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IoT based Fall Detection System for Elderly 
Healthcare 

 
 
 
 
Falls are a leading cause of immobility, morbidity, and mortality in older 

adults. Falls incur high cost to health services with millions of bed days. Half of 
the older adults over 65 years old, fall in a span of 5 years with 62% sustaining 
injuries and 28% protracting extensive injuries. Automatic Fall Detection System 
(FDS) for elderly healthcare through Internet of Things (IoT) human centered 
design can provide timely detection and communication of fall events for 
immediate medical aid in case of injury or unconsciousness. FDS have been 
reported to provide reduction in death rates of up to 80% due to timely medical 
support. In this chapter, we discuss elderly-centric IoT-based FDS for smart 
homes and care centers with emphasis on edge, fog and cloud IoT layers. Sensing 
edge devices with wearable/environmental sensors, vision-based systems, and 
radio frequency sensing systems, such as WiFi-based sensing and RADAR are 
presented for an IoT centered FDS. IoT gateways and communication protocols 
for the fog layer are discussed in the context of an FDS. Cloud processing of edge 
device data for fall activity detection and classification from activities of daily life 
is explained. Machine and deep learning algorithms for detection of fall events 
from 1D and 2D signals (image/video) are presented and various deployment 
scenarios are discussed in the context of edge or cloud IoT layers. This chapter is 
concluded with results and performance comparison of several IoT centered FDS 
in terms of various sensing systems and state-of-the-art machine and deep learning 
models for effective detection of falls for elderly healthcare. Furthermore, future 
work and prospective improvements in IoT centered design for fall detection in 
elderly healthcare is discussed.  

 
Keywords: Internet-of-Things, Fall detection system, wearable systems, 

WiFi/Radar sensing, machine learning, deep learning. 

1 Introduction 

A fall is defined as an inadvertent descent to the ground or floor. Falls may result 
in fatal or non-fatal injuries. Falls in elderly may result in fractures and are costly 
in terms of health services. They are usually associated with multi-factorial causes 
including age, patient history, muscle weakness, visual impairment, poor balance 
and environmental causes. Falls are the second highest cause of unintentional 
deaths worldwide after road accidents [1]. Worldwide 37.3 million falls require 
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medical attention with 0.68 million deaths. Adults over 60 years old suffer the 
highest number of deaths due to falls worldwide [1]. In UK alone, half of the older 
adults over 65 years old fall in a span of 5 years with 62% sustaining injuries. 
Amongst those who suffer from falls, 28% sustain extensive injuries, 21% lose 
confidence and 10% lose independence [2]. Falls cost 4 million bed days to UK 
National Health Service, along with 4 billion pounds in health-related costs [3]. 
The cost of falls in terms of high morbidity and immobility has resulted in a focus 
on fall detection systems for older adults. The system can detect occurrence of fall 
events and are imperative for older adults who live alone and may not be able to 
call for help due to unconsciousness or injury. Fall detection systems can provide 
timely intimation of fall events resulting in immediate medical help and are known 
to improve hospitalization by 26% and death rates reduction by 80% [4]. 
 
Internet-of-Things (IoT) consists of a large number of smart physical devices 
connected to the internet through gateways without human-computer interaction 
and can communicate data in real-time. IoT based fall detection system can 
transfer real-time fall events to the cloud with smart sensing devices acting as 
“things”.  

 

 
Fig. 1. Fall Detection System Overview 
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Figure 1 illustrates an IoT based fall detection system with IoT edge, gateway and 
cloud. The system can utilize various communication technologies for access to 
the internet, such as WiFi, GSM and 5G. The sensing devices in a fall detection 
system can be categorized into three broad categories 1) wearable sensors, 2) 
vision-based sensors and 3) WiFi/Radar sensing devices. The devices gather 
human activity data, such as acceleration values from human body movements. 
The data can be processed at the transmitting embedded device for classification 
and detection of falls or at the receiver side on the IoT Gateway by the 
corresponding processing device. The processed data is transmitted to the IoT 
cloud from where it can be accessed through smart-phones or desktop computers. 
The fall events can be communicated through cloud to a server in a medical 
emergency center in real-time, which is essential for dispatching timely medical 
aid. The level of processing done at the IoT edge device or gateway and the data 
to be sent to the server are flexible design decisions. Security and privacy issues 
that may not arise in traditional offline fall detection systems are important aspects 
for an IoT based fall detection system. Encryption and decryption process are part 
of the real-time processing tasks for IoT based sensing for fall detection.  

Figure 2 illustrates the concept with three sensing devices, a wearable 
accelerometer, a camera and a WiFi sensing device. The accelerometer gives 
acceleration values of body movements in units of “g” (9.8m/sec2). The video 
frames and WiFi Channel State Information (CSI) are obtained from the camera 
and the WiFi sensing device. WiFi CSI values are variations in wireless channel 
estimation that vary over time due to changes in wireless channel caused by 
objects and human body movements in the vicinity. The signals from various 
sensing devices are processed with signal processing algorithms, such as time-
frequency spectrograms for 1D signals or foreground-background segmentation 
for 2D/3D images or video frames to obtain moving objects. Machine learning 
classification algorithms are applied to the processed data and features to detect 
falls at the IoT edge device.  
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Deep learning algorithms are also utilized for classification in fall detection 
systems [5, 6]. However, deep learning techniques are computationally intensive 
and may be deployed at the IoT gateway or cloud due to high processing 
requirements. In this scenario, the signals from sensing devices can be processed 
at the edge, Edge processing usually involves removal of outliers in sensor 
readings and use of signal processing techniques, such as application of digital 
filters for de-noising or to obtain certain frequency ranges. The processing at edge 
device may also include compression along with encryption before transmission of 
signals. The transmitted signal can then be further processed at the IoT gateway. 
Deep learning techniques require higher throughput for training and can be 
applied at the processing device connected to the gateway, such as a desktop 
computer. Furthermore, the signal can be transmitted to the cloud where it can be 
visualized in real-time. The cloud offers more flexibility in computing resources 
and a large number of signals can be processed at the cloud with high throughput 
graphics processing units. More complex deep learning models can be utilized at 
the cloud for higher classification accuracy of fall events. Figure 2 illustrates both 
the scenarios with processing and classification performed at the edge device or at 
the gateway/cloud.  

 
Fig. 2. IoT based Fall Detection System Processing and Classification. 

 
xxx 
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2 Edge IoT Layer 

Edge IoT layer consists of edge devices which make up the sensing system end of 
the fall detection system and consists of sensors and embedded processors.  

 
2.1 Edge Devices 
 
The edge devices are mostly made up of various embedded boards for processing 
and consist of embedded cores and Field Programmable Gate Array (FPGA) based 
reconfigurable System on Chip (SoC) devices. The smartphones are also part of 
the edge IoT layer. The IoT based fall detection systems have their own unique 
issues and demand stringent requirements compared to non-IOT based fall 
detection systems, such as privacy and security issues that may arise due to 
uniquely addressable devices and their global internet connectivity.   
The edge IoT layer embedded edge platforms should have most if not all the 
following characteristics with stringent requirements for security and privacy: 

 
1) Uniquely Identifiable: The edge devices used for fall detection should 

be uniquely identifiable. An IP address provides globally unique address 
to identify a particular user with the wearable sensor or an environment 
where the sensor is installed. 

2) Smart platform: The device should provide a smart platform with sensor 
or wireless sensor connectivity with processing capabilities and an 
embedded core for running various tasks and algorithms.  

3) Embedded Machine Learning (ML) cores: Now a days ML cores for 
learning and classification tasks are becoming a norm on edge devices. 
The custom application specific integrated circuits are an essential 
requirement for low power and real-time edge Artificial Intelligence (AI). 

4) Real-time processing: Unlike the edge devices for measuring 
temperature and other environmental factors that can do with lower 
sampling rates of a sample per minute, the device for fall detection 
systems provide higher sampling rate in real-time to process or transmit 
data from sensors. The accelerometers can use a typical sampling rate of 
50 samples per second, camera based systems should be able to provide 
higher rates from 30 to 60 frames per second and a wide range of 
resolution. Typical WiFi sensing systems have sampling rates from 50 
samples per second up to 400 samples per second for 5G software 
defined radios used for healthcare activity classification. 

5) Energy efficiency: The devices should provide higher energy efficiency. 
However, the requirements vary from system to system and depend upon 
the type of sensors. Wearable sensors with Inertial Measurement Units 
(IMU) should typically work in a current range of micro Amperes.  
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6) Power management: Power management is an important aspect and the 
devices should have support for sleep mode to save power, e.g, sensor 
readings may not be required, when the person with a wearable sensor is 
sleeping or resting. 

7) Privacy and security: Privacy and security are important aspects of 
sensing devices for IoT based fall detection systems. The unique IP 
addresses allow the sensors to be accessed globally and should provide 
encryption of data along with authentication mechanisms for the edge 
devices utilized for fall detection system. The vision based sensing 
platforms in this regard create a higher security risk and should have 
stringent access authentication to avoid hacking. 

 
A large number of embedded platforms can be utilized for IoT based fall 

detection system. Embedded platforms such as Raspberry Pi Pico [7], Arduino [8] 
and NodeMCU [9] are ubiquitous in edge devices with IMU units. Low power and 
small form factor IoT capable boards are a good choice for fall detection system. 
Embedded platforms, such as Adafruit FLORA [10] with 1.75 inch diameter are 
easily wearable and integrate Arduino compatible microcontroller with 
accelerometers and gyroscope sensors through Inter-Integrated Circuit (I2C) bus. 
iNEMO [11] embedded platforms by STMicroelectronics integrate accelerometer, 
gyroscope and magnetometer with an embedded machine learning core in a small 
form factor. Similarly embedded vision platforms, such as iENSO vision board 
[12] combines edge based AI and image processing capabilities in a small form 
factor of 2.3 x 2.2 cm.  
 
Reconfigurable SoC embedded platforms are a method of choice for edge IoT 
devices and have been utilized for fall detection system [13]. They provide a good 
trade-off between higher flexibility and low power for implementing signal 
processing techniques, feature extraction or machine learning classifiers on 
programmable logic. The signal processing can be implemented both in 
programmable logic and on hardware ARM cores on the SoC device depending 
upon the computational requirements. Xilinx Zynq SoC has been utilized for fall 
detection. The SoC provides to ARM cores and programmable logic for 
implementing computationally intensive algorithms for fall detection. Figure 3 
illustrates the Zynq SoC [14] architecture with ARM cores, programmable logic 
and Xilinx proprietary AXI bus for connecting the accelerator with the ARM 
cores. Fall detection sensors, such as an IMU with accelerometer and gyroscope 
sensors can be connected to the ARM core through the Serial Peripheral Interface 
or I2C bus. 
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   Fig. 3. Reconfigurable embedded platform for a fall detection system 
 
An example fall detection system presented by Tahir et al. [13] based on the Zynq 
platform is illustrated in Figure 4. The system implements feature extraction in 
programmable logic and machine learning classification for fall detection in 
software on the ARM core. The sensor transmits accelerometer data from sensor 
to a Zynq edge device wirelessly. The signal is processed to compute mean and 
the zero meaned signal is wavelet transformed to obtain fractal features for fall 
detection on programmable logic. The features are passed to the ARM core for 
machine learning classification in software. The feature extraction process is 
implemented on programmable logic since it is more computationally intensive 
than the Linear Discriminant Analysis (LDA) algorithm. LDA is computationally 
less intensive than the feature extraction process [13]. Furthermore, apart from 
reconfigurable platforms, smart phone are ubiquitous edge devices with inbuilt 
sensors, such as accelerometer and gyroscope that can be utilized for fall 
detection. Smart phones can also be used with smart watches.  Apple wearable 
watch can detect falls and send messages directly through the Apple smart phone 
to emergency contacts. The smart phone-based wearable’s get internet 
connectivity for fall event occurrence through the smart phone directly connected 
through GSM or WiFi router [15]. 
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Fig. 4. An example reconfigurable fall detection system on reconfigurable SoC device. 
 

 
2.2 Wearable/Environmental Sensing System  
 
Accelerometers and Gyroscopes Accelerometers can be used to track human 
motion via wearable devices or embedded in smart phones that users carry [16]. 
This can be advantageous if the 1 user already owns a capable mobile device but 
can be expensive when providing mobile devices. The wearable devices can be in 
the form of smart watches with embedded accelerometers. Accelerometers work 
together with gyroscopes to be able to determine the orientation of the user’s body 
[17]. The data received from the accelerometers can be applied to machine 
learning algorithms to classify the human motion taking place [18]. Pressure 
sensors electrode arrays woven into fabric which can be worn by the user and 
allows for the detection of muscle movement and thus the detection of movement 
[19]. Pressure sensors can also be applied to furniture material to detect sit-to-
stand and stand-to sit motions [20]. Acoustic sensors are electrical devices that has 
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the ability to measure sound waves in the environment. The sound waves can be 
used for fall detection systems by analyzing the acoustic signals [20]. The signals 
received from these sensors are then processed to remove noise from the signals. 
These noise removing filters can include high and/or low Butterworth filters [21]. 
These processed signals can then be used in AI to train models which can 
recognize the acoustic waves accompanying a fall [22]. Figure 5 shows the 
process followed for wearable fall detection systems. 

 

 
Fig. 5. Fall detection system using wearable sensors 

2.3 Vision-based sensing Systems  

2.3.1 Camera and Kinect depth sensors 
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Camera technology can be used to record individuals. This method will allow the 
user to not have to wear any devices while being monitored. Machine learning can 
be used to remove the need for a human to be observing the video footage which 
can prevent the subject from feeling that they are being watched. This type of 
system can achieve high accuracy [23]. However, camera systems 2 can 
sometimes be expensive. To decrease the costs of the systems, devices such as a 
low-cost Raspberry Pi device with a camera can be used to obtain good 
performance compared to more expensive devices [24, 25]. Machine learning can 
be applied to the frames of the footage to establish if an individual has fallen [26]. 
Depth sensors work by using two sensors with a known range between them to 
calculate the depth [27]. As the depth changes, movement can be inferred. Kinect 
sensors are well known devices for Microsoft’s Xbox gaming console. The device 
allowed for gaming where peoples movements would be sensed as input. An 
example of this is for games where the users are required to perform dancing [28]. 
These sensors can be applied with deep learning to be able to classify poses of 
humans within healthcare applications [29]. 

2.4 Contactless Non-Interference Sensing  
 
Radio Frequency (RF) and Radar are contactless method that allows for detection 
of human movements without the need for the user to wear a device or have 
vision-based sensors raising privacy concerns. This removes the problem of users 
having to remember to wear devices and avoids any discomfort of either wearing 
devices or the intrusiveness of vision-based systems in the home. These methods 
are known as contactless non-intrusive methods of detection.  
 
2.4.1 Radar Sensing  

 
Radar technology provides sensing of the environment which can be used to 
monitor daily routine activities of elderly people [30]. Radar based sensing works 
by exploiting the Doppler signatures created on radar when movement occurs 
[31]. This can be used in healthcare applications for example if a elderly person 
experiences a fall. The Doppler signatures can be presented using spectrograms. 
Spectrograms are visual representation of the spectrum of frequencies of a signal. 
An example of a spectrogram containing a fall activity is shown in Figure 6.  
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Fig 6. A Spectrogram displaying a falling action. 

 
 
These spectrogram images can be used to in AI for image classification of what 
activity takes place in that particular spectrogram [32, 33, 34, 35]. Figure 7 
displays the process used in a radar fall detection system. 
 

 
Fig 7. Radar fall detection system processing 

 
2.4.2 Radio Frequency Sensing  
 
Radio Frequency Sensing works by observing the state of a wireless 
communication link between devices such as the case with a Wi-Fi network within 
the home. As the signals travel through the atmosphere, they will propagate 
differently depending on objects in the room. These objects can include humans 
and the signals will propagate differently depending on the positioning of the 
body. Wi-Fi records the information of the signal propagation, and this is called 
the CSI. The CSI is used from Wi-Fi to look at the amplitude of the RF signals 
while the human moves between the RF signal [36, 37]. Figures 8 and 9 shows 



12 

CSI amplitude samples of a falling motion and a non-falling action. The CSI 
describes how the wireless signal propagates between the transmitting node and 
receiving node [38]. This data can be exploited to detected changes during a 
specific human motion such as the example of a fall occurring.  
 

 
Fig. 8. Sample of a fall event captured using CSI amplitude. 

 

 
Fig. 9. Sample of a no fall event captured using CSI amplitude. 
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WiFi is considered superior due to its low cost due to the extensive coverage in 
homes already [39]. Another advantage of using Wi-Fi is that it eliminates the 
need for excessive equipment which can feel invasive, and the additional 
equipment can be expensive and require maintenance [38]. By implementing 
systems to only use the smallest amount of equipment costs are keep down as well 
as ease of installing. A system using RF signals will monitor the CSI of incoming 
signals. Signal processing is applied for noise reduction and to make changes 
within the signal more prominent. Then the signals are passed 5 through a model 
which can observe the patterns of the CSI and is trained to recognize a fall 
signature in the CSI. Then a trigger can be sent to indicate a fall has been detected 
in the system. Figure 10 shows the process used in a RF fall detection system. 
 

 
Fig. 10. RF fall detection system processing 

 
3 Fog IoT Layer 

  
In FDS, Fog IoT layer consists of various different devices (mainly IoT gateways) 
and communication technologies that connect those devices with the computing 
platforms. Particularly, the communication technologies in this context include, 
but are not limited to, cellular networks (such as 5G, 4G, and GSM), Zigbee, 
Bluetooth, NFC, WiFi, LoraWAN, and so on. IoT gateways have emerged as a 
key component of a robust IoT platform that can help enable an effective FDS. 
The gateway acts as a communication and computing hub wherein different 
sensors are connected to it via one of the communication technologies [40]. 
Furthermore, gateways connect those sensors to different users, applications, and 
the Internet. In most cases, IoT gateways act as a bridge between sensors/actuators 
and the Internet. The communication architecture of IoT is given in Figure 11. 
 



14 

 
Fig. 11: The IoT Communication Architecture 

 
In terms of features set, gateways generally host one or more of the following 
features:  

1) Gateways facilitate communication to/from sensors and Internet/non-
Internet devices.  
2) Data caching, streaming, data aggregation, pre-processing, cleansing, 
filtering and optimization. 
3) System diagnostic and configuration management.  
4) Security - device and network security. 

 
3.1 Communication Technologies  
 
The communication architecture of IoT gateway depends on the underlying 
technology being used. In general, the communication technologies are divided 8 
into four different categories, (i) peer-to-peer (P2P) technologies, (ii) Low power 
and short range mesh technologies, (iii) local area network (LAN) technologies, 
and (iv) low power and long distance technologies [41].  
 
3.1.1 Peer-to-peer (P2P) Technologies  
 
P2P means that only two devices are connected together directly. In the context of 
IoT networks, a sensor node can be connected to the gateway in P2P fashion. P2P 
technologies include legacy Bluetooth, WiFi Direct, and near field communication 
(NFC). Bluetooth is the best known P2P technology, which is present in almost 
every smartphone and tablet. Due to low range communication, it is much more 
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power efficient than WiFi and cellular technologies. WiFi Direct is an alternative 
to Bluetooth, which is native to almost every modern-day smartphone. WiFi 
Direct is P2P technology, which works without the need of an access point (AP). 
The working principle is similar to infrastructure mode WiFi wherein one of the 
participating devices takes roles of an AP while others act as clients. Generally, 
WiFi Direct is faster than Bluetooth. Near field communication is another P2P 
technology which uses electromagnetic field between coils to enable 
communication between two nodes. NFC works on the principle of 
electromagnetic coupling, the communication range is generally within an inch or 
two. This makes NFC a very secure technology with a very little chance of 
eavesdropping.  
 
3.1.2. Low Power and Short-Range Mesh Technologies  
 
There are two main technologies that create a low power and short-range mesh 
network, which are Bluetooth low energy (BLE) and Zigbee. These technologies 
are very important when someone is dealing with an application which has 
battery-powered devices, sending a low amount of data to a shorter range. BLE is 
a highly power-efficient communication protocol, which works with different 
devices, transmitting data at different rates. BLE is highly scalable supporting up 
to 32, 767 devices connected in a mesh network. BLE is among the most adopted 
technologies in IoT networks, especially in the Internet of medical things settings. 
BLE uses the 2.4 GHz band. Zigbee is a competitor of BLE that uses the same 2.4 
GHz band, operates in a mesh network topology and has the same range as of 
BLE. In terms of scalability, Zigbee supports twice as many devices as supported 
by BLE, that is, around 65, 000 devices. Home automation and industrial 
automation are a few applications of Zigbee.  
 
3.1.3. Local Area Network (LAN) Technologies  
 
WiFi is a good option in the scenarios wherein sensors support wireless LAN and 
need direct access to the Internet. The coverage area provided by the WiFi is 
better than Zigbee and BLE. In addition, WiFi is a readily available technology 
and its coverage is ubiquitous. Another advantage of WiFi is the supported data 
rate, which is far better than Zigbee and BLE. However, these advantages come at 
the expense of power consumption. The power consumption of WiFi is a way 
more than Zigbee and BLE.  
 
3.1.4. Long-Distance Low-Power Technologies  
There can be scenarios where IoT devices are deployed at remote locations and 
they send a low amount of data to the Internet. For instance, weather monitoring 
sensors mostly have very low data to send. The cellular technologies, such as 
GSM and LTE are not suitable in this scenario as they generally do not support 
very low data rates. These kinds of scenarios are generally known as low-power 
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wide area networks (LPWAN). The most popular technologies in LPWAN are 
LoRa/LoRaWAN, narrowband IoT (NB-IoT), and LTE-M. LoRa is a long-range 
P2P technology having a range of more than 6 miles in some areas. The frequency 
range of LoRa varies in different regions. For instance, in North America, the 
operating frequency of LoRa is 915MHz while in Europe it is around 868MHz. In 
some areas it is also licensed at 169MHz and 433MHz. LoRa is the underlying 
technology while LoRaWAN is a network layer protocol. The only way to provide 
Internet access to LoRa devices is through a LoRa gateway. On the other hand, 
NB-IoT is a cellular based technology, which provides coverage to remote 
sensors. Being a cellular technology, it is complex and more expensive in terms of 
budget and power consumption. However, it provides a direct access to the 
Internet. NB-IoT supports low data rates but it is not yet deployed in many areas 
of the world. LTE-M is best suitable for long distance and high data rate scenarios. 
LTEM provides sensors a direct access to the Internet using 4G cellular network. 
LTE-M is fundamentally different from standard LTE technology as it is 
optimized for the low power consumption suitable for battery powered devices.   
 
The most common data communication protocols are Message Queuing Telemetry 
Transport (MQTT), Constrained Application Protocol (CoAP), Advanced 
Message Queuing Protocol (AMQP), Data-Distribution Service for Real-Time 
Systems (DDS), and Hypertext Transfer Protocol (HTTP). The details of these 
protocols can be found at [42]. 
 
 
4. Cloud IoT Layer 

 
The cloud layer in an IoT network supports caching and processing capabilities 
that can be accessed by different IoT devices and applications. The resources at 
the cloud (caching, processing, etc) can be accessed by different IoT applications 
anytime and anywhere. To this aim, different API are used which are generally 
made available to any HTTP client. For instance, Google cloud IoT Core API 
mainly comprises of two sets of REST resources: cloud IoT and cloud IoT device. 
In order to get the information about different subscribers virtualization 
technology is used, which is also helpful in getting the segregation of IoT 
applications. With the help of APIs and virtualization IoT applications can provide 
different quality of service (QoS) to different users over the same physical 
network.  
 
5. Machine and Deep Learning Algorithms 

  
Random forest algorithm works by using a collection of decision trees. These trees 
make predictions based on features found in the training data. Each trees 
prediction is considered a vote. The majority of predictions decide the final 
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Random Forest prediction [43]. The K-Nearest Neighbors algorithm is well 
known for its simplicity. KNN makes direct comparisons between the testing data 
and training data [44]. The features of the training data are assigned a K sample 
then the testing data is assigned to the K sample with the nearest match [45]. 
During the training phase Support Vector Machine attempts to create boundaries 
known as hyper planes between classes. The hyper plane is positioned as far as 
possible from the closest data points of the classes present in the data. These 
points are known as the support vectors [46]. The hyper planes are used to divide 
the support vectors into the different categories. The features of new data are used 
to place the new data between the hyper planes and provide classification [47].  
 
The Long short-term memory (LSTM) deep learning algorithm is an extension of 
a recurring neural network (RNN). A recurring neural network is a type of neural 
network which models the dynamic behavior of sequences of data between nodes 
of the neural network. LSTM expands on RNN with the use of three different 
gates on each node. the first gate decides if the current state should be erased. the 
second gate is used to control if input should be considered, and the final gate 
decides if the state should be included in the node output. These gates allow for 
LSTM to decide if the sequence of data is relevant to the output of the node [48]. 
Bi-directional long short-term memory (BiLSTM) is a further extension LSTM. 
Where LSTM only considers past behaviors of data sequences, the BiLSTM 
considers data in both previous and upcoming data in the sequence. This is 
possible with the use of two LSTM networks. One LSTM network, the forward 
LSTM network, can review past data sequences and the backward LSTM network 
can review future data sequences [49]. The CNN algorithm is an emerging 
technology which is a powerful solution for image classification problems which 
were initially thought to require human intelligence [51, 52]. The CNN algorithm 
is made up of densely connected layers that take the activations of all the previous 
layers as input. The layers produce feature maps from this input which are known 
as growth rates [53]. CNN algorithms come in the form of 1 Dimension (1D), 2 
Dimensions (2D) and 3 Dimensions (3D) with 3D resulting in highest 
computational power requirements [38]. 1D, 2D and 3D CNN refers to the number 
of directions the kernel moves in. 1D CNN makes use of 2 dimensional inputs and 
outputs for example time-series data. 2D CNN uses inputs and outputs of 3 
dimensions and is mostly used for image data. 3D CNN is 4 dimensional for input 
and output and is mostly used on 3d image data such as MRI and CT scans.  
 
6. Performance Metrics and Results 

 
The severe consequences of falls in the older population have called for the 
innovative use of technology to develop systems that are capable of detecting and 
reporting the fall events, if and when they happen. However, without the right 
metrics to evaluate such systems, the wider community and healthcare systems 
across the world, will not be able to confidently trust the technology and rely on it. 
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This section therefore identifies and presents evaluation metrics for different 
FDSs.  
 
6.1. Evaluation Metrics  
 
To evaluate the performance of an FDS, it is important to consider the main 
building blocks of the system, from the technology used, to the hardware and 
software, to installation, and others. Accordingly, the following metrics have been 
identified to evaluate any FDS, for research or commercialization purposes: 
  

1) System accuracy in real-time detection - Essential to all FDSs  
2) Alert generation feature - Essential to all FDSs  
3) System portability and ease of deployment - Optional to some FDSs  

 
6.1.1. System Accuracy Metrics 
 
An important aspect of FDSs is the real-time feature, meaning the system’s ability 
to accurately report the activities of the monitored person, as they happen, to a 
user friendly web-interface or dashboard, in a near-instant timing. From this, three 
Key Performance Indicators (KPIs) need to be considered, to ensure a perfect 
score in this metric:  

1) Event detection accuracy  
2) Event logging in real-time  
3) User friendliness of the web-interface 

 
The accuracy of detection has two folds. The first is the method implemented to 
capture the event, whether using contactless technology, wearable sensors, and/or 
vision-based sensing devices. The second is the accuracy of the AI-based 
algorithm implemented to intelligently classify or infer the event being an normal 
activity or a fall. This therefore needs to be considered in the system design phase 
where large datasets with inter and intra-class variations collected, and extensive 
testing scenarios are considered. A typical framework to evaluate the accuracy 
FDSs can be found in [54] where four binary classifications are considered: • True 
Positive (TP) - A fall event was correctly detected • True Negative (TN) - A non-
fall event was correctly detected • False Positive (FP) - A non-fall event 
incorrectly detected as fall • False Negative (FN) - A fall event incorrectly 
detected as non-fall The four binary classifications, TP, TN, FP, and FN, are used 
to generate four algorithm performance metrics, that is, Accuracy, Precision, 
Recall, and F1-Score. The Accuracy displays the total number of correct 
classifications versus the total classifications made (see Equation 1). 
 

  (1) 
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The Precision metric is used to measure one of the classifications against how 
precise it is in comparison to all classifications. 
 

   (2) 
 
The Recall is used to show the ratio of the correct classification to all 
classifications for a particular class.  This is usually run for all classes in the model 
and presented as an average. 
 

 (3) 
 
The F1-score is used to provide an average between the Precision and Recall 
metrics. 
 

   (4) 
 
A typical representation of the four values TP, TN, FP, and FN, is in the form of a 
confusion matrix, see Figure 12. A confusion matrix is one that is usually used to 
represent the performance of a classification model to tell how much of the test 
data has been correctly predicted.  In other words, how many data samples have 
been confused to be a different classification as compared to the true class? 
 

 
Fig. 12: Confusion matrix showing the true and false classifications. 

 
Although all four values are important and needs to be scored and calculated with 
as much data as possible, the most serious one is the FN as it is the one that could 
mean patients or individuals can be in a serious condition, without the system 
reporting the status. The FP value, whilst it doesn’t have a life-threatening impact, 
can result in resource waste and damage to the environment if the system was 
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linked to emergency response and constant false alarms were generated. Event 
logging in real-time: It is crucial to ensure the system reports the event, regardless 
of what it is, in a timely manner. The severity of delayed reporting is usually 
associated with the “fall” only, however it is important to ensure a fully functional 
system. The time between incident and notification/reporting can differ and 
therefore it needs to be measured and evaluated during the early testing stages of 
such systems. This can be performed by comparing the reported times to the actual 
event. Nevertheless, the challenge in conducting this test is coming up with a non-
invasive/intrusive method to record the actual event performed and exact timing. 
User friendliness of the web-interface: This metric is rather a qualitative one, yet 
crucial to the success of such systems. To the end user, especially care takers or 
emergency services, the interface is “the system” as they will interact with it and 
not the sensing technology, majority of the time. Accordingly, design ideas could 
be shared with the target users, in focus groups, prior to implementing them or 
ideas collected through questionnaires and/or interviews. To develop a dashboard, 
the following can be considered: 

1) Dashboard accessibility 
2) Dashboard design - Color coded events reporting, animation for alerts 

etc. 
3) Security of the reported data and the personal information 

 
6.1.2 Alert Generation 
 
A crucial design objective for remote healthcare monitoring in general and for 
FDSs in particular, is the generation of accurate alerts. The alert generation feature 
can be useful to indicate potential threats to the patients and/or monitored 
individuals, based on the recorded activity levels. This metric can also be used to 
reflect the accuracy of the system, as it is crucial to ensure alerts are generated 
only when and if necessary, as well as its real-time feature, previously discussed. 
 
The alert generation metric therefore encompasses two things, the alert type and 
alert generation time. The type of alert means, what would the system output to 
inform the target beneficiaries of the reported event. Whilst it might seem trivial, 
it is crucial to design the system such that the alert is as informative as it can be 
whilst ensuring it is concise to enable the notified personnel to act upon it in a 
timely manner. Alerts can be generated based on recorded activities and can 
therefore be scored to reflect falls, sleep-time disturbance, sleeping time, room 
transition, wandering, and general activity. Each category has a different severity 
level and therefore the corresponding alert/notification should be different. 
Secondly, comes the alert generation time, which is closely tied to the real-time 
feature of the system, previously explained, to ensure the serious events are 
reported as soon as they happen, as it may mean a person's life is saved. 
 
6.1.3. System Portability and Ease of Deployment  
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This metric will not apply to all FDSs and the use case would decide on its 
application. The purpose of the metric is to evaluate the portability of the system, 
in cases where it won't be fixed in one place. Depending on the use, such systems 
can be used for temporary monitoring of patients that are recovering from 
accidents or surgeries, and so on. Thereby, it is important to have, in the market, 
systems that can be installed and cleared out in a timely manner. This evaluation 
metric will therefore be based on the number of hardware nodes/units associated 
with the implementation of the system and would involve measuring the 
following: 

1) Portability - Is the system mobile or fixed 
2) Setup time - Is it a "Plug & Play" system or requires pre-planned setup 
3) Maintenance - What level of intervention is needed to maintain the 

system? Can it be done remotely? 
 
A score can be therefore given for every FDS, based on the above mentioned 
Metrics, to evaluate its portability and ease of deployment. 
 
6.1.4. Comparison of Results and Systems 
 
Table 1 illustrates some of the FDSs presented in literature and gives a 
comparison of four systems, each uses a different technology to implement their 
FDS. The able is used to highlight the main aspects of any FDS, i.e., the 
technology used, the applied algorithm (Where applicable), and the performance 
of the system in terms of its accuracy. 
 
 
Table 1. Comparison between fall detection systems that utilize various technologies 
 

 
As can be seen in Table 1, the performance of every system is reported and from 
the figures, one can pick a favorite. However, as a whole system, the previously 
highlighted metrics in Section 6.1 need to be considered to arrive at an accurate 
evaluation of every system.  
Nevertheless, the highlighted metrics can, to some extent, be quantified or scored 
for every system; the question remains. There are several other factors that 

Source Technology Algorithm System Accuracy 

Aziz et al. [55] Accelerometer Support Vector 
Machine (SVM) 80% 

Bloch et al. [56] Accelerometer and 
an infrared sensor NA Sensitivity - 62.5% 

Specificity - 99.5% 

Debard et al. [57] Camera SVM Sensitivity: 88% 
Specificity: 95.6% 

Wang et al. [58] Radio Frequency SVM and Random 
Forest 

SVM: 90% 
Random Forest: 90% 
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research studies have highlighted and are used to favor one system over the other. 
For instance, some of the drawbacks of using camera-based systems include 
invasion of privacy, the need for ambient light, and line-of-sight requirement for 
detection. As for the wearable technology, concerns are usually around the 
inconvenience of having to mount the device on the body, whether through direct 
or indirect skin contact, and the severe consequences that can result from 
forgetting to wear them. The contactless sensing technology has the advantage 
over the vision-based and wearable technologies as they do not pose any privacy 
concerns and are completely non-invasive, however the accuracy is in occasions 
questioned, compared to sensor-based systems. Therefore, it is crucial to consider 
several factors when designing an FDS for research. 
xxx 
 

7. Conclusions 
 
This chapter explained IoT based FDS for older adults. FDS systems are essential 
tools for elderly healthcare and imperative for their health and wellbeing. The IoT 
edge layer with different sensing systems and embedded platforms was described. 
Essential elements of an IoT FDS system were discussed. Different FDS systems 
including wearable sensor, vision based and radio frequency, such as WiFi and 
radar were presented, and their processing steps were discussed. An overview of 
FDS systems in terms of their focus on machine and deep learning techniques was 
given. The Fog and Cloud IoT layers were discussed and important communication 
technologies for internet connectivity were presented. Finally, their performance 
metrics and evaluation criteria were explained.  
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