such
requirement might be unnecessarily burdensome and, in
some situations, unfeasible to fulfil and enforce. From a
de lege ferenda perspective, the lack of explainability of
AI performance could call into question the allocation of

236 On human decision-making when applying ML as the true indica-
tion of knowledge and skills in ML, see below at II.6.
237 Case T 181/82, decision of 28 February 1984, ECLI:EP:BA:
1984:T018182.19840228, point 4 of the Reasons.
238 ibid point 5 of the Reasons.
239 Bostedt and others (n 94) 270 (with further references).
240 Case T 149/93, decision of 23 March 1995, ECLI:EP:BA:
1995:T014993.19950323, point 5.2 of the Reasons.
241 Case T 36/82, decision of 25 October 1982, ECLI:EP:BA:
1982:T003682.19821025.
242 ibid.
243 On the decision-making in applying ML techniques as a true indica-
tor of expertise in ML, see below at II.6.b.

244 Case T 281/86, decision of 27 January 1988, ECLI:EP:BA:
1988:T028186.19880127, point 6 of the Reasons (also noting that art
83 of the EPC does not stipulate that ‘a specifically described example of
a process must be exactly repeatable’). See also case T 301/87, decision of
16 February 1989, ECLI:EP:BA:1989:T030187.19890216.
245 An ML model per se can fall within the excluded subject matter; see
(nn 181, 297) and the accompanying text.
246 For instance, an ML model can form part of a method and system
for improved aircraft safety that predicts anomalous events. See eg a US
patent application US20200317365A1.
247 In a recent case where the claimed invention used an ANN for the
transformation of the blood pressure curve measured at the periphery in
the equivalent aortic pressure, the EPO Board of Appeal found that, as
far as the training of the neural network was concerned, the patent appli-
cation only disclosed that ‘the input data should cover a wide range of
patients of different ages, gender, constitution type, health condition, and
the like [but not] which input data for exercising the artificial neural net-
work is suitable for exercising the invention, or at least one data set suit-
able for solving the present technical problem. Exercising the artificial
neural network can therefore not be reworked by the specialist and the
person skilled in the art can therefore not be carried out. The present in-
vention based on mechanical learning in particular in conjunction with
an artificial neural network is thus not sufficiently disclosed because the
training according to the invention is not executable for lack of corre-
sponding disclosure.’ Case T 0161/18, decision of 12 May 2020, ECLI:
EP:BA:2020:T016118.20200512, point 2.2 of the Reasons (emphasis
added) (translated by Daria Kim).
248 Besides DL models, other AI systems can be prone to the problem of
interpretability. For example, an evolutionary algorithm running thou-
sands of iterations can produce results that can be difficult to track and
decipher how they were produced. Support-vector machines can some-
times be difficult to explain.
249 Tom Scott, ‘There Is No Algorithm for Truth’ (The Royal
Institution, 24 October 2019) 7 min 25 sec <https://youtu.be/
leX541Dr2rU > accessed 21 May 2021.
250 Wojciech Samek and Klaus Robert Müller, ‘Towards Explainable
Artificial Intelligence’ in Wojciech Samek and others (eds), Explainable
AI: Interpreting, Explaining and Visualizing Deep Learning. Lecture
Notes in Computer Science, vol 11700 (Springer 2019) 5.
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inventor’s rights to a human if it could indicate an auton-
omous, ‘supernatural agency’251 of computers.

As explained under Assumptions 1-3, to solve a problem
through ML, the computational process needs to be thought-
fully staged by those developing and applying ML techniques.
To settle any remaining doubts, it appears pertinent to clarify
why some ML models are considered ‘black boxes’, given
that the process of building them is known and understood.

(ii) The assessment of inventive step where an invention
results from an ‘unexplainable’ ML process

The ‘black-box’ characterisation of ML raises the ques-
tion of whether the likelihood that a skilled person apply-
ing ML would have arrived at the claimed invention can
be objectively assessed if the workings of ML techniques
cannot be explained.

(iii) The sufficiency-of-disclosure requirement in situations
where an ‘unexplainable’ ML method is claimed within an
invention

It has been argued that ‘the “black-box” nature of certain
AI systems [. . .] may make it challenging to provide a suffi-
ciently clear and complete disclosure for the invention to be
carried out by a [person skilled in the art]’.252 In this view, it
needs to be clarified how the allegedly limited explainability
of ML systems interacts with their reproducibility.

b) A technical perspective on explainability of ML

(i) What exactly is unexplainable about ML models?

There is no single specific definition of ‘explainability’253

of ML and, hence, the lack thereof. A ‘black box’ compu-
tational model is defined as the one ‘for which the inputs
and outputs are visible to the user, but its internal
workings are not’.254 In the case of ML models, however,
‘visibility’ of internal workings is usually possible as
mathematical computations forming a model can be
saved as a data file and examined. Moreover, commenta-
tors point out that, contrary to a popular view depicting
ANNs ‘as black boxes which mystically determine com-
plex patterns in data[, . . .] neural network designers typi-
cally perform extensive knowledge engineering’.255 While
this quote dates back a couple of decades, contemporary
AI systems are not mystical either – they are complex.
The issue of explainability concerns the meaning of input-
output correlations revealed by an algorithm. What needs
to be explained are factors behind the specific weighting
of features, e.g. why feature x in input data correlates
with an output/target y. When a ‘black-box’ ML model is

defined as a situation ‘where it is not possible to trace
back to the reason for certain decisions’,256 it means that
factors (‘reasons’) determining the weighting of features
that underlie a prediction (‘decision’257) are not well un-
derstood. As tautological as it might sound, statistical
correlations do not denote causation.258 While model fea-
tures are found mathematically, the semantics behind
numbers are not revealed unless one ‘translates’ an ANN
into a meaningful narrative.

The depictions of ML techniques being ‘very successful
from the accuracy point of view [but] very opaque in
terms of understanding how they make decisions’259 cre-
ate an impression that AI systems ‘know’ the reasons but
keep them secret. However, the truth is that there is no
‘ready-made’ knowledge within ANNs – it remains a
collection of data points unless one construes a sensible
narrative. Construing a narrative requires a skilled re-
searcher with the relevant knowledge, willingness to treat
an ML model as a ‘glass box’ and not a ‘black box’260

and access to the necessary information about the model
design. The AlphaFold example mentioned earlier261

highlights the importance of interpreting the numeric out-
put of ML – while the results revealed by AlphaFold can
certainly advance scientific understanding, the factors de-
termining protein folding remain ‘a black box’.262

Portrayals of AlphaGo making ‘a brilliant move’ that
‘no human could understand’263 are typical examples of
mass media’s attempt to sensationalise. AlphaGo’s ‘bril-
liant’ move might not have been understood so far, but it
does not mean that it is fundamentally incomprehensible,
because, in essence, it is based on mathematical optimisa-
tion. AlphaGo was described as the software that ‘modi-
fies itself, [while] its analyses cannot be understood by
humans even as it outstrips human performance’.264 Such
portrayal is not quite accurate – everything AlphaGo does
is doable by a human, albeit with a significant difference
in the speed of performing computations. The concept of
‘understood’ might refer here to the ability to generalise
the steps of AlphaGo as the rules that explain why the
moves optimised through RL ultimately led to the suc-
cessful performance.265 Given the complexity of compu-
tations, it can take years for a human to understand
them. Yet, it is not impossible.

The key difference between humans and AI systems
such as AlphaGo is that, while a human can contemplate

251 As a side note, vesting autonomous agency in ‘black box’ ML mod-
els might illustrate a human tendency to attribute supernatural agency to
inexplicable phenomena. See eg Terence L Nichols, ‘Miracles, the
Supernatural, and the Problem of Extrinsicism’ (1990) 71 Gregorianum
23; Vernon Pratt, ‘The Inexplicable and the Supernatural’ (1968) 43
Philosophy 248.
252 Hugenholtz and others (n 21) 112.
253 Riccardo Guidotti and others, ‘A Survey of Methods for Explaining
Black Box Models’ (2019) 51 ACM Computing Surveys 1.
254 Government Office for Science, ‘Computational Modelling:
Technological Futures’ (2018) 12 <https://assets.publishing.service.gov.
uk/government/uploads/system/uploads/attachment_data/file/682579/
computational-modelling-blackett-review.pdf> accessed 21 May 2021.
255 Steven Walczak and Narciso Cerpa, ‘Heuristic Principles for the
Design of Artificial Neural Networks’ (1999) 41(2) Information and
Software Technology 107.

256 HLEG-AI (n 45) 6.
257 On the notion of ‘decision’ in ML, see above (nn 204-206).
258 Spurious correlations found through ML are also known as a
‘Clever Hans phenomenon’, situations where a feature in the data is
‘highly correlated with the correct outcome [. . .], but is not the cause for
the answer being correct’. Eugen Lindwurm, ‘Deep Learning, Meet
Clever Hans’ (Towards Data Science, 15 August 2020) <https://towards
datascience.com/deep-learning-meet-clever-hans-3576144dc5a9>
accessed 17 August 2021. See also Sebastian Lapuschkin and others,
‘Unmasking Clever Hans Predictors and Assessing What Machines
Really Learn’ (2019) 10 Nature Communications 1096.
259 HLEG-AI (n 45) 6 (emphasis added).
260 Cynthia Rudin, ‘Stop Explaining Black Box Machine Learning
Models for High Stakes Decisions and Use Interpretable Models Instead’
(2019) 1 Nature Machine Intelligence 206, at 206.
261 Above (nn 119-121) and the accompanying text.
262 Above (n 121).
263 Metz (n 166).
264 Karnow (n 115) xx.
265 The key to AlphaGo’s performance was that, while it was playing
against itself millions of times, it calculated (‘learnt’) a strategy for imple-
menting moves that more often than not turned out to be successful in
the long run.
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many steps in advance in a board game, a computer can
calculate several times more steps beforehand and choose
the one with the highest likelihood of success in the long
run.266 A human would not have considered that land-
mark move, because the benefit of it comes many moves
afterwards, and it is quite difficult for a human to calcu-
late that many steps in advance. However, without
the time limitation, and maybe with a piece of paper for
note-taking, a human could, in principle, have arrived at
that ‘brilliant move’ as well.

(ii) What causes computational complexity of ANNs?

Complexity is caused by the interaction of numerous (mil-
lions of) units (neurons) within a multi-layer non-linear
structure of ANNs. As one can be puzzled when looking
under the bonnet of a car, one might not readily make
sense of the internal states of ANNs composed of lots of
numbers. Yet, both a car and an ANN model are prod-
ucts of deliberate and well thought-through engineering.
The process of implementing a model is purely mathemat-
ical – ANNs are ‘just a set of matrix operations and find-
ing derivatives’.267 For instance, there can be tens of
thousands of input features for training a model for cat/
dog image classification, while an ANN can contain tens
of millions of weights and bias parameters derived when
input features are passed through its layers, each contain-
ing hundreds of neurons.268

(iii) Explainability and causality

Computational complexity does not denote the lack of
causality between human input and decision-making and
the performance of an ML model. How a model is built is
a transparent process. The answer to why an ML model
was built and performs in a certain way ‘lies in the combi-
nation of the assumptions [made by researchers], the data
it was trained on, and various decisions made about how
to learn the parameters, including the randomness in the
initialization’.269 In other words, from the perspective of
designers of ML systems and data scientists, there is noth-
ing fundamentally unexplainable about how correlations
between the data points are found.270

(iv) Model explainability and reproducibility

The limited explainability of ML models does not affect
their reproducibility – an ‘unexplainable’ model can be
consistently reproduced. For that, one needs to obtain a
detailed description of the applied method, the type of
model and algorithm used, exact values of the hyperpara-
meters (where they are required for a model), the seed for
an RNG, the number of epochs, evaluation metrics, com-
puter configurations (software, operating system, hard-
ware), and so on. Ultimately one needs to know all
decisions made to develop the first model, otherwise
model reproduction might be difficult and unreliable.

c) Patent law uncertainties revisited

(i) Implications for inventorship

Given that a ‘black box’ notion in the context of ML does
not denote the absence of a causal link between the hu-
man input, the way computation is performed and ML
outcome, there appears to be no reason to deny the hu-
man contribution to the conception and development of
an invention, in situations where an underlying technical
problem was solved by applying ML.

(ii) Implications for the assessment of inventive step

As clarified, the ‘black box’ characterisation of ML mod-
els does not denote the absence of deliberation and careful
decision-making on the part of researchers designing a
model and interpreting computational output.
Accordingly, in situations where a technical problem
could have been solved through ML, it needs to be
assessed whether a skilled person would have designed a
model and interpreted the computational outcome in the
way leading to the claimed invention.

(iii) Implications for the sufficiency-of-disclosure
requirement

Given that ML models can be consistently reproduced
even if they might not be readily understood, the limited
explainability of ML models does not present an insur-
mountable challenge for the sufficiency-of-disclosure
requirement. Where an invention comprises inter alia
an ML model, the earlier discussed conditions 271 would
need to be ensured to fulfil the disclosure requirement.

5. ML is a ‘general-purpose technology’
AI has been characterised as the ‘next general purpose
technology’ (GPT),272 given its broad applicability and
the potential to enable innovation across economic sec-
tors.273 As a GPT, AI holds a promise to drive ‘sweeping
transformative processes’274 and to generate ‘a wave of
complementary innovations in a wide and ever expanding
range of applications sectors’.275 As an ‘enabling technol-
ogy’,276 it can open up new opportunities rather than
offer final products and solutions.

266 On ‘policy’ in RL, see above (nn 112, 117).
267 WIPO (n 154) para 31.
268 ibid para 24.
269 Card (n 213).
270 ibid (pointing out that ‘[t]he only explanation for why the box is do-
ing what it does is that all of the components are following the rules that
govern their individual behaviour, and the overall behaviour emerges
from their interactions’).

271 Above at II.3.c.iii.
272 Manuel Trajtenberg, ‘AI as the Next GPT: A Political-Economy
Perspective’ (2018) NBER Working Paper No 24245 <https://www.
nber.org/system/files/working_papers/w24245/w24245.pdf> accessed
21 May 2021; WIPO, ‘WIPO Conversation on Intellectual Property (IP)
and Artificial Intelligence (AI)’ WIPO/IP/AI/2/GE/20/1 (13 December
2019) 2 <https://www.wipo.int/edocs/mdocs/mdocs/en/wipo_ip_ai_ge_
20/wipo_ip_ai_2_ge_20_1.pdf> accessed 21 May 2021. But see Simone
Vannuccini and Ekaterina Prytkova, ‘Artificial Intelligence’s New
Clothes? From General Purpose Technology to Large Technical System’
(2021) SPRU Working Paper Series 1 <https://papers.ssrn.com/sol3/
papers.cfm?abstract_id=3704011> accessed 21 May 2021 (arguing that,
‘for now, the claim “AI equals GPT” is premature, and eventually, taking
into account potential future scenarios, it can turn out to be incorrect’).
273 Timothy Bresnahan, ‘General Purpose Technologies’ in Bronwyn H
Hall and Nathan Rosenberg (eds), Handbooks of the Economics of
Innovation, vol 2 (Elsevier BV 2010) 761, 764.
274 Trajtenberg (n 272) 2.
275 WIPO, Technology Trends 2019. Artificial Intelligence (WIPO
2019) 142 (citing Dominique Foray).
276 Yann M�enière, Ilja Rudyk and Javier Valdes, Patents and the Fourth
Industrial Revolution. The inventions behind digital transformation
(EPO 2017) 10.
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a) The importance of access to inputs for ML from an
innovation policy perspective

From an innovation policy perspective, a significant im-
plication of the GPT nature of ML is that access to inputs
for building ML models – which in turn form the basis
for developing sector- and case-specific applications –
plays a paramount role in realising the potential of ML as
an enabling technology across the economic sectors. In
this regard, exclusive IP rights – to an extent applicable to
inputs for developing ML models and models themselves
– and the way such rights are exercised, can have a sizable
impact on the innovation processes enabled through ML.

In the context of enabling technologies (e.g. research
tools), the question of whether patents facilitate or hinder
innovation has been subject to a long-standing debate.277

The facilitating effect is associated with the role of patent
rights as innovation incentives. The risk of a hampering
effect has been hypothesised in the context of follow-on
innovation, where a patented technology can be used as
an input in knowledge creation. By definition, enabling
technologies are broadly applicable innovation inputs.278

Consequently, where usage rights in such technologies
cannot be allocated efficiently, the suboptimal realisation
of the innovative potential is posited to entail a welfare
loss. Furthermore, AI techniques such as ML are peculiar
in that they consist of multiple elements, which sets a pre-
condition for rights fragmentation and high transaction
costs of their convergence.279

Against this backdrop, one might contemplate that ex-
clusive IP rights in AI techniques might have a ‘stifling ef-
fect’ on AI-enabled innovation280 if the usage rights
cannot be efficiently allocated. Accordingly, two key
issues need to be clarified: (i) which constitutive elements
of ML can function as ‘general-purpose’ building blocks;
and (ii) whether such generic components might be sub-
ject to patent protection.281

b) A technical perspective on ML as a GPT

The characterisation of ML as a GPT is accurate in that
ML, as a variety of computational model-based techniques,
is broadly applicable to problem-solving across technologi-
cal and engineering fields.282 At the heart of ML is

optimisation.283 The ubiquitous284 nature of optimisation
explains why the scope of ML applications is expansive.

The so-called ‘no free lunch theorem’ in ML285 postu-
lates that there is no true ‘general-purpose’ ML method
because no single algorithm can solve all ML problems
better than any other algorithm. Some methods can be
applied across a specific subset of problems sharing cer-
tain similar properties (e.g. a specific domain application,
text and image recognition).

Some basic techniques and principles applied in ML
can be viewed as ‘generic’. Examples include core algo-
rithms such as gradient descent and backpropagation of
errors that constitute the basis for the families of algorithms
used in ML; basic mathematical tools, such as the derivation
of a function; and methods of pre-processing training data,
such as the methods for dimensionality reduction or outlier
removal. Various software used to pre-process the training
data is usually generic. It should be mentioned that the no-
tion ‘generic’ does not imply that a method is guaranteed to
work under any conditions; for instance, numerous dimen-
sionality reduction methods exist, but only one might work
for a given dataset and purpose. In GP and EAs, the cross-
over and mutation operators can be considered generic as
they can be applied to a specific encoding of the solutions,
regardless of the task to be solved. Such generic techniques
are usually in the public domain.

For ANNs, two key components are training data and
algorithms. Most algorithms are publicly available and
shared as part of software libraries.286 In contrast, access
to training data, especially held by private companies, can
be tricky. Collaboration with private companies often
involves contractual restrictions regarding sharing data-
sets used for developing ML models. Without sharing
datasets, however, the research community might not be
able to reproduce results.

ML models are usually developed to perform a narrow
task and their generalisability depends on multiple fac-
tors. Under the so-called ‘transfer learning’ approach, an
ANN model initially trained for one task might be re-
used as a foundation for developing another model for a
related but distinct task. Whether or not transfer learning
can be a relevant and efficient solution is individual to an
ML method and its particular application. As far as ac-
cess is concerned, companies tend to hold ML models

277 Michael A Heller and Rebecca S Eisenberg, ‘Can Patents Deter
Innovation? The anticommons in biomedical research’ (1998) 280
Science 698. For an overview of the debate, see Fiona Murray and Scott
Stern, ‘Do Formal Intellectual Property Rights Hinder the Free Flow of
Scientific Knowledge? An empirical test of the anti-commons hypothesis’
(2007) 63 Journal of Economic Behavior & Organization 648.
278 On the enabling nature of GPT and the relationship between GPT
and application sectors, see Bresnahan (n 273).
279 Heller and Eisenberg (n 277) (identifying these factors as the precon-
ditions for ‘anticommons’ in the context of biotechnological research
tools).
280 Josef Drexl and others, ‘Artificial Intelligence and Intellectual
Property Law Position Statement of the Max Planck Institute for
Innovation and Competition of 9 April 2021 on the Current Debate’
(2021) Max Planck Institute for Innovation and Competition Research
Paper No 21-10, 21 <https://www.ip.mpg.de/fileadmin/ipmpg/content/
stellungnahmen/MPI_PositionPaper__SSRN_21-10.pdf> accessed 21
May 2021 (noting that it is prima facie not clear whether such concerns
can be justified, given that ‘ML models do not appear to be unique in the
same way as, for instance, molecular research tools and resources, such
as cell lines or DNA libraries’).
281 Other forms of IP protection lie beyond the scope of this inquiry. A
comprehensive study would need to examine all relevant legal determi-
nants of control over and access to such components.
282 Kim (n 20) 446, notes 43-50.

283 As explained above, ML methods are based on optimising an objec-
tive function. Above at II.1.b.ii.
284 Ramteen Sioshansi and Antonio J Conejo, ‘Optimization is
Ubiquitous’ in Ramteen Sioshansi and Antonio J Conejo (eds),
Optimization in Engineering. Models and Algorithms, vol 120 (Springer
2017) 1.
285 This means that ‘no single machine learning algorithm is universally
the best-performing algorithm for all problems’; an algorithm ‘may per-
form very well for one problem, but that gives us no reason to believe it
will do just as well on a different problem where the same assumptions
may not work’. Amol Mavuduru, ‘What “No Free Lunch” Really Means
in Machine Learning. Demystifying This Often Misunderstood Theorem’
(Toward Data Science, 12 November 2020) <https://towardsdatas
cience.com/what-no-free-lunch-really-means-in-machine-learning-85493
215625d> accessed 21 May 2021.
286 See eg <https://scikit-learn.org/stable/> accessed 21 May 2021.
Sharing software resources for ML can take place in various ways.
Usually, for any ML resource, either a program (eg Weka) or an open-
source code library (eg TensorFlow) is created. They are shared either on
a designated website or through code sharing platforms (eg Github).
Many packages for operating systems or programming languages, eg
Python, are also available through package managers providing access to
such resources form a central server distributing software that can be
shared over platforms such as Github or Gitlab.
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privately, either entirely or partially, while academics
tend to make their work accessible.

ML is characterised by high modularity, as its applica-
tion to a specific problem requires configuring multiple
elements and combining various methods. If certain
‘ingredients’ are not available, they can usually be
substituted with the available alternatives to achieve com-
parable results.287 Substitutability of training data is,
however, most difficult due to the limited access.

c) Implications for patent policy and law revisited

As discussed, the core ‘building blocks’ of ML, except for
training data, tend to be disclosed in academic publica-
tions,288 which can alleviate concerns regarding their ac-
cessibility. Nevertheless, given the characterisation of ML
as a broadly applicable enabling technique, the patent-
ability of ML systems and their constitutive elements
de lege lata merits a closer look, especially as regards the
scope of protection.

Under European patent law, the essential elements of
AI – mathematical methods289 and computer programs290

– fall within the categories of ‘non-inventions’ for the lack
of technical character.291 Besides, core AI applications
based on predictive analytics or related to knowledge rep-
resentation, reasoning, planning and scheduling292 might
qualify as business methods and, hence, come within the
scope of the excluded subject matter as well.293 The ex-
clusion applies ‘to the extent to which a European patent
application or European patent relates to such subject-
matter or activities as such’.294 While such approach
appears, in essence, balanced and reasonable, some uncer-
tainty persists between the clear-cut cases,295 and the
question of under what conditions computational meth-
ods should be considered ‘technical’ remains open-
ended.296

In principle, ML algorithms and models can constitute
only part of a patentable invention. According to the EPO
Examination Guidelines, implementing a mathematical
method on a computer would be sufficient to confer a

technical character on the subject matter as a whole297

and, thus, overcome the exclusion. An analysis of whether
the reference to implementation on a computer should
suffice to overcome the exclusion under Art. 52(2)(a) of
the EPC goes beyond the scope of this paper. The point
worth highlighting is that the patent system’s goal of
affording protection only to the technical subject matter
and the policy concern regarding the scope of patent
rights in enabling technologies298 are related yet distinct
issues. Adding the reference to a generic computer as a
technical device to an independent patent claim directed
to a ‘core’ ML method which is otherwise excluded as a
mathematical method,299 would not limit the scope of ex-
clusive rights. In contrast, consider the distinction be-
tween patents for ‘core’ and ‘applied’ AI techniques: the
former can claim a broadly applicable method of ML;300

the latter can be confined to its particular application in a
technical use-case. The difference in terms of the scope of
protection is palpable.

In the context of European patent law, this issue is rem-
iniscent of the debate on absolute vs purpose-bound pat-
ent protection for chemical substances (in particular,
DNA sequences), which remains unsettled both from a de
lege lata301 and a de lege ferenda302 perspective. In the
US, the connection between the excluded subject matter
and the scope of patent protection is reflected in the ‘build-
ing blocks’ doctrine applied by the US Supreme Court.
By excluding ‘abstract ideas’, the Court in Mayo303 and
Alice304 intended to keep innovation inputs – ‘the
“buildin[g] block[s]” of human ingenuity’305 – outside pro-
tection by exclusive rights. In this regard, the exclusion can
be deemed instrumental for preserving ‘abstract intellectual
concepts [. . .] not patentable, as they are the basic tools of
scientific and technological work’.306

While discoveries, scientific theories and mathematical
methods are excluded from patentability for the lack of
technical character, they also happen to be broadly appli-
cable knowledge inputs akin to research tools necessary
to create further knowledge. For the reasons better
explained by economists,307 granting exclusive IP rights

287 Vicky Yu, ‘Why Building a Machine Learning Model Is Like
Cooking’ (Towards Data Science, 2 November 2020) <https://towardsda
tascience.com/why-building-a-machine-learning-model-is-like-cooking-
4bed1f6115d1> accessed 21 May 2021.
288 On the rapidly growing academic output, see eg WIPO (n 275).
289 EPC, art 52(2)(a).
290 EPC, art 52(2)(c).
291 EPC, art 52(2). See also EPO Guidelines for Examination, pt G-II, s
3.3.1 <https://www.epo.org/law-practice/legal-texts/html/guidelines/e/g_
ii_3_3_1.htm> accessed 21 May 2021.
292 WIPO (n 275) 148.
293 EPC, art 52(2)(c).
294 EPC, art 52(3).
295 For instance, if a claim is directed solely to a method that increases
the accuracy of the financial risk assessment, whereby the output is pure
information, it would likely be devoid of technical character. In contrast,
an ML model applied to detect a thermodynamic problem and integrated
within a system of safety control on an aircraft would contribute to the
technical solution.
296 In its decision in case G 1/19 of 10 March 2021 (ECLI:EP:BA:
2021:G000119.20210310), the EPO Enlarged Board of Appeal
addressed the definition of technical character in the context of art 56 of
the EPC (within the framework of the so-called COMVIK approach to
the patentability of computer-implemented inventions). While the Board
abstained ‘from putting forward a definition for “technical”’, it indicated
that, for computer-implemented numeric simulation methods, ‘direct link
with physical reality [. . .] cannot be a necessary condition [of technical-
ity]’ (para 88), and that ‘it is neither a sufficient nor a necessary condition
that a numerical simulation is based, at least in part, on technical princi-
ples that underlie the simulated system or process’ (para 142).

297 EPO Guidelines for Examination, pt G-II, s 3.3 <https://www.epo.
org/law-practice/legal-texts/html/guidelines/e/g_ii_3_3.htm> accessed 21
May 2021.
298 Above (nn 277-280) and the accompanying text.
299 EPO Guidelines for Examination, pt G-II, ss 3.3, 3.3.1 <https://
www.epo.org/law-practice/legal-texts/html/guidelines/e/g_ii_3_3.htm>
accessed 21 May 2021.
300 See eg a US patent application US2021256375 claiming a method
for reduced computation real-time recurrent learning based on forward
propagation.
301 See eg Geertrui Van Overwalle, ‘The CJEU Monsanto Soybean
Decision and Patent Scope: As Clear as Mud’ (2011) 42 IIC 1.
302 See eg Matthias Lamping, ‘Purpose-Bound Patent Protection for
Genes’ (2010) 1(4) European Journal of Risk Regulation 445, 447 ff
(putting forward the reasons in favour of the purpose-bound protection,
including that absolute protection ‘distorts market-oriented incentive
mechanism’). But see also Michael A Kock, ‘Purpose-Bound Protection
for DNA Sequences: In through the back door?’ (2010) 5(7) Journal of
Intellectual Property Law & Practice 495 (arguing that absolute protec-
tion would benefit innovation).
303 Mayo Collaborative Services v Prometheus Laboratories, Inc. 132
S.Ct. 1289 (2012).
304 Alice Corp. Pty. Ltd. v CLS Bank Int’l 134 S. Ct. 2347 (2014).
305 ibid 1-2.
306 Mayo Collaborative Services v Prometheus Laboratories (n 303) 2
(referencing the 1972 case Gottschalk v Benson) (emphasis added).
307 Cristiano Antonelli, ‘Technological Knowledge as an Essential
Facility’ (2007) 17 Journal of Evolutionary Economics 451. The issue of
exclusive rights in research inputs lies at the heart of the ‘anticommons’
debate in IP law; see above (n 277). See also Ronald F King, Ivan Major
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in such inputs might not be an optimal innovation policy
from a welfare perspective.308 In this view, the present re-
gime where an independent patent claim can be directed
to an ML method as such, not limited to an application
in a specific technical use-case, might need to be re-
considered from a de lege ferenda perspective.309

Furthermore, the question of access to training data,
which is often subject to factual control and trade secret
protection, merits closer analysis. Overall, further re-
search needs to examine how access measures should be
optimally designed to remedy a market failure of data-
sharing in the context of ML-enabled innovation.

6. ML is a ‘general-purpose method of invention’
Besides being characterised as GPT, AI – particularly DL
– has been viewed as ‘a general-purpose method of
invention’.310

a) Uncertainty regarding the assessment of inventive step

From a patent law perspective, the main implication of
ML being characterised as a ‘method of invention’ is
that the use of ML, as a computational problem-solving
method, should be factored in the definition of a rele-
vant skilled person311 when assessing the obviousness of
inventions that could or would have been developed by
applying ML.312 The skilled person is ‘free to employ
the best means already available for his purposes [. . .]
provided this involves a choice from a multiplicity of
possibilities’.313 Otherwise, the lack of alternatives
may ‘create a “one-way-street” situation leading to pre-
dictable advantages which remain obvious in spite of the
existence of some unexpected “bonus” effect’.314

Besides, where a skilled person would apply routine trial
and error, the outcome is deemed obvious/lacking an

inventive step.315 ML techniques involve trial and er-
ror316 and iterative search.317 According to Abbott, ‘as
research is augmented and then automated by machines,
the average worker will routinely generate patentable
output’,318 whereby a low obviousness standard would
entail a danger of the stifling effect on innovation.319

Furthermore, the attribute ‘general-purpose’ might sug-
gest that ML algorithms can be applied ‘out of the box’
to different tasks.

As clarified under Assumption 2, the seeming simplicity
of human input vis-à-vis computational complexity is not
a reliable indicator of the obviousness of an invention. To
clarify whether the application of ML techniques repre-
sents a ‘one-way street’ or involves only ‘routine’ trial and
error, let us take a closer look at the decision-making in-
volved in ML.

b) A technical perspective on ML as a ‘general-purpose
method of invention’

(i) ML as a special-purpose technique

Contrary to the ‘general-purpose’ attribute, ML applica-
tions need to be ‘surgically altered or purpose-built’.320

This requires ‘lots of preparation by human researchers
or engineers, special-purpose coding, special-purpose sets
of training data, and a custom learning structure for each
new problem domain’.321 ML models are only ‘as good
as the assumptions that they were created with and the
data that was used to train them’.322 As there is no ‘one-
size-fits-all’ ML technique, choosing a method that can
work better for a particular problem involves expert
knowledge and insight. Most ML algorithms can work
‘out of the box’ – more precisely, ‘out of the library’323 –
only for a rather constrained set of relatively simple prob-
lems. In some cases – such as image or speech recognition
– only minimum adjustment might be necessary, while in
other cases almost every aspect of an ML technique might
need to be configured or fine-tuned.

(ii) Which decisions are crucial for the successful application
of ML?

The saying ‘garbage in, garbage out’ holds in ML, as the
whole preparation is more important than implementing
an algorithm. Decisions during the preparation phase re-
quire a good grasp of a problem and adequate knowledge
and experience. Which decisions specifically might be cru-
cial for the successful application of ML is individual to a
particular ML technique and a use case.

In ANNs, one needs to configure hyperparameters324

that would lead to the best performance of an algorithm

and Cosmin Gabriel Marian, ‘Confusions in the Anticommons’ (2016)
9(7) Journal of Politics and Law 64; Yi Zhou, ‘The Tragedy of the
Anticommons in Knowledge’ (2015) 48 Review of Radical Political
Economics 1; Norbert Schulz, Francesco Parisi and Ben Depoorter,
‘Fragmentation in Property: Towards a general model’ (2001) 158
Journal of Institutional and Theoretical Economics 594.
308 Antonelli (n 307) 467. See also Mayo Collaborative Services v
Prometheus Laboratories (n 303) 20 (holding that ‘the underlying func-
tional concern here is a relative one: how much future innovation is fore-
closed relative to the contribution of the inventor’).
309 Notably, the intention of the drafters of art 52(2) of the EPC was
not only to exclude pure mathematical methods but their application in
solving a technical problem. As Pila writes: ‘The reason for that proposal
was the delegation’s view that “[a]ny mathematical method as such (pure
mathematics) and its application in solving a technical problem (applied
mathematics) should [. . .] be considered to be intellectual activities and
therefore excluded from patentability”. Put differently, the concern was
that by qualifying the mathematical methods exclusion with use of the
phrase “as such”, the EPC would enable the patenting of applications of
mathematical methods, which, it was thought, should remain unpatent-
able for failure to constitute an invention.’ Justine Pila, ‘Article 52(2) of
the Convention on the Grant of European Patents: What Did the Framers
Intend? A Study of the Travaux Preparatoires’ (2005) 36 IIC 755, 766.
310 Ian M Cockburn, Rebecca Henderson and Scott Stern, ‘The Impact
of Artificial Intelligence on Innovation’ (2018) NBER Working Paper No
24449, 27.
311 Above (nn 85-89) and the accompanying text.
312 To illustrate, where ML is applied in the molecule design, the
resulting molecule can constitute an invention. However, the molecule
will be deemed ‘obvious’ in a patent law sense if a (hypothetical)
skilled person with average knowledge and skills would have applied
ML in a way to obtain the results falling within the scope of the
claimed invention.
313 Case T 192/82, decision of 22 March 1984, ECLI:EP:BA:
1984:T019282.19840322, point 16 of the Reasons (emphasis added).
314 ibid.

315 PCT Examination Guidelines (n 174) 126-127.
316 WIPO (n 154) para 21 (noting that the ‘mechanism for training a
[neural network] is basically “learning from mistakes”’).
317 Above (n 134) and the accompanying text.
318 Abbott (n 104) 46.
319 ibid 46-47.
320 Rodney Brooks, ‘The Seven Deadly Sins of AI Predictions’ (2017) 79
MIT Technology Review 120 (emphasis added).
321 ibid (emphasis added).
322 Mavuduru (n 285).
323 Numerous software libraries exist that provide access to collections
of standard software programs and families of ML algorithms (classifica-
tion, regression, clustering, etc.) that one can use out of the box for indi-
vidual purposes. See eg <https://scikit-learn.org/stable/> accessed 7
November 2021.
324 For a definition, see above (n 62).
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and the most suitable model for a given problem. Usually,
there is no prior knowledge about which hyperparameters
are right for a particular task – as one commentator puts
it: ‘Typically, the hyper-parameter exploration process is
painstakingly manual, given that the search space is vast
and evaluation of each configuration can be expen-
sive’.325 Other aspects that involve decision-making in-
clude choosing training datasets, encoders, RNGs, etc.
While simpler models tend to ‘underfit’, more complex
ones tend to ‘overfit’.326 As suitable models are usually lo-
cated somewhere in the middle of those two extremes,
researchers need to try different models and compare
them through cross-validation to find an optimal model
for a particular problem.

In GP/EAs, one almost always needs to develop specific
encodings for a problem representation and design a
unique fitness function (a decisive part) and particular
operators (recombination and mutation) that can work
with that encoding.327 In the case of decision trees, con-
figuration choices concern the depth of a tree, the number
of trees, the size of each leaf, etc.

All relevant factors need to be considered when
choosing, adjusting or designing an objective function.
Fitness functions in GP or EAs are highly specific to
the application, and their design usually requires a great
deal of expertise. While boilerplate functions most
commonly applied with ANNs exist, human influence
manifests in the decision-making regarding the hyper-
parameters and data preparation. Where an existing
objective function is used, it might need to be adjusted
to a specific problem.

In sum, for a problem to be solved successfully through
ML, one should have a good grasp of computational
model optimisation, the-state-of-the-art algorithms and
the application domain, be able to understand and model
a problem, design an objective function, specify the right
success metric, select and prepare328 input data relevant
for the objective, and make sense of the results. As with
any software, the designer might not need to build all
functionalities and constitutive elements of ML from
scratch, but the results achieved by individual users apply-
ing ML can vary significantly depending on the purpose
and skills. The importance of interpreting ML output
should not be downplayed. At a basic level, the immedi-
ate output of ML is coded in binary digits. At a higher
level, it can be represented as yes/no, numbers, options,
words, etc. In any case, such output cannot be equated
with ready-made knowledge or problem solution.

(iii) ‘Average’ knowledge and skills in ML

ML methods are characterised by modularisation. Like
a LEGO constructor, they involve multiple building
blocks that can be configured in various ways depending
on the objective. As with any engineering work, compu-
tational modelling requires intuition and insight to
make the right decisions and choices, which comes with
experience. Setting up the configurations mentioned
above is a true indicator of knowledge, skills and exper-
tise in ML. Given a large variety of ML techniques, it is
hard to define in the abstract what level of skills in
ML can generally be considered ‘average’. This problem
is compounded even more when it comes to a team
of researchers, given that collaboration is quite common
in ML.

Whether an average practitioner could accomplish the
‘right’ decision-making can only be considered vis-à-vis a
particular problem solved through ML. For instance,
while AlphaGo was developed based on state-of-the-art
ML methods, the combination of techniques and configu-
rations determined AlphaGo’s success.329 Would any
person with average skills and knowledge in ML be
able to come up with such configurations? In the
authors’ view, if a Master’s degree in computer science
is considered a measure of ‘average’ knowledge and
skills in ML, this is unlikely to be enough to design
and implement AlphaGo. In addition, non-human
factors, such as access to data and hardware (i.e. com-
putational resources to implement training in parallel
within a reasonable time), should be taken into account
when considering what can be achieved with ML
techniques.

c) Implications for the assessment of inventive step
revisited

Given that there can be considerable room for decision-
making in applying even known ML methods, an inven-
tion developed through ML cannot be considered a mere
‘bonus’ obtained in a ‘one-way-street’ situation.330

Besides, it cannot be alleged across the board that ML
can solve any problem with no or only trivial adjustment.
Otherwise, we would not have incurable diseases, given
that AI techniques have been applied in drug discovery
and development for decades.331

Even though the implementation of an iterative search-
based algorithm332 can be viewed as routine trial and er-
ror, it would be erroneous to reduce the entire problem-
solving to the implementation phase.333 Rather, it should
be considered in light of individual circumstances of a

325 Ram Sagar, ‘What Are Hyperparameters and How Do They
Determine a Model’s Performance’ (AIM, 22 February 2019) <https://
analyticsindiamag.com/what-are-hyperparameters-and-how-do-they-de
termine-a-models-performance/> accessed 21 May 2021 (emphasis
added).
326 In ML, ‘overfitting’ means that a model ‘learned “too much” from
the training data set’, while ‘underfitting’ means that a model ‘has “not
learned enough” from the training data’; in both cases, models have low
generalisability and generate unreliable predictions. Anas Al-Masri,
‘What Are Overfitting and Underfitting in Machine Learning?’ (Towards
Data Science, 22 June 2019) <https://towardsdatascience.com/what-are-
overfitting-and-underfitting-in-machine-learning-a96b30864690> accessed
21 May 2021. Over- and underfitting can occur with any method that
attempts to derive a prediction based on the input data.
327 As discussed earlier, preparatory steps in GP are problem-specific;
see above (nn 126, 133) and the accompanying text.
328 Data preparation involves correcting or removing wrong data, in-
cluding outlier removal and dimensionality reduction, which requires
expertise.

329 Steffen Hölldobler, Sibylle Möhle and Anna Tigunova, ‘Lessons
Learned from AlphaGo’ in Steffen Hölldobler, Andrey Malikov and
Christoph Wernhard (eds), YSIP2 – Proceedings of the Second Young
Scientist’s International Workshop on Trends in Information Processing
(CEUR-WS 2017) 92 <http://ceur-ws.org/Vol-1837/> accessed 21 May
2021.
330 On this criterion, see above (n 314) and the accompanying text.
331 See eg Matthew A Sellwood and others, ‘Artificial Intelligence in
Drug Discovery’ (2018) 10(17) Future Medicinal Chemistry 2025, at
2025 (noting that AI has been used in different forms, including ML, and
to a varying extent in the search for novel molecules and structure-
activity correlations since the 1960s).
332 Above (n 134).
333 As discussed above at II.2.b.iii. See also Gary F Marcus and E Davis,
Rebooting AI: Building Artificial Intelligence We Can Trust (Pantheon
Books 2019) 6-9 (discussing examples of overstating AI performance and
suggesting that, whenever one hears about ‘a supposed success in AI’,
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case – against the relevant prior art – whether an average
skilled person would have come up with a particular
set-up of an ML system that would lead to the claimed in-
vention. The question of whether and how such decision-
making can be ‘reverse-engineered’ from the final result
and objectively assessed by patent examiners calls for a
more detailed inquiry.

7. One ML algorithm – many inventions

a) The anticipation of technological singularity

Some legal scholars foresee ‘creative singularity in which
computers overtake human inventors as the primary
source of new discoveries’334 and assume that one AI al-
gorithm can generate multiple inventions – which could
be closely related or unconnected335 – each time it is
implemented.336 The view that AI can yield a ‘surprisingly
large number of inventions’337 echoes the notion of tech-
nological singularity. Besides, patent infringement would
practically be excluded if alternative technical solutions
could be ‘invented around’ effortlessly. The assumed pro-
lificacy of AI algorithms calls into question the need for
behavioural and economic incentives for innovation and
the role of the patent system in this regard.

As discussed earlier, numeric output in ML can vary
due to randomisation when one algorithm is implemented
multiple times.338 However, what matters is whether such
varying output can constitute distinct solutions substitut-
able in their quality. For instance, would multiple runs of
the same evolutionary algorithm used by the NASA
researchers339 generate disparate space antenna designs
with comparable fitness and robustness in satisfying tech-
nical constraints?

b) A technical perspective on an algorithm’s prolificacy

(i) The variability of the output depends on a technique

The variability of the numeric output in ML depends on a
particular method. In ANNs, the chances are high that, ir-
respective of the initial randomisation of weights, a good
training setup would yield very similar models. Thus, a
robust algorithm would generate a model that would per-
form with a comparable level of accuracy340 even if, due
to the randomisation, the weights optimising the cost
function can be slightly different each time the training al-
gorithm is applied to the same training data. For instance,
the second AlphaGo may not make every move exactly

the same way as the first one, but the overall performance
would most likely be the same.

In cases where GP/EAs are applied in technical design
and engineering, the output variability would depend on
different factors, including the number of iterations run
by an algorithm, how much time is given to the algorithm
to find the optimum, and the mutation rate. Where the
RNG’s influence is enough to escape local optima,341

multiple executions of the same EA would generate the
same results. Alternatively, if the influence of the RNG is
insufficient or the search time is limited, multiple execu-
tions of an algorithm can generate different solutions.
The two main reasons why an algorithm might generate
different solutions are that the seed makes the algorithm
‘get stuck’ in local optima, or the time of algorithm execu-
tion is insufficient to reach the optimum.

In research papers, authors usually report the averages/
median and a corresponding spread measure (standard
deviation/interquartile range). Since the same algorithm is
typically implemented many times with different seeds,
researchers draw several samples from the algorithm’s
performance distribution. The spread of that distribution
is measured as the standard deviation of that sample. The
smaller the spread, the less sensitive an algorithm is to the
choice of the random numbers, and the more robust an
algorithm is. Where randomisation is applied to various
aspects of ML, it cannot be guaranteed that a model
would perform exactly like the one in the previous inde-
pendent run of an algorithm, but the average perfor-
mance is a good indicator of what results can be
expected.

(ii) The output substitutability

To answer whether the same genetic algorithm can gener-
ate multiple distinct solutions with comparable fitness, we
first need to define the terms ‘global’ and ‘local’ optima in
optimisation problems. Two essential components of an
optimisation problem are a search space of potential solu-
tions and an objective function that evaluates the quality
of each candidate solution.342 Local optima are the ex-
trema343 that minimise or maximise the objective function
for a given region of the search space, while a global opti-
mum is the extrema (minimum or maximum) of the ob-
jective function for the entire search space.344 Multiple
global and local optima can exist in a given search
space,345 depending on how the search space and an ob-
jective function are defined. Whether a local optimum can
be a satisfactory solution can hinge on the individual
needs in a particular case – in many cases, the ‘near-best
solution’ can suffice.

one should ask: ‘Stripping away the rhetoric, what did the AI system ac-
tually do here?’).
334 Abbott (n 18) 1080.
335 Vertinsky and Rice (n 31) 594.
336 Peter M Kohlhepp, ‘When the Invention Is an Inventor: Revitalizing
Patentable Subject Matter to Exclude Unpredictable Processes’ (2008) 93
Minn. L. Rev. 779, 812; William Samore, ‘Artificial Intelligence and
Patent System: Can a new tool render a once patentable idea obvious?’ in
Woodrow Barfield and Ugo Pagallo (eds), Research Handbook on the
Law of Artificial Intelligence (Edward Elgar Publishing 2018) 471, 479.
337 Yanisky-Ravid and Liu (n 32) 2230.
338 As discussed above at II.3.b.iv and vi.
339 Lohn, Hornby and Linden (n 176).
340 The key determinants of the accuracy of a prediction generated by a
trained ML-model are a good and large enough input dataset (the more
amount of cases, usually the better, except for outliers, which have to be
removed from the input), the design of a model with balanced complexity
(it cannot be too complex or too simple), and a selection of good features
(features that are most capable of predicting the outcomes).

341 On local and global optima, see below (nn 343-345).
342 Rudolf Kruse and others, ‘Introduction to Evolutionary Algorithms’
in Rudolf Kruse and others (eds), Computational Intelligence (Springer
2016) 189.
343 The term ‘extrema’ jointly refers to the maxima (the largest value)
and the minima (the smallest value) of a function.
344 Jason Brownlee, ‘Local Optimization Versus Global Optimization’
(Machine Learning Mastery, 29 January 2021) <https://machinelearning
mastery.com/local-optimization-versus-global-optimization/> accessed
21 May 2021. See also Ragnar AK Frisch, Maxima and Minima: Theory
and Economic Applications (Springer 2013) 5 (explaining that, with the
global extrema, the comparison is established with all points in a given
domain; with the local extrema, the comparison is confined within a cho-
sen ‘locality’).
345 ibid.
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As noted earlier, in ANNs, different initial weights can
result in slightly different models, but the chances are
high that such models will perform with a comparable
level of accuracy. In GP and EAs, different initial condi-
tions can lead to different local or global optima. As far
as the NASA antenna is concerned, the researchers did
not perform a statistical sampling across multiple runs of
the algorithms, as the goal was to design the antennas
that would comply with the specifications of the NASA
mission.346 Theoretically, two algorithms applied by the
NASA researchers could have identified more solutions
comparable in terms of technical parameters optimisa-
tion. Such possibility would depend on the used algo-
rithm, configurations and the modelling of the fitness
functions. However, even if more solutions were identi-
fied, one could not say that an algorithm ‘invented’ multi-
ple inventions. What happens is that an algorithm finds
through the iterative search the optima that already exist
within a search space.

c) Implications for patent law

Even though some optimisation techniques can identify
several optima within a search space, the assumption that
an algorithm can yield a ‘large number of inventions’
appears to be an exaggeration. Quite to the contrary, in
some cases – for instance, in the field of molecular design
– ML models can produce ‘to a large degree invalid’
output.347

Computational model-based techniques can make
problem-solving more efficient compared with brute force
computation, random screening or blunt trial and error.
However, this does not necessarily mean that the applica-
tion of ML techniques might have a sizable cost-saving ef-
fect.348 To date, the relationship between patents, AI and
innovation remain underexplored. At the same time,
without a detailed understanding of ML-based business
models, one cannot argue that the investment amortisa-
tion function of patent law becomes redundant.

III. Synthesis and research outlook

1. ML as computational techniques of
problem-solving

a) ML systems are, technically, tools

The question of whether AI in its most advanced forms is
a tool or ‘more than a tool’ obviously depends on the defi-
nition of a ‘tool’. Etymologically and in common par-
lance, tools are means that assist in performing an
activity.349 All tools are considered to share one attribute
– they require human guidance.350 As long as AI systems
are not self-organising systems capable of performing au-
tomated tasks without pre-programmed instructions or

disobeying such instructions, they are, technically, tools.
More precisely, techniques commonly referred to as AI,
are computational model-based methods that can be ap-
plied in technical optimisation use cases.

Importantly, AI systems can replace humans in imple-
menting computation not because it is unfeasible for a hu-
man to perform the same computational operations but
because it is rather impractical. Humans are slower in
computational tasks – some computations may take years
for a human, while a computer can perform them in sec-
onds. Automation is inevitable. Just as it is more practical
to use cranes and excavators to move stones and build
constructions, today we use search engines because it is
more practical than gathering physical copies and search-
ing them manually.351 However, when computers are
used to perform search and data processing tasks, it is the
implementation of computation that is automated, not
human thinking, cognition or problem-solving. Even
where certain problem-solving segments – such as search,
optimisation and modelling – can be automated because
they can be expressed as computational tasks, their imple-
mentation on a computer should not be equated with the
automation of problem-solving as such.

b) Looking beyond the hype

Popular depictions of AI are often saturated with hyped
perceptions and might vest in AI systems qualities and ca-
pabilities that still need to be proved by research in AI.
For instance, in the case of AI translation, some assume
that GPT3 can write poetry; others argue that ‘despite the
teasing of mainstream press headlines to the contrary,
GPT-3 doesn’t signal the beginning of the end for human-
ity’.352 Even though machine translation has undergone
significant developments, it has still not become a mun-
dane task. Even seemingly factual information, such as
sports or stock market reports, might contain multi-word
expressions353 and figurative language354 – i.e. rhetorical
and stylistic markers – that the best NLP and machine
translation systems currently available cannot always
deal with.355

The perception of computers’ superiority in problem-
solving might be prompted by the widely publicised victo-
ries of AI systems in games, which, according to some
commentators, ‘left humans in its dust’356 and

346 Lohn, Hornby and Linden (n 176) 309.
347 Dimitrov and others (n 40) 24829.
348 As noted earlier, ‘transfer learning’ is an approach that can save
costs in ML. Whether or not transfer learning can be implemented in a
use-case depends on an ML method and a particular application.
349 Cambridge Dictionary, ‘Tool’ <https://dictionary.cambridge.org/dic
tionary/english/tool> accessed 21 May 2021. For the etymological ori-
gins, see <https://www.etymonline.com/word/tool> accessed 21 May
2021.
350 Carl Mitcham and Robert Mackey, ‘Tools and Machines’ in Carl
Mitcham (ed), Encyclopedia of Science, Technology, and Ethics
(Thomson Gale 2005) 1964, 1965.

351 The definition of automation is not limited to physical tasks but
includes tasks associated with cognitive processes. George A Schillinger,
‘Automation’ in Carl Mitcham (ed), Encyclopedia of Science,
Technology, and Ethics (Macmillan Reference 2005) 146.
352 Robert Dale, ‘GPT-3: What’s It Good for?’ (2021) 27 Natural
Language Engineering 113, 118, doi:10.1017/S1351324920000601.
353 Ivan A Sag and others, ‘Multiword Expressions: A Pain in the Neck
for NLP’ in Alexander Gelbukh (ed), Computational Linguistics and
Intelligent Text Processing, CICLing 2002, Lecture Notes in Computer
Science, vol 2276 (Springer 2002).
354 Jelena Mitrovi�c and others, ‘Ontological Representations of
Rhetorical Figures for Argument Mining’ (2017) 8(3) Argument &
Computation 267.
355 Dale (n 352).
356 Matt McFarland, ‘What AlphaGo’s Sly Move Says About Machine
Creativity’ The Washington Post (Washington, 15 March 2016)
<https://www.washingtonpost.com/news/innovations/wp/2016/03/15/
what-alphagos-sly-move-says-about-machine-creativity/> accessed 21
May 2021. Bernard Marr, ‘Artificial Intelligence Masters the Game of
Poker – What Does That Mean for Humans?’ (Forbes, 13 September
2019) <https://www.forbes.com/sites/bernardmarr/2019/09/13/artificial-
intelligence-masters-the-game-of-poker–what-does-that-mean-for-humans/>
accessed 21 May 2021.
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‘demonstrate the futility of competition between human-
kind and machine’.357 Others, however, have not viewed
the capacity of Deep Blue to beat a human at chess as
‘more portentous than that a tractor can beat a human at
ploughing’358 and consider AlphaGo’s accomplishments
as illustrating Level 1 of AI where ‘engineered intelli-
gence’ can achieve ‘technically defined goals’ but is not
capable of human-like reasoning.359

What the victory of AlphaGo can tell us about human
intelligence is that a computer can efficiently perform cal-
culations that would take a lifetime for a human without
a computer. It also tells us that a human can be intelligent
enough to model those processes: in essence a group of
humans came up with a way to train AlphaGo by using
certain rules and methods. However, it does not tell us
what human intelligence is and how it is developed, e.g.
whether the human brain computes some loss function
and builds a numeric model when learning to play chess.
One cannot deduce superiority because a computer can
outperform a human in playing a specific game.

c) Comparing ‘apples to apples’

AI can augment human capacity to solve problems rather
than replace a human. Even though races between
humans and horses360 can be entertaining, the two are
obviously incompatible, while a horse’s outperformance
cannot be seriously taken as a sign of the apocalypse of
the human race. If we wanted to compare ‘apples to
apples’, the competition would need to be arranged be-
tween ML teams developing systems playing chess, Go,
etc. The same can be said about the ‘Humies’ competition
held annually as part of the Genetic and Evolutionary
Computation Conference.361 The concept ‘human-com-
petitive performance’ is deceptive, as long as a human
orchestrates the implementation of GP/EAs through task-
specific preparation. It would be more sensible to com-
pare the results achieved by humans using GP vis-à-vis
those achieved by humans not applying GP or applying
other techniques.

d) A matter of conceptual perspective?

The question of whether AI might be ‘more than a tool’
pertains to the central inquiry in the philosophy of AI and
cognitive science, namely: where algorithms can express
mental states and processes, do computers executing such
algorithms merely simulate mental states and processes,
or do they exhibit them?362 Research in the field of
human-computer interaction and cognitive science pro-
duced several approaches illustrating how computer-
mediated cognitive processes can be conceptualised.

These include the theories of ‘extended mind’363 and ‘dis-
tributed cognition’;364 and concepts such as ‘blended cog-
nition’,365 ‘cognitive systems’,366 ‘cognitive artifacts’,367

‘instruments of mind’,368 ‘things that make us smart’,369

and ‘tools for thought’.370 While an in-depth discussion
of these frameworks goes beyond the scope of this paper,
the diversity of these perspectives suggests that the ques-
tions of whether and where to draw a boundary between
cognitive agents and cognitive artefacts depends on the
frame of reference and can even be viewed as a matter of
‘one’s belief system’.371

What is clear is that AI systems are based on computa-
tional modelling, which is by definition an approximation
and simplification of the phenomena that are being mod-
elled (e.g. cognitive functions and processes).372 Research
in AI is concerned with a ‘computational understanding
of what is commonly called intelligent behavior, and with
the creation of artefacts that exhibit such behavior’.373

Thus, cognitive functions can be reproduced in compu-
tational artefacts to the extent to which they are com-
prehended by their (human) designers and engineers.374

Currently, there are significant gaps in our understand-
ing of human cognition, including questions such as
‘what is the nature of consciousness’, ‘what is the neuro-
logical basis of creativity’,375 ‘how exactly biological
processes interact with cognitive phenomena’,376 and
‘whether cognitive processes are necessarily computa-
tional in nature’.377 Success in computational modelling
of cognitive processes will depend on bridging those
gaps.

357 Aswin Pranam, ‘Why the Retirement of Lee Se-Dol, Former ‘Go’
Champion, Is a Sign of Things to Come’ (Forbes, 29 November 2019)
<https://www.forbes.com/sites/aswinpranam/2019/11/29/why-the-retire
ment-of-lee-se-dol-former-go-champion-is-a-sign-of-things-to-come/>
accessed 21 May 2021.
358 Harry Collins, Artificial Intelligence. Against Humanity’s Surrender
to Computers (Polity Press 2018) 84-85.
359 ibid 77.
360 <http://managainsthorse.net> accessed 21 May 2021.
361 <https://www.human-competitive.org/awards> accessed 21 May
2021.
362 Barbara Von Eckardt, ‘Cognitive Science’ in Encyclopedia of
Computer Science (John Wiley & Sons 2003), doi: 10.1002/
0470018860.s00105.

363 Heinrichs (n 158).
364 Distributed cognition is an analytical framework that emerged in the
mid-1990s. It provides concepts, methods, approaches to understanding
human cognitive activity which is conceptualised in computational and
information processing terms. Interested readers might take a look at the
following literature: Edwin Hutchins, Cognition in the Wild (MIT Press
1995); Yvonne Rogers and Judi Ellis, ‘Distributed Cognition: An alterna-
tive framework for analysing and explaining collaborative working’
(1994) 9 Journal of Information Technology 119.
365 Jordi Vallverdú and Vincent C Müller (eds), Blended Cognition. The
Robotic Challenge (Springer 2019) vii (defining blended cognition as ‘the
study of how an intelligent system can use or even partially combine sev-
eral methods to decide among possible action outputs or data evaluation
and storage’).
366 David Vernon, Artificial Cognitive Systems. A Primer (MIT Press
2014).
367 Don A Norman, Cognitive Artifacts (University of California 1990).
368 Meurig Beynon and others (eds), Cognitive Technology: Instruments
of Mind: 4th International Conference (1st edn, Springer 2001).
369 Don A Norman, Things That Make Us Smart. Defending Human
Attributes in the Age of the Machine (Basic Books 1993).
370 Howard Rheingold, Tools for Thought: The History and Future of
Mind-expanding Technology (Princeton University Press 2000).
371 Richard D Patton and Peter C Patton, ‘What Can Be Automated?
What Cannot Be Automated?’ in Shimon Y Nof (ed), Springer
Handbook of Automation (Springer 2009) 305, 305-6.
372 Enric Trillas, ‘An Algebraic Model of Reasoning to Support Zadeh’s
CWW’ in Janusz Kacprzyk and Witold Pedrycz (eds), Springer
Handbook of Computational Intelligence (Springer 2015) 249, 251 (stat-
ing that, ‘[i]f it can metaphorically be said that if reality is in color, a
model of this reality is a simplification of it in black and white’).
373 Stuart C Shapiro, Encyclopedia of Artificial Intelligence (2nd edn,
John Wiley & Sons 1992) 54.
374 For an in-depth exploration of how a better understanding of human
processes can be leveraged for designing better computational artefacts,
see eg Jordi Vallverdú and Vincent C Müller (eds), Blended Cognition.
The Robotic Challenge (Springer 2019).
375 See eg Anna Abraham, The Neuroscience of Creativity (Cambridge
University Press 2018).
376 Gregory R Mulhauser, Mind Out of Matter: Topics in the Physical
Foundations of Consciousness and Cognition (Springer 1998).
377 Tim Van Gelder, ‘What Might Cognition Be, If Not Computation?’
(1995) 92(7) The Journal of Philosophy 345-381.
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In general, views on when ‘high-level machine intelli-
gence’ (‘Strong AI’) can be achieved diverge substantially
within the ML community.378 Some researchers assume
that ‘all human thought, or at least intelligent thought,
can be reduced to computation, and [hence, computers
can] exhibit human-like intelligence, and eventually intel-
ligence even superior to that of humans’.379 Others argue
that ‘not all intelligent human thought and its consequent
behavior can be reduced to simple computation, or even
logic’.380

As far as the application of ML in technical problem-
solving is concerned, a 2003 article on technical design
emphasised that ‘computers are used only as an aid’ in
technical design and engineering, which ‘involves exten-
sive decision-making and subjective evaluation, activities
that are aided greatly by using computers, but that are
generally carried out by computers under human direc-
tion’.381 In the authors’ view, this holds good for contem-
porary ML systems, while predicting future AI
developments is akin to gazing into a crystal ball.

2. Implications for patent law
Whether AI is a tool or more than a tool can be a relevant
factor for the definition of inventor and the allocation of the
inventor’s rights from a deontological perspective. In light
of the technical explanations provided in this paper, hardly
any uncertainty persists in situations where ML techniques
are applied in problem-solving either regarding the fulfil-
ment of the requirement of intellectual engagement in the
conception of an invention de lege lata,382 or regarding the
appropriateness of such requirement de lege ferenda. Like a
sword that never kills by itself but is a tool in the killer’s
hand,383 computational modelling and computers executing
models do not invent by themselves but are powerful
problem-solving tools.384 As emphasised throughout this

paper, the successful performance of ML is a function of
knowledge, skills and expertise of humans who configure,
modulate and apply ML techniques.

As far as the economic justification of patents is con-
cerned, it is not prima facie evident that the application of
ML in technical problem-solving renders innovation
activity so effortless and low-cost that the investment
amortisation function of patent rights becomes no longer
relevant.385 More economic insight into the role of patent
protection for AI-incorporating or AI-induced inventions
is needed as statistical data showing the increasing386

number of AI-related patents alone do not lend them-
selves to drawing any conclusion on the causal relation-
ship between patents and innovation.

On balance, implications of ML for the patent system
in its core tenets, on closer examination, appear less
revolutionary387 than is often posited. Some of the
identified issues – in particular, how ML techniques
should be factored in the definition of a skilled person,
the patentability of purpose-unbound ML methods
and, more broadly, the role of AI-related patents in in-
novation388 – need to be examined more in-depth.
While this paper mainly drew on European patent law
and the patent examination practice of the European
Patent Office, the presented analysis concerns the core
aspects of the patent system and, thus, our findings can
inform policy and legal discussions on patent law and
AI in other jurisdictions.
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378 See eg Katja Grace and others, ‘Viewpoint: When Will AI Exceed
Human Performance? Evidence from AI Experts’ (2018) 62 Journal of
Artificial Intelligence Research 729-754 <https://www.jair.org/index.
php/jair/article/view/11222/26431> accessed 21 May 2021. The authors
define ‘high-level machine intelligence’ as the capacity of unaided com-
puters to accomplish any task better and more efficiently compared to
qualified humans.
379 Patton and Patton (n 371) 312.
380 ibid. For a recent insightful discussion, see Michael I Jordan,
‘Artificial Intelligence — The Revolution Hasn’t Happened Yet’ (2019)
Harvard Data Science Review <https://hdsr.mitpress.mit.edu/pub/
wot7mkc1> accessed 28 December 2021 (followed by peer
commentary).
381 Barry Flachsbart, David Shuey and George Peters, ‘Computer-Aided
Design/Computer-Aided Manufacturing’ in Edwin D Reilly, Anthony
Ralston and David Hemmendinger (eds), Encyclopedia of Computer
Science (4th edn, John Wiley & Sons 2003) 268, 270 <https://dl.ac-
m.org/doi/10.5555/1074100.1074238> accessed 30 December
2021(emphasised in the original).
382 On the criterion of intelligent conception, see above (nn 73-75) and
the accompanying text.

383 A saying attributed to Lucius Annaeus Seneca.
384 Dietmar PF Moeller, Mathematical and Computational Modeling
and Simulation. Fundamentals and Case Studies (Springer 2004) 1 (refer-
ring to computational modelling as ‘one of the most powerful design
tools’ used to ‘understand, control and improve the performance of com-
plex systems and to solve problems’).
385 It is worth noting that the amount of investment incurred in develop-
ing an invention has not been a material factor for patentability de lege
lata. Thus, the relevance of the investment factor de lege ferenda would
need to be considered across the board and not only in relation to inven-
tions developed by applying AI.
386 See eg WIPO (n 275); OECD, Measuring the Digital
Transformation. A Roadmap for the Future (OECD Publishing 2019) 32
ff; Hidemichi Fujii and Shunsuke Managi, ‘Trends and Priority Shifts in
Artificial Intelligence Technology Invention: A global patent analysis’
(2018) 58 Economic Analysis and Policy 60.
387 This conclusion is consistent with the findings of Professor Straus.
See Joseph Straus, ‘Will Artificial Intelligence Change Some Patent Law
Paradigms?’ (2021) LXXXI Zbornik znanstvenih razprav 11 <https://
www.pf.uni-lj.si/media/zzr.2021.02.straus.pdf> accessed 30 December
2021.
388 As pointed out above, studies on this subject are rare. See Nathan
Calvin and Jade Leung, ‘Who Owns Artificial Intelligence? A preliminary
analysis of corporate intellectual property strategies and why they matter’
(2020) Working Paper 8 <https://www.fhi.ox.ac.uk/wp-content/uploads/
Patents_-FHI-Working-Paper-Final-.pdf> accessed 25 May 2021 (ob-
serving that ‘AI and ML commercial activity has experienced massive
growth and international investment even while the patentability of inno-
vations remains uncertain, suggesting that the ability to patent AI is not
necessary for innovation’).
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