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Rotating neurons for all-analog implementation of
cyclic reservoir computing
Xiangpeng Liang 1,2,5, Yanan Zhong 1,3,5, Jianshi Tang 1,4✉, Zhengwu Liu 1, Peng Yao1, Keyang Sun1,

Qingtian Zhang 1,4, Bin Gao 1,4, Hadi Heidari 2✉, He Qian1,4 & Huaqiang Wu 1,4✉

Hardware implementation in resource-efficient reservoir computing is of great interest for

neuromorphic engineering. Recently, various devices have been explored to implement

hardware-based reservoirs. However, most studies were mainly focused on the reservoir

layer, whereas an end-to-end reservoir architecture has yet to be developed. Here, we pro-

pose a versatile method for implementing cyclic reservoirs using rotating elements integrated

with signal-driven dynamic neurons, whose equivalence to standard cyclic reservoir algorithm

is mathematically proven. Simulations show that the rotating neuron reservoir achieves

record-low errors in a nonlinear system approximation benchmark. Furthermore, a hardware

prototype was developed for near-sensor computing, chaotic time-series prediction and

handwriting classification. By integrating a memristor array as a fully-connected output layer,

the all-analog reservoir computing system achieves 94.0% accuracy, while simulation shows

>1000× lower system-level power than prior works. Therefore, our work demonstrates an

elegant rotation-based architecture that explores hardware physics as computational

resources for high-performance reservoir computing.
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Reservoir computing is a bioinspired machine learning
paradigm introduced in the early 21st century1–3. The
randomly and recurrently connected nonlinear nodes in

the reservoir layer provide efficient implementation platforms for
recurrent neural networks with low training costs (Fig. 1a). In
principle, the complex dynamics generated by the reservoir
nonlinearly map the input data to spatiotemporal state patterns in
a high-dimensional feature space, where the state vectors of dif-
ferent classes can be linearly separated1,4. Furthermore, reservoir
computing is a powerful approach for processing temporal signals

due to the recurrent connections that create dependencies
between current and past neuron states, which is also known as
short-term memory or fading memory2,5. In particular, reservoir
computing has demonstrated excellent performance in complex
time-series prediction and classification tasks4,6.

Given the potential of reservoir computing, exploring physical
dynamics as computational resources of reservoirs for highly
efficient information processing has received considerable
research attention in recent years. In 2011, a pioneer study7

introduced a delay-based reservoir and the concept of virtual
nodes into a physical implementation of a cyclic reservoir (CR),
as shown in Fig. 1b which is a simplified reservoir without per-
formance degradation5. This compelling finding provided an
effective method for performing hardware-based reservoir com-
puting, making it an attractive candidate in the field of neuro-
morphic computing. In follow-up studies, various emerging
devices and systems were investigated as physical reservoirs8, and
they included spintronic devices9, photonic devices10–14, quan-
tum devices15, memristive devices16–18, nanowire networks19,
and even soft robotic arms20. However, the main drawbacks
associated with the use of delayed feedback and time-multiplexing
are as follows: (i) delayed feedback is costly for hardware
implementations using conventional complementary
metal–oxide–semiconductor (CMOS) technology or optical
approaches, which require additional digital components7,21, such
as analog-to-digital converters (ADCs) and random-access
memory, or bulky optical fibers10,11,22,23, respectively; (ii) in the
absence of a delayed feedback line, a reservoir computing system
cannot simultaneously maintain an appropriate memory capacity
(MC) or satisfactory state richness. For example, previous
research revealed that shortening the step size in time multi-
plexing could improve the MC but at the cost of reducing the
state richness, or vice versa16. (iii) The serial operations in time
multiplexing increase system complexity and latency for both
input and readout, whereas parallel computing, which enhances
the throughput, is more desirable in neuromorphic computing24.
These obstacles hinder further reductions in power and size when
the cost for an entire reservoir computer, from the signal input to
the computing output, is considered; thus, a knowledge gap
associated with massive deployment in practical applications
remains. There is an urgent need to develop a new architecture
involving hardware-based reservoir computers of miniature size
with low power consumption and high capability for large-scale
integration8,25.

In this work, we propose a rotating neuron-based architecture
for physically performing reservoir computing in a more intuitive
way, namely rotating neurons reservoir (RNR), whose rotation
behavior matches with the neurons update in a CR, as rigorously
proven through mathematical derivations. Compared with the
existing implementations in reservoir computing17,19–21,23, the
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Fig. 1 Reservoir computing architectures. a A conventional reservoir
computing architecture with random connections. b A simplified version of
a reservoir, also known as a cyclic reservoir. The randomly connected
neurons are replaced with a ring structure. c Illustration of the working
principle of the proposed rotating neuron reservoir (RNR) that can be
physically implemented. The input weights are uniformly distributed in the
range of [−1, 1], and a pre-neuron rotor sends the signal to different neuron
channels at different time steps. After flowing through the dynamic
neurons, the signal is sent to different state channels via another post-
neuron rotor, and the final states are read out through a fully connected
layer and used in training. d Sketch of the working principle for the case of
three neurons, where R denotes the rotation matrix. The legend for all
subfigures is provided at the bottom.
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RNR is hardware-friendly, resource-efficient, fully parallel, and
explainable by standard CR. To verify the feasibility and potential
of the RNR, an electrical RNR (eRNR) design based on CMOS
circuits is introduced together with a simulator. Furthermore, a
prototype eRNR composed of eight parallel reservoir circuits is
built to perform analog near-sensor computing, and real-time
Mackey–Glass time series prediction and real-time handwriting
recognition are successfully performed in hardware experiments.
To realize an all-analog reservoir computing system, the eRNR is
further integrated with an analog memristor array that imple-
ments the fully connected output layer. Through the proposed
noise-aware training method, the conductance variation of the
memristor array is accommodated, and high classification accu-
racy of 94.0% is achieved for a handwritten vowel recognition
task. Finally, a CMOS circuit simulation based on standard 65 nm
technology indicated that the eRNR system is projected to con-
sume as little as 32.7 μW of system power in the handwriting
recognition task; this total would be more than three orders of
magnitude lower than that achieved by literature-reported
reservoir systems. These results highlight the tremendous
potential of the proposed RNR, offering a promising paradigm for
resource-efficient reservoir computers.

Results
Physical CR with rotating neurons. The rotation couples the
physical RNR and software CR. The mathematical derivation of
the RNR proves that a rotating neuron array is equivalent to a CR
model (Fig. 1b) as detailed in the Methods section. Figure 1c
illustrates the operation principle of the rotation-based reservoir:
if the neuron array is fixed, the pre- and post-neuron rotors rotate
in the same direction to periodically shift the connections, which
is equivalent to rotating the neuron while fixing the pre- and
post-neuron rotors. Figure 1d shows an example of a three-
neuron RNR. The rotors shift the connections before and after the
neurons. The channels on the right-side output the analog
computing results equivalent to the neuron states in a CR model
with the same input. We shall mention that the fundamental of
RNR is widely applicable to various rotating components, not
limited to CMOS implementations, that can be developed as a
reservoir by embedding dynamic neurons.

Thus, the main challenge of implementing a hardware RNR is
the construction of the physical rotors and dynamic neurons
based on the above approaches. Figure 2a illustrates a schematic
of an N-neuron eRNR designed using CMOS circuits. The
implementation of the input layer using binary weights is
important because it allows the system to directly interface with
analog sensory signals. Win is taken to be a matrix consisting of a
randomly generated uniform distribution of -1 and 1 values,
which have been proven to be effective as multilevel weights26.
Assuming that the signal source is u(t), for each neuron, the
driving signal should be γu(t) or –γu(t) during one-time step,
where γ is the input scaling factor. Win can be configured by
changing the switches (S1 to SN). Note that the Win should
remain unchanged while the RNR is operating so that the
switches can be replaced with fixed connections.

Next, the pre-neuron rotor is implemented using N N-channel
multiplexers composed of transmission gates. All multiplexers
share a common address line from a log2N (for N= 2, 4, 8, 16…)
bit counter but different channel sequences for neuron connec-
tions, as illustrated in Fig. 2a. A driving clock with a period of τr is
used to sequentially increase the counter address from 0 to N− 1
and then reset it to 0. This address is used to control the activated
channels of all the multiplexers. Because the sequence of neuron
connections is inconsistent, every multiplexer is connected to a
different neuron during one τr. Such a configuration ensures that

every input channel transmitting γu(t) or −γu(t) continues to poll
every neuron during every rotation cycle τr ×N, which corre-
sponds to the transformation γðRk�1ÞTWinuðkÞ as described in
the Methods section, where Rk-1 denotes (k-1)-time-shifting.
Upon receiving the neuron input γðRk�1ÞTWinuðkÞ and adding to
its current value, the resulting neuron output a(k) is represented
by the voltage level measured at the right side of the neuron
circuit. The final step is to employ another post-neuron rotor at
the output to convert a(k) to a state vector s(k). The post-neuron
rotor performs an operation that is a mirror of that implemented
by the input multiplexer array to obtain the forward rotation R.

In addition to the rotors, dynamic neurons are also crucial
elements in nonlinear computing. Based on the fundamental RNR
characteristics described in the Methods section, a neuron in the
RNR should possess three important characteristics: nonlinearity,
integration ability, and leakage ability (Fig. 2b). Figure 2c
illustrates a dynamic neuron specifically for the eRNR. Figure 2d
and e plot the nonlinearity (a rectified linear unit (ReLU) that can
be implemented with a diode) and integration characteristics (with
a time constant τn= Rint × Cint for the neuron), respectively. In the
absence of the diode, the activation function becomes linear. The
design and modeling of the dynamic neuron used in the eRNR
are detailed in the Methods section. As discussed in Fig. 2b and
the Methods section, most of the recently reported devices and
materials for physical reservoir computing could also be used as
the neuron in the RNR architecture9,16,17. Finally, an eRNR can be
built by combining rotors and neurons. Multiple parallel RNRs
can simultaneously connect to a common input signal but use
differentWin configurations to increase the state richness. Figure 2f
illustrates a complete eRNR computing architecture that includes
M parallel N-neuron eRNRs. The output weights are obtained
through training and mapped in a memristor array to calculate the
final results.

Moreover, a noise-free simulator was developed to evaluate the
performance of the eRNR under different configurations and
demonstrate its equivalence to a CR (as proven analytically in the
Methods section). The first simulation was designed to confirm
the consistency between the RNR and the CR and emphasize the
role of rotation in the RNR. The key network characteristics based
on different parameters, nonlinearities, and rotation directions
were investigated. Before comparing the network characteristics
of the software CR and the hardware RNR, a numerical method
was developed to calculate the software CR parameters, such as
the input scaling factor α and recurrent strength β, from the RNR
behaviors to find the CR counterpart for a hardware RNR (see
Methods). The prime task-independent network characteristic for
a reservoir is the MC, which indicates its capability to retain the
fading memory of the previous input8,27 and plays a critical role
in the reservoir’s performance in temporal signal processing. The
standard MC measurement is introduced in Supplementary
Note 1. Figure 3a plots the MC as a function of reservoir size N in
different scenarios. We observed excellent agreement in the MC
between the eRNR and its CR counterpart for both ReLU and
linear activation functions. The ReLU neurons yielded a lower
MC because the nonlinearity suppressed the fading information
for previous inputs, as also observed in earlier studies27,28. For the
RNR, we investigated the effect of the rotating direction to
validate the design of the two rotors. The four lines at the bottom
of Fig. 3a show the MC when the two rotors stopped or co-
directionally rotated. The near-zero MC suggests that in cases
with no rotation and counter-directional rotation, the RNR failed
to implement reservoir computing functionalities since there was
no MC for processing the temporal signal. In addition to MC, the
other three important network characteristics are computing
ability (CA), kernel quality (KQ), and generalization rank (GR)29

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29260-1 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:1549 | https://doi.org/10.1038/s41467-022-29260-1 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


(see Supplementary Note 1). These factors were analyzed by
varying the time constant of neurons τn, which also changed the
parameter matching result for the CR counterpart. As shown in
Fig. 3b, the network characteristics of the physical eRNR again
matched that of its CR counterpart. Here, the minor difference
may be attributed to the imperfect diode characteristics as a ReLU
function. The results presented in Fig. 3a, b corroborate the
finding that a properly configured RNR (rotation in a common
direction) is equivalent to a software-based CR and hence can be
used for implementing physical reservoir computing.

The performance benchmark for the eRNR. As an imple-
mentation of reservoir computing, the eRNR should be able to
approximate a nonlinear system, for which a nonlinear auto-
regressive moving average system (NARMA) is a widely recog-
nized benchmark for testing reservoir computing performance. A
standard tenth-order NARMA system can be expressed by the
following formula:

y kþ 1ð Þ ¼ 0:3y kð Þ þ 0:05y kð Þ ∑
9

i¼0
y k� ið Þ þ 1:5x kð Þx k� 9ð Þ þ 0:1 ð1Þ

where x(k) is a randomly generated white noise input in the range

of [0, 0.5] and y(k+ 1) is the target number. As can be observed
in Eq. (1), the recursive configuration demands both nonlinear
fitting and MC for the prediction model. In this task, an eRNR
model was used to receive the x(k) input and then predict the
y(k+ 1) output after training. In total, 4000 data samples (x(k)
and y(k)) for NARMA10 were generated to train (3000 samples)
and test (1000 samples) the eRNR model. Given the same x(k),
the normalized root mean square error (NRMSE) of the predicted
result y’(k) versus y(k) calculated with the NARMA10 model
based on Eq. (1) was used to quantify modeling performance. In
the first trial, two key parameters of the eRNR, the input scaling
factor γ and time constant of dynamic neurons τn, were assessed
while other parameters were fixed to obtain the optimal NRMSE
for a single 400-neuron eRNR. The input scaling factor changes
the effective range of nonlinearity, and the time constant affects
the decay factor d. The noise-free simulation result is plotted in
Fig. 3c, where the optimal value (NRMSE= 0.078) was found at
γ= 0.061 and τn= 1.1 s. It is worth mentioning that in a neu-
romorphic computing system, the electronic devices directly
interacting with the environment and natural signals could
exhibit a much longer time constant (e.g., greater than milli-
second scale) compared with that of typical digital systems30. A

Fig. 2 Implementation of the eRNR. a Schematic of an N-neuron eRNR. Given an input u(k), first, an operational amplifier generates another signal source
−u(k) or negative input. The switch array S1 to SN determines the input weights Win by selecting a positive or negative source for each multiplexer. The
multiplexers m1 to mN and m1’ to mN’ are involved in the electrical implementation of pre- and post-neuron rotors, respectively. The log2N-bits counter
outputs an address signal to sequentially activate the channels of each multiplexer at switch intervals τr. Based on the distinct sequence of neuron
connections (in1 to inN for the input and out1 to outN for the output), the behavior of the multiplexer array is equivalent to that of a rotor cyclically shifting
connections between neurons and input/output channels. The sequence for output channels is a mirror version of that of input channels, which complies
with the common-directional rotation principle in RNR theory. b General schematic of the dynamic properties required for a neuron in an RNR. When a
neuron input γðRk�1ÞTWinuðkÞ that has been processed by a pre-neuron rotor and input weights are provided, the neuron performs nonlinear transform f,
integration (feedback line), and leakage (decay factor d) operations on the signal. a(k) is the neuron output at the kth step. c A dynamic neuron in the
eRNR. Cint and Rint serve as integrators. The rectifying diode DReLU provides an activation function similar to a nonlinear ReLU function. Finally, high
resistance Rleakage is added to control the current leakage rate, that is, the decay factor d in Eq. (6). d, e The nonlinear properties (d) and dynamic
integration (e) of the neuron for Rint= 10 kΩ, Cint= 1 µF, and Rleakage= 100 kΩ. DReLU is a germanium diode with a forward voltage of approximately 0.3 V. f
Schematic of a complete eRNR system that includes M parallel N-neuron RNRs. The total length of the state matrix is M × N. The voltage signal of each
state channel is multiplied by the trained output weights stored in a memristor array to yield the final computing result.
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fast time constant could result in an insufficient MC for retaining
historical information. Such biologically realistic time constant
values (τn and τr, from milliseconds to seconds scale) were used
throughout the explored hardware implementation and simula-
tion processes. The performance can be further improved by
increasing the number of parallel reservoirs M with different
input weights Win as illustrated in Fig. 2f. As shown in Fig. 3d,
the resulting NRMSE can be clearly reduced by increasing M or
N. The minimum NRMSE achieved in this experiment is 0.055 at
N= 388 and M= 50. Figure 3e shows an instance of the pre-
dicted value y’(t) in comparison with the ground truth y(t) when
NRMSE= 0.055. To the best of our knowledge, the NRMSE
values for both the single eRNR (0.078) and parallel eRNRs
(0.055) are lower than those reported in the previous studies7,31

in the field of reservoir computing. Notably, the exponential form
of nonlinearity in the transition region of the diode (different
from the ideal ON/OFF form in the ReLU function used by the
software) enhances the state representation of the
NARMA10 system. This result demonstrates the tremendous
potential of the eRNR in high-order nonlinear system approx-
imation due to the rich physical dynamics of electronics devices.

Physical eRNR implementation: real-time chaotic signal pre-
diction. The eRNR design can be implemented using commercial
off-the-shelf components. Here, we developed a proof-of-concept
prototype with τn= 1 s, N= 8, and M= 8, as shown in Fig. 4a.
The eight parallel eRNRs shared common power, counter, posi-
tive input, and negative input characteristics. The input weight

Win varied for every eRNR to create diverse neuron dynamics and
increase the state richness. More details about the prototype can
be found in Supplementary Note 2. To evaluate the state gen-
eration performance, the first experiment with the 8 × 8 eRNR
system was a multistep ahead prediction for Mackey–Glass
chaotic system, which has been used in various reservoir com-
puting studies as a benchmark task1,17,32. The Mackey–Glass
system is defined by

dy
dt

¼ β
y t � τð Þ

1þ y t � τð Þn � γyðtÞ ð2Þ

where the system parameters γ, β, and n were set to the widely
used values 0.1, 0.2, and 10, respectively. Additionally, the system
is chaotic when τ > 16.8, and predictions become correspondingly
more difficult. In this experiment, we set τ= 17 and the initial
value y(0)= 1.2 following previous works. The samples generated
based on the Mackey–Glass system were input into the 8 × 8
eRNR system with a sampling rate of 8 Hz. This sampling rate
should be the same as the driving frequency of the counter to
ensure that every sample point is captured; that is, τr= 0.125 s.
Based on this configuration, the 64 parallel output channels
produce state values of the measured voltage for postprocessing.
With our customized demonstration platform (the description of
this platform is available in Supplementary Note 2), the
Mackey–Glass chaotic signal y(k) was continuously fed into the
eRNR system. The training state matrix s(k) with a length of 64
based on y(k) was used for output weight Wout training through
linear regression, and the target value was input into the
Mackey–Glass dataset shifted by i steps (y(k+ i)). Here, the
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Fig. 3 eRNR simulation results for network characteristics and nonlinear system approximation. aMemory capacity (MC) versus the reservoir size N for
different scenarios. The two blue lines plot the MC of the eRNR using dynamic linear and ReLU neurons, respectively. The purple and green dots are
obtained from the parameter-matched CR counterparts. The remaining four lines show the MCs of dysfunctional RNRs (counter-directional rotation and no
rotation). The symbols ‘↓↓’, ‘↓↑’ and ‘→’ indicate that the pre- and post-neuron rotors perform common-direction rotation, counter-directional rotation, and
no rotation, respectively. The parameters are τn= 1 s, τr= 0.125 s, γ= 0.5, and M= 1. b. The computing ability (CA), generalization rank (GR), and kernel
quality (KQ) as a function of τn for the dynamic neurons. For every τn value, the properties of the RNR are first calculated. Then, the CR counterpart is
calculated through the parameter matching method, and the results are analyzed. The obtained parameters are τr= 0.125 s, γ= 0.5, N= 200, and M= 1,
and nonlinearity is provided by the diode. c NRMSE result for the NARMA10 system approximation task based on the two key parameters: the time
constant τn and input scaling factor γ. The other parameters are N= 400 and M= 1. d NRMSE result for the NARMA10 modeling task when varying the
reservoir size N and the number of parallel reservoirs M. The parameters are τn= 1 s, τr= 0.125 s, and γ= 0.05. e An example prediction result y’(k) and
the ground truth y(k) when NRMSE= 0.055, that is, for the best result obtained in (d). The parameters are τn= 1 s, τr= 0.125 s, γ= 0.05, N= 388, and
M= 50 in this case, and a diode with a ReLU function is used.
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number of shifted steps i depended on how many steps ahead of
y(k) the system could predict. The system continuously received
y(k) without any preprocessing and produced 64 state outputs,
which were multiplied by Wout to predict the value y’(k+ i). This
process was performed in real-time with the demonstration
platform, and all the data, including y(k), y’(k+ i), and s(k), were
visualized (see Supplementary Movie 1).

To better understand how the number of parallel RNRs (i.e.,
M) affected the prediction performance of the system, the states
within 360 s (2880 × 64 samples, half for training and half for
testing) were collected with the platform. Again, the NRMSE was
used to quantify the difference between the actual values y(k+ i)
and the predicted values y’(k+ i). The result is shown in Fig. 4b.
As i increased, the time series became increasingly difficult to
predict, resulting in a higher NRMSE; however, this NRMSE
increase can be alleviated by using additional parallel reservoirs to
enhance computational performance. Two examples of one-step-
ahead prediction using one reservoir (NRMSE= 0.17) and eight
parallel reservoirs (NRMSE= 0.03) are plotted in Fig. 4c, d,
respectively. The traces of y(k+ i) and y’(k+ i) in the phase space
were also examined (Fig. 4e, f). The traces of eight eRNRs
exhibited excellent consistency with the true values compared
with the traces for the one-reservoir system. These experimental
results suggest that the 8 × 8 eRNR prototypes can be used to
make accurate predictions of variables in the Mackey-Glass
chaotic system after training. Even with the inevitable noise
introduced by the analog circuits, the eRNR can successfully
emulate the chaotic system, with a low NRMSE of 0.03.
Moreover, our experiment revealed that the eRNR prototype
can properly predict one-step-ahead for more chaotic signals
(τ > 17) (Supplementary Fig. 1a–f). In comparison, the system
performance could degrade as τ increases in multistep-ahead
prediction (Supplementary Fig. 1g).

Demonstration of near-sensor computing: handwriting
recognition. In the literature, some previously reported reservoir
computing demonstrations achieved relatively low power con-
sumption for certain parts inside systems using emerging devices

and materials9,16,17. However, the operations for entire systems
are usually overlooked. An interface between a sensory signal and
the reservoir input is usually necessary, and assistive techniques,
such as converting between digital and analog data, memory
buffering, preprocessing and feature extraction, are also often
required7,9,17. These sophisticated operations increase system
complexity and power consumption but are necessary for con-
ventional physical reservoir computing and remain a key chal-
lenge for practical deployment8. In this work, a prime advantage
of our eRNR prototype is that it can directly receive analog
sensory signals and produce the parallel state output without any
digital memory use or preprocessing, which could considerably
reduce the power consumption of the overall system. In fact, this
strength is highly attractive for emerging applications in analog
near-sensor computing; notably, the processor can act as a direct
interface for sensory signals for cognitive computing purposes33.

To demonstrate analog near-sensor computing, a resistive
touch screen was employed to provide an analog sensory signal
for a handwritten vowel recognition task. In the experimental
setup, a front-end circuit converted the resistive variations into
two continuous signals representing the X and Y coordinates of
the activated pixel on the screen. The 8 × 8 eRNR system used in
the Mackey–Glass task was divided into two 4 × 8 eRNR
subsystems (i.e., N= 8 and M= 4) to process X and Y temporal
signals, and the total length of the state channel was still 64. In
this case, the two subsystems still shared common power and
counter but had different positive and negative inputs from the X-
and Y-axes. A photograph of the hardware is shown in Fig. 5a.
This experiment demonstrates that five different handwritten
vowels (A, E, I, O, and U) can be distinguished after high-
dimensional nonlinear mapping in the eRNR. Additionally, one
important advantage of using reservoir computing systems is that
their short-term memory property allows the network to retain
the fading information of previous inputs in the state matrix at
each time step. Thus, the state matrix obtained at the end of a
handwritten event contains the information for the entire
handwritten trace. After training, the eRNR system can perform
point-by-point analog reservoir state generation without
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accessing digital memory. Consequently, the memory unit for
storing a certain length of data, such as the data in a sliding
window or segmented signal, in conventional machine learning
approaches can be eliminated by making full use of the MC.
Further advancement of this system involves the analog output
weights stored in a memristor crossbar array to realize all-analog
signal processing34,35, for which the power consumption can be
further reduced by taking advantage of the computing-in-

memory capability of memristors. Thus, from the sensory signal
to the classification result, the entire system can perform near-
sensor computing in the analog domain, as shown in Fig. 5b.

In our experiment, handwritten vowel data from eight
participants were collected (see Methods), and typical hand-
writings are displayed in Fig. 5c. For different handwritten
vowels, Fig. 5d shows the X and Y signals input into the eRNRs,
and Fig. 5e shows the resulting state output of the 64 channels.
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Using the labeling, training, and testing procedure introduced in
the Methods section, 683 handwritten vowels (of a total of 703 in
the test set) were correctly recognized, yielding a high accuracy of
97.1%. Examples of the point-by-point outputs for the five classes
are illustrated in Fig. 5f, and the confusion matrix is shown in
Fig. 5g. The errors mainly occurred when predicting ‘O’, which
was misclassified as ‘U’ in some cases since these two classes are
associated with similar writing traces. Here the software-trained
Wout was deployed with the demonstration platform to perform
real-time near-sensor handwriting recognition (see Supplemen-
tary Movie 2).

The next experiment further integrated the eRNR system with
a memristor crossbar array that served as the output layer. In this
experiment, a differential pair of two memristors was used to
represent one synaptic weight, so 640 memristors were used to
represent all the weights in the above Wout (see Methods and
Supplementary Fig. 2). It is noted that the analog weights in a
memristor array usually suffer from conductance variation issues
(e.g., read noise) due to the nonideal device characteristics,
leading to certain performance degradation compared with the
floating-point digital weights in software35. The next simulation
evaluated the effect of memristor conductance noise on the
classification performance of the system to establish a proper
training scheme. Figure 5h shows the result of directly mapping
Wout without noise-aware training; notably, the accuracy
decreased significantly as the noise level increased. In our
experiment, the intrinsic noise of the memristor was the
dominant noise source in the all-analog system. To achieve high
accuracy, we adopted a noise-aware training method to obtain a
robust Wout in the presence of memristor conductance
variation36,37. In the noise-aware training scheme, Gaussian
white noise with a standard deviation of ±0.03 was added to the
normalized training state data before regression, and the resulting
accuracy is plotted in Fig. 5h. The comparisons between digital
Wout, target analog Wout, and the average values of the measured
Wout after mapping are visualized in Supplementary Fig. 3. Most
of the weight values can be successfully mapped to the memristor
array with acceptable device variation, and the standard deviation
(target conductance minus measured conductance) is approxi-
mately 0.368 μS. Finally, the confusion matrix using analog Wout

measured from the memristor array is shown in Fig. 5i. Using the
noise-aware training method and the measured analog Wout, the
classification accuracy was improved from 29.2 ± 0.9% (without
noise-aware training) to 94.0 ± 0.8% (with noise-aware training).
The recognition result for each participant is summarized in
Supplementary Fig. 4.

System-level power estimation and benchmark testing. The
power consumption for the whole eRNR-based reservoir com-
puting system can be divided into two parts: eRNR circuit con-
sumption and memristor array consumption. For the eRNR
circuit, an 8-neuron eRNR was designed and simulated using a
standard 65 nm CMOS process based on the parameters used in

the handwriting recognition task. The power estimation process
and simulation are described in the Methods, where the power of
eRNR was estimated by the simulation of the CMOS circuit using
the foundry-provided library. The result indicates that the eRNR
method can reduce the system power consumption for the
handwriting task and chaotic signal prediction to 32.7 μW. The
simulation also suggests that the static power, mainly associated
with the dynamic neurons and the leakage current of transistors,
plays a dominant role when the processing rate (1/τr) is lower
than 100 kHz (for which the power consumption was estimated
to be 79.1 μW). This striking advantage is associated with the
unique all-analog computing capability of our eRNR-
implemented reservoir computing system, which saves the
energy for frequent data conversion between digital and analog
domains. It should also be highlighted that our all-analog eRNR
provides more than three orders of magnitude lower system-level
power consumption compared with previous cutting-edge reser-
voir computing systems, whose power are in the ranges of 83 mW
to 150W using different implementation methods (see Supple-
mentary Table 1)10,38–40.

As we can see, in contrast to conventional digital systems, the
electronics’ intrinsic dynamics were fully explored as computa-
tional resources in the all-analog eRNR architecture. A complete
rotation-based reservoir computing system can be implemented
by designing pre- and post-neuron rotors and dynamic neurons;
this approach uses highly simplified hardware and is endorsed by
the CR theory. Additional discussion and comparison of the
power efficiency of the eRNR can be found in Supplementary
Note 3.

Discussion
In summary, we developed a hardware-friendly RNR archi-
tecture for all-analog neuromorphic computing; the resulting
structure represents a fundamentally different reservoir archi-
tecture than those used in conventional hardware implementa-
tions. The proposed RNR has been validated in theory,
simulation, and experimental analyses. The theoretical analysis
of RNR rigorously mapped the CR algorithm onto the physical
rotation of dynamic neuron array, providing a solid foundation
for hardware implementation. Such an RNR can be embedded
into natural rotating components in various electronics,
mechanical systems, or even nanorobotics and empower them
with computing capability. In the simulation using the eRNR
model, the NARMA10 prediction task was performed to
benchmark the system with varying hyperparameters, and
record-low NRMSE values of 0.078 for a single eRNR and 0.055
for parallel eRNRs were achieved. It was found that the addi-
tional nonlinearity provided by the hardware-based dynamic
neurons enhanced system performance in the approximation of
the NARMA10 system, thus highlighting the computing poten-
tial of the proposed RNR. Furthermore, an 8 × 8 eRNR prototype
was developed based on RNR theory for near-sensor analog
computing. The prototype successfully demonstrated multistep-

Fig. 5 Analog near-sensor computing for handwriting recognition. a The hardware used in this experiment: a handwriting sensor (resistive touch screen),
a front-end circuit, and two 4 × 8 eRNR circuits for the x- and y-axes of the sensor. b A conceptual schematic of analog near-sensor computing without any
digital memory. The front-end circuit drives the resistive touch screen and allows it to collect the handwriting information, which is then converted into
two-dimensional x- and y-analog signals. These signals are then input into two 4 × 8 parallel eRNR circuits. The trained analog weights Wout in the
memristor array are used to obtain the classification output for the five handwritten vowels. c–f The signal flows measured from the eRNR hardware for
different handwritten patterns, including c the five handwritten vowels, d the sensory signals for the x- and y-axes x(k), e the 64 channel reservoir states
s(k) of the eRNRs, and (f) the output y(k) computed based on s(k) and the trained weights. g Confusion matrix using Wout without noise-aware training.
The overall accuracy is 97.1%. h Classification accuracy as a function of simulated memristor conductance variation with and without the noise-aware
training method. The measured average variation of the memristor array was 0.368 μS. i Confusion matrix using analogWout stored in the memristor array.
The overall accuracy was 94.0%, with a standard deviation of 0.8%.
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ahead prediction of chaotic time series, and eight parallel
reservoirs were found to reduce the prediction NRMSE from 0.17
to 0.03 for the studied Mackey–Glass chaotic system. This
experimental result further validates the computing capability of
our eRNR prototype under different experimental configura-
tions. By further integrating the eRNR with an analog memristor
array as the fully connected output layer, an all-analog reservoir
computing system was realized to perform handwriting recog-
nition tasks. A noise-aware training method was used to
accommodate the conductance variation of the memristor array
and improved the classification accuracy to 94.0%. In the
simulation of the eRNR circuit, the overall system power con-
sumption was estimated to be as low as 32.7 μW for the hand-
writing tasks operating at 10 Hz (τr= 0.1 s), reflecting an
advantage of more than three orders of magnitude compared to
the consumption reported for reservoir computing systems in the
literature. Additionally, further power analysis suggested that the
static power, mainly dissipated by the dynamic neurons, dom-
inates the system at processing rates below 100 kHz, while the
overall system power remains at a low level for high processing
rates (>100 kHz) (see Supplementary Table 1). This result can be
explained by the fact that most computations occur in the analog
domain that only contribute to static power, which is a general
advantage of analog neuromorphic computing. Dynamic power,
mainly attributed to logic switches and memristor arrays, starts
to dominate the system at processing rates higher than 100 kHz
(see Supplementary Table 2). Further discussion on the low-
power advantage of eRNRs can be found in Supplementary
Note 3.

To further enhance the eRNR system capabilities when per-
forming complex tasks, a useful approach is to increase the
number of neurons (N) or the number of parallel eRNRs (M) to
expand the network size. Furthermore, a deep eRNR, consisting
of multiple eRNR cells in series, could enhance the classification
performance for inputs of different classes. From a hardware
perspective, dynamic neurons could be replaced by recently
reported emerging devices (e.g., dynamic memristors16,17 and
spintronic devices9) to further reduce the system size and power
consumption. Different configurations of neurons could be ben-
eficial for enhancing state richness and improving system per-
formance. In addition, the eRNR design can be miniaturized and
monolithically integrated onto chips to reduce power require-
ments and promote ultrafast computing. It is also worth men-
tioning that various rotational hardware could be explored for
constructing efficient pre- and post-neuron rotors, which are the
key to implementing the RNR. Our work demonstrates that the
RNR is well-suited for large-scale and high-speed neuromorphic
computing systems and has tremendous potential for use in
applications involving the Internet of Things and edge comput-
ing, among others.

Methods
Fundamentals of the RNR. For a typical reservoir computing with an m-dimen-
sional input, an n-dimensional output, and N neurons (Fig. 1a), the input coeffi-
cients Win (m ×N) and reservoir weights Wres (N ×N) are randomly generated1.
The complex dynamics stemming from the massive and random connections in the
reservoir layer aid in nonlinearly mapping the m-dimensional input to the N-
dimensional feature space where different input classes can be linearly separated.
For n output classes, only the output weights Wout (N × n) need to be trained by
using linear regression, which is relatively efficient compared to other recurrent
neural network methods1,2,41. Note that linear ridge regression is used for training
throughout this work. The neuron dynamics in the reservoir layer play an
important role in signal mapping based on the following equation:

s k þ 1ð Þ ¼ f αWinu k þ 1ð Þ þ βWress kð Þ� � ð3Þ

where s(k) denotes the neuron state matrix with length N at the kth time step, u(k)
is the m-dimensional input, α and β are the scaling factors for the input and
recurrent weights, respectively, and f(x) is a nonlinear transform function. In

reservoir computing, the reservoir layer Wres can be designed in a deterministic
manner rather than being based on random connections5. In this case, the Wres

becomes a shifted identity matrix R

Wres ¼ R ¼

0 0 � � � 0 0 1
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2
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3
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ð4Þ

As a result, Wres is significantly simplified, and the network topology becomes
CR, as shown in Fig. 1b. Previous research concluded that CR could achieve
comparable results to those of conventional reservoir computing5. Then, the matrix
R corresponds to one-time shifting in a ring structure, and Rk indicates a k-time
cyclic shift analogous to physically rotating an object. As illustrated in Fig. 1d, it is
assumed that (i) the post- and pre-neuron rotors are described by R and its
transpose matrix RT, respectively; (ii) a(k) is the dynamic neuron output at the kth
step; and (iii) sr(k) is the state matrix of the RNR at the kth step measured at the
end of each rotor’s channel (before the output weights). Considering the rotation of
the neuron output, the state sr(k) updating formula can be written as

Rk�1a kð Þ ¼ srðkÞ ð5Þ
which indicates that, at the kth step, the state matrix sr(k) is obtained by rotating
the neuron output a(k) for (k-1) times. Furthermore, the output of dynamic
neurons is determined based on both an input shift and the previous states

a kþ 1ð Þ ¼ f r ½γðRkÞTWinu kþ 1ð Þ þ daðkÞ� ð6Þ
where d denotes the decay factor resulting from the dynamic property of the
neuron (see the next subsection in the Methods), γ is the scaling factor for the
input, and fr(x) is the nonlinear transform implemented by the dynamic neurons.
Equation (6) describes the signal flow through the neurons. Given an input u(k), it
is first multiplied by the input weights Win. After k reverse rotations of the input
connections, the signal is fed into the dynamic nonlinear neurons, which output
a(k+ 1). If both sides of Eq. (5) are multiplied by Rk, we can obtain

Rka kþ 1ð Þ ¼ Rk f r γðRkÞTWinu kþ 1ð Þ þ da kð Þ
h i

ð7Þ

Using Eq. (5), Eq. (7) can be simplified as

sr k þ 1ð Þ ¼ f r γWinu kþ 1ð Þ þ dRsr kð Þ� � ð8Þ
Here, the excellent consistency between Eq. (3) and Eq. (8) reveals that the
proposed physical RNR architecture (Fig. 1c) is equivalent to a software CR. Thus,
a rotating object with dynamic neurons can act as a reservoir computer without
using extra control units, ADC or memory, which remarkably reduces the system
complexity and power consumption compared with those in conventional
hardware implementation (see Supplementary Note 3).

Design and modeling of dynamic neurons. By observing Eq. (3), it appears that a
dynamic neuron for the proposed RNR should satisfy three important character-
istics as shown in Fig. 2b: provide a nonlinear activation function f(x); support
integration ability for the summation between the current input and previous state
a(k− 1); and support leakage, as related to the decay factor d, to avoid saturation
caused by the integration process. Any passive element that exhibits these three
characteristics could essentially be used as a dynamic neuron in the RNR archi-
tecture by fine-tuning the time constants of neurons and rotors. A dynamic node
working in a physical reservoir may suffer from device variation issues, which
impact system performance. Previous studies have revealed that a certain degree of
device variation may be beneficial to system performance by enhancing state
richness16,17, but determining how to precisely control device variability warrants
future explorations.

In implementations using standard electronics (Fig. 2c), a ReLU-type nonlinear
transform can be provided by a diode, and the resistor Rint and capacitor Cint can
act as integrators. Leakage can be considered by connecting the system to the
ground via a large resistance Rleakage. In the simulation, this neuron can be modeled
as follows:

_VoðtÞ ¼
1

RintCint
Vi tð Þ �

Rint þ Rleakage

RintRleakageCint
Vo tð Þ þ 1

Cint
Isðe�

Vo tð Þ
VT � 1Þ ð9Þ

where Vo(t) and Vi(t) denote the input and output voltages, respectively. The
saturation current Is and thermal voltage VT stem from the Shockley diode

equation I ¼ Isðe
VD
VT � 1Þ. The typical values for germanium diodes Is= 25 × 10−9 A

and VT= 0.026 V were used in the simulation. In the case of linear neurons, the

last term 1
Cint

Isðe�
Vo tð Þ
VT � 1Þ should be removed from Eq. (9).

In our simulation, Eq. (9) was solved in MATLAB/Simulink. The discrete
neuron output in Eq. (3) becomes a(k)=Vo(kτr). The pre- and post-neuron rotors
can be modeled by continuously shifting Winu(k) and the neuron output a(k).
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Since Rleakage is a large resistance, the time constant associated with this neuron is
mainly determined by the integrator τn= RintCint. For the rate of rotation τr, we
normally use an empirical value of τr= τn/8.

Parameter matching. It has been analytically proven that a physical RNR can
perform the same functionality as a CR (Eq. (8)). Therefore, given a properly
configured RNR, its CR counterpart should exist and exhibit similar network
characteristics. Parameter matching provides a numerical method to determine the
CR counterpart. The main difference between a hardware RNR and a software CR
is associated with nonideal dynamic neurons, which result in different amplitude
ranges for integration and nonlinearity. Therefore, the objective is to find the
appropriate scaling coefficients for the software activation function to approximate
the hardware neuron output under the same input Winu(k). An arbitrary u(k) was
generated as an input to the RNR, and the neuron output a(k) was obtained.
Assuming that this a(k) is generated by a software CR, a comparative neuron
update vector can be defined

ap k þ 1; α; β;Vc

� � ¼ ReLUðβa kð Þ þ αWinu kð Þ;VcÞ ð10Þ

where ap is the neuron output sequence of recurrent factor α, input scaling factor β,
and the ReLU cutoff value Vc. For certain values of α, β and Vc, the CR should
match the RNR if the resulting ap(k) is close to a(k) for any k. Hence, the CR
counterpart of an RNR can be found by matching the three parameters. First, Vc is
the threshold voltage of the diode, unlike that in the ideal ON/OFF case in the
software ReLU function (Vc= 0). This value can be obtained based on the mini-
mum value of the a(k) sequence. Second, α and β are determined by searching the
potential values and finding those that minimize the NRMSE between a(k) and

ap(k), which can be described as minα;β NRMSE a kð Þ; ap kþ 1; α; β;Vc

� �� �
. For

example, for an RNR with τn= 1 s, τr= 0.125 s, and γ= 0.5, the matched CR
parameters are α= 0.87, β= 0.12, and Vc=−0.18, and the corresponding MC
values are compared in Fig. 3a.

Handwritten vowel recognition using an eRNR. The parameters of the eRNR
used in the handwritten vowel recognition task are τn= 1 s, τr= 0.1 s, N= 8, and
M= 4 (for each X and Y channel). All data were collected with our customized
platform. In total, 66 channel data streams, including the two-axis signals and
signals from 64 reservoir state channels, were collected at each time step. During
the data collection process, eight participants were asked to write the five vowels on
a resistive touch screen, and repeat at least 20 times for each vowel. Data for 1103
handwritten vowels (2802 s) were successfully collected. The location and class of
each handwritten vowel were labeled at the final rising/falling edge of the X and Y
raw data. We labeled the end of each handwritten vowel (the blue square in Fig. 5d)
where the state matrix at this time step contains the information of the handwritten
trace because of MC. Specifically, the 64 × 1 state matrix collected at the time
denoted by the green dot can be considered a feature vector for the corresponding
handwritten trace.

After data collection and labeling, the database was divided into a training set
(400 handwritten vowels; 1025.8 s) and a testing set (703 handwritten vowels;
1776.2 s). According to the point-by-point computation introduced above, the size
of the training label matrix Ytrain for the five classes should be a five-dimensional
data stream in which only the locations of green squares are set to 1, and values of 0
are assigned at other points. For training Wout (64 × 5), ridge regression with the
target= Ytrain (five-dimensional label for 1025.8 s) and variables= Strain (64-
dimensional state vector for 1025.8 s) was used. Next, Wout was multiplied by the
test state matrix (Ytest’= Stest ×Wout) to obtain a five-dimensional output
representing the possibility of five potential classes at each time step, which
corresponded to the graphs in Fig. 5f. To quantify the classification accuracy, the
predicted output for the testing set Ytest’ was compared with the manually labeled
locations Ytest. For every location in a handwritten event, for example, ytest(k)|
k= kx, the actual output was investigated to find the maximum value in the range
of ytest(kx− 7) to ytest(kx+ 3). The corresponding channel that output the
maximum value was considered the predicted class.

Memristor-based output layer. Memristor-based analog computing has displayed
excellent potential in neuromorphic computing. While the input and reservoir layer
are generally established based on eRNR design, the output layer, which employs
standard vector-matrix multiplication operations, can be effectively implemented by
a memristor array for end-to-end all-analog computing42,43. The memristor array
has a unit cell of one-transistor-one-resistor (1T1R). Each 1T1R consists of a
resistive switching memristor with a material stack of TiN/HfOx/TaOy/TiN con-
nected to a Si transistor that is fabricated using a standard 130 nm Si CMOS
process44,45. The description of the memristor array can be found in Supplementary
Fig. 2. As described in the main text, we used 640 memristors in total to represent
320 weights in the output layer. The computation principles of memristor-based
analog computing can be expressed as I=V×G=V × (Gp−Gn), where G
represents the weight matrix W, and Gp and Gn are the positive and negative
conductance matrices, respectively. Furthermore, we use a standard write-with-
verify scheme to map the weight matrix Wout to the conductance of the memristor
array34.

Power estimation. As shown in Fig. 2a, the neurons, as passive components, are
driven by the negative and positive sensory signals, providing a power source Ps.
Also, the energy consumed by the counter and transmission gates depends on not
only the static power but also the rate of rotation τr. The total power consumption
P of the system consisting of M 8-neuron eRNRs (where the number of neurons N
is fixed at 8) can be expressed as

P ¼ Pc þ Ps þ Pt þ
Edyn
c þ Edyn

t

τr

 !
´M þ Edyn

m

τr
ð11Þ

where Pc and Pt represent the static power of the counter and transmission gates,

respectively, and Edyn
c and Edyn

t represent the dynamic energy dissipated in the
transition region driven by the rate of rotation 1/τr. Edyn

m is the energy consumed in
the output layer (memristor array) for one inference. The M parallel eRNRs can
share one counter, but the power for the other components increases with the
number of parallel eRNRs M. For our application involving real-time handwritten
signals, the operation period τr is relatively slow (0.1 s) to match the time scale of
human operations.

The simulation result shows that Ps= 3.27 μW, Pc= 0.93 μW, and
Pt= 0.70 μW, regardless of how fast the rotors are operating. Moreover, the

energy-related to the rotation rate is Edyn
c = 0.31 pJ and Edyn

t = 0.07 pJ. For the
memristor-based output layer, the power dissipated by the voltage buffer driving
the memristor array and the memristor array itself is 144 and 0.8 μW, respectively.
During every τr, the only one-time inference is needed since all state channels are
monotonously increased or decreased. The memristor array takes ~50 ns to
respond to the state voltage. Therefore, the dynamic energy of the memristor array
for every inference step is Edyn

m = (144 μW+ 0.8 μW) × 50 ns × 64= 463.36 pJ/class.
The total power consumption of an 8 × 8 eRNR can then be calculated using Eq.
(11). The simulated power breakdown at different frequencies is shown in
Supplementary Table 2. Notably, this result also reveals that the power would not
considerably increase at rates of rotation (1/τr) below 100 kHz since static power
dissipation dominates the system.

Data availability
The source data for Figs. 2–5 are provided in separate Source Data files. Other data that
support the findings of this study are available from the corresponding authors upon
reasonable request. Source data are provided with this paper.

Code availability
The code for the eRNR simulator and NARMA10 task is available at https://github.com/
Tsinghua-LEMON-Lab/Rotating-neurons-reservoir / (https://doi.org/10.5281/
zenodo.5909080). Other codes that support the findings of this study are available from
the corresponding authors upon reasonable request.
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