
The material cannot be used for any other purpose without further permission of the publisher and is for private use only.

There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it.

https://eprints.gla.ac.uk/265803/

Deposited on 28 February 2022

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk
Global Disparities in the Prescription of Guideline-
Recommended Medical Therapies for Heart Failure with
Reduced Ejection Fraction: A Cohort Study

Jasper Tromp1,2,3*, MD PhD; Wouter Ouwerkerk1,4*, MD PhD; Tiew-Hwa K. Teng1,2, MPH PhD; John G. F. Cleland5, MD; Sahiddah Bamadhaj1 BSc; Christiane E. Angermann6 MD; Ulf Dahlstrom7, MD; Wan Ting Tay1 MAppStat; Kenneth Dickstein8, MD; Georg Ertl6, MD; Mahmoud Hassanein9, MD; Sergio V. Perrone10, MD; Mathieu Ghadanfar11, MD; Anja Schweizer12, PhD; Achim Obergfell12, MD; Sean P Collins13; Gerasimos Filippatos*14 MD PhD; Carolyn SP Lam*1,2,3 MBBS PhD**

*These authors contributed equally
**All REPORT-HF investigators are listed in the supplementary material.

1. National Heart Centre Singapore
2. Duke-National University of Singapore Medical school, Singapore
3. University Medical Centre Groningen, University of Groningen department of cardiology, Groningen, the Netherlands
4. Department of Dermatology, University of Amsterdam Medical Centre, Amsterdam, the Netherlands
5. Robertson Centre for Biostatistics and Clinical Trials, Institute of Health & Well-Being, University of Glasgow and National Heart & Lung Institute, Imperial College, London.
6. University Hospital Würzburg, Department of Medicine I and Comprehensive Heart Failure Center, Würzburg, Germany
7. Department of Cardiology and Department of Health, Medicine and Caring Sciences, Linkoping University, Linkoping, Sweden
8. University of Bergen, Stavanger University Hospital, Norway
9. Alexandria University, Faculty of Medicine, Cardiology Department Alexandria, Egypt
10. El Cruce Hospital by Florencio Varela, Lezica Cardiovascular Institute, Sanctuary of the Trinidad Miter, Buenos Aires, Argentina
11. M-Ghadanfar Consulting (Life Sciences), Basel Switzerland
12. Novartis Pharma AG, Basel, Switzerland
13. Vanderbilt University Medical Center, Department of Emergency Medicine, Nashville, TN, USA
14. University of Cyprus, School of Medicine & National and Kapodistrian University of Athens, School of Medicine, Department of Cardiology, Attikon University Hospital, Athens, Greece

Word count: 3,081
Corresponding author:
Carolyn S.P. Lam. MBBS, PhD.
National Heart Centre Singapore.
5 Hospital Dr, Singapore 169609, Singapore.
Tel. +65 67048965; Fax +65 68449069.
e-mail: carolyn.lam@duke-nus.edu.sg.
ORCiD ID: 0000-0003-1903-0018
Abstract

Background. Heart failure (HF) is a global challenge, with lower- and middle-income countries carrying a large share of the burden. Treatment for HF with reduced ejection fraction (HFrEF) improves survival but is often underused. Economic factors might have an important effect on the use of medicines.

Methods and results This analysis assessed prescription rates and doses of renin-angiotensin-system (RAS) inhibitors, β-blockers, and mineralocorticoid receptor antagonists at discharge and 6-month follow-up in 8669 patients with HFrEF (1,458 from low-, 3,363 from middle- and 3,848 from high-income countries) hospitalized for acute HF in 44 countries in the prospective REPORT-HF study. We investigated determinants of guideline-recommended treatments and their association with 1-year mortality, correcting for treatment indication bias.

Only 37% of patients at discharge and 34% of survivors at six months were on all three medication classes, with lower proportions in low- or middle-income countries than high-income countries (19% vs. 41% at discharge and 15% vs. 39% at six months). Women and patients without health insurance, or from low- or middle-income countries, or without a scheduled medical follow-up within 6 months of discharge were least likely to be on guideline-recommended therapy at target doses, independent of confounders. Being on ≥50% of guideline-recommended doses of RAS-inhibitors, and β-blockers was independently associated with better 1-year survival, regardless of country income level.

Conclusion. Patients with HFrEF in low- and middle-income countries are less likely to receive guideline-recommended therapy at target-doses. Improved access to medications and medical care could reduce international disparities in outcome.
Trial registration: NCT02595814

Conflict of interest: REPORT-HF: was funded by Novartis. CSL. is supported by a Clinician Scientist Award from the National Medical Research Council of Singapore; has received research support from AstraZeneca, Bayer, Boston Scientific and Roche Diagnostics; has served as consultant or on the Advisory Board/ Steering Committee/ Executive Committee for Actelion, Amgen, Applied Therapeutics, AstraZeneca, Bayer, Boehringer Ingelheim, Boston Scientific, Cytokinetics, Darma Inc, Janssen R&D, Medscape/WebMD Global, Merck, Novartis, Novo Nordisk, Roche Diagnostics, Sanofi, St Luke, Us2.ai; has received payment or honoraria from Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Medscape/WebMD Global, Novartis, Radcliffe, Roche Diagnostics; holds a patent (US patent no: 16/216,929) and has a patent pending unrelated to this work (no: 16/216,929); and serves as co-founder & non-executive director of Us2.ai.; JT has received personal grants and speaker fees from Us2.ai and Roche diagnostics and holds a patent (US patent no: 16/216,929) unrelated to this work. JGFC reports personal fees from Amgen, grants and personal fees from Bayer, grants and personal fees from Bristol Myers Squibb, personal fees from Novartis, personal fees from Medtronic, personal fees from Idorsia, grants and personal fees from Vifor, grants and personal fees from Pharmacosmos, grants and personal fees from Cytokinetics, personal fees from Servier, personal fees and non-financial support from Boehringer-Ingelheim, personal fees from Astra-Zeneca, personal fees from Innolife, personal fees from Torrent, grants and personal fees from Johnson & Johnson, grants and personal fees from Myokardia, personal fees from Respicardia, grants and personal fees from Stealth Biopharmaceuticals, grants and personal fees from Viscardia, personal fees from Abbott, outside the submitted work; UD reports research support from Astra Zeneca, Pfizer, Boehringer Ingelheim, Vifor pharma, Roche Diagnostics, Boston Scientific and speaker's honoraria and consultancies from Astra Zeneca. SPC reports research grants from NIH, PCORI and Astra Zeneca and consulting fees from Bristol Myers Squibb, Boehringer Ingelheim and Vixiar. MG and AO are former employees of Novartis and holds Novartis stocks. GF reports grants from the European Commission; payments or honoraria from Boehringer Ingelheim and Bayer; committee membership involving Medtronic, Vifor Pharma, Amgen and Servier AS is employed by Novartis. The remaining authors have nothing to disclose.
Abbreviations

ACEi, angiotensin-converting enzyme inhibitor

AHF, acute heart failure

ARB, angiotensin II receptor blocker

ARNi, angiotensin receptor neprilysin inhibitor

CABG, coronary artery bypass grafting

CV, cardiovascular

HF, heart failure

HFmrEF, heart failure with mid-range ejection fraction

HFpEF, heart failure with preserved ejection fraction

HFrEF, heart failure with reduced ejection fraction

LVEF, left ventricular ejection fraction

LMICs, low- or middle-income countries

MRA, mineralocorticoid receptor antagonist

PCI, percutaneous coronary intervention
Introduction

Despite advances in care, patients recently hospitalized for acute heart failure (AHF) still have a high mortality. Evidence-based practice guidelines recommend that patients with HF and reduced left ventricular ejection fraction (HFrEF) are treated with angiotensin-converting enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARBs), β-blockers and mineralocorticoid receptor antagonists (MRAs). Early initiation of these guideline-recommended medications following hospitalization for HF improves outcomes. Unfortunately, many patients with HFrEF do not receive these lifesaving medications at all or only on less than guideline-recommended target doses (GRTD).

We previously showed that post-discharge mortality was substantially worse in patients with HFrEF from low- or middle-income countries (LMICs) in the prospective REPORT-HF registry. It is unclear whether this finding reflects differences in patient characteristics, quality of discharge care, or access to guideline-recommended medical therapy. Reports from Western Europe and the United States suggest less than 20% of patients with HFrEF were on guideline-recommended doses of ACEi/ARBs, β-blockers, and MRAs. Furthermore, in LMICs in Asia, substantial underutilization of guideline-recommended medical therapy exists.

This analysis aimed to assess (1) the prescription patterns of guideline-recommended therapy at discharge and 6-month follow-up for patients with AHF; (2) factors associated with use in countries at different economic levels; and (3) the association of medication prescribing with 12-month mortality.
Methods

Study Design, Setting, Participants, and Study Procedures.

Design, methods, and 1-year outcomes of the REPORT-HF study have been published4,21–23. In summary, REPORT-HF was a prospective, observational, global cohort study with patients prospectively enrolled from 6 continents, 44 countries, and 358 sites. This study was conducted per the Declaration of Helsinki, and the protocol received Institutional Review Board and/or ethics committee approval at each participating center. Participants were hospitalized with a primary diagnosis of AHF, according to the treating physician. Written informed consent was obtained from all patients or a legal representative. Potential participants unwilling or unable to provide informed consent were excluded. Patients were also excluded when they concurrently participated in a clinical trial with any investigational treatment.

Data were collected on patient's demographics, medical history, vital signs, laboratory values, acute therapies, procedures, hospital course, length of stay, and mortality in a central electronic database using the same case report form at all sites. Data was reviewed by central data-management and queries resolved by local study monitors. HFrEF was defined as an LVEF <40%, in keeping with current guidelines24. CAD was defined as having a history of coronary artery bypass grafting (CABG), percutaneous coronary intervention (PCI), acute coronary syndrome or myocardial infarction. Anemia was defined as having a history of anemia or having a hemoglobin at <12 g/dL in women and <13 g/dL in men. Valvular heart disease was defined as a history of valvular heart disease or having valvular heart disease as an etiology. There were programmed database edit checks and manual data-review with queries when no information was filled in or in cases of data conflicts.
Collection of data on medication

Data on medication at discharge and 6-months after discharge were captured. Medication and doses at discharge were captured by investigators from medical records at or around the time of discharge during the index hospitalization. Medication information during follow-up was acquired from the treating physician or patients during a regular follow-up visit. If patients had no scheduled follow-up visit with the hospital where the initial index hospitalization took place, prescribing data were obtained by telephone from the primary care provider and/or patient at 6-months. There were programmed database edit checks and manual data-review with queries if no medications were recorded or doses/units were out of range for any of the cardiovascular (CV) drugs. Additional data-quality checks were performed using the records provided at the analysis stage. The fractionated target dose of ACEi/ARB/ angiotensin receptor neprilysin inhibitor (ARNi), β-blockers and MRAs was calculated based on GRTD according to the European Society of Cardiology and American Heart Association guidelines\(^5,6\) (supplementary table 1). When no medications were recorded at discharge or follow-up visits, it was assumed that these data were missing, because it is unlikely that a patient would not be taking any medication. When one or more medications were recorded (e.g., a diuretic or hypoglycemic agent) but this did not include one or more guideline-recommended treatments for HF (ACEi/ARB/ARNi, β-blockers, MRAs), it was assumed that these agents had not been prescribed. In total, paired medication data was available in 6,827 patients with HFrEF at both discharge and follow-up; and analyses involving medication at follow-up are restricted to these patients.

Outcomes.
Follow-up information from study participants was collected via a telephone interview at 6 and 12 months unless a regular follow-up visit was planned at the investigator's site for routine care. Vital status was supplemented by national reporting databases where available. Local investigators ascertained the cause of death and classified as CV, non-CV or unknown.

Statistical Analysis

We report differences in patient characteristics, medication use, and dose achieved according to country income levels. Countries were grouped by income level, based on the World Bank classification (Supplementary table 2) using gross national income (GNI) in 2017. The 44 participating countries were grouped into seven geographic regions based on a modification of the World Health Organization classification (Supplementary table 2). We showed medication use and doses according to regional income level and to geographic region ordered according to mean regional income level. In secondary analyses, we studied the effect of income inequality on medication use using the Gini coefficient, with zero (0%) representing absolute income equality and one (100%) indicating significant income inequality. For most countries, the Gini coefficients were obtained from the UN Development Programme, as described previously. Data from the year closest to 2003 was used, allowing for a potential lag effect. For comparisons between groups, we used the one-way analysis of variance (ANOVA), Chi2-test or Mann-Whitney U-test for normally distributed continuous variables, categorical variables, and non-normally distributed continuous variables, respectively. Multivariable logistic regression analyses were performed to investigate variables associated with being on medication. Variables were selected based on clinical significance and expert opinion. Because the aim of REPORT-HF was to compare quality and usual care globally, measurement of NT-proBNP or BNP was not mandated and only reported
if measured by treating physicians. We classified natriuretic peptides in tertiles and included a missing category for patients who did not have NPs measured, to correcting for any measurement bias. To test whether country income level modified the association of sex with medication use, we performed a test of interaction between sex and country income level for medication use. To correct for treatment indication-bias in outcome analyses, the reported hazard ratios from Cox proportional hazards regression analyses were weighted by the inverse probability of receiving the given treatment (ACEi/ARB/ARNi, β-blockers or MRAs) at ≥50% of GRTD. The probability of receiving ≥50% of GRTD for a particular treatment in each patient was modelled using logistic regression with LASSO penalization based on a comprehensive list of 58 variables (Supplementary table 3). The optimal penalty parameter was determined by 10-fold cross-validation. The optimal penalty parameter was determined by 10-fold cross-validation. The confidence intervals were derived using robust sandwich estimators in the coxph package. The proportionality of hazards assumption was checked using statistical tests and graphical diagnostics on the basis of the Schoenfeld residuals. REPORT-HF was designed to assess clinical practice differences and availability of diagnostic tests and treatment. Therefore, the missingness of variables was considered non-random due to differences in local practice and availability. Thus, we did not impute data but transformed the variable to include missing values. Continuous variables with missing values were transformed according to tertiles. A 4th category for “missing” was included to account for missing values. Similarly for categorical variables, a “missing” category was included. All analyses were performed in STATA, version 16.0 or R, version 3.4.2. A two-sided P-value of <0.05 was considered statistically significant.

Results.
Baseline characteristics.

During the study period between July 23, 2014, and March 24, 2017, 18,553 patients were enrolled including 8,904 with HFrEF of whom 8,669 survived to discharge. The population's median age was 64 (25th and 75th percentile 55-74) years, and 72% were men. Compared to patients from high-income countries, patients from low-income countries were younger (median age of 60 vs 67 years), more often of non-white ethnicity, and more often had new-onset HF than patients from high-income countries (Table 1). In total, 12% of patients from low-income countries were in NYHA class III/IV at discharge compared to 15% of patients in high-income countries. Patients from low-income countries had a lower known comorbidity burden, except for diabetes, which was more prevalent in low-income countries (47%) than high-income countries (37%).

Among patients from low-income countries, 24% did not have health insurance compared to only 3% in high-income countries. Furthermore, patients from low-income countries were less likely to see a doctor after discharge (47% vs. 69% in high-income countries); either a general practitioner (2% vs. 15% in high-income countries) or cardiologist (44% vs. 60% in high-income countries). This difference remained after correcting for health insurance differences (P<0.001 for all).

Medication at discharge and 6-month follow-up

At discharge, 3,189 patients (37%) were on all three medications, 29 patients (<1%) had missing data on medication. In low-income countries, 271 patients (19%) were on all three medications compared to 1,566 (41%) in high-income countries. Patients from low-income countries were less likely on any of three classes of medicines, including ACEi/ARB/ARNi (57% vs. 71% in high-income countries), β-blockers (52% vs. 84% in high-income countries), and MRA (45% vs. 59%
in high-income countries, *Figure 1A*). Furthermore, patients from low-income countries were less likely on ≥50% of GRTD for ACEi/ARB/ARNi (22% vs. 28% in high-income countries) and β-blockers (7% vs. 32% in high-income countries) but were more often on GRTD for MRA (14% vs. 9% in high-income countries, *Figure 1A*).

At 6-months, data were missing on medication for 625 (8%) of patients. Among the 6,827 patients with medication data available at both discharge and 6 months, 5% of patients from low-income countries compared to 10% of patients in high-income countries for ACEI/ARB/ARNi were uptitrated (*Figure 1B*). For β-blockers 6% of patients from low-income countries were uptitrated to GRTD compared to 12% of high-income countries. For MRAs, patients from low-income countries were equally likely to be uptitrated at 6-months (4%) than patients from high-income countries (4%).

Patients without health insurance were less likely on ACEi/ARB/ARNi (57% vs. 68%), β-blockers (57% vs. 78%) and MRAs (46% vs. 62%) compared to patients with public insurance (*Figure 1C*). They were less likely on GRTD for ACEi/ARB/ARNi (28%), β-blockers (11%), and MRAs (10%) compared to patients with public insurance (28%, 27%, and 15% for ACEi/ARB/ARNi%, β-blockers, and MRAs respectively, *Figure 1C*). Only 51% of patients from low-income countries without insurance were on ACEi/ARB/ARNi, 41% on β-blockers, and 37% on MRAs compared to 70%, 83%, and 59% of patients with public insurance in high-income countries for ACEi/ARB/ARNi, β-blockers and MRA respectively (*Supplementary figure 1*). Patients without insurance were less likely uptitrated to GRTD compared to patients with private or public insurance for any medication class (*Figure 1D*). When stratified according to regions ordered by mean country income level, medication use was lowest in southeast Asia for all three
classes and highest in Western Europe (Supplementary figure 2). There was considerable heterogeneity among countries within regions (supplementary figure 3) as well.

Factors associated with medication use

In multivariable analyses, women, older patients, patients with new-onset HF, patients with CKD, patients from low-income countries, and patients without insurance were less likely to be on ACEI/ARBs/ARNis, β-blockers and MRAs at discharge (Figure 3A-C) and 6-months (Supplementary figure 4A-C). At 6-month follow-up, 22% of women from low-income countries were not on any medication than 5% of men from high-income countries. In sensitivity analyses we replaced history of hypertension by systolic blood pressure. Results remained similar (Supplementary figure 5). We did not observe a significant interaction P-value between sex and country income level for any of the three medication groups. Supplementary figure 6 shows secondary analyses including country income disparity (Gini coefficient). Patients from countries with higher income disparity were less likely to be prescribed ACEi/ARB/ARNi or β-blockers at discharge than patients from countries with low-income disparity. Income disparity did not have a consistent effect on the likelihood of receiving an MRA at discharge.

Association with survival

In total, 1,819 (22%) patients died within one year. Mortality rates at 1-year were higher among patients from low-income countries (25%) compared to high-income countries (19%, P<0.001). Patients not on any of the three guideline-recommended classes of medicines at discharge were more likely to die (31%) compared to patients on at least one medication (21%). After adjusting for indication bias, patients up-titrated to ≥50% of GRTD had lower mortality compared to other patients, even after adjusting for treatment indication-bias for ACEi/ARB/ARNis (hazard ratio
[HR]: 0.70; 95% confidence interval (CI) 0.64-0.76), β-blockers (HR: 0.68; 95% CI 0.63-0.75) and MRAs (HR: 0.88; 95% CI 0.81-0.96) (supplementary table 4, supplementary figure 7). Results at 6 months were similar for all classes, except for MRAs (supplementary table 4).

Discussion

Pharmacological treatment is the cornerstone in the management of HFrEF. Yet, effective guideline-recommended medications for HF are underused and underdosed globally.16,17,26 Our analysis adds to this evidence by demonstrating three principal findings and highlights the need for enhanced implementation of evidence-based medication for patients with HF globally. First, there is more undertreatment of patients with HF in low-income countries than patients from high-income countries. Second, underuse and sub-target dosing are particularly common in women and patients without health insurance. Six months after discharge—an appropriate time frame to ensure stability and initiate and up-titrate ACEi/ARB/ARNis, β-blockers and MRAs to target- or the maximally tolerated dose—almost 9% of patients did not receive any recommended pharmacological agents despite the clear guideline recommendations. Third, underuse of medications and target dosages were associated with increased mortality. In REPORT-HF, one-fifth of women in low-income countries were not on any of the three essential disease-modifying medicines at 6 months after discharge, compared to less than one in twenty men from high-income countries. The findings highlight broad implications beyond health policy since health and social exposures are closely intertwined. To address disparities in prescribing, we suggest that broader changes in policy (i.e., social, economic and health policy) are necessary to close the gap.

Our findings add to prior regional studies by evaluating medication prescribing and up-titration across multiple regions simultaneously. Despite clear survival benefits,27 various studies
have shown suboptimal prescribing of guideline-recommended medication in patients with HF16–18,28–30, however these studies were from single countries16,30, regions17,18, or exclusively from higher income countries. Our results extend these earlier findings in several important ways, by including (1) global contemporaneous representation of a large number of countries, including many categorized as low-income, (2) data on medication and titration at different time points, and (3) in-depth patient-data on planned follow-up visits and insurance coverage. In Western Europe, only about half of patients with HFrEF were on $\geq 50\%$ of GRTD for ACEi/ARBs and 40% for β-blockers17. In the United States, 23% of patients were on $\geq 50\%$ of GRTD for ACEi/ARBs and 36% for β-blockers in the CHAMP-HF registry16,26. In the recent QUALIFY registry, prescription rates of ACEi/ARB (87%) and β-blockers (87%) were higher than prior research. However, this study predominantly included patients from high-income countries. Furthermore, patients with a HF hospitalization in the previous six months were excluded31. Trends of prescription rates in REPORT-HF parallel findings from these previous studies: only 36% and 44% of patients from Western Europe were on GRTD for ACEi/ARBs and β-blockers respectively; in North America, 28% of patients were on $\geq 50\%$ of GRTD at 6 months for ACEi/ARBs and 39% for β-blockers. Notably, use and doses of MRA were higher in many lower income regions, possibly driven by the low cost of spironolactone and policies encouraging its use. For example, the use of MRAs in China was particularly high in our study, confirming earlier results18. This might be attributed to a nationwide quality assessment evaluation program evaluating spironolactone use during hospitalization32 or treatment of co-existing hypertension33. Furthermore, seeing a general practitioner or cardiologist after discharge was an independent predictor of being on medication at 6-months after discharge, highlighting the vital role that healthcare practitioners outside of cardiology can play in initiating HF medication. Beyond country income level, there was
considerable geographic heterogeneity. For example, medication use and dosages of most
pharmacotherapeutic classes was lower in Southeast Asian and Western Pacific countries when
compared with countries in Western Europe or North America. The ESC Heart Failure Association
Atlas recently highlighted the important regional heterogeneity of medication use and uptake, even
within Europe. Higher income regions in Europe had more dedicated HF centres and more
complete reimbursement of GDMT, particularly ARNi, than middle income regions. These
previous data suggested that reimbursement might be an important factor in determining utilization
of GDMT. Our findings extend on this by further highlighting the importance of reimbursement:
GDMT utilization was lower in patients without health insurance and in lower income regions,
where patients often have higher out-of-pocket costs. Country income disparity showed an
independent association with being prescribed ACEi/ARB/ARNi or β-blockers at discharge. This
suggests an important part of the variance of medication use and doses may be explained by other
factors such as local/regional practices and standards and income inequality, rather than country
income level alone. Future clinical trials in (A)HF might benefit from examining the consistency
of results by classifying countries not only by geography but also by income and income disparity.

Previous data from Asia, suggest stark regional differences in guideline-recommended
medicines. China had the lowest prescription rate of ACEi/ARBs (60%) but the highest
prescription rate of MRA (78%) in the ASIAN-HF registry, which is similar to REPORT-HF
(57% and 86% ACEi/ARBs and MRAs respectively). Besides, patients from lower-income
countries in ASIAN-HF were more often on sub-target, similar to REPORT-HF. Taken together,
data from REPORT-HF are consistent with previous country-based or regional reports. Our results
extend upon these earlier findings in several important ways, by including (1) global representation
of low-income countries, (2) data on medication and titration at different time points, and (3) in-depth patient-data on planned follow-up visits and insurance coverage.

Patients from low-income countries, those without health insurance, and women were least likely to be on guideline-recommended medical therapies and below GRTD. To the authors' knowledge, this is the first study showing underuse and sub-target dosing of lifesaving HF medications in low-income countries in a global registry with broad representation and highlights the need for targeted public health interventions to increase the quality of care and prescription of guideline-recommended therapy in HF. Individual patient factors like renal function, age, blood pressure, and heart rate might determine the prescription and dosing of pharmacotherapy for HFrEF. These factors, however, likely do not explain the observed regional differences – patients in lower-income countries were almost a decade younger in REPORT-HF and had a lower prevalence of relevant risk factors, including renal dysfunction and COPD. Another explanation might be a patient’s perception and familiarity with HF therapy. A recent survey in the US highlighted that a significant proportion of patients with HF were not familiar with guideline-directed medical therapy and questioned their effectiveness. Our results show that economic factors might play a role. In the Prospective Urban Rural Epidemiological (PURE) study, secondary preventative medicines for cardiovascular disease were underused globally, particularly in low-income countries. Importantly, β-blockers and ACEis were considered unaffordable even for participants in the highest household wealth groups in low-income countries. While we did not investigate ARNi or SGLT-2 inhibitors separately, uptake will likely be even lower for these more expensive but lifesaving treatment options. Together, our data suggest the underuse of ACEi/ARBs, MRAs, and β-blockers in patients without health insurance, indicating that insurance coverage and medication costs might be a possible governing factor determining access.
Our results suggest a survival benefit for achieving ≥50% of GRTD for ACEi/ARB/ARNis and β-blockers, after accounting for treatment indication-bias, and regardless of region or economic status. We tried to correct for confounding factors as much as possible. However, REPORT-HF was not a randomized trial and, therefore, our results should be interpreted with caution. For example, we did not observe a survival benefit for MRAs. Patients with a worse NYHA class and longer length of stay were more likely to be prescribed an MRA. Therefore, the absence of a clear association with survival of MRAs might be driven by (residual) confounding, despite the use of inverse probability weighting. The benefits of MRAs for patients with HFrEF are well established in randomized trials14,23. Thus, the analyses of REPORT-HF should not be used to determine treatment decisions for individual patients. Observational data can be used to assess outcomes associated with a treatment, but randomized trials are required to determine the response to treatment; these are very different concepts42. However, our results highlight the window of opportunity to initiate HF medication before discharge, the importance of adequate discharge planning and the need for follow-up by someone with the appropriate expertise.

Strengths and limitations of study

Strengths of this study include the prospective design and the global representation of patients with different ethnicities from countries at different economic levels. The study's limitations include non-random sampling of centers and countries, done for practical reasons and lack of establishment on causality or drug efficacy. Therefore, present results likely represent a 'best-case scenario – centers serving more rural populations are probably not well represented. While we have performed inverse probability weighting to account for confounding in outcome analyses, residual confounding can unfortunately not be measured. Furthermore, no reasons for sub-target dosing, contraindications or adverse events were captured in the database. Likewise, it is unclear
if patients not receiving target doses were on maximally tolerated doses or not, and we did not assess adherence. Besides, it is possible that some patients not receiving medications or receiving low doses have previously tried the medication but did not tolerate it. However, given the more favorable risk profile of patients from low-income countries, including a lower prevalence of hypotension and renal dysfunctions, differences in contraindications likely do not explain the differences in prescription patterns between income regions but are possibly the consequence of economic limitations or clinical inertia. Given the need for patients to consent to participate in REPORT-HF, selection bias might have taken place. Furthermore, fractions of GRTD might be confounded by individual patient characteristics (weight of the patient, frailty, blood pressure, renal function) and decisions of individual healthcare practitioners, which might have introduced bias. If updated prescribing information was not available from the participants medical records, it was obtained by telephone from the primary care provider or patient. Finally, patients in REPORT-HF were hospitalized, and a relatively higher risk population. However, given the lack of data on prescription rates and dosages of HF medications, especially in LMICs, the present study is the best available evidence to date for these patients.

Conclusions.

REPORT-HF highlights the global sub-optimal implementation of treatment with ACEi/ARBs/ARNis, β-blockers, and MRAs for patients with HFrEF. Underuse and sub-target dosing are especially common in low-income countries. Prescription of all three classes of guideline-recommended medicines was low among women, low-income countries, and patients without health insurance. These results add to existing literature showing economic disparity in quality and access to care. Furthermore, our results emphasize the need for better optimization of HF therapy through increasing access to good-quality care, targeting social and health care policy,
improving physician education, better discharge planning, and post-discharge involvement and education of other (primary) care providers.

References

42. Cleland JGF, Ghio S. The determinants of clinical outcome and clinical response to CRT are not the same. *Heart Fail Rev* 2012;**17**:755–766.
Figure Legends

Figure 1: Stacked bar chart depicting the proportion of patients at discharge on guideline recommended therapy and ≥50 of target dose at discharge stratified to country income level (A) uptitration of patients between discharge and 6-months follow-up stratified to country income level (B) proportion of patients at discharge on guideline recommended therapy and ≥50 of target dose at discharge stratified to insurance status (C) uptitration of patients between discharge and 6-months follow-up stratified to insurance status (D).
Figure 2: World maps for average dosages of guideline recommended medical therapy at discharge among patients on medication for ACEi/ARB/ARNi, β-blockers and MRA.
Figure 3: Panel figure showing forest plots for multivariable logistic regression with factors associated with being on (A) ACEi/ARBs, (B) β-blockers and (C) MRAs at discharge.