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Abstract 
 
Organic Photovoltaics (OPV) are considered one of the best performing PV technologies 

from an environmental point of view. Many of the constituent materials possess low 

embodied energies, which can generally be processed and disposed of in a less energy-

intensive manner than other PV technologies. There has been an enormous range of materials 

used in OPVs, however, identification of the optimal materials and device architectures that 

provide the best environmental profile within this large search space has yet to have been 

conducted. This is a non-trivial task, because the selection of these materials not only impacts 

on the environmental profile, but also on the solar cell efficiency and it's operational stability. 

Here, we have developed a methodology that enables rapid assessment of the trade-off 

between efficiency, stability, and embodied energy of an OPV using machine learning. To 

achieve this, a database of OPV data was used, which has been acquired from the literature 

between 2011-2020 and consists of 1580 device data points. Our results highlight the 

importance of focusing activity on particular transport layers, substrates, and active layer 

materials, which are discussed further in the manuscript. We demonstrate that the trained and 

validated models can predict, with a high degree of confidence, the efficiency, stability, and 

embodied energy of an OPV. The methodology set out in this work provides a means of 

identifying optimum device configurations in a rapid manner such that the net energy 

production is maximised whilst the environmental impact of OPVs is minimised. Materials 

which show promise towards delivering a positive net energy are  PET + barrier layer, PET 

(substrates), NiOx, ZrOx, CrO2, ZnO, LiF and MoO3 (Transport Layers). Active layer 

materials which show promise for delivering a positive net energy are DRCN7T, 

DR3TSBDT, ZnPc, PDPP4T-2F, PCDTBT (donors) and IT-4F, C61 (Acceptors). 

 

 



 

 

1. Introduction 

 

As a result of the EU Renewable Energy Directive and the Circular Economy Action, 

photovoltaics (PV) should be designed to ensure their manufacturing, selection of materials 

and end-of-life management is undertaken in an eco-friendly manner. This has particular 

importance in the context of Organic Photovoltaics (OPVs) because they are at a pre-

commercial stage and there is a vast array of materials that have been reported for use in their 

manufacturer 1–4. As a result, the adoption of eco-design approaches is vital to maximise the 

environmental profile of OPVs. There is a wide panorama of environmental assessment 

metrics, but much research activity has been devoted to determining the ‘embodied energies’ 

of different OPV devices, materials and their various production processes. The embodied 

energy (in terms of primary energy equivalent) is dependent on the production of the 

constituent materials and their processing; this includes the raw material extraction, the 

production of the material, the processing, usage and finally the disposal of the material, 

depending on the particular scope considered 5. 

Over the past 15 years there has been a wide range of architectures and materials used and this 

has led to a rapid increase in power conversion efficiency (PCE), which is now exceeding 18% 

for a single junction device 6. A significant proportion of this research has focused on 

improving the power conversion efficiency (PCE) of OPVs, and to a lesser extent, their 

operational stability, scalability and cost. Nevertheless, there has been an increasing focus on 

improving their environmental profile as well 7–9. As a result, there is now a large body of 

available OPV data in the literature concerning OPV efficiency, stability and embodied energy. 

If this data was combined, environmental screening of OPVs could be undertaken in a manner 

that has not be done before; where the PCE, stability and embodied energy are optimised 

concurrently. 

To achieve this, advanced statistical analysis such as machine learning (ML) techniques are 

needed. By deploying data analytical approaches in this manner, it is possible to determine 

which materials/processes have the greatest impact on the OPV performance, stability and 

embodied energy and consider the potential trade-offs between these performance metrics. This 

represents a potential new paradigm in OPV eco-design. 

In this work, we have utilised OPV data which has been acquired from work undertaken 

between 2011-2020. This dataset contains data from around 1580 devices where the PCE and 

stability data has been reported. In addition, the embodied energy of each device has been 

calculated. Two principal ML techniques are utilised in order to analyse the trade-off between 



 

 

PCE, stability and embodied energy of the OPV devices.  Firstly, sequential minimal 

optimisation regression (SMOreg) has been employed to identify which materials have the 

greatest impact upon the embodied energy. There are a number of papers which use other ML 

algorithms such as gaussian process regression, random forest and gradient boosting regression 

tree to model OPV performance parameters 10–12. Descriptor importance is typically used to 

determine a ranking of the model attributes but does not offer a ranking of the features within 

the attribute class 12–14. Therefore, the method employed in this study complements the previous 

work by offering a means of ranking the individual materials within the various attributes. 

Secondly, a genetic clustering algorithm is used to find the optimum architecture which 

maximises the three metrics (PCE, stability and embodied energy). This multi-metric approach 

combining energy-based green metrics and LCA affords an extremely useful tool for evaluating 

the environmental impact of an OPV. This provides a methodology to rapidly scan datasets of 

OPV materials with associated performance and stability data, and subsequently determine 

which are too environmentally damaging, too unstable or lack sufficient performance without 

the need for exhaustive experimentation. 

 

2. Methodology 

 

2.1 Introduction 

 
For the purposes of this study, a database of OPV performance and stability data was collated. This 

dataset consisted of data collected by Krebs et al. at the Danish Technical University (DTU) who ran 

the “lifetime predictor” on the Plastic photovoltaics website from 2011-2017 and additional data was 

added by manually scraping journal articles between 2017-2020 15. An additional complexity was 

sourcing data containing embodied energy of the individual layers and processes, discussed further in 

the next section.  

Each device data point consisted of the following information; device architecture, testing condition 

(typically following an ISOS protocol 16) and the performance and stability metrics. The latter is often 

not explicitly stated within the text, so this was extracted from figures using a plot digitizer. Figure 1 

shows a schematic of the generic structure of the OPVs employed in this analysis with each device 

component defined as: Substrate (S), Electrode 1 (E1), Transport Layer 1 (TL1), Active Layer 1 (A1), 

Active Layer 2 (A2), Transport Layer 2 (TL2), Electrode 2 (E2), Encapsulation (Encap). The active 

layer is split into two components to represent the donor and polymer materials. 

 

2.2 Embodied Energy and Net Energy Determination 



 

 

 

Data for the individual embodied energies of the materials and processes was also sourced from 

the literature and used to calculate the total embodied energy of the device (𝐄𝐄𝐦𝐛). The authors 

estimate that there are 187 papers in the literature that have applied LCA to OPVs between 

2011 and 2021 (based on a Web of Science search). Nevertheless, there are additional papers 

in the dye sensitised solar cell and perovskite communities that have made embodied energy 

calculations for materials/processes and these have been used for this study. Using the 

embodied energy values from the literature, the database containing OPV structure and 

performance parameters was populated with the literature values of embodied energy for each 

individual material and process in order to calculate 𝐄𝐄𝐦𝐛. Where possible, an average of three 

embodied energy calculations was taken. It is estimated that 85% of data was sourced from 

other papers. However, a small subset of data required calculations by these authors, which 

was computed with Simapro using the same approaches developed by Krebs 1, 17–19. One of the 

main challenges related to inconsistent units or inconsistent scales of productions, so 

assumptions were made in order to form a consistent unit system. For example, many sources 

quote embodied energy as either MJkg-1 or MJm-2. The values quoted in MJkg-1 were converted 

to MJm-2 by considering the volume and density of the materials in the device using the 

thickness and active areas quoted in papers.  

Another major challenge is related to the large number of recently reported active layer 

materials, many of which have no reports in the literature of their embodied energy 

(𝑬𝑨𝒄𝒕𝒊𝒗𝒆𝟏/𝑬𝑨𝒄𝒕𝒊𝒗𝒆𝟐). In these circumstances, estimates were made based on the number of 

synthesis steps. Stiebitz produced a technical report where the embodied energy was considered 

as a function of the number of synthesis steps 20.  In the study by Stiebitz, three different 

polymers were studied: P3HT, PTB7 and PCDTBT and the embodied energy determined as a 

function of the number of synthesis steps, which were 5, 12 and 9 synthesis steps for each 

polymer, respectively. The embodied energy for several other polymers are additionally 

deterined and included in the analysis. These were MEH-PPV, PPE-PPV, DPPTPTA and 

PFDT2BT. These additional polymers are added to the analysis of Stiebnitz to increase the 

accuracy of the regression model. From this the average embodied energy per step is calculated 

and used to determine the embodied energy for the different polymers based on the number of 

synthesis steps for each material. Figure 2 illustrates the fitted plot for the embodied energy 

per mole of polymer as a function of synthesis steps. Information regarding the accuracy of 

this is limited due to few reports on the embodied energies of more recent polymers. Therefore, 



 

 

this assumption does represent a limitation of the work, which could be overcome as more 

accurate values for embodied energy become avavilable or more robust methods of estimation 

are derived. In addition, the embodied energy per molar mass was determined from several 

similar materials found in the literature, which were not present in the database, and 

subsequently converted based on the molar mass of the material and the quantity used. Using 

this, a regression model was formed that estimated embodied energy of newer polymers and 

acceptor materials based upon the number of synthetic steps. The deposition process of each 

material is also considered in this work and values for the different process are incorporated 

into the embodied energy value when only the material embodied energy is given in the 

literature. Often, papers will explicitly state whether the values include the processing energy. 

When there is ambiguity, comparison with similar materials will show whether the value has 

been incorporated or not.   

 

Once the embodied energy of each individual material was found, or calculated, the total 

embodied energy (𝐄𝐄𝐦𝐛) for each OPV device in the data set can be calculated using equation 

1, 

 

𝑬𝑬𝒎𝒃 =#(𝑬𝑴𝒂𝒕 + 𝑬𝑷𝒓𝒐𝒄𝒆𝒔𝒔), (1) 

where EEmb is the total embodied energy of the OPV device including the embodied energy of 

the materials, 𝐄𝐌𝐚𝐭 and the embodied energy of the processing for each material, EProcess. The 

embodied energy of the materials can be defined as, 

 𝑬𝑴𝒂𝒕 = 𝑬𝑺𝒖𝒃 + 𝑬𝑻𝑳𝟏 + 𝑬𝑨𝒄𝒕𝒊𝒗𝒆𝟏 + 𝑬𝑨𝒄𝒕𝒊𝒗𝒆𝟐 + 𝑬𝑻𝑳𝟐 + 𝑬𝑬𝒍𝒆𝒄𝟐 + 𝑬𝑬𝒏𝒄𝒂𝒑,	 (2)	

 

where 𝑬𝑺𝒖𝒃, 𝑬𝑬𝒍𝒆𝒄𝟏, 𝑬𝑻𝑳𝟏, 𝑬𝑨𝒄𝒕𝒊𝒗𝒆𝟏, 𝑬𝑨𝒄𝒕𝒊𝒗𝒆𝟐, 𝑬𝑻𝑳𝟐 and 𝑬𝑬𝒍𝒆𝒄𝟐 are the embodied energies of 

each constituent material in each layer (Substrate, Electrode 1, Transport Layer 1, Active 1, 

Active 2, Transport Layer 2 and Electrode 2 respectively). 𝑬𝑷𝒓𝒐𝒄𝒆𝒔𝒔 incorporates the energy 

required for processing each material, for example spin coating, evaporation, screen printing 

and slot die. An approximate exponential decay curve, for the maximum power point, is fitted 

between T0 (time at E0) and T80, and a linear degradation between T80 and TS80. 

Once 𝐄𝐄𝐦𝐛had been calculated, a method to compare the trade-off between PCE, stability and 

embodied energy was required. To this end, the authors developed a metric known as “Net 

energy” (𝐄𝐍𝐞𝐭) which calculated the energy yield of the solar cell operated at AM1.5G for a 

time period of 0 hours to TS80 lifetimes and subtracted the energy used in the OPV manufacture 



 

 

(i.e the 𝐄𝐄𝐦𝐛).  TS80 is defined as the time taken for an OPV to degrade to 80% of its stabilised 

initial output power, to differentiate from the stability metric T80, defined as the time taken to 

drop to 80% of the initial power at 𝑡 = 0	ℎ𝑜𝑢𝑟𝑠 and largely covers the ‘burn-in’ period. The 

𝐄𝐍𝐞𝐭 is calculated during both time periods by integrating the functional power output, 

𝑷(𝒕) = 𝑰𝑴𝑷𝑷(𝒕)𝑽𝑴𝑷𝑷(𝒕) 	= 𝑷𝟎𝒆>𝜶𝒕, over time,  

𝑬𝑵𝒆𝒕 = 56 	𝑷𝟎𝒆>𝜶𝟏𝒕𝒅𝒕 + 6 𝑷𝟎𝒆>𝜶𝟐𝒕	𝒅𝒕

𝑻𝑺𝟖𝟎

𝑻𝟖𝟎

𝑻𝟖𝟎

𝟎

9 − (𝑬𝑬𝒎𝒃),														(3) 

where 𝑰𝑴𝑷𝑷(𝒕)𝑽𝑴𝑷𝑷(𝒕)	 is the time – variation of the power output between time t = 0 and 

TS80, 𝑷𝟎 is the power at t = 0 and αB and αC are fitted exponential decay constant. The numerical 

value for αB is in the range [6 × 10>D, 5.6] and αC is in the range [7 × 10>D, 0.092].  Since the 

exponential decay curve is being approximated, the method for determining 𝐄𝐍𝐞𝐭 will possess 

some error. It is worth noting that only data acquired with ISOS – L standards has been included 

in the database, as it is impossible to estimate the light stability of OPVs measured using the 

ISOS-D protocols or other test conditions.  

 

Once 𝐄𝐍𝐞𝐭 for a particular data point has been calculated, determining the optimum 

combination of materials to achieve the greatest 𝐄𝐍𝐞𝐭 can be achieved by adopting ML 

approaches; the optimisation processes can be applied to determine the best material 

combinations for maximising the 𝐄𝐍𝐞𝐭 output. A schematic flow chart summarising the method 

employed is shown in Figure 3, illustrating how the material and energy costs are acquired and 

the stages of analysis using ML and genetic algorithms. 

 
2.3 Sequential Minimal Optimisation regression 

 
The ML algorithm, sequential minimal optimisation regression (SMOreg) has been adopted in 

this work to rank how different materials and layers impact on the embodied and net energies. 

SMOreg operates by finding an optimal hyperplane which fits the data based on the response 

parameter being modelled. This is achieved by ensuring that the output value, 𝑦 (𝐄𝐄𝐦𝐛 or 𝐄𝐍𝐞𝐭), 

of each data entry deviates less than a required error, ε, from the fitted regression line 𝑓(𝑥). 

The functional form of the hyperplane is determined by optimising the weights of each attribute 

using variational calculus and the method of Lagrange multipliers 21. The acquired model can 

subsequently be analysed in terms of the derived weights with more positive weights 

corresponding to attributes which will lead to an increase in either 𝐄𝐄𝐦𝐛 or 𝐄𝐍𝐞𝐭.	 whilst more 



 

 

negative weights correspond to attributes which will reduce 𝐄𝐄𝐦𝐛  or  𝐄𝐍𝐞𝐭. More details of the 

SMOreg algorithm can be found in 22. The ML algorithm takes the dataset inputs, which are 

represented as strings for the various material types and converts each into a binary number 

which the ML algorithm can read. This is automatically implemented within WEKA 3.8. 

 
2.4 Genetic Algorithm Clustering 

 

A genetic algorithm (GA) clustering technique was also employed as a means of determining 

the optimum material sets for maximising the 𝐄𝐍𝐞𝐭 output of OPVs. GAs are randomized search 

and optimization techniques inspired by the principals of evolution and natural selection 23.  

 

In this work, a clustering approach is employed using the ‘GenClust++’ algorithm 24. In this 

approach, each cluster is determined based on a similarity metric which uses the Manhattan 

Distance Class, where the distance is determined based on a square grid formation and the 

shortest path is determined from the grid lines. For categorical values, the strings are compared 

by considering the number of bit positions in which the two strings differ. 

 

When applying the GA algorithm, the combination of different materials for each layer is 

optimised to form the entire device stack. This is achieved by clustering similar characteristics, 

based on 𝐄𝐍𝐞𝐭 value, whereas when using the SMOreg ML algorithm, the best attributes for 

enhancing the 𝐄𝐍𝐞𝐭 are found; these could all belong to a single attribute class (for example the 

electrode) and not take into consideration the optimisation for combining each device layer 

together. Therefore, even if each device layer is determined by considering the full list of 

weights derived using SMOreg, the identified device architecture would not be an optimised 

solution, as in the case of using the GenClust++ algorithm. 

 

Results and Discussion 

 

3.1 Data exploration  
 
The data was initially visualised in order to better understand the data structure. Figure 4 shows 

the categorical violin plots for (a) 𝐄𝐄𝐦𝐛 and (b) 𝐄𝐍𝐞𝐭 of the dataset, prior to analysis using ML. 

These plots intuitively show the median, interquartile range and 1.5 × interquartile range. In 

addition, the plot shows the kernel density estimation to illustrate the distribution of each 



 

 

parameter. In the case of the 𝐄𝐍𝐞𝐭, the data was split for positive and negative values and plotted 

on separate axis to allow for a logarithmic scale to be used. A positive value indicates that the 

energy produced by the OPV during the operation is greater than the energy used in the 

manufacture. Interestingly, only 15% of the device architectures are found to be positive 𝐄𝐍𝐞𝐭 

generators. The reason for this is twofold; firstly, there are a number of devices with poor 

stability in our data set, and consequentially the energy that is generated cannot surpass the 

energy needed for manufacture because the device operates for too short a period of time. 

Secondly, many small devices are made using glass substrates so possess a high 𝑬𝑺𝒖𝒃 . From 

our data, unless the TS80 stability is greater than 230 hours, the energy generated will never 

overcome the energy used in the manufacture of the glass substrate on its own (assuming an 

initial PCE of 8%).   

 

In addition, Figure 5 illustrates scatter graphs between (a) 𝐄𝐄𝐦𝐛 and PCE, (b) 𝐄𝐍𝐞𝐭 and PCE, 

(c) 𝐄𝐄𝐦𝐛 and T80 and (d) 𝐄𝐍𝐞𝐭 and TS80. From Figure 5 (a) and (c), it is observed that the 𝐄𝐄𝐦𝐛 

is similar for many of the data points. This is because many devices employ similar 

architectures and use similar materials. For example, 58% of devices in our dataset used a 

P3HT:PCBM active layer blend; 78% used an ITO electrode 1; 93% used either silver or 

aluminium as electrode 2 and 77% used a glass substrate. From Figure 5 (a) and (c) it can be 

seen that the data is grouped in two distinct regions, centred at approximately 350 MJm-2 and 

40 MJm-2. Most cell devices reside in the group near the 350 MJm-2 value, whilst most modules 

reside in the group near the 40 MJm-2 value. This is principally due to the materials used by 

the two types of devices which govern the total 𝐄𝐄𝐦𝐛. For Figure 5 (b) and (d), many devices 

are again grouped with similar 𝐄𝐍𝐞𝐭, primarily due to the similar 𝐄𝐄𝐦𝐛, however, a small 

positive correlation can now be observed. This indicates that as E0 and TS80 increase, so does 

the 𝐄𝐍𝐞𝐭 of the device. This is as expected; a device with a higher initial efficiency will be able 

to produce more energy, and a device which operates for longer will also produce more energy 

over its lifetime. 

 

3.2 Analysis of Embodied and Net energies using SMOreg 
 
The SMOreg ML algorithm was applied to the dataset and used to analyse trends in the	𝐄𝐄𝐦𝐛. 

In this work, the data was analysed using cross – validation approach to minimise overfitting 

of the data. Cross – validation is a resampling procedure for training and testing an ML 

algorithm where several folds of train/test splits are produced. This improves the reliability of 



 

 

the derived model by reducing overfitting. The regression results are shown in Figure 6 (a). 

The fitting parameters for the three subsets are shown in Table 1 and a strong correlation 

coefficient (CC) of 0.988 is achieved when using all structural components. The high 

correlation should not be a surprise since the 𝐄𝐄𝐦𝐛 was calculated from LCAs using similar 

approaches. In relation to the model fitting, positive weights indicate materials and processes 

with a higher 𝐄𝐄𝐦𝐛 and negative weights relate to materials and processes with a lower 𝐄𝐄𝐦𝐛. 

The magnitude of the weight indicating the relative importance of the factor. Table 2 provides 

a ranking of the fifteen most beneficial and fifteen most detrimental materials for 𝐄𝐄𝐦𝐛	based 

upon the SMO algorithm weightings. In this table, the name represents the device layer and the 

material identified in the parentheses. Inspection of the weights show that the most beneficial 

attributes are substrate, electrode 1 and TL1 materials, in rank order, with the substrate (20%) 

and electrode 1 (13%) categories all occupying the top 50% of the weights. The most 

detrimental attributes are electrode 1, transport layer 1 and 2, active layer and electrode 2 in 

rank order with electrode 1 and TL1 materials all occupying the worst 50% of weights. 

For substrate material the most beneficial materials are PET, PET with a barrier layer, glass 

and quartz, in rank order. There was not enough meaningful data from other substrate materials 

in our dataset. Based upon the dataset, it is clear that one of the highest impact modifications 

OPV manufacturers can make to reduce 𝐄𝐄𝐦𝐛 is to use a PET substrate. The main alternative 

to PET is to use glass, which has a much higher	𝐄𝐄𝐦𝐛 . For electrode 1 the most beneficial 

materials are printed silver (Ag) or PEDOT:PSS. The second most detrimental device layers 

are the electrodes and 27% of the positive weightings corresponding to electrodes. The most 

detrimental attribute is identified as ITO for E1. For E2, the most detrimental material is 

evaporated Ag. The most beneficial TL1 materials are identified as CuI, ZnO and PEDOT:PSS. 

This provides some promise that commonly used transport layers such as ZnO and 

PEDOT:PSS do not carry a large environmental impact. However, it should be noted that TL1, 

TL2 and active materials do not have as significant an impact on overall 𝐄𝐄𝐦𝐛 as substrate and 

electrode materials. It is also noteworthy that ZnO nanoparticles used as TL2 are identified as 

being beneficial as well as the active material IDTBRIDFBR. In rank order, the most 

detrimental TL1 materials are NiOx, CrO2 and TiO2 and for TL2 the ranking is TiOx, MoO3 

ZrO, LiF and V2O5. This is as expected due to the high manufacturing costs for many metal 

oxide materials.  

 



 

 

Subsequently, the SMOreg algorithm has been applied to the calculated 𝐄𝐍𝐞𝐭 output of the 

OPVs, calculated using equation 3. 𝐄𝐍𝐞𝐭 considers the energy generated over the course of the 

OPV and subtracts the 𝐄𝐄𝐦𝐛. The regression result is shown in Figure 6 (b) and the fitting 

parameters are shown in Table 1. Using the 𝐄𝐍𝐞𝐭 produced, a good fitting is achieved for the 

test set with a CC of 0.838. Subsequently, the weights obtained from the SMOreg model can 

be analysed and ranked as the ten most beneficial and ten most detrimental for increasing 

the	𝐄𝐍𝐞𝐭, as shown in Table 3. Inspection of the top 50% of weightings from the SMOreg 

algorithm show that the most beneficial attributes in order to achieve high 𝐄𝐍𝐞𝐭 is by adjusting 

Transport Layer 1 and 2, Active layer 1 and 2 and substrates. The transport layers occupy 

approximately half of the positive weights. The most detrimental attributes are active layers 1 

and 2, transport layer 1 and 2, electrode 1 and 2 in rank order. 

Considering the substrate, using a PET layer coated with a barrier layer is found to be the most 

beneficial for improving the 𝐄𝐍𝐞𝐭 whilst using a quartz substrate proved to be the most 

detrimental. The former shows the benefit of using a barrier film; whilst using a barrier layer 

results in an increase in 𝐄𝐄𝐦𝐛, the 𝐄𝐍𝐞𝐭 increases more significantly since the additional barrier 

layer ensures that the OPV remains operational and generating energy for a longer period of 

time. A number of reports have used a quartz substrate in OPVs; whilst this gives the better 

UV transmittance, it’s clearly a poor choice as a substrate given the high 𝐄𝐄𝐦𝐛.  

For the bottom electrode (Electrode 1), a composite electrode of Chromium – Aluminium 

proves to be beneficial, and Ag and Au are found to be detrimental for 𝐄𝐍𝐞𝐭. The likely reason 

for this is that there are a large number of poorly performing small devices (i.e. cells) in the 

literature. As they survive for <100 hours during light soaking, they cannot recover the energy 

needed to manufacture the OPVs. Furthermore, the objective of many studies is not on 

maximising  𝐄𝐍𝐞𝐭 and represent proof of concept for novel materials. However, as the 

technology matures, the findings of this study should be updated to include materials and 

devices focussed on  𝐄𝐍𝐞𝐭 enhancement. Nevertheless, this methodology provides a means of 

directing research priorities. There are some interesting characteristics; for example, the use of 

NiOx also leads to an increase in the embodied energy, but due to the enhanced stability of 

devices made with NiOx, it found to significantly improve the 𝐄𝐍𝐞𝐭 output of OPVs. 

For both improving and reducing the 𝐄𝐍𝐞𝐭, several active layer materials were identified, and 

these results could be used to optimise combinations of different active materials for improved 

𝐄𝐍𝐞𝐭 output. Notably, the three most beneficial active layer materials are DR3TSBDT, IDFBR 



 

 

and IDTBRIDFBR. In contrast, the most detrimental active material is PBDTTT-C-T, which 

is a widely reported material, but possesses a low stability. Other active layer materials such as 

PBDTTTPD are also identified as having a detrimental effect on 𝐄𝐍𝐞𝐭. 

The second transport layer (TL2) plays a prominent role governing the 𝐄𝐍𝐞𝐭 output, primarily 

due to its effect upon device stability. ZnO nanoparticles and MoO3 are found to improve the 

𝐄𝐍𝐞𝐭 when used as TL2, whilst V2O5 and ZrO are found to be detrimental. No top electrode 

(Electrode 2) materials were identified for improving the 𝐄𝐍𝐞𝐭. However, the use of an Au for 

Electrode 2 is clearly detrimental and should be avoided. Finally, it should also be noted that 

the 𝐄𝐄𝐦𝐛 was used as a predictive attribute for 𝐄𝐍𝐞𝐭 calculations and found to be a negative 

influence. This means that as the 𝐄𝐄𝐦𝐛 increases, if the stability and PCE stay constant, the 

𝐄𝐍𝐞𝐭 decreases and vice versa. This demonstrates the importance of selecting materials from 

the outset that possess low manufacturing costs whilst also maintaining a balance between 

using materials with a high energy output potential. 

The analysis has been subsequently repeated using only the active layer materials as the 

predictive attributes for 𝐄𝐍𝐞𝐭 and discounting the other OPV layers. Whilst the biggest 

improvements in 𝐄𝐍𝐞𝐭 are related to substrates and E1, there is a much wider range of 

alternative options of active layer materials as new donor and acceptor materials are regularly 

being reported. Table 1 shows the fitting parameters corresponding to the regression fitting 

shown in Figure 6 (c), which shows a CC of 0.719. The drop in CC is to be expected as the 

algorithm is trying to calculate 𝐄𝐍𝐞𝐭 without many of the factors such as electrodes and 

transport layers which are needed for a more accurate model. Removing these factors allows 

for investigation of how the active layer materials impact 𝐄𝐍𝐞𝐭 alone. The CC values obtained 

deomstrate that a high value can be obtained for 𝐄𝐄𝐦𝐛 whilst a moderate value can be obtained 

for 𝐄𝐍𝐞𝐭; this is as expected given the nature of how these values were determined. Furthermore, 

these values prove to be higher or comparable to previously reported CCs when modelling 

OPV performance. For example, a CC of 0.79 was reported by Sahu et al. when predicting the 

PCE using of OPVs based on 13 material properties 12; Nagasawa et al. reported a CC of 0.62 

when predicting the PCE based on molecular fingerprints of conjugated polymers used in OPVs 
25 and Wu et al. reported CC values of 0.54, 0.59 and 0.70 when using linear regressions, 

multinominal logistic regression and random forest, respectively, when modelling modelling 

the PCE based on various donor/acceptor pairs in non-fullerene organic solar cells 26. Table 4 

reports the results of the SMOreg weightings when considering only active layer materials, and 



 

 

hence their relative effect upon 𝐄𝐍𝐞𝐭 calculations. It should be noted that the adopted method 

does yield an absolute percentage error when predicting the net energy, and readers using our 

dataset should be aware that this exists. The absolute error is measured at 36%. However, this 

is not unexpected given the high degree of variability observed in the stability data across 

devices which employ similar materials. This can be attributed to lab-to-lab variations in 

fabrication such as minor variations in the testing methodology, material purity, processing 

techniques and human error. Similar values of absolute errors have also been observed by 

others when analysing large datasets of OPV data using machine learning 27, 28, 29. Additionally, 

the error in the model when predicting high net energies could be reduced by solely considering 

high performance devices; this would reduce variability and produce a model specifying in 

identifying high net energy materials range only. Finally, our approach allows readers to 

rapidly evaluate which materials to use in OPV to assess their sustainability and performance. 

Nevertheless, it should be noted that to verify the findings of this study, experimental work 

should be conducted to fabricate devices using the identified materials and their net energies 

determined. 

 

Notably, all detrimental attributes are the donor active material (A1) whilst the beneficial 

attributes are a mixture of donor and acceptor (A1 and A2). It should also be highlighted that 

there are only 12 positive weightings from the dataset. This is because the dataset contains 

active layers, such as those made with DRCN7T, PBDTTT and ZnPc, where there are relatively 

few literature reports of the stability, but it is relatively high, so the algorithm creates a small 

number of large positive weights, and a large number of negative weights. NDP2 doped 

DiNPB, C6PcH2 and SubPc are the three most detrimental materials. Significantly, some 

materials corresponding to recent reports since 2019 are identified as being beneficial. These 

include IDTT, DR3TSBDT, IDTBR and IDFBR.  Non-fullerene materials such as IDTT and 

IT-4f are additionally identified as being beneficial. PCBM-61, which is also a commonly used 

material, is also found to be beneficial. These results principally allow the different possible 

active layers to be screened and should provide guidance for future experimental verification. 

 

3.2 Genetic Algorithm Clustering 
 
Clustering ML techniques have been applied to the dataset which use a genetic search method 

based on the ‘GenClust++’ method discussed earlier. The benefit of using a clustering 



 

 

approach is that it allows groups of related attributes to be associated with each other based 

on a similarity metric derived from the 𝐄𝐍𝐞𝐭. This provides a means of identifying realistic 

device architectures based on fitting to the 𝐄𝐍𝐞𝐭 value; the mechanics of the genetic clustering 

algorithm enforces that each device layer is optimised simultaneously for 𝐄𝐍𝐞𝐭 classification. 

This provides added information over the SMOreg approach by taking into consideration the 

feasibility of combining the different materials to form a complete device stack. The SMOreg 

approach considers each attribute from all device layers individually and ranks them based on 

their relative benefit subsequently allowing the overall ranking of the different materials to be 

determined. 

The 𝐄𝐍𝐞𝐭 are now categorised in groups of equal distribution such that each class contained a 

similar number of data points. Where the same 𝐄𝐍𝐞𝐭 values overlap across different classes, 

modifications were made to the distribution of instances whilst maintaining as equal a 

distribution as possible.  Subsequently, the clustering algorithm was applied to the dataset and 

the classes to cluster evaluation was employed. As a result, the attributes related to energy 

factors such as the materials and encapsulation are clustered, and each cluster is assigned to a 

particular 𝐄𝐧𝐞𝐭 class. The results of the clustering algorithm are shown in Table 5. The raw 

𝐄𝐄𝐦𝐛 and 𝐄𝐧𝐞𝐭 values were not included during the clustering process but are included in Table 

5 for clarity and interpretation of the results. 

In Table 5, each row corresponds to a single cluster and the column headings represent the 

attributes used for clustering. The rows have been ranked from lowest 𝐄𝐍𝐞𝐭 at the top of the 

table to highest 𝐄𝐍𝐞𝐭 at the bottom. The column containing the 𝐄𝐄𝐦𝐛 and 𝐄𝐍𝐞𝐭 values give the 

calculated values which allows for assessment of the data. The results shown in Table 5 show 

how different combinations of materials can be clustered based upon their 𝐄𝐍𝐞𝐭. The materials 

in each cluster are selected based on the stages of the genetic algorithm clustering approach 

where the mode material for each layer is selected as being representative of that layer in the 

cluster after the genetic operations of “crossover”, “elitism”, “mutation” and “cloning” 24. 

Based upon the data in Table 5, an OPV cell with the following structure would lead to the 

greatest 𝐄𝐍𝐞𝐭 output:  

 

Glass|ITO|PEDOT:PSS|PCDTBT|PC71BM|Ca|Ag  

 

In addition, the clustering results indicate that the OPV modules, with the highest 𝐄𝐍𝐞𝐭 are 

obtained with the structure:  



 

 

 

PET|Ag|PEDOT:PSS|P3HT|PCBM|PEDOT:PSS|Ag. 

 

It should be noted that these combinations of materials do not necessarily occur in the dataset 

and are derived based on the clustering algorithm, employing genetic search methods. It is also 

important to note that the dataset contains relatively fewer modules (13%) than cells (87%) and 

that the modules contained within that dataset tend not to use some of the newer low bandgap 

polymers or small molecules. Modules represent technologies which have progressed from 

laboratory conditions to commercial application. Therefore, as the number of modules tested 

grow and can be added to the dataset, the clustering model will give a clear indication on the 

viability of the modular setups and the benefit of encapsulation techniques. Furthermore, it 

should be noted that Ag is identified as the best bottom electrode for 𝐄𝐍𝐞𝐭 enhancement in 

modules. This seems to contradict the findings in Table 3, which identifies Ag as a detrimental 

material for 𝐄𝐍𝐞𝐭. However, the clustering algorithm takes into account the possible 

combination of materials for producing the entire module, whilst the SMOreg algorthm does 

not. Since most modules employ Ag as the bottom electrode in a grid formation, the clustering 

algorithm determines this to be the optimised material option, given the other materials used 

such as PET substrate. It can be seen that the majority of materials identified in the clusters are 

common materials such as ITO, PEDOT:PSS, P3HT and PCBM. However, interesting results 

can be seen when looking at other materials identified and where they reside in the overall 

ranking. Since the SMOreg algorithm considers the overall ranking of all materials used in the 

dataset when modelling the 𝐄𝐍𝐞𝐭, it is often more suited for finding less common materials 

since the optimisation of the entire device stack is not imposed. Comparison between the results 

for SMOreg and the genetic clustering additionally allows similar materials to be identified 

when using both methods. For example, PCDTBT is identified using the genetic algorithm 

clustering for the top class of 𝐄𝐍𝐞𝐭 and is also found to be a beneficial attribute under the 

SMOreg algorithm. The SMOreg algorithm determines PET substrates to be beneficial for net 

energy and is identified for architectures having 𝐄𝐍𝐞𝐭 classes between “L” and “O” using the 

genetic algorithm clustering. Additionally, MoO3 is identified in the top 15 weights using the 

SMOreg algorithm and also identified for an architecture having a 𝐄𝐍𝐞𝐭 class of “Q”. It is 

additionally noteworthy that more recent efficient active materials such as PM6:Y6 are not 

identified by the clustering algorithm as possessing a high 𝐄𝐍𝐞𝐭. However, since there are a few 

reports for these efficient materials which display high instability, this counterbalances the 



 

 

efficient reports for materials such as PM6:Y6. This leads to the algorithm placing a greater 

significance on the more commonly used materials which have experinced greater development 

and have a higher number of high stability reports. This illustrates how this method does not 

pin point individual, high performing, examples, but holistically examines the entire dataset. 

As the number of available reports increases for novel materials, the algorithm will be able to 

identify more promising materials. 

 

Even though the highest 𝐄𝐍𝐞𝐭 is achieved using cells, modules are generally displaying 

improved 𝐄𝐍𝐞𝐭 in comparison to cells, with the 𝐄𝐍𝐞𝐭 ranging between class ‘L’ and class ‘O’. 

This could be related to the encapsulation since almost all module data used encapsulation 

whereas many cell devices did not (45%). In addition, modules are made using less intense 

processing technologies such as slot die coating and tend not to use thermal evaporation, which 

is more energy intensive. For the substrate material, a trend can be seen where glass and quartz 

lead to low 𝐄𝐍𝐞𝐭 whilst PET leads to higher 𝐄𝐄𝐦𝐛, although this trend is not absolute. A similar 

trend can be seen for Electrode 1 with ITO leading to lower 𝐄𝐍𝐞𝐭 and silver leading to higher 

𝐄𝐍𝐞𝐭. Interestingly, metal oxides do not appear as often as one would expect in high 𝐄𝐍𝐞𝐭 

classes, apart from ZnO. This is due to their large 𝐄𝐄𝐦𝐛, as compared with PEDOT:PSS. 

However, there is significant variance in the data. For example, non-fullerene acceptors (NFAs) 

display some promise, however, there is variance in the data with some NFAs displaying good 

stability and others displaying poor stability. ITIC is identified for classes ‘N’ and ‘O’, 

indicating they relate to higher 𝐄𝐍𝐞𝐭 clusters. For modules, all-inkjet processing appears as the 

most promising deposition technique for silver electrodes, as well as using conductive 

PEDOT:PSS. 

In order to have confidence that the derived device architectures are experimentally feasible, 

the results from the clustering calculation has been compared with the literature. All of the 

device architectures found in Table 5 have been reported previously in the literature. This 

illustrates how the algorithm is capable of determining realistic configurations based on the 

dataset. For example, the device architecture determined in cluster 19 (highest 𝐄𝐍𝐞𝐭 

architecture) has been previously reported for outdoor operation and a T80 of approximately 

410 hours was achieved [16]. In contrast, the lifetime of the architecture determined in cluster 

1 (lowest 𝐄𝐍𝐞𝐭 architecture) was tested under continuous 1 Sun illumination and a T80 of 

approximately 4 hours was observed 17. Therefore, as the dataset increases in complexity and 

size, it is feasible that this method could be used to determine architectures which have not 



 

 

been previously tested whilst still having confidence in the feasibility of the derived device 

structure. 

 

Conclusion 

 

A large database of OPV performance, stability, and embodied energies has been collected for 

analysis using machine learning approaches. 𝐄𝐍𝐞𝐭 has been calculated for each device based on 

the initial efficiency, T80 and TS80 and 𝐄𝐄𝐦𝐛. Machine learning techniques are then applied to 

analyse the 𝐄𝐍𝐞𝐭 by applying the SMOreg algorithm using the structural components of each 

device as the predictive attributes. This provided a model giving the weights, and therefore 

relative significance of the different attributes in the improvement or deterioration of the 𝐄𝐍𝐞𝐭. 

The SMOreg algorithm was additionally used to model the PCE and stability (T80 and TS80). 

For these two parameters the CC was 0.78, 0.67 and 0.75 respectively. These CC values 

represent moderately high values and illustrate that the SMOreg algorithm is still capable of 

producing relatively accurate models for these parameters. The CC for these were additionally 

checked since they correspond to the parameters used when deriving 𝐄𝐍𝐞𝐭. In addition, a 

clustering algorithm, using a genetic search method, was employed in order to determine he 

optimum device configuration. This provides a way of rapidly scanning datasets of OPV 

material performance and stability data and identify which materials are too environmentally 

damaging to consider for application in future devices and modules. A relatively high absolute 

error is identified when applying these ML algorithms. However, this can be expected due to 

high level of variability in the stability data, which is dependent on lab-to-lab processing and 

testing approaches.  

 

They key results from the analysis are: 

 

1) Transport Layer 1 and 2, Active layer 1 and 2 and substrates have the greatest impact 

on increasing the 𝐄𝐍𝐞𝐭 

2) Active layers 1 and 2, transport layer 1 and 2, electrode 1 and 2 could have the 

greatest influence on negatively impacting 𝐄𝐍𝐞𝐭 

3) Commonly used materials (other than active layers) that show promise towards 

delivering positive 𝐄𝐍𝐞𝐭:  PET + barrier layer, PET (substrates), NiOx, ZrOx, CrO2 

(TL1), ZnO, LiF, MoO3 (TL2)  



 

 

4) Commonly used materials (other than active layers) that show negative weighting and 

whose use should be minimised in OPV manufacturer: Quartz, Glass (substrate); 

V2O5, ZrO (TL2); Ag (evaporated), Au (E2) 

5) Commonly used active layer materials that show promise towards delivering positive 

𝐄𝐍𝐞𝐭: DRCN7T, DR3TSBDT, ZnPc, PDPP4T-2F, PCDTBT (donors); IT-4F, C61 

(Acceptors) 

6) Commonly used active layer materials that show negative weighting and whose use 

should be minimised in OPV manufacture: MEH-PPV, CuPc, Pentacene, PSBTBT, 

PCPDTBT, PPE-PPV (donors) 

7) Modules generally show better 𝐄𝐍𝐞𝐭 values than cells due to their greater stability, 

lower wastage of material during manufacture and lower processing energy 

  

In summary, the analysis method used in this work provides a means of identifying optimum 

device configurations that allow manufacturers to optimise OPV performance, stability and 

embodied energy. As the technology matures and material sets grow in complexity, this method 

could be extended to rapidly identify the best device architectures for development without the 

need for exhaustive, time – intensive experimentation. 
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Figure 1: Device architecture employed in dataset. 

 

 

 

 
Figure 2. Variation in polymer 𝐄𝐄𝐦𝐛  as a function of the number of synthesis steps based upon 

data from 12 recent papers of LCA of donor or acceptor polymers (2012-2021).  
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Figure 3: Schematic of how material and energy costs are acquired and stages of analysis using 
ML genetic algorithms. 
 



 

 

Figure 4: Categorical distribution for (a) 𝐄𝐄𝐦𝐛 and (b) 𝐄𝐍𝐞𝐭 where 15% of studies considered 

display a positive value. 

 

 
Figure 5: Distributions of (a) 𝐄𝐄𝐦𝐛 as a function of E0, (b) 𝐄𝐍𝐞𝐭 as a function of E0, (c) 𝐄𝐄𝐦𝐛 as 

a function of T80 and (d) 𝐄𝐍𝐞𝐭 as a function of TS80. 
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Figure 6: (a) Predicted 𝐄𝐄𝐦𝐛 as a function of reference 𝐄𝐄𝐦𝐛 using SMOreg algorithm for all 

structural attributes. (b) Predicted 𝐄𝐍𝐞𝐭 as a function of reference 𝐄𝐍𝐞𝐭 using SMOreg algorithm 
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for all structural attributes. (c) Predicted 𝐄𝐍𝐞𝐭 as a function of reference 𝐄𝐍𝐞𝐭 using SMOreg 

algorithm for only active material attributes. Regression results are shown as circles whilst 

residuals are shown are shown as crosses. Absolute values for the residuals were taken. 

 

 

Metric 𝐄𝐄𝐦𝐛 𝐄𝐍𝐞𝐭 𝐄𝐍𝐞𝐭 (Active Only) 

Correlation coefficient 0.988 0.838 0.719 

Mean Absolute Error (MJm-2) 5.19 175 218 

Root Mean Squared Error 

(MJm-2) 27.2 681 859 

Relative Absolute Error 4.04% 36.6% 45.6% 

 

Table 1: Fitting parameters for SMOreg applied to the dataset to predict 𝐄𝐄𝐦𝐛, 𝐄𝐍𝐞𝐭 and 𝐄𝐍𝐞𝐭 

using only active layer materials as predictive attributes. A cross – validation approach is 

used for each case.  

 

 

Table 2: Best 15 attributes and worst 15 attributes for 𝐄𝐄𝐦𝐛 minimisation. 
 

Best 15 Attributes Worst 15 Attributes 

Name Weight Name Weight 
S(PET) -0.2359 E2(CPP PEDOT:PSS) 0.0019 

S(Barrier layer & PET) -0.2343 A1(PBDTTT) 0.002 
E1(Ag) -0.1046 A2(ITIC) 0.0021 

A2(IDTBRIDFBR) -0.0674 TL2(Ca) 0.0029 
TL2(ZnO NP) -0.0559 A1(PCPDTBT) 0.004 

TL1(PEDOT:PSS - High conductive) -0.0164 A1(CuPc) 0.0041 
TL1(CuI) -0.0156 A2(C60) 0.0067 
TL1(ZnO) -0.0151 TL2(ZrO) 0.0106 

TL1(PEDOT:PSS) -0.0148 TL2(MoO3) 0.0109 
TL1(Graphene Oxide) -0.0139 TL1(TiO2) 0.0231 

TL1(AlQ3) -0.0035 E1(MIM) 0.074 
E2(Al) -0.0023 E1(Cr – Aluminium) 0.1073 

TL2(LiF) -0.0022 TL1(CrO2) 0.1073 
TL2(BPhen) -0.0013 TL1(NiOx) 0.1164 
A2(PCBM) -0.0005 E1(ITO) 0.1271 



 

 

 
Table 3: Best 15 attributes and worst 15 attributes for 𝐄𝐍𝐞𝐭 maximisation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 4: Best 15 attributes and worst 15 attributes for 𝐄𝐍𝐞𝐭 maximisation using only active 
layer materials. 
 

All structural attributes 

Best 15 Attributes Worst 15 Attributes 

Name Weight Name Weight 
A1(DR3TSBDT) 0.0299 A1(PTB7) -0.0093 

TL2(ZnO NP) 0.026 A1(PDTSTTz-4) -0.0096 
A2(IDFBR) 0.0205 E2(Au) -0.0107 

A2(IDTBRIDFBR) 0.0182 A1(CN-P3HT) -0.0117 
S(PET + barrier layer) 0.0146 TL1(Ethanolamine) -0.0132 

A1(PCDTBT) 0.014 E1(Au) -0.0147 
TL1(NiOx) 0.0122 E1(Ag) -0.0149 
TL2(LiF) 0.0099 TL2(V2O5) -0.0166 

TL2(MoO3) 0.008 A1(PBDTTTPD) -0.0215 
S(PET) 0.0074 A1(PDPP4T-2F) -0.0226 

TL1(ZrO2) 0.0066 A2(IEICO-4FP2FBTT-H) -0.0268 
TL1(CrO2) 0.0058 TL2(ZrO) -0.0389 
A1(ZnPc) 0.0046 S(Quartz) -0.0448 
A2(C60) 0.0034 Embodied Energy -0.156 
E2(Ag) 0.0018 A1(PBDTTT-C-T) -0.2277 

Active Only 

Best 15 Attributes Worst 15 Attributes 

Name Weight Name Weight 
A1(DRCN7T) 0.9232 A1(Pentacene) -0.0362 

A2(ZnPc) 0.1272 A1(CuPc) -0.0384 
A1(PDPP4T-2F) 0.0761 A1(TDCV-TPA) -0.0382 
A1(PCDTBT) 0.0547 A1(P3MHOCT) -0.038 

A1(IDTT) 0.0421 A1(MEH-PPV) -0.0365 
A2(IT-4F) 0.0232 A1(Pentacene) -0.0362 
A2(C61) 0.0101 A1(PININE:DTBT) -0.0387 

A1(PBDB-T) 0 A1(PSBTBT) -0.0391 
A1(DR3TSBDT) 0 A1(PCPDTBT) -0.0391 

A2(DF-DPB) -0.0012 A1(CN-P3HT) -0.0395 
A1(PBDTTT-EFT) -0.0019 A1(PPE-PPV) -0.0402 

A2(IDTBR) -0.0092 A1(Tetracene) -0.0403 
A2(IDFBR) -0.0114 A1(SubPc) -0.0403 

A1(DRCN5T) -0.0142 A1(C6PcH2) -0.0707 

A1(IDTBRIDFB) -0.02 
A1(NDP2 doped 

DiNPB) 
-0.173 



 

 

Table 5: Clustered attributes based on 𝐄𝐍𝐞𝐭 output. Clusters ranked from low (A) to high (R). 
Each row represents a cluster and an optimised device architecture for each 𝐄𝐍𝐞𝐭 class. 
 
 

Type Encapsulation Substrate Electrode 1 
Transport 
Layer 1 

Active  
Layer 1 

Active  
Layer 2 

Transport 
Layer 2 Electrode 2 

 
Embodied 
Energy 

 
Net 
energy 

Net 
energy 
(Class) 

 
Net energy 
(Magnitude) 

Cell None Quartz ITO MoO3 C6PcH2 PCBM-61 None Al 967.025 -966.589 A 
 

Cell Rigid Glass Cr|Aluminum CrO2 P3HT PCBM-61 PEDOT:PSS Au 536.61 -514.915 A 

Cell None Glass ITO MoO3 P3HT PCBM-61 LiF Al 459.76 -454.625 B 

Cell Rigid Glass ITO None CuPc C60 Bathocuproine Al 450.88 -449.426 C 

Cell None Glass ITO PEDOT:PSS P3HT PCBM-61 Ca Ag 446.09 -445.799 D 

Cell None Glass ITO ZnO PTB7 PCBM-71 MoO3 Ag 456.355 -440.313 C 

Cell Rigid Glass ITO PEDOT:PSS P3HT PCBM-61 LiF Al 442.68 -438.433 E 

Cell None Glass ITO PEDOT:PSS P3HT PCBM-61 None Al 438.16 -437.52 G 

Cell None  Glass ITO None P3HT PCBM None Al 434.74 -434.769 H 

Cell Rigid Glass ITO PEDOT:PSS P3HT PCBM-61 PEDOT:PSS Al 441.87 -423.047 I 

Cell Rigid Glass ITO ZnO P3HT PCBM-61 PEDOT:PSS Ag 440.58 -401.959 J 

Module Flexible PET ITO ZnO P3HT PCBM-61 HTLSolar Ag 253.168 -250.22 L 

Cell Rigid Glass Ag PEDOT:PSS P3HT PCBM-61 LiF Al 225.218 -221.719 M 

Cell Rigid PET Ag PEDOT:PSS P3HT PCBM PEDOT:PSS Ag 39.586 -37.44 N 

Module Yes PET Ag ZnO PBDB-T ITIC HTLSolar CPP:PEDOT:PSS 33.44 -32.343 N 

Cell None PET Ag PEDOT:PSS P3HT ICBA AZO Al 30.868 -27.52 O 

Module Flexible PET Ag PEDOT:PSS P3HT PCBM PEDOT:PSS Ag 39.586 -21.151 O 

Cell Rigid Glass ITO ZnO P3HT PCBM-61 MoO3 Ag 455.89 117.3728 Q 

Cell Rigid Glass ITO PEDOT:PSS PCDTBT PCBM-71 Ca Ag 444.91 897.9285 R 

Increasing N
et energy 


