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Abstract—WiFi sensing has received recent and signif-
icant interest from academia, industry, healthcare profes-
sionals, and other caregivers (including family members)
as a potential mechanism to monitor our aging population
at a distance without deploying devices on users’ bodies.
In particular, these methods have the potential to detect
critical events such as falls, sleep disturbances, wander-
ing behavior, respiratory disorders, and abnormal cardiac
activity experienced by vulnerable people. The interest in
such WiFi-based sensing systems arises from practical ad-
vantages including its ease of operation indoors as well as
ready compliance from monitored individuals. Unlike other
sensing methods, such as wearables, camera-based imag-
ing, and acoustic-based solutions, WiFi technology is easy
to implement and unobtrusive. This paper reviews the cur-
rent state-of-the-art research on collecting and analyzing
channel state information extracted using ubiquitous WiFi
signals, describing a range of healthcare applications and
identifying a series of open research challenges, including
untapped areas of research and related trends. This work
aims to provide an overarching view in understanding the
technology and discusses its use-cases from a perspective
that considers hardware, advanced signal processing, and
data acquisition.

Index Terms—Deep learning, healthcare detection, ma-
chine learning, WiFi sensing.

I. INTRODUCTION

S ENSING and monitoring systems for human healthcare
have become increasingly popular, driven in part through
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our knowledge economy as well as the significant improvements
in our longevity and living standards. In healthcare applications,
such systems can provide individuals with the capability of
long-term detection of daily activities and variations in vital
signs, all in the privacy of our homes. With simple, long-term,
and continuous health monitoring in the daily home environ-
ment, it is possible to record the signs of illness and phys-
iological deterioration that cannot be detected during a short
formal clinical consultation. Such monitoring systems can also
be combined with deep learning and can be used to monitor
behavior, including emotional states and mental well-being.
Such information can be integrated into smart homes to support
our daily lives. In this study, we focus on a detailed review which
explores the application of WiFi sensing in such healthcare
applications, demonstrating its relative advantages over other
monitoring systems such as wearable sensors, camera-based
imaging, and acoustic-based solutions.

A. Comparison of WiFi RF Sensing and Other
Approaches

Broadly, current sensing and monitoring systems can be di-
vided into those using contact-based sensors, including wear-
ables [1] and contactless systems [2], [3]. Besides wearable de-
vices, the contactless monitoring approaches can be divided into
visual based sensing radio frequency (RF) signals based sensing.
RF signals at frequencies between 30 kHz & 300 GHz, comprise
electromagnetic waves called radio waves (as are widely used
in radar systems, including household and commercial behavior
recognition [4]). Recently, the carrier frequency range of WiFi
signals is from 2.4 GHz to 5.9 GHz, which is covered by radio
waves.

Applications of wearable devices cover a wide range of
methods, including measurements of heartbeat and respiration
rates, oxygen saturation level, electromyographic signals and
many others [5], [6]. However, these sensors are expensive,
as it is necessary to provide a single device to each person
being monitored. Moreover, the successful capture of the health
information is dependant on the patient wearing the sensor or
keeping it close to the body, which, if forgotten, can have severe
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Fig. 1. Recent WiFi research used in healthcare.

consequences in applications such as fall detection. There is also
the challenge of the re-usability of wearable equipment, resulting
in widespread contact-transmission viruses, such as COVID-19,
if not appropriately disinfected. Generally the adoption of the
technology is problematic amongst some of the most needy
individuals, namely those who are old or disabled.

In contactless sensing methods, camera-based sensing ap-
plications have proven their accuracy [7]. However, several
disadvantages make it difficult, in some scenarios, to rely on
such systems, which includes:

� System complexity and high cost due to computational re-
quirements for multiple cameras to cover areas of activity.

� Privacy concerns due to the capturing and storage of
images, which unauthorized users can access in a low-
security system.

Compared with wearable sensing technologies, ambient RF
sensing has the advantage of reducing the risk of contact trans-
mission infections. Because it is capable of the contactless
measurement of vital signatures and macro-health indicators in
non-line-of-sight (NLOS) environments. In hospitals, wireless
systems can capture the signal signature of vital signs, such as
coughing, shortness of breath, fever, and aches [8]–[10]. Given
that these symptoms are closely linked to patient infections, WiFi
sensing has the potential to detect illness. The comparison of
WiFi sensing and other RF sensing technique is conducted and
discussed in Section II-B.

B. Specification of WiFi Sensing in Healthcare

At present, WiFi sensing research in healthcare is being
mostly developed for use in non-hospital environments, driven
by two trends: vital sign detection and activity detection (see
Fig. 1). Vital sign detection system aims to monitor the move-
ment of the lungs and heart in humans using WiFi signals
to recognize the respiration and heartbeat rate, in real-time.
For activity detection task, alarms for critical events such as
falling, and other specific actions that can cause severe and
fatal consequences to humans has been studied in academia,
and industry [11].

Generally, such systems use WiFi devices alongside intel-
ligent classification algorithms to monitor and predict human

subjects’ movements. In the same context, WiFi signals are
also used to report, over the internet, the activity status and/or
vitals of the monitored subjects to the medical specialist and
families or carers. Beneficiaries of such valuable real-time data
and information are the Internet of Things (IoT) systems [12].
For example, vital signs detection in a smart home can help
IoT systems adjust the temperature, humidity, and other en-
vironmental factors automatically to improve the quality of
the user’s experience [13], [14]. At present, WiFi sensing has
been applied in the home. For example, Linksys sells a WiFi
router and provides a service called “Linksys Aware,” which
enables WiFi devices to perceive the signals’ vibration around
the house. Although there have been numerous research studies
conducted in this field, it is difficult to replace wearable and
visualized healthcare applications due to their high reliability
and efficiency. However, as academia and industry continue to
optimize sensing technology, and as it becomes more reliable
and accurate for the healthcare monitoring of humans, we can
expect to see changes from the current situation.

C. Contributions

There are a number of surveys of specific WiFi sensing
techniques that have been published in recent years, including
human activity recognition [15]–[22], human identification [18],
[21], localization [18], [21], vital signs [17], [18], [21], [22],
and imaging [21] (see Table I). All of the studies mention
human activity recognition; few of them explore localization
and vitals estimation. The review papers discuss trends that
can be related to healthcare (human activity recognition, vitals,
localization), which is introduced in Section II-C2, focusing on
the technology development, with less detail on the applications
in healthcare [18]. In comparison with existing surveys within
detailed contents of various techniques and applications, the
view of our survey is distinct, which specifically focuses on
the analysis of WiFi applications in the healthcare field.

Our paper is structured to discuss the capability of WiFi sens-
ing in healthcare applications, including current achievements
and future expectations through a thematic analysis review, pro-
viding a healthcare perspective to researchers. More specifically,
the contributions are as follows:
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TABLE I
RELATED WIFI SENSING SURVEYS IN SPECIFIC TRACK

� Provide a detailed overview of the methodologies adopted
in developing healthcare monitoring systems.

� Classify healthcare related applications into different cat-
egories, and then provide insights for distinct trends.

� Highlight challenges and their potential solutions that re-
quire further investigation for generalization of healthcare
applications based on WiFi sensing.

The paper is organized as follows: Section II introduces WiFi
sensing technical background and development in healthcare
range. Section III reviews different techniques applied in WiFi
sensing, including signal preprocessing techniques and algo-
rithms. Section IV concludes and analyzes the recent healthcare
related applications in different fields, including vitals detection,
localization, large-scale and small scale activity recognition.
While finally, Section V discusses the technical and ethical
challenges based on the recent researches. Then provides future
perspectives associated with healthcare WiFi sensing.

II. RELATED WORK OF WIFI SENSING

This section presents the existing research studies focused on
the technical background of WiFi monitoring systems with CSI
and received signal strength indicator (RSSI) and descriptions of
different tracks of WiFi sensing technology. Meanwhile, human
activity recognition based on other RF sensing technology is
introduced.

A. Technical Background of WiFi Sensing

With the rapid advances in communication and network
technology, it is possible to assume the broad deployment
of WiFi devices across society. Multiple-input multiple-output
(MIMO) systems using orthogonal frequency division multi-
plexing (OFDM) technology, which supports the IEEE 802.11n
protocol, provide high throughput transmission mode to serve
the high data rate requirements. In such a system, disturbance of
physical objects is capable of bringing different extent variation
of wireless information on different subcarriers, which provided
conditions for the generalization of wireless sensing based on

WiFi signals. This section, therefore, discusses some of the
primary techniques used to perform WiFi sensing.

1) Received Signal Strength Indicator (RSSI): The RSSI
technique has been widely used for the localization of indi-
viduals. In MIMO systems, the RSSI is represented by the
superposition of the strength of all the received signals. Most
network devices can perform this task, including network inter-
face cards (NICs), as they are easily accessible. An RSSI-based
detection system depends on the magnitude changes of RSSI
levels caused by the activity. However, due to multi-path fading
and time dynamics, its performance under complex conditions
is significantly impacted. Early WiFi sensing systems that have
been used for commercial localization are primarily dependent
on RSSI without fine-grained information. Hence, they cannot
be used to recognize complex human behavior [23].

2) Channel State Information (CSI): CSI is the channel
property of the wireless communication link. It represents the
channel frequency response (CFR) for each subcarrier between
transmitter and receiver, which describes the fading factor of the
signal on every transmission path, i.e. the value of every element
in channel gain matrix H (sometimes called channel matrix or
channel fading matrix). In WiFi systems, the CSI signals can
be obtained from the physical layer on the commercial IEEE
802.11 A/G/N wireless network card based on OFDM. For each
subcarrier, the WiFi channel is modeled byy = Hx+ n, Where
y stands for the received signal, x is the transmitted signal, n is
the noise component. The receiver computes the CSI matrix with
the pre-defined signal x and the received signal y. However,
in reality, a WiFi systems’ estimation of CSI is affected by
multipath fading. The CSI matrix of a given subcarrier with
frequency f and time t can be represented as [24]:

H(f, t) = e−j2πΔft(Hs(f) +

Nd∑

i=1

ai(f, t)e
−j2πdi(t)λ) (1)

Where e−j2πΔft is the random phase shift due to the hardware
/ software error of the WiFi system; Hs represents the CSI
signals from all the static paths (including the signals in line of
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Fig. 2. CSI matrices of MIMO-OFDM channels.

sight (LOS) areas and those reflected off the stationary objects).
The rest of the expression is the summation of signals from
all dynamic paths (including signals reflected from the dynamic
objects). Nd is the index of the dynamic path, ai(f, t) represents
the complex attenuation factor and the initial phase of the ith

path; e−j2πdi(t)λ represents the phase change of ith path; di(t)
and λ are the length of the ith path and the wavelength of the
WiFi signal, respectively. The CSI value can adapt the commu-
nication system to the current channel conditions and guarantee
high reliability and high rate communication in multi-antenna
systems. With MIMO and OFDM technologies, the size of the
CSI matrix is constructed in 3 dimensions, with N transmitter
antennas, M receiver antennas, and K subcarriers. The CSI
packet is transmitted as N ×M ×K, with the packet index
t (see Fig. 2). The propagation performance of wireless signals
through both the direct path and the multiple reflection paths
will show the physical space environment, including any object
and the human body. Compared to RSSI values, the CSI offers a
fine-grained representation of activity. Hence recent device-free
WiFi sensing studies favor CSI, instead of RSSI [20].

B. Comparison With Non-WiFi RF Sensing

Prior to the wide use of WiFi sensing technology, consid-
erable subject-identification research has been performed with
traditional radar systems due to their contactless and privacy-
preserving characteristic. For example, frequency-modulated
continuous-wave (FMCW) radar equipment was applied in [25]–
[27], while in [28], the radar system was proven in its accuracy
through 8-meter distance monitoring of breathing and heart rate
within 5.46 - 7.25 GHz bandwidth.

In [29], the authors use a MIMO ultra-wide-band (UWB)
transceiver system to estimate the speed of human movement
with an average accuracy of 96.33%. However, in all cases, there
is a high cost to establish a specific testbed. In [30], a system
based on SDR using USRP was proposed. The experiment
simulated an FMCW system to analyze the phase change status
caused by respiration. The achievements of these non-wifi sens-
ing systems are also heavily informed by WiFi sensing due to the

similarity of RF signals. However, the key difference between
the two methods is that CSI in the WiFi communication system
is designed to recover transmitted information but not to explore
the physical characteristic of the communication channel. For
example, FMCW radar has the capability to consistently and
linearly adjust the frequency. Combined with the time of flight
(ToF) algorithm, FMCW can accurately estimate the distance
information of the objects. WiFi signals are only supposed to
transmit within a shallow frequency bandwidth, which is limited
to the devices, so it cannot be modulated to do the frequency
sweep operation to get the range bins [31]. Nevertheless, a lot
of research studies found the potential of this technique and
proposed various researches to compensate for the shortages
and improve the feasibility in different tasks.

C. The Evolution of WiFi Sensing for Healthcare

1) Hardware Platform Development of WiFi Sensing: For
the past few years, research studies on CSI measurement from
WiFi signals have been emerging for different sensing applica-
tions. In a WiFi system, CSI is essentially a data format used
to represent the CFR sampling of the sub-carriers granularity in
the system’s frequency band, obtained from the physical layer of
the commercial IEEE 802.11n wireless network card, based on
OFDM technology. Based on the WiFi devices, the researchers
first developed an open-source CSI tool driver using the Intel
5300 NICs [32]. This CSI tool enables 30 subcarriers in a
20 MHz channel bandwidth for CSI collection from commercial
off-the-shelf (COTS) WiFi devices. This driver provides a quick
and low-cost method to establish the WiFi sensing platform.
In another study, the authors in [33], [34] have implemented
their system based on the Qualcomm Atheros NICs offered
by [35], which has 114 CSI subcarriers, hence a higher resolution
compared to the Intel 5300 CSI tool. In [34], the results of
the comparative study have shown that the higher the number
of subcarriers, the higher the sensing accuracy. Other sensing
devices include the Wi-ESP which has a reduced cost and is
smaller in size compared to the previously mentioned COTS
WiFi router [36]. Besides NICs, software-defined radio (SDR)
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TABLE II
GENERAL WIFI SENSING APPLICATIONS SINCE FROM 2015 TO 2020

platforms are commonly used to measure CSI, such as the
universal software radio peripheral (USRP) and the wireless
open-access research platform (WARP) [18], [37], [38].

2) WiFi Sensing Applications Towards Healthcare:
Based on the foundation of the open-source WiFi sensing
driver’s development demonstrated in Section II-C1, researchers
have started to propose several methods and applications based
on WiFi sensing. This section provides a general overview of
WiFi sensing development trends in healthcare, and more de-
tailed technical analysis is demonstrated in Section IV. Table II
shows some popular applications of WiFi sensing in recent
years. For the convenience of demonstration, different tasks are
separated into two parts, human activity recognition, and vital
signs monitoring. In this case, we define the classification and
analysis of all active motion based on torso movement as human
activity recognition. From another perspective, vital signs are
necessary to maintain regular human activity and are therefore
not directly controlled by consciousness and torso movement
for the vast majority of time. So, we differentiate it from general
human activity recognition.

For the human activity recognition applications in healthcare,
we divide them into two types: healthcare auxiliary and health-
care recognition, based on the aspects of monitoring requirement
of instant and long-term feedback. In case of healthcare auxiliary
applications in an indoor environment, the literature covers daily
activity recognition [24], [34], [39]–[44], and other specific
activity recognition such as falling [45], smoking [46], sedentary
behavior [47], pose estimation [48]–[51], keystroke [52] and
mouth motion [53]. As for the daily activity types, most papers
consider: walking, running (or jogging), sitting, pushing and
dragging, jumping, squatting, opening the door, and other ac-
tions that people always take in daily life. Through these instant
activity monitoring methods, the alarm of dangerous accidents
like falling can be transferred to the nearest community hospital
and families to take an instant action to prevent delayed medical
attention, especially for elderly people [54]. At the same time,
these approaches are helpful for a disabled person to improve
self-care capability through contactless interactive smart con-
trolling methods of gestures recognition and pose estimation.

For another range of the healthcare, recognition approaches, it
mainly covers the detection of the diseases through long-term
gait monitoring, for paraparesis detection [55] and Parkinson
detection [56]. These works train the specific model to learn the
gait difference of healthy people and patients for diseases recog-
nition. Nevertheless, because datasets from disabled person are
difficult to obtain, relatively few works have been published in
this field.

Vital signs estimation belongs to the range of healthcare
recognition applications, which is performed by monitoring the
motion of the chest and heart. Most papers analyze the respira-
tion rate [50], [57]–[67], some of them detect heartbeats [50],
[59], [60], [62], [64], [67], and another paper demonstrates the
biometric estimation [68]. The difference between respiration
and heartbeat estimation is demonstrated in Section IV-A2.
From the perspective of potential in healthcare applications,
these systems are useful for instant monitoring of vitals in the
non-hospital environments and helpful in the detection of long-
term chronic diseases’ such as arrhythmia, and some respiratory
diseases.

Convincing results with regards to WiFi sensing for biomet-
rics estimation is still lacking in the literature compared to
radar-based systems [69], [70] which has shown good perfor-
mance. So using WiFi signals to estimate biometric parameters
can be regarded as a potential application waiting for further
development.

Further to the previously reported studies, it is crucial to have
reliable localization and tracking systems to complement health-
care monitoring ones. For instance, monitoring vitals during
sleeping cannot be performed when the person is not in bed [71],
as the position of human is essential to the decision making
process.

Meanwhile, from the timeline shown in the Table II, we can
conclude the emerging trend is that the researchers are expecting
specific WiFi sensing applications like diseases detection, bio-
metric estimation, sedentary activity recognition, which have
more application value in healthcare. On the other hand, as the
types of perceptible activities in the traditional WiFi sensing
method are limited, the pose estimation task is proposed to
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TABLE III
SIGNAL PROCESSING TECHNIQUES APPLIED IN LITERATURE FOR WIRELESS SENSING

Fig. 3. WiFi Sensing System Architecture.

restore the human skeleton in visualization with only WiFi
signals. Combined with the state-of-the-art framework of
computer vision-based human activity recognition, it has
expected that the performance will be further improved
[48], [49].

III. MAIN COMPONENTS OF CONTACTLESS WIFI SENSING

The development of WiFi sensing systems involves two
stages, the first is applying signal processing techniques, and the
second is the algorithm design. The signal processing stage con-
sists of three sub-stages, i.e., denoising, signal transformation,
and feature extraction. The algorithm stage explains modeling-
based and learning-based tracks, respectively. A generalized
architecture diagram of a typical WiFi sensing system is shown
in Fig. 3. Firstly, raw WiFi signals are collected by the receiver
devices, where they are denoised, transformed, and features
are extracted for the data-mining of CSI signals. Secondly,
algorithms are applied to classify/recognize/estimate the results.
Each of the stages is detailed in the following subsections. In this
section, we review various kinds of technologies and classify
them in different stages.

A. Signal Processing Techniques

This stage is concerned with the processing of the collected
CSI signals captured during the subject’s motion. CSI data
is processed by different methods to obtain the nature of the
information that is required by the system. The signal processing
of WiFi signals constitutes three phases: Noise Reduction, Sig-
nal Transformation, and Feature Extraction, to feed noise-free
information to the algorithms (see Section III-A1, III-A2 and
III-A3)). Table III lists the various methodologies adopted and
applied in the literature to process WiFi signals.

1) Noise Reduction: Noise components, like outliers of
CSI data, always exist, which impacts the signal and causes
a significant reduction in the recognition accuracy of the overall
system. Denoising raw data can reduce the redundant computa-
tion of invalid information and improve efficiency and accuracy.
De-noising is performed in two stages, the first is the removal
of outliers, and the second is performing interpolation.

Outlier is the data that stands out from the rest of the data
set, leading to suspicion that no random deviations are resulting
from entirely different mechanisms. In a WiFi system, outliers
can be caused by hardware or software errors. Moving average
(MA) is a primary method to solve the outliers, which uses
statistical methods to average the CSI values in a certain period
and connect the average values in the time range. A Hampel
filter is also used to remove the outliers, where for each sample
of the CSI datasets, the median value of the window consisting
of the sample and several surrounding samples is calculated,
and then the absolute value of the median is used to estimate the
standard deviation of the median of each sample pair. Using the
median to replace outliers is less sensitive to noise than using
mean and standard deviation [18], [59]. The median filter has the
same principle as the Hampel filter, which traverses the signal
without outlier detection. LOF is used to find abnormal CSI
patterns calculating the local density of the points with respect
to k-nearest neighbors [99]. The local density of the selected
point will be calculated by reach-ability distance to neighbors
and compared with other points.
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On the other hand, interpolation processing ensures the con-
tinuity of the signal in time and reliability of the experimental
data, especially when the data packets are collected at a higher
frequency. If packets are lost during communication, the interpo-
lation method would take the average of the nearest two points to
replace the unperceived data. Meanwhile, to keep the continuity
of the signals, linear interpolation is applied in many proposed
systems [46], [68], [73].

2) Signal Transformation: The signal transformation
method targets the analysis of CSI signals in the time-frequency
domain. In the virtual environment, the wireless signal will
be impacted by high and low-frequency noise. Through
frequency domain filtering processing, these noise signals can
be effectively reduced. At the same time, the signal components
of the frequency band required by the systems can be obtained
using a band-pass filter and inverse transformation. Fast Fourier
transform (FFT) is a standard method applied in the OFDM
systems where the CSI is a sample of FFT of channel impulse
response (CIR). Short-time Fourier transform (STFT) frames
and windows the original signal first, then performs FFT on
each frame. These characteristic assists researchers in finding
the dominant frequency change in the time domain, which is
efficient for real-time sensing. However, when the length of
the frame is constant, STFT takes a poor balance of signal
restoration in the time and frequency domains. Suppose FFT
window length (for CSI signals in the time domain) gets
extremely short, it will cause inaccurate frequency analysis
with inadequate signal information. Inversely, longer window
length brings a lower resolution of signal in the time domain.
Discrete wavelet transform (DWT) is utilized to decompose
signals on different scales to improve the performance compared
with the Fourier transform. Meanwhile, DWT is available in
time-frequency analysis to judge the signal frequency changes
in the time range, the instantaneous frequency, and amplitude
at each moment.

3) Feature Extraction: Feature extraction is the process of
obtaining information from the signal, which is the basis of a
different algorithm for classification and estimation from the
CSI data. Phase difference and phase linear transform are used
to find the relationship between the changes in the phase and
human activities.

Filtering is adequate for detection of the behavior with con-
stant frequency like heartbeat and respiration, even for the
detection of walking, which focuses on filtered high frequency
CSI signals out to get cleaner human-related signals, such as
the respiration and heartbeat rate [67], [98]. Butterworth filter
is widely used because the frequency response curve in the
pass-band is flat without fluctuations, while it gradually drops
to zero in the stop-band.

Thresholding is used to distinguish valid signals in the time
range based on ToF. As shown in (1), the ToF value of each
path can be estimated by CSI data [78]. Based on the dis-
tance of transmission lines, those signals with high ToF value
are reflected more times around the environment than others,
which is meaningless for systems and can be excluded. Last
but not least, signal compression utilizes dimensional decrease
methods that generally work in feature extraction, like principal

Fig. 4. Example of PCA & LPF process for CSI amplitude signals.

component analysis (PCA) and independent component correla-
tion algorithm (ICA). PCA is a statistical method, transforming a
group of potentially correlated variables into a group of linearly
uncorrelated variables through orthogonal transformation. This
group of variables after conversion is called the principal com-
ponent. In WiFi sensing, PCA is mainly adopted to integrate the
signals from different subcarriers to extract main components
of variance (see Fig. 4). ICA is also a method to find the
hidden factors of non-Gaussian data, regarded as a powerful
method in blind signal analysis. From the previously familiar
sample-feature perspective, the prerequisite for using ICA is
that implicit factors of independent non-Gaussian distribution
generate the sample data.

B. WiFi Sensing Algorithms

The core methodology applied for detection or recognition
of activities lies in the algorithm, which is divided into either
modeling-based or learning-based. Some examples from the
literature are shown in the Table IV.

1) Modeling-Based Algorithm: Modeling-based ap-
proaches apply statistical or mathematical models to extract
specific features, depending on the tasks. These studies are less
dependent on training set and have more robustness compared
to the learning-based methods.

ToF and angle of arrival (AoA) models have been frequently
applied for indoor tracking and localization. When receiving
signals in the same physical path, the delay should be a constant
value. However, due to the multi-path effect, which reflects the
transmitted signal, the value of ToF can be influenced. Power
delay profile (PDP) is a common approach to get the value
of ToF through inverse fast Fourier transform (IFFT), which
is popular in tracking and localization [76]. Meanwhile, AoA
makes different antennas show different phase observations.
Multiple Signal Classification (MUSIC) performs well on the
AoA estimation [75], [78], which correlates phase difference
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TABLE IV
FEATURE EXTRACTION AND CLASSIFICATION TECHNIQUES APPLIED IN THE LITERATURE FOR WIRELESS SENSING

Fig. 5. Geometry of the Fresnel zone.

Fig. 6. DFS representing human activity of leaning forward and back.

with the distance of multiple antennas to estimate the transmis-
sion direction.

The phase difference is required to combine with the Fresnel
zones (see Fig. 5). The Fresnel zone is a concentric ellipse with
foci between the transmit and receiving antenna horizontally
in the WiFi system. [100] designs the related experiments and
proves that the motion that happens in the middle of the Fresnel
zone is more efficient than happens on the boundary.

Doppler frequency spectrum (DFS) represents frequency shift
influenced from the active motion, which is feasible to extract the
velocity of subjects. CSI itself represents the channel frequency
response, so it is convenient to do time-frequency analysis of
the WiFi signals (see Fig. 6)). The authors of [84] developed an
algorithm to correlate static CSI values with active multi-path
gradient and utilize the Doppler frequency change to estimate
the velocity and location of the humans. Besides, [89] adopts the

body velocity profile (BVP) algorithm to apply the earth mover’s
distance to integrate the multiple spectrum’s characteristics to
classify the gestures (see Fig. 7). In each BVP, the velocity com-
ponent is projected onto the normal direction of a physical WiFi
link and contributes to the power of the corresponding radial
velocity component in the DFS profile. Due to the path length
change of the Doppler signal, WiFi equipment in a different
position collects distinct CSI signals. This Widar3.0 considers
the location of devices and maps DFS value into the BVP. This
method reduces the negative influence from the environment and
has been tested in unknown locations where signals are collected
for the training set.

2) Learning-Based Algorithm: Machine learning-based
classification algorithms such as the k-nearest nighbors (KNN)
and support vector machines (SVM) are widely used in de-
tection and recognition tasks [101]. Multi-cluster/class feature
selection (MCFS) in the WiHear system [53] sets to extract the
optimal feature subset and find the correlation feature between
different subsets, using a pattern matching algorithm to avoid
over-fitting. On the other hand, with the fixed size of the dataset,
the classification process of MCFS on the testing set takes 5
seconds, which is much lower than 3 - 5 minutes taken by the
SVM algorithm. The Dynamic Time Wrapping (DTW) method
calculates the similarity between time series data by extending
and shortening the sequences widely used in fingerprint-based
learning methods. Similarly, earth mover’s distance (EMD) de-
fines distance measurement, which can measure the distance
between two distributions. The function of EMD and DTW is
similar in CSI based classification, which both belongs to the
range of linear regression. By contrast, DTW focus on estimation
in single dimension CSI sequence, and EMD can be used in
higher dimensions, like DFS integration shown in Fig. 7.

Besides ML methods, many deep neural network (DNN)
frameworks have been widely applied in WiFi sensing. With the
rapid development of neural network in recent years in various
fields, different DNN structures have been applied in WiFi
sensing, for example, convolutional neural network (CNN),
long short-term memory (LSTM) and etc. In [41], instead
of using long short-term memory (LSTM), an attention-based
bi-directional long short-term memory (ABLSTM) neural net-
work is proposed to extract 2-dimensional features from WiFi
CSI data, representing human activity. In the results, recog-
nition of six different activities in public places, recorded an
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Fig. 7. BVP methodology proposed in [89].

accuracy of more than 97.5%. In [40] the author applies the
CNN classification algorithm, which records a higher accuracy
in comparison with the SVM classifier. Similarly, SignFi [87],
and 1D-CNN [55] propose the use of different CNN structures
for WiFi sensing. The 1D-CNN performs better than the KNN
method (average 4% higher in 1D-CNN), and SignFi improved
2% - 4% accuracy compared to the KNN-DTW method proposed
in [82], [102]. Instead of using external neural networks (less
than five layers) as alternate nonlinear operators, [68] proposed
a novel method to extend the size of CSI input from 30× 1× 1
to 6× 224× 224 with bi-linear interpolation, which provided
an image-like structure for further deep learning. It offers condi-
tions to apply different backbone networks like AlexNet, visual
geometry group (VGG) network, inception cluster, etc. The deep
learning network framework proved that body perception of CSI
sequences for WiFi could accomplish: two body characterization
problems of biometrics estimation (including body fat, muscle,
water, and bone rate) and identification, two activity recognition:
gesture recognition and fall detection. For both traditional ML
and DNN methods, the performance suffers from the distribution
shift that arises from different circumstances/locations. To avoid
the repeated training of the model and fitting new areas, trans-
fer learning methods can be utilized with lower computation
resources [88]. Furthermore, the metric learning approach also
helps the model generalize to new environments for applications
such as gesture recognition [90]. Although all above method-
ologies apply distinct network structures, the central task is the
same, which is adopt DNN to match the CSI signal with the
artificial label.

Moreover, pose estimation adopts the label from camera-
based methods, and proposes a novel DNN structure to match
the human skeleton to WiFi CSI data. In the training stage, the
skeleton of a human can be acquired from image processing
with cameras. Afterward, the collected WiFi data is labelled
and correlated with different patterns of skeleton coordina-
tion and trained by a neural network. The authors of [103]
proposed a novel network to apply a fully convolutional net-
work (FCN) for estimation of a single person’s pose from
the collected data and annotations. This work aims to train

the specific neural network to map the CSI variance to the
human skeletons, and get the fine-grained human skeletons
from CSI signals. Furthermore, they developed another structure
for multi-persons’ pose estimation [48]. Based on a similar
theory, [104] proposes a image-based preprocess method to
get a CSI-image for CNN framework to estimate the pose.
However, in the mentioned 2D human skeleton restoration, there
are few discussions of the robustness. Due to the sensitivity
of CSI signals, environment has the severe impact on channel
information, which means the overfitting issue is inevitable.
Because 2D pixels obviously can not map all human activities,
especially for NLOS side, with CSI variance. To improve the
reliablity, the study of [49] improves the BVP to 3D velocity
profile through changing the antennas’ height. These ideas cre-
ate the condition of more applications development with pose
estimation.

IV. WIFI SENSING APPLICATIONS FOR IN-HOME HEALTH

MONITORING

Remote healthcare monitoring systems, based on WiFi sens-
ing, perform two main operations of healthcare recognition and
healthcare auxiliary (described in Section II-C2). Healthcare
recognition applications require the monitoring system to anal-
yse the human health for activity- and vitals-related diseases’
detection, through the long-term monitoring of activities and
vitals. Healthcare auxiliary applications cover the systems that
are capable of providing smart detection services for humans,
which can be further divided into two categories based on
the typical tasks. Firstly, healthcare auxiliary depends on the
real-time detection of critical events, such as falling and ir-
regular respiration rate, to alert the nearest healthcare center
or family member. Then, location and tracking functions are
also available in indoor healthcare auxiliary tasks. This section
reviews recent WiFi sensing healthcare applications based on
the range of supportive applications, and discusses the efficiency
and availability of different methods for implementation in an
indoor environment. Some applications with technical details
are shown in Table V .
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TABLE V
WIFI SENSING APPLICATIONS OF IN-HOME HEALTH MONITORING

A. Healthcare Recognition Applications

1) Disease Detection: At present, chronic disease detection
in WiFi sensing is limited to activity recognition without vitals
analysis. Due to the action difference of identity, the current
detection strategy is to recognize the feature of the disease while
volunteers are doing the specific test.

The WiFreeze system [56] proposes a deep learning method
to recognize Parkinson’s disease based on the walk, sitting-
standing and voluntary stopping activities of humans. Freezing
of gait (FOG) is an explicit characteristic of Parkinson’s disease
infection. The authors apply the CSI amplitude for contin-
uous wavelet transform analysis and get the time-frequency

spectrograms. For the evaluation stage, they use the dataset of
human activities that contains FOG, walking slow, walking fast,
sit-stand, voluntary stop. For classification, they applied a re-
vised neural network structure from VGG-18. The result records
the FOG detection accuracy of 99.7%. However, the average
accuracy of 5 activities is much lower, approximately 85.06%,
which is not a good model for human activity recognition and
here are several points that needs to be considered:

� Accounting for the phase of the CSI data and not just the
amplitude.

� The impact of decomposing wavelets from original signals
when using CWT on the overall performance of a real-time
system.
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� The size of the training and testing datasets for DNN to
avoid overfitting the model.

The authors in [55] propose a 1D-CNN algorithm to detect
lower extremity paraparesis. The dataset contains the CSI signal
of two series of specific motion detection (Barre and Mingazz-
ini methods) for paraparesis detection. The 1D-CNN system
achieves an accuracy of 98% for the Barre test and 99% for
the Mingazzini test respectively. This work applies a relatively
shallow network structure compared to the above WiFreeze
system. However, the dataset only contains two classes: typical
result and abnormal result based on two test methods. This
study would improve if it considers introducing more classes
like gender, ages, health status to explore more based on WiFi
sensing. Meanwhile, in a realistic environment, the use of the
1D-CNN and the WiFreeze system cannot prove the reliability
of multiple persons. Secondly, the setup details, like Barre and
Mingazzini test in [55], should be more straightforward for
other researchers to repeat the experiments because WiFi signals
can be significantly affected by the environment. Lastly, the
discussion of application value is not enough. Parkinson’s and
paraparesis are chronic diseases that should be detected in the
long-term, and it has expected to do the evaluation test using a
similar system on the infected groups for intelligent healthcare.
Therefore, disease surveillance based on WiFi sensing is a
direction with development potential.

2) Vitals Detection: Vitals detection of heartbeat and res-
piration rate belongs to passive healthcare recognition because
they both are produced by the tiny and rhythmic vibration of the
heart and chest. This section covers the theory of respiration and
heartbeat detection and related issues.

Respiration activity is crucial for the evaluation of sleep
quality and the detection of respiratory diseases. One rise and
fall of the chest is one breath, which means one inhalation
and one exhalation. The regular adult breathing rate is 12–20
times per minute, while children and older adults have slightly
higher rates. Breathing activity has been considered in several
research studies, such as [57], [98]. In [98], the TensorBeat
system is proposed to recognize the breathing rate of single
and multiple individuals. The performance results of two-person
and three-person tests are similar, accounting for 93% accuracy,
with the error in both being less than 0.5 bpm. However, the
performance is reduced to approximately 62% when number
of people increased to five people, highlighting a correlation
between number of subjects and the deterioration in the accuracy
of breathing rate estimation.

Heartbeat rate is also a significant index of human health. The
number of heartbeats per minute of a normal person in a calm
state is generally 60 to 100 beats per minute, varying among
individuals due to age, gender, or other physiological factors.
In [59], [60], heart and respiratory rates are both measured by
their proposed system. The errors are recorded for the WiHealth
system, in [59], are 0.6 bpm, for the breathing rate, and 6 bpm
of heart rate. PhaseBeat [67] proposes a novel task classification
method. The authors use the resolution of the feature maps to
classify detected results for different tasks, which provides new
ideas for future multi-task recognition based on deep learn-
ing, and the errors decrease to 0.23 bpm of respiration rate

Fig. 8. Heartbeats hidden in the breathing signal [67].

and 0.48 bpm of heartbeat rate. Besides, [67] also provides a
comparison test of the omni-directional antenna and directional
antenna on vitals detection. In the test, the error of heartbeat rate
reduces to 1.19 bpm, which proves the efficiency of a directional
antenna. For respiration rate, the error improves from 0.23 bpm
to 0.25 bpm, but it is an acceptable performance fluctuation.

From the comparison of results, we can conclude that the
heartbeat is more difficult to sense. In WiFi frequency, 2.4 GHz
and 5 GHz are standard, of which wavelengths are 60 mm and
125 mm. The maximum range of human chest motion while
breathing is around 10 mm and 24 mm [108], which is far
less than the wavelength. Under this condition, the phase of
reflected signals will appear a difference (from 60 degrees to
150 degrees for a 5 GHz signal). For heartbeat measurement,
it is more difficult because the motion of the heart is hugely
less than chest movements, as shown in Fig. 8. Directional
antennas should be used if the system requires higher accuracy
of heartbeat monitoring.

Secondly, Fresnel zones take a significant impact on this tiny
movement of the heart and chest. The Fig. 9 explains how the
Fresnel zones influence the respiration detection. When the peo-
ple are located on the boundary of the Fresnel zone, the variance
of phase is brutal to extract compared to the center of two
boundaries. Therefore, WiFi based contactless vitals detection
can achieve high performance but is severely dependent on the
implementation of devices.

B. Healthcare Auxiliary Applications

This section covers all the classification studies related to the
humans’ daily activities, as discussed earlier in Section II-C2.
Based on the methodologies, we divide the studies into activity
detection, pose estimation and localization. At the same time,
based on the movement range of human motions, the activity
detection is further separated from large-scale and small-scale,
because these tasks need to consider the specificity of actions
when designing an experiment and the movement range of each
activity class in the comparison test should be kept similar. The
different scale will influence the experiment design as well,
shown as Fig. 10(a) and Fig. 10(b). For instance, compared to the
gait recognition experiment, the distance and implementation of
gesture detection are much more specific than the position of gait
recognition.
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Fig. 9. Phase variety of human respiration detection in Fresnel zone boundary (Location 1) and middle region of Fresnel zone (Location 2) of [17].

Fig. 10. Experiment setup comparison of small-scale gesture detection and large-scale gait recognition. (a) Experiment setup of gesture
recognition in [90]. (b) Experiment setup of gait recognition in [109].

1) Large-Scale Activity Recognition: Large-scale recog-
nition methods contain falling detection, daily activity like
sitting-standing, gait recognition, human moving detection.
Compared with small-scale detection, large-scale recognition is
generally more efficient and accessible in applications because
the CSI signals can be severely affected by the extensive range
motion of limbs and torso. For instance, in the falling detection,
due to the instantaneous velocity change of the human torso,
part of the channel transmission medium and reflection and
scattering conditions of WiFi signals have changed, resulting in
the apparent doppler effect on CSI. The WiFall system, presented
in [45], processed the amplitude of the collected CSI data to
detect falls in an indoor setting. Besides, abnormal activities
can contain health-damaged behavior like smoking, especially
in some indoor non-smoking areas. Wireless smoking behavior
testing can protect smokers’ privacy, compared to the current
camera-based detection. The WiFi wireless sensing is used
in smoking detection [46], and overcomes the blind spot in
camera-based detection systems.

2) Small-Scale Activity Recognition: Small-scale activity
detection is specific to the tiny movement of humans, including
motion of hands and arms, with various kinds of studies. For
example, the authors of [94] propose a CSI-based classification
method to classify different movements of limbs while walking.

Gesture recognition is helpful for disabled people to feasibly
control their daily life and contact others in an emergency [109].
WiSee [73] introduces a system that sets out to recognise nine
gestures using WiFi sensing (see Fig. 11(a)) with up to four
people, set up in different scenarios (see Fig. 11(b)) with an
average accuracy of 94%. For the tiny motion of the hands,
WiKey proposes a system to recognize stroked words from
general keystroke behavior [52], the accuracy achieved was
97.5% of stroke behavior detection and 96.4% of word recogni-
tion. However, the test environment has limited the transceiver
direction, distance change, moving speed of typing fingers and
direction, the keyboard layout, and size of factors that affect
system performance, which can be difficult to replicate the
work in a real-life scenario. To improve the robustness, [89] is
proposed to correlate the CSI data of more than three receivers
in different directions and positions. The result shows average
accuracy above 85% for all testing locations. Nevertheless,
the good performance of the system encourages researchers to
design more applications based on WiFi signals.

Mouth movement always represents speaking, eating, and
coughing. In the healthcare monitoring system, cough is a
significant symptom in patients infected with respiratory dis-
eases, including COVID-19 [110], [111]. Wireless-based activ-
ity recognition can be regarded as a suitable method for cough
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Fig. 11. Nine gestures detected in WiSee System in 11(a) and scenarios of testbed in Whole-home range in 11(b) of [73]. (a) Gestures diagrams.
(b) Testbed diagrams.

detection. Recently, WiFi sensing has been applied in many other
health-related applications, other than cough detection. On this
side, [53] presents the WiHear system for speech recognition
using WiFi. The system establishes a mapping dictionary from
the pronunciation of vowels to the mouth shapes to recognize
a part of different types of pronouncing and even some short
words, shown in Fig. 12. The COTS WiFi device can capture
sensitive Doppler signals in CSI. Combined with the move of
the head during the coughing process, the accuracy of cough
sensing would be higher than speaking single words. It is worth
mentioning that the system adopts directional antennas for im-
plementation.

3) Fine-Grained Human Pose Estimation: In daily life,
human body language is extremely various that it is difficult

to categorize it with a few fixed variables. Therefore, a system
that uses limited data sets for motion classification is difficult
to deploy effectively in a non-experimental environment. Pose
estimation targets to recover the human skeleton for people to
recognize the human actions through the vision, which is clear
and intuitive. Compared to the classification studies mentioned
above, this fine-grained pose estimation is more competitive
and humanized and capable of recovering both large-scale and
small-scale activities’ pose. A fine-grained [48] system was
firstly implemented in WiFi range with the skeleton on the 2D
images for users, shown in Fig. 13. This system tests processed
human skeletons and achieves 0.66 of mean intersection over
union (mIoU) with 1–5 persons. [49] proposes a 3D skele-
ton restoration method using WiFi signals, where the authors
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Fig. 12. Mouth motion detection in WiHear [53].

Fig. 13. 2D restoration of human pose [48].

used the VICON motion camera system as the ground truth
3D skeleton of the human body, shown in Fig. 14. In this
system, the skeleton represents the physical distance instead
of the pixels, which further proves that the WiFi signal can
perform fine-grained detection. The restored skeleton can as-
sist users in judging the performance of the sensing system
and is available for further activity recognition. Also, due to
visible skeleton restoration, these works have the exemplary
significance regarding the increase of the human activity types
without re-training the whole system. However, human skeleton
restoration is limited to the overfitting. The training set of 3D
restoration works only contains the human skeleton in constant
location, which means most predicted skeletons have limited
variance.

4) Human Localization: Further to the previously high-
lighted studies, WiFi sensing also shows potential in indoor
localization and tracking. At present, traditional WiFi localiza-
tion adopts RSSI signals from mobile devices, which depends
multiple access points (AP) with different media access control
address value for measurement (at least three devices). CSI based
WiFi localization can reduce the required number of AP, and be
independent on portable devices. In [112], the authors propose
a method with location fingerprint to locate people with RSSI
fingerprints using the WiFi COTS devices and mobile phones. In
the setup shown in Fig. 15, there are 24 APs in total equipped in a
plain floor of 1610 m2. DeMan [74] regards human breathing as
an inherent indicator of the human state and judges the existence

Fig. 14. 3D restoration of human pose [49].

Fig. 15. RSSI based localization implementation of [112].

of a stationary person by detecting specific signal patterns caused
by tiny chest movements. Another work proposed a passive
localization indoor system [77] using CSI with an improved
Dynamic-MUSIC algorithm. The system gets the AoA value
from moving targets to establish the fingerprints of the location
(see Fig. 16) and records a median error of approximately 0.6 m,
with two pair of devices, which is sufficient for localizing chil-
dren and disabled persons. In [86], a probabilistic fingerprint-
based method is proposed and tested in four environments. Their
result demonstrates the system of the Kalman filter for tracking
objects at a fixed walking speed, which is available to analyze the
movement of monitored people with pose estimation for early
symptom detection, with 3 transmitters and four receivers. More
specifically, [107] achieves the indoor tracking with one pair of
WiFi devices, in general office and corridor, with the average
error of 1 m. In conclusion, contactless WiFi sensing approach
can be applied with fewer number of devices compared to RSSI
based methods, without portable devices. However, RSSI-based
method is more capable to achieve the larger range tracking in
cross-rooms environment.
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Fig. 16. CSI based localization system environments of [77]. (a) Meeting room. (b) Office room. (c) Lobby.

TABLE VI
SAMPLING FREQUENCY VERSUS WIFI SENSING PERFORMANCE

TABLE VII
PERFORMING DISTANCE VERSUS WIFI SENSING PERFORMANCE

TABLE VIII
PERFORMING ENVIRONMENTS VERSUS WIFI SENSING PERFORMANCE

V. CHALLENGES AND FUTURE DIRECTIONS

Due to the popularity and consistent upgrade of WiFi devices,
WiFi sensing is the technology with considerable potential.
However, the popularisation of technology in healthcare will
inevitably encounter not only technical limitations as applica-
tions introduced but also ethical problems in Section IV. Specific
challenges and future directions are presented and discussed in
this section.

A. Challenges of WiFi Sensing in Healthcare

Section IV has introduced various types of WiFi sensing
systems for healthcare that achieved high accuracy in a specific
task. However, most of the work is challenging to implement
at home simply because the environment is distinct, which
means the performance is limited with regards to different
scenarios (see the comparison regarding six different factors in

Table VI,VII,VIII,IX,X). This section discusses these issues and
gives the corresponding technical-level solutions.

1) Robustness: Robustness is essential for the future de-
velopment of WiFi healthcare sensing, resulting in whether the
experiment’s repeatability and validity can be guaranteed in
different environments. Although most learning-based methods
have good experimental results, due to the method itself on the
specific data, the performance of such methods in unknown
scenarios cannot be promised. In the comparison tables, most
challenges are related to achieving generalization of sensing
methods under different conditions: distance or location, en-
vironments, identity difference, and orientation of action. These
factors are discussed in the studies and show the limitation
behind the overall performance.

Therefore, sensitivity to changes in the physical environ-
ment is a double-edged sword, which supports the high perfor-
mance of detecting specific activity but allows much noise from
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TABLE IX
PERFORMING ENVIRONMENTS VERSUS WIFI SENSING PERFORMANCE

TABLE X
ORIENTATION AND MULTIPLE HUMAN VERSUS WIFI SENSING PERFORMANCE

surroundings to disturb the process. For example, for the meth-
ods using DNN and ML for activity recognition, the size of
the experimental setup is kept in a limited variance of the noise.
For the complex real-world environment, the barriers around the
circumstance can take serious adverse effects on the accuracy.
For example, estimation of human respiration rate needs to filter
out the noise component of other activities. However, even if
unconscious human activity is filtered out, conscious rhythmic
activity can easily interfere with detection results and other
objects’ activities.

2) Complicated Implementation of Setup: Meanwhile, it
is also a challenge to set up the WiFi devices while using. In [89],
the study involves a robust system for gesture recognition using
3 - 6 receivers with the predetermined location. Objectively,
it’s not possible for each consumer to set the devices in the
same position due to the limited physical spaces or other is-
sues. In addition, sampling frequency’s setting has a significant
impact on performance as shown in Table VI, which needs
experiment validation to achieve a trade-off between low power
consumption and high accuracy performance. These problems
have hindered the popularisation of the WiFi sensing technique.

3) Multiple Subjects Sensing: The performance of differ-
ent WiFi sensing systems becomes worse as the number of sub-
jects involved in the experiment increases, as shown in Table X.
Majority of works do not mention the multiple human scenarios
due to the low angle resolution of WiFi. Although the AoA
technique based on MIMO is accurate enough to distinguish the
human and count the number of people, it is not enough to distin-
guish the signal from a different person and get a specific result.
To improve the resolution of sensing, efficient multiple subjects
recognition method must be developed and improved for more
practical and real-world setups. Meanwhile, it is challenging to
track the person’s identity with specific respiration for in-home
healthcare analysis in the multiple subjects environment.

4) Performance of WiFi Networking: CSI is collected us-
ing NICs, which are primarily used for networking, with stable
transmitted frequency. Current drivers of WiFi device is able
to increase the frequency to meet the requirement of higher
frequency of CSI packets collection that most of the systems
rely on, which will produce empty packets for networking. In
the case where the empty package takes up more, they will
interfere with typical networking tasks. Hence, it is challenging

to operate a WiFi device to complete sensing and networking
tasks simultaneously.

5) Privacy and Security: Privacy and security are being
threatened by WiFi passive sensing technology. In state-of-the-
art methodologies, WiFi sensing can be used in the NLOS
range for human and object behavior. A well-trained system
can be used to recognize the gesture and keystrokes of the
humans. Suppose WiFi sensing is used to steal other people’s
private information due to the portability and generalization
of WiFi equipment. In that case, it is difficult for people to
recognize privacy-invasion behavior from those who collect that
private information. Fortunately, thanks to the limitations of NIC
manufacturers on channel information decoding, only a limited
number of devices can collect CSI data through open-source
drivers. However, with the miniaturization of NICs and the
maturity of sensing technology, this issue will be much more
concerning in the future.

B. Future Directions of WiFi Sensing in Healthcare

Although WiFi sensing has significant challenges for gener-
alization, there is still great potential for healthcare applications
in the real world. To overcome the issues discussed above, the
technique is expected to improve in four directions.

1) A Unified Framework of WiFi Sensing: One of the most
challenging problems of WiFi sensing robustness is various
experimental setup and devices. Although theoretically, all WiFi
sensing methods should get the same performance as any type
of WiFi device. In practice, even the sampling rate of WiFi can
significantly influence the performance (see Table VI). It is nec-
essary to follow a framework from hardware to software of WiFi
sensing system for future generalization, which has a completely
unique setup and test standard for different methodologies to as-
sess their performance in the indoor environment. For example,
the framework should contain the available sampling frequency,
type of antennas and NICs, human location, distance between
transmitter and receiver, number of subjects and etc. Based on
the framework, extra modules for mobile edge computing can be
incorporated in the WiFi sensing systems [93] to accelerate the
processing speed and decrease the influence on WiFi networking
system.
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2) Spatial Sensing for Wide Applications: WiFi sensing
applications can sense ambient information regardless of di-
rection due to the omni-directional antennas of WiFi devices.
However, this characteristic is not helpful in some cases. If
the WiFi sensing system can monitor the vitals or activities
of individuals, for example, only detecting the vital signs of
people on the fixed bed in the hospital, instead of detecting
caregivers. It will be more efficient to analyze the data without
massive ambient noise from other directions. Nevertheless, due
to CSI data collected from WiFi devices that have low resolution
and high sensitivity, it is challenging to separate signals from
a specific space. Beamforming technology with an intelligent
reflecting surface (IRS) [115] and directional antennas [67] are
considered methods to overcome this disadvantage and improve
the performance.

With spatial sensing, WiFi sensing of human activities is not
limited to residential environments. For instance, they can be of
great use in vehicles to detect drivers’ tiredness levels, which
is significant for the safety of the driver and the passengers.
The authors of [92] have successfully set up the WiFi testbed
in a vehicle, and eight human activities from the driver and
the passengers were accounted for in the CARIN system, in-
cluding pushing, pulling, and swiping. The experiment results
have shown an average accuracy of 90.0% for more than 3000
real-world activity traces. Also, the vitals detection in-cabin can
be more efficient than the detection indoor because the position
of people in the traffic tools is constant in most cases. It will
not take effort to change sensing area with spatial sensing like
directional antennas are others.

3) Joint Sensing in Home for Healthcare: Implementa-
tion in real-world environments of WiFi sensing is one of the
most challenging tasks. Although many model-based algorithms
described in Section III-B2 provide the approaches of human
action estimation without training, especially in vitals detection
and tracking. For activity recognition, most studies still adopt
DNN based classification method to get the result with better
performance due to the influence of unexpected human actions.

The trends of joint sensing can be separated into two aspects,
the first one is joint training and second one is joint sensing [116].
Joint training will combine the WiFi signals and different types
of data from other sources like skeleton key-points from images
as ground truth datasets for the training step of the estimation
system with WiFi signals. Hence, WiFi signals can be used in
other tasks with higher resolution and more functions in human
support without label limitation. On the other hand, DNN is
available in large size of training and mining the feature from
data for multiple human sensing [48].

Joint sensing needs to establish a whole framework of general
indoor environments for the users. Due to the restriction of
performance versus WiFi devices’ setting, as demonstrated in
Section V-A, CSI data cannot be used to perform multiple
tasks within one type of implementation in complex real-world
scenarios. Extensive data analysis has been the trend for the
future healthcare [117]. CSI signal can be integrated with data
from other sensors to monitor the health status of humans using
artificial intelligence techniques [4], [68]. Cooperative sensing
with different sensors will improve the precision with a larger

size of precise data. Different kinds of radar sensors (millimeter-
wave radar, LIDAR), and other sensors like infrared sensors,
cameras, microphones, are able to provide data for users to
achieve specific tasks [50], [118], [119]. Joint sensing around the
household environment is potential to improve the humanization
of the future healthcare monitoring system in the whole-home
range.

VI. CONCLUSION

Intelligent sensing based on commercial WiFi devices is an
emerging technology for next-generation healthcare monitoring
with great potential for future development, due to its low-cost
and availability. This paper presents an extensive review of
the recent techniques, open research challenges, and develop-
ment trends of non-contact WiFi sensing related to healthcare.
Different classes of healthcare applications are described, in-
cluding large-scale and small-scale activity recognition like
detection of falling and gestures, vital signs’ detection, and
localization. These clinical applications have the potential to
reduce the future pressure from the rapidly rising aging popu-
lation mitigating some of the associated societal and economic
challenges.

REFERENCES

[1] P.-Y. Hsu, P.-H. Hsu, T.-H. Lee, and H.-L. Liu, “Heart rate and respiratory
rate monitoring using seismocardiography,” in Proc. 43rd Annu. Int. Conf.
IEEE Eng. Med. Biol. Soc. (EMBC), 2021, pp. 6876–6879.

[2] S. Patel, H. Park, P. Bonato, L. Chan, and M. Rodgers, “A review
of wearable sensors and systems with application in rehabilitation,” J.
Neuroeng. Rehabil., vol. 9, no. 1, pp. 1–17, 2012.

[3] L. P. Malasinghe, N. Ramzan, and K. Dahal, “Remote patient monitoring:
A comprehensive study,” J. Ambient Intell. Humanized Comput., vol. 10,
no. 1, pp. 57–76, 2019. [Online]. Available: http://dx.doi.org/10.1007/
s12652-017-0598-x

[4] Q. Huang, H. Chen, and Q. Zhang, “Joint design of sensing and communi-
cation systems for smart homes,” IEEE Netw., vol. 34, no. 6, pp. 191–197,
Nov./Dec. 2020.

[5] S. Majumder, T. Mondal, and M. J. Deen, “Wearable sensors for re-
mote health monitoring,” Sensors (Switzerland), vol. 17, no. 1, 2017,
Art. no. 130.

[6] D. Xiong, D. Zhang, X. Zhao, and Y. Zhao, “Deep learning for EMG-
based human-machine interaction: A review,” IEEE/CAA J. Automatica
Sinica, vol. 8, no. 3, pp. 512–533, 2021.

[7] M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele, “2D human pose
estimation: New benchmark and state of the art analysis,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2014, pp. 3686–3693.

[8] M. B. Khan et al., “A systematic review of non-contact sensing for
developing a platform to contain COVID-19,” Micromachines, vol. 11,
no. 10, pp. 1–23, 2020.

[9] M. Alizadeh, G. Shaker, and S. Safavi-Naeini, “Remote heart rate sensing
with mm-Wave radar,” in Proc. 18th Int. Symp. Antenna Technol. Appl.
Electromagnetics, 2018, pp. 1–2.

[10] F. Khan, A. Ghaffar, N. Khan, and S. H. Cho, “An overview of sig-
nal processing techniques for remote health monitoring using impulse
radio UWB transceiver,” Sensors (Switzerland), vol. 20, no. 9, 2020,
Art. no. 2479.

[11] W. Taylor, S. A. Shah, K. Dashtipour, A. Zahid, Q. H. Abbasi, and M. A.
Imran, “An intelligent non-invasive real-time human activity recognition
system for next-generation healthcare,” Sensors, vol. 20, no. 9, 2020,
Art. no. 2653.

[12] J. Qi, P. Yang, L. Newcombe, X. Peng, Y. Yang, and Z. Zhao, “An
overview of data fusion techniques for Internet of Things enabled physical
activity recognition and measure,” Inf. Fusion, vol. 55, pp. 269–280,
2020.

http://dx.doi.org/10.1007/s12652-017-0598-x
http://dx.doi.org/10.1007/s12652-017-0598-x


188 IEEE REVIEWS IN BIOMEDICAL ENGINEERING, VOL. 16, 2023

[13] A. Rashed et al., “Integrated IoT medical platform for remote health-
care and assisted living,” in Proc. Jpn.- Afr. Conf. Electron., Commun.
Comput., 2017, pp. 160–163.

[14] Y. Ge, S. Ansari, A. Abdulghani, M. A. Imran, and Q. H. Abbasi,
“Intelligent instruction-based IoT framework for smart home applications
using speech recognition,” in Proc. IEEE Int. Conf. Smart Internet Things,
2020, pp. 197–204.

[15] “A survey on behavior recognition using WiFi channel state information,”
IEEE Commun. Mag., vol. 55, no. 10, pp. 98–104, Oct. 2017.

[16] Z. Wang, B. Guo, Z. Yu, and X. Zhou, “Wi-Fi CSI-Based behavior
recognition: From signals and actions to activities,” IEEE Commun. Mag.,
vol. 56, no. 5, pp. 109–115, May 2018.

[17] D. Wu, D. Zhang, C. Xu, H. Wang, and X. Li, “Device-free WiFi
human sensing: From pattern-based to model-based approaches,” IEEE
Commun. Mag., vol. 55, no. 10, pp. 91–97, Oct. 2017.

[18] Y. Ma, G. Zhou, and S. Wang, “WiFi sensing with channel state in-
formation: A survey,” ACM Comput. Surv., vol. 52, no. 3, pp. 1–36,
2019.

[19] H. F. Thariq Ahmed, H. Ahmad, and Aravind C. V., “Device free human
gesture recognition using Wi-Fi CSI: A survey,” Eng. Appl. Artif. Intell.,
vol. 87, 2020, Art. no. 103281, doi: 10.1016/j.engappai.2019.103281..

[20] Z. Wang et al., “A survey on CSI-Based human behavior recognition in
through-the-wall scenario,” IEEE Access, vol. 7, pp. 78772–78793, 2019.

[21] Y. He, Y. Chen, Y. Hu, and B. Zeng, “WiFi vision: Sensing, recognition,
and detection with commodity MIMO-OFDM WiFi,” IEEE Internet
Things J., vol. 7, no. 9, pp. 8296–8317, Sep. 2020.

[22] H. Jiang, C. Cai, X. Ma, Y. Yang, and J. Liu, “Smart home based on WiFi
sensing: A. survey,” IEEE Access, vol. 6, pp. 13317–13325, 2018.

[23] Y. Wang, M. Li, and M. Li, “The statistical analysis of IEEE 802.11
wireless local area network-based received signal strength indicator in
indoor location sensing systems,” Int. J. Distrib. Sensor Netw., vol. 13,
no. 12, 2017, Art. no. 1550147717747858.

[24] W. Wang, A. X. Liu, M. Shahzad, K. Ling, and S. Lu, “Understanding
and modeling of WiFi signal based human activity recognition,” in Proc.
21st Annu. Int. Conf. Mobile Comput. Netw., New York, NY, USA,
2015, pp. 65–76. [Online]. Available: https://doi.org/10.1145/2789168.
2790093

[25] S. A. Shah et al., “Sensor fusion for identification of freezing of gait
episodes using Wi-Fi and radar imaging,” IEEE Sensors J., vol. 20, no. 23,
pp. 14410–14422, Dec. 2020.

[26] Y. Song, W. Taylor, Y. Ge, K. Dashtipour, M. A. Imran, and Q. H. Abbasi,
“Design and implementation of a contactless ai-enabled human motion
detection system for next-generation healthcare,” in Proc. IEEE Int. Conf.
Smart Internet Things, 2021, pp. 112–119.

[27] A. Shrestha, H. Li, J. Le Kernec, and F. Fioranelli, “Continuous human
activity classification from FMCW radar with Bi-LSTM networks,” IEEE
Sensors J., vol. 20, no. 22, pp. 13607–13619, Nov. 2020.

[28] F. Adib, H. Mao, Z. Kabelac, D. Katabi, and R. C., “Smart homes that
monitor breathing and heart rate,” in Proc. ACM Conf. Hum. Factors
Comput. Syst., 2015, pp. 837–846.

[29] Y. Chen, H. Deng, D. Zhang, and Y. Hu, “SpeedNet: Indoor speed
estimation with radio signals,” IEEE Internet Things J., vol. 8, no. 4,
pp. 2762–2774, Feb. 2021.

[30] A. M. Ashleibta, A. Zahid, S. A. Shah, Q. H. Abbasi, and M. A. Imran,
“Flexible and scalable software defined radio based testbed for large scale
body movement,” Electronics, vol. 9, no. 9, 2020, Art. no. 1354.

[31] A. Meta, P. Hoogeboom, and L. P. Ligthart, “Signal processing for FMCW
SAR,” IEEE Trans. Geosci. Remote Sens., vol. 45, no. 11, pp. 3519–3532,
Nov. 2007.

[32] D. Halperirr, W. Hu, A. Sheth, and D. Wetherall, “Tool release: Gath-
ering 802.11n traces with channel state information,” ACM SIGCOMM
Comput. Commun. Rev., vol. 41, no. 1, pp. 53–53, 2011.

[33] Y. Xie, Z. Li, and M. Li, “Precise power delay profiling with commodity
Wi-Fi,” IEEE Trans. Mobile Comput., vol. 18, no. 6, pp. 1342–1355,
Jun. 2019.

[34] J. Yang, H. Zou, H. Jiang, and L. Xie, “Device-free occupant activity
sensing using WiFi-Enabled IoT devices for smart homes,” IEEE Internet
Things J., vol. 5, no. 5, pp. 3991–4002, May 2018.

[35] Y. Xie, Z. Li, and M. Li, “Precise power delay profiling with commodity
wifi,” in Proc. 21st Annu. Int. Conf. Mobile Comput. Netw., New York,
NY, USA, 2015, pp. 53–64. [Online]. Available: http://doi.acm.org/10.
1145/2789168.2790124

[36] M. Atif, S. Muralidharan, B. Yoo, and H. Ko, “Wi-ESP - A tool for
CSI-based device-free Wi-Fi sensing (DFWS),” J. Comput. Des. Eng.,
vol. 7, no. 5, pp. 644–656, 2020.

[37] M. Rehman et al., “Contactless small-scale movement monitoring system
using software defined radio for early diagnosis of COVID-19,” IEEE
Sensors J., vol. 21, no. 15, pp. 17180–17188, Aug. 2021.

[38] S. A. K. Tanoli et al., “An experimental channel capacity analysis of
cooperative networks using universal software radio peripheral (USRP),”
Sustainability, vol. 10, no. 6, 2018, Art. no. 1983.

[39] B. Tan, Q. Chen, K. Chetty, K. Woodbridge, W. Li, and R. Piechocki,
“Exploiting WiFi channel state information for residential health-
care informatics,” IEEE Commun. Mag., vol. 56, no. 5, pp. 130–137,
May 2018.

[40] T. Z. Chowdhury, “Using Wi-Fi channel state information (CSI) for
human activity recognition and fall detection,” Ph.D. dissertation, Univ.
British Columbia, Vancouver, BC, Canada, 2018, pp. 24–50. [Online].
Available: https://open.library.ubc.ca/cIRcle/collections/ubctheses/24/
items/1.0365967

[41] Z. Chen, L. Zhang, C. Jiang, Z. Cao, and W. Cui, “WiFi CSI based passive
human activity recognition using attention based BLSTM,” IEEE Trans.
Mobile Comput., vol. 18, no. 11, pp. 2714–2724, Nov. 2019.

[42] S. Zhou, W. Zhang, D. Peng, Y. Liu, X. Liao, and H. Jiang, “Adver-
sarial WiFi sensing for privacy preservation of human behaviors,” IEEE
Commun. Lett., vol. 24, no. 2, pp. 259–263, Feb. 2020.

[43] Q. Chen, Y. Liu, B. Tan, K. Woodbridge, and K. Chetty, “Respiration and
activity detection based on passive radio sensing in home environments,”
IEEE Access, vol. 8, pp. 12426–12437, 2020.

[44] Y. Ge et al., “A doppler-based human activity recognition system using
WiFi signals,” in Proc. IEEE Sensors, 2021, pp. 1–4.

[45] Y. Wang, K. Wu, and L. M. Ni, “WiFall: Device-free fall detection
by wireless networks,” IEEE Trans. Mobile Comput., vol. 16, no. 2,
pp. 581–594, Feb. 2017.

[46] X. Zheng, J. Wang, L. Shangguan, Z. Zhou, and Y. Liu, “Design and
implementation of a CSI-based ubiquitous smoking detection system,”
IEEE/ACM Trans. Netw., vol. 25, no. 6, pp. 3781–3793, Jun. 2017.

[47] J. Yang, H. Zou, H. Jiang, and L. Xie, “CareFi: Sedentary behavior
monitoring system via commodity WiFi infrastructures,” IEEE Trans.
Veh. Technol., vol. 67, no. 8, pp. 7620–7629, Aug. 2018.

[48] F. Wang, S. Zhou, S. Panev, J. Han, and D. Huang, “Person-in-WiFi:
Fine-grained person perception using WiFi,” in Proc. IEEE/CVF Int.
Conf. Comput. Vis., 2019, pp. 5452–5461.

[49] W. Jiang et al., “Towards 3D human pose construction using WiFi,” in
Proc. Annu. Int. Conf. Mobile Comput. Netw., 2020, pp. 295–308.

[50] L. Guo, Z. Lu, S. Zhou, X. Wen, and Z. He, “When healthcare meets
off-the-shelf WiFi: A non-wearable and low-costs approach for in-home
monitoring,” 2020, arXiv:2009.09715.

[51] S. Zhou, L. Guo, Z. Lu, X. Wen, W. Zheng, and Y. Wang, “Subject-
independent human pose image construction with commodity Wi-Fi,” in
Proc. IEEE Int. Conf. Commun., 2021, pp. 1–6.

[52] K. Ali, A. X. Liu, W. Wang, and M. Shahzad, “Recognizing keystrokes
using WiFi devices,” IEEE J. Sel. Areas Commun., vol. 35, no. 5,
pp. 1175–1190, May 2017.

[53] G. Wang, Y. Zou, Z. Zhou, K. Wu, and L. M. Ni, “We can hear you with
Wi-Fi!,” IEEE Trans. Mobile Comput., vol. 15, no. 11, pp. 2907–2920,
Nov. 2016.

[54] M. M. Hassan, A. Gumaei, G. Aloi, G. Fortino, and M. Zhou, “A
smartphone-enabled fall detection framework for elderly people in
connected home healthcare,” IEEE Netw., vol. 33, no. 6, pp. 58–63,
Jun. 2019.

[55] L. Guan, F. Hu, F. Al-Turjman, M. B. Khan, and X. Yang, “A non-contact
paraparesis detection technique based on 1D-CNN,” IEEE Access, vol. 7,
pp. 182280–182288, 2019.

[56] A. Tahir et al., “WiFreeze : Multiresolution scalograms for freezing of
gait detection in Parkinson’s leveraging 5g spectrum with deep learning,”
Electronics, vol. 8, no. 12, 2019 Art. no. 1433.

[57] H. Abdelnasser, K. A. Harras, and M. Youssef, “Ubibreathe: A ubiquitous
non-invasive WiFi-based breathing estimator,” in Proc. ACM Int. Symp.
Mobile Ad Hoc Netw. Comput., 2015, pp. 277–286.

[58] P. Nguyen, X. Zhang, A. Halbower, and T. Vu, “Continuous and fine-
grained breathing volume monitoring from afar using wireless signals,”
in Proc. 35th Annu. IEEE Int. Conf. Comput. Commun., 2016, pp. 1–9.

[59] J. Shang and J. Wu, “Fine-grained vital signs estimation using commer-
cial Wi-Fi devices,” in Proc. 8th Wireless Students, Students, Students
Workshop, New York, NY, USA, 2016, pp. 30–32. [Online]. Available:
https://doi.org/10.1145/2987354.2987360

[60] X. Wang, C. Yang, and S. Mao, “Phasebeat: Exploiting CSI phase data
for vital sign monitoring with commodity WiFi devices,” in Proc. IEEE
37th Int. Conf. Distrib. Comput. Syst., 2017, pp. 1230–1239.

https://dx.doi.org/10.1016/j.engappai.2019.103281.
https://doi.org/10.1145/2789168.2790093
https://doi.org/10.1145/2789168.2790093
http://doi.acm.org/10.1145/2789168.2790124
http://doi.acm.org/10.1145/2789168.2790124
https://open.library.ubc.ca/cIRcle/collections/ubctheses/24/items/1.0365967
https://open.library.ubc.ca/cIRcle/collections/ubctheses/24/items/1.0365967
https://doi.org/10.1145/2987354.2987360


GE et al.: CONTACTLESS WIFI SENSING AND MONITORING FOR FUTURE HEALTHCARE - EMERGING TRENDS 189

[61] C. Chen et al., “Tr-breath: Time-reversal breathing rate estimation and
detection,” IEEE Trans. Biomed. Eng., vol. 65, no. 3, pp. 489–501,
Mar. 2018.

[62] S. Lee, Y.-D. Park, Y.-J. Suh, and S. Jeon, “Design and implementation
of monitoring system for breathing and heart rate pattern using WiFi
signals,” in Proc. 15th IEEE Annu. Consum. Commun. Netw. Conf., 2018,
pp. 1–7.

[63] Y. Zeng, D. Wu, J. Xiong, E. Yi, R. Gao, and D. Zhang, “Farsense:
Pushing the range limit of WiFi-based respiration sensing with CSI ratio
of two antennas,” in Proc. ACM Interactive, Mobile, Wearable Ubiquitous
Technol., 2019, pp. 1–26.

[64] Y. Gu, X. Zhang, Z. Liu, and F. Ren, “WiFi-based real-time breathing
and heart rate monitoring during sleep,” in Proc. IEEE Glob. Commun.
Conf., 2019, pp. 1–6.

[65] M. Ibrahim and K. N. Brown, “Vehicle in-cabin contactless wifi human
sensing,” in Proc. 18th Annu. IEEE Int. Conf. Sens., Commun., Netw.,
2021, pp. 1–2.

[66] W. Li, R. J. Piechocki, K. Woodbridge, C. Tang, and K. Chetty, “Pas-
sive WiFi radar for human sensing using a stand-alone access point,”
IEEE Trans. Geosci. Remote Sens., vol. 59, no. 3, pp. 1986–1998,
Mar. 2021.

[67] X. Wang, C. Yang, and S. Mao, “On CSI-based vital sign monitor-
ing using commodity WiFi,” ACM Trans. Comput. Healthcare, vol. 1,
no. 3, pp. 1–27, May 2020. [Online]. Available: https://doi.org/10.1145/
3377165

[68] F. Wang, J. Han, S. Zhang, X. He, and D. Huang, “CSI-Net:
Unified human body characterization and pose recognition,” 2018,
arXiv:1810.03064.

[69] D. Rissacher and D. Galy, “Cardiac radar for biometric identi-
fication using nearest neighbour of continuous wavelet transform
peaks,” in Proc. IEEE Int. Conf. Identity, Secur. Behav. Anal., 2015,
pp. 1–6.

[70] K. Diederichs, A. Qiu, and G. Shaker, “Wireless biometric individual
identification utilizing millimeter waves,” IEEE Sens. Lett., vol. 1, no. 1,
Feb. 2017, Art. no. 3500104.

[71] S. A. Shah and F. Fioranelli, “RF sensing technologies for assisted daily
living in healthcare: A comprehensive review,” IEEE Aerosp. Electron.
Syst. Mag., vol. 34, no. 11, pp. 26–44, Nov. 2019.

[72] H. Abdelnasser, M. Youssef, and K. A. Harras, “Wigest: A ubiquitous
WiFi-based gesture recognition system,” in Proc. IEEE Conf. Comput.
Commun., 2015, pp. 1472–1480.

[73] Q. Pu, S. Gupta, S. Gollakota, and S. Patel, “Gesture recognition using
wireless signals,” GetMobile: Mobile Comput. Commun., vol. 18, no. 4,
pp. 15–18, 2015.

[74] C. Wu, Z. Yang, Z. Zhou, X. Liu, Y. Liu, and J. Cao, “Non-invasive
detection of moving and stationary human with WiFi,” IEEE J. Sel. Areas
Commun., vol. 33, no. 11, pp. 2329–2342, Nov. 2015.

[75] M. Kotaru, K. Joshi, D. Bharadia, and S. Katti, “Spotfi: Decimeter level
localization using WiFi,” SIGCOMM Comput. Commun. Rev., vol. 45,
no. 4, pp. 269–282, Aug. 2015. [Online]. Available: https://doi.org/10.
1145/2829988.2787487

[76] K. Joshi, D. Bharadia, M. Kotaru, and S. Katti, “Wideo: Fine-
grained device-free motion tracing using {RF} backscatter,” in
Proc. 12th {USENIX} Symp. Netw. Syst. Des. Implementation, 2015,
pp. 189–204.

[77] X. Li, S. Li, D. Zhang, J. Xiong, Y. Wang, and H. Mei, “Dynamic-music:
Accurate device-free indoor localization,” in Proc. ACM Int. Joint Conf.
Pervasive Ubiquitous Comput., New York, NY, USA, 2016, pp. 196–207.
[Online]. Available: https://doi.org/10.1145/2971648.2971665

[78] Y. Xie, J. Xiong, M. Li, and K. Jamieson, “xD-Track: Leveraging multi-
dimensional information for passive Wi-Fi tracking,” in Proc. Annu. Int.
Conf. Mobile Comput. Netw., 2016, pp. 39–43.

[79] K. Qian, C. Wu, Z. Yang, C. Yang, and Y. Liu, “Decimeter level passive
tracking with WiFi,” in Proc. Annu. Int. Conf. Mobile Comput. Netw.,
2016, pp. 44–48.

[80] X. Zheng, J. Wang, L. Shangguan, Z. Zhou, and Y. Liu, “Smokey:
Ubiquitous smoking detection with commercial WiFi infrastructures,”
in Proc. 35th Annu. IEEE Int. Conf. Comput. Commun., 2016,
pp. 1–9.

[81] W. Wang, A. X. Liu, and M. Shahzad, “Gait recognition using WiFi
signals,” in Proc. ACM Int. Joint Conf. Pervasive Ubiquitous Comput.,
2016, pp. 363–373.

[82] H. Li, W. Yang, J. Wang, Y. Xu, and L. Huang, “WiFinger: Talk to your
smart devices with finger-grained gesture,” in Proc. ACM Int. Joint Conf.
Pervasive Ubiquitous Comput., 2016, pp. 250–261.

[83] W. Wang, A. X. Liu, M. Shahzad, K. Ling, and S. Lu, “Device-free human
activity recognition using commercial WiFi devices,” IEEE J. Sel. Areas
Commun., vol. 35, no. 5, pp. 1118–1131, 2017.

[84] K. Qian, C. Wu, Z. Yang, Y. Liu, and K. Jamieson, “Widar: Decimeter-
level passive tracking via velocity monitoring with commodity Wi-
Fi,” in Proc. Int. Symp. Mobile Ad Hoc Netw. Comput., 2017,
Art. no. 6.

[85] K. Qian, C. Wu, Z. Yang, Y. Liu, H. E. Fugui, and T. Xing, “Enabling
contactless detection of moving humans with dynamic speeds using
CSI,” ACM Trans. Embedded Comput. Syst., vol. 17, no. 2, pp. 1–18,
2018.

[86] S. Shi, S. Sigg, L. Chen, and Y. Ji, “Accurate location tracking from
CSI-Based passive device-free probabilistic fingerprinting,” IEEE Trans.
Veh. Technol., vol. 67, no. 6, pp. 5217–5230, Jun. 2018.

[87] Y. Ma, G. Zhou, S. Wang, H. Zhao, and W. Jung, “SignFi: Sign language
recognition using WiFi,” in Proc. ACM Interactive, Mobile, Wearable
Ubiquitous Technol., 2018, pp. 1–21.

[88] H. Zou, J. Yang, Y. Zhou, L. Xie, and C. J. Spanos, “Robust WiFi-
enabled device-free gesture recognition via unsupervised adversarial
domain adaptation,” in Proc. Int. Conf. Comput. Commun. Netw., 2018,
pp. 1–8.

[89] Y. Zheng et al., “Zero-effort cross-domain gesture recognition with Wi-
Fi,” in Proc. 17th Annu. Int. Conf. Mobile Syst., Appl., Serv., New York,
NY, USA, 2019, pp. 313–325. [Online]. Available: https://doi.org/10.
1145/3307334.3326081

[90] J. Yang, H. Zou, Y. Zhou, and L. Xie, “Learning gestures from WiFi: A.
siamese recurrent convolutional architecture,” IEEE Internet Things J.,
vol. 6, no. 6, pp. 10763–10772, Jun. 2019.

[91] B. Huang, G. Mao, Y. Qin, and Y. Wei, “Pedestrian flow estimation
through passive WiFi sensing,” IEEE Trans. Mobile Comput., vol. 20,
no. 4, pp. 1529–1542, Apr. 2021.

[92] Y. Bai and X. Wang, “CARIN: Wireless CSI-based driver ac-
tivity recognition under the interference of passengers,” in Proc.
ACM Interactive, Mobile, Wearable Ubiquitous Technol., 2020,
pp. 1–28.

[93] J. Yang, H. Zou, S. Cao, Z. Chen, and L. Xie, “MobileDA: Toward edge-
domain adaptation,” IEEE Internet Things J., vol. 7, no. 8, pp. 6909–6918,
Aug. 2020.

[94] H. Fei, F. Xiao, J. Han, H. Huang, and L. Sun, “Multi-variations activ-
ity based gaits recognition using commodity WiFi,” IEEE Trans. Veh.
Technol., vol. 69, no. 2, pp. 2263–2273, Feb. 2020.

[95] Z. Zhou, Z. Yang, C. Wu, L. Shangguan, and Y. Liu, “Omnidirectional
coverage for device-free passive human detection,” IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 7, pp. 1819–1829, Jul. 2014.

[96] K. Qian, C. Wu, Z. Yang, Y. Liu, and Z. Zhou, “PADS: Pas-
sive detection of moving targets with dynamic speed using PHY
layer information,” in Proc. Int. Conf. Parallel Distrib. Syst., 2014,
pp. 1–8.

[97] K. Ohara, T. Maekawa, and Y. Matsushita, “Detecting state changes of
indoor everyday objects using Wi-Fi channel state information,” in Proc.
ACM Interactive, Mobile, Wearable Ubiquitous Technol., 2017, pp. 1–28.
[Online]. Available: https://doi.org/10.1145/3131898

[98] X. Wang, C. Yang, and S. Mao, “TensorBeat: Tensor decomposition for
monitoring multi-person breathing beats with commodity WiFi,” ACM
Trans. Intell. Syst. Technol., vol. 9, pp. 1–28, 2017.

[99] M. M. Breunig, H. P. Kriegel, R. T. Ng, and J. Sander, “LoF: Identifying
density-based local outliers,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2000, pp. 93–104.

[100] H. Wang et al., “Human respiration detection with commodity
WiFi devices: Do user location and body orientation matter ?,” in
Proc. ACM Int. Joint Conf. Pervasive Ubiquitous Comput., 2016,
pp. 25–36.

[101] C. Ieracitano et al., “Statistical analysis driven optimized deep learning
system for intrusion detection,” in Proc. Int. Conf. Brain Inspired Cogn.
Syst., 2018, pp. 759–769.

[102] P. Melgarejo, X. Zhang, P. Ramanathan, and D. Chu, “Leveraging
directional antenna capabilities for fine-grained gesture recognition,”
in Proc. ACM Int. Joint Conf. Pervasive Ubiquitous Comput., 2014,
pp. 541–551.

[103] F. Wang, S. Panev, Z. Dai, J. Han, and D. Huang, “Can WiFi estimate
person pose?,” Mar. 2019, arXiv:1904.00277.

[104] L. Guo, Z. Lu, X. Wen, S. Zhou, and Z. Han, “From sig-
nal to image: Capturing fine-grained human poses with commod-
ity Wi-Fi,” IEEE Commun. Lett., vol. 24, no. 4, pp. 802–806,
Apr. 2020.

https://doi.org/10.1145/3377165
https://doi.org/10.1145/3377165
https://doi.org/10.1145/2829988.2787487
https://doi.org/10.1145/2829988.2787487
https://doi.org/10.1145/2971648.2971665
https://doi.org/10.1145/3307334.3326081
https://doi.org/10.1145/3307334.3326081
https://doi.org/10.1145/3131898


190 IEEE REVIEWS IN BIOMEDICAL ENGINEERING, VOL. 16, 2023

[105] F. Li, M. Valero, H. Shahriar, R. A. Khan, and S. I. Ahamed, “Wi-COVID:
A COVID-19 symptom detection and patient monitoring framework
using WiFi,” Smart Health, vol. 19, no. 11, Art. no. 100147, 2021.
[Online]. Available: https://doi.org/10.1016/j.smhl.2020.100147

[106] C. Uysal and T. Filik, “RF-Based noncontact respiratory rate monitoring
with parametric spectral estimation,” IEEE Sensors J., vol. 19, no. 21,
pp. 9841–9849, Nov. 2019.

[107] K. Qian et al., “Widar2.0: Passive human tracking with a single Wi-Fi
link,” in Proc. 16th ACM Int. Conf. Mobile Syst., Appl., Serv., 2018,
pp. 350–361.

[108] C. Lowanichkiattikul, M. Dhanachai, C. Sitathanee, S. Khachonkham,
and P. Khaothong, “Impact of chest wall motion caused by respiration in
adjuvant radiotherapy for postoperative breast cancer patients,” Springer-
Plus, vol. 5, no. 1, pp. 1–8, 2016.

[109] T. Starner, J. Auxier, D. Ashbrook, and M. Gandy, “The ges-
ture pendant: A self-illuminating, wearable, infrared computer vi-
sion system for home automation control and medical monitor-
ing,” in Proc. Dig. Papers. 4th Int. Symp. Wearable Comput., 2000,
pp. 87–94.

[110] F. Zhou et al., “Clinical course and risk factors for mortality of adult
inpatients with COVID-19 in Wuhan, China: A retrospective cohort
study,” Lancet, vol. 395, no. 10229, pp. 1054–1062, 2020. [Online].
Available: http://dx.doi.org/10.1016/S0140-6736(20)30566-3

[111] W.J. Guan et al., “Clinical characteristics of coronavirus disease 2019 in
China,” New England J. Med., vol. 382, no. 18, pp. 1708–1720, 2020.
[Online]. Available: https://doi.org/10.1056/NEJMoa2002032

[112] Z. Yang, C. Wu, and Y. Liu, “Locating in fingerprint space: Wireless
indoor localization with little human intervention,” in Proc. Annu. Int.
Conf. Mobile Comput. Netw., 2012, pp. 269–280.

[113] S. Shi, Y. Xie, M. Li, A. X. Liu, and J. Zhao, “Synthesiz-
ing wider WiFi bandwidth for respiration rate monitoring in dy-
namic environments,” in Proc. IEEE Conf. Comput. Commun., 2019,
pp. 181–189.

[114] Y. Zhang, Y. Zheng, G. Zhang, K. Qian, C. Qian, and Z. Yang, “Gaitid:
Robust Wi-Fi based gait recognition,” in Wireless Algorithms, Systems,
and Applications, D. Yu, F. Dressler, and J. Yu, Eds., Cham, Switzerland:
Springer, 2020, pp. 730–742.

[115] B. Zheng and R. Zhang, “Intelligent reflecting surface-enhanced OFDM:
Channel estimation and reflection optimization,” IEEE Wireless Com-
mun. Lett., vol. 9, no. 4, pp. 518–522, Apr. 2020.

[116] S. Liaqat et al., “Novel ensemble algorithm for multiple ac-
tivity recognition in elderly people exploiting ubiquitous sens-
ing devices,” IEEE Sensors J., vol. 21, no. 16, pp. 18214–18221,
Aug. 2021.

[117] S. Imran, T. Mahmood, A. Morshed, and T. Sellis, “Big data analytics
in healthcare – A systematic literature review and roadmap for practical
implementation,” IEEE/CAA J. Automatica Sinica, vol. 8, no. 1, pp. 1–22,
Jan. 2021.

[118] L. Zhang, H. Han, M. C. Zhou, Y. Al-Turki, and A. Abusorrah, “An
improved discriminative model prediction approach to real-time tracking
of objects with camera as sensors,” IEEE Sensors J., vol. 21, no. 15,
pp. 17308–17317, Aug. 2021.

[119] K. Qian, Z. He, and X. Zhang, “3D point cloud generation with
millimeter-wave radar,” in Proc. ACM Interactive, Mobile, Wearable
Ubiquitous Technol., 2020, pp. 1–23.

Yao Ge (Graduate Student Member, IEEE) re-
ceived the dual B.Eng. degree (with first Hons.)
in electrical and electricity engineering from the
University of Electronic Science and Technol-
ogy of China, Chengdu, China, and University
of Glasgow, Glasgow, U.K., in 2020. He is cur-
rently working toward the Ph.D. degree with the
University of Glasgow. His research interests
include wireless sensing, artificial intelligence,
and smart healthcare systems.

Ahmad Taha (Member, IEEE) received the dual
B.Sc. degree (with Hons.) from the October Uni-
versity for Modern Sciences and Arts, 6th of Oc-
tober City, Egypt, and University of Greenwich,
London, U.K., in 2012, the M.Sc. degree (with
a distinction) in embedded systems and the
Ph.D. degree from the University of Greenwich,
in 2014 and 2020, respectively. He is currently a
Lecturer with Glasgow College UESTC, Univer-
sity of Glasgow, Glasgow, U.K. He is Endorsed
by the Royal Academy of Engineering as an

Exceptional Promise under the Global Talent scheme, a Fellow of Ad-
vanced Higher Education (FHEA), and a UKCGE recognised Associate
Supervisor. In October 2020, he first joined the University of Glasgow, as
a Postdoctoral Research Associate working in collaboration with several
industrial and academic partners, including Cisco and the University of
Strathclyde, Glasgow, U.K., on the 5G New Thinking project, funded
by the Department for Digital, Culture, Media and Sport (DCMS). He
has more than eight years experience working in Higher Education
Institutions, delivering teaching in Egypt, U.K., and China.

He was the recipient of two scholarships to pursue his M.Sc. and
Ph.D., after a successful Vice-Chancellor Award Application from the
University of Greenwich, in 2013 and 2016, respectively. His M.Sc. and
Ph.D., was also funded and in collaboration with Medway NHS Foun-
dation Trust in Kent, U.K.. He was nominated for the Energy Institute
Award in 2019 due to contributions in technology-based energy-saving
systems in the NHS.

Syed Aziz Shah is currently an Associate Pro-
fessor of mobile health with Healthcare Technol-
ogy and Innovation Theme, Research Centre for
Intelligent Healthcare. He is working on software
defined radios to develop a prototype that can
monitor activities of daily livings of elderly peo-
ple and detect anomalies in respiratory rate at
homes or care-centres.

His research work spans across multiple dis-
ciplines, including wireless sensing, radar tech-
nology, software defined radios, machine learn-

ing, cyber security and intelligent healthcare technologies. He has au-
thored or coauthored more than 60 technical articles in top-rank peer-
reviewed multi-disciplinary journals (three transactions) focusing on in-
telligent healthcare. His research interests include mobile health, pro-
totype design, radar sensing for healthcare technologies, non-invasive
fall detection, physiological measurements, remote patient monitoring
wireless sensing, machine learning, and cyber security for intelligent
healthcare. In addition, he has also taught numerous graduate and
postgraduate modules, and supervised students at higher education
level.

Kia Dashtipour received the M.Sc. degree in
advanced computer system development and
Ph.D. degree in computing science from the
University of Stirling, Stirling, U.K., in 2014 and
2019, respectively. From 2019 to 2021, he was a
Research Associate with the University of Glas-
gow, Glasgow, U.K. He is currently a Lecturer
with Edinburgh Napier University, Edinburgh,
U.K. His main research interests include natu-
ral language processing, IoT, machine learning,
and speech enhancement.

https://doi.org/10.1016/j.smhl.2020.100147
http://dx.doi.org/10.1016/S0140-6736(20)30566-3
https://doi.org/10.1056/NEJMoa2002032


GE et al.: CONTACTLESS WIFI SENSING AND MONITORING FOR FUTURE HEALTHCARE - EMERGING TRENDS 191

Shuyuan Zhu (Member, IEEE) received the
Ph.D. degree from the Hong Kong University
of Science and Technology (HKUST), Hong
Kong, in 2010. From 2010 to 2012, he was with
HKUST, and Hong Kong Applied Science and
Technology Research Institute Company Lim-
ited, respectively. In 2013, he joined the Uni-
versity of Electronic Science and Technology of
China, Chengdu, China, where he is currently
a Professor with the School of Information and
Communication Engineering. His research in-

terests include image/video compression and image processing. He
was the recipient of the Top 10% Paper Award at IEEE ICIP-2014 and
the Best 10% Paper Award at VCIP-2016. He is currently an Associate
Editor of the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO
TECHNOLOGY. He was the Session Chair of the IEEE DSP-2015, IEEE
VCIP-2020, and IEEE ICIP-2021, and is also the Session Chair of
IEEE ICME-2022. He was the Committee Member of IEEE ICME-2014,
VCIP-2016, PCM-2017, and IEEE MIPR-2020. He is a Member of IEEE
CAS Society.

Jonathan Cooper is currently The Wolfson
Chair of biomedical engineering and is Emer-
itus Vice Principal with the University of Glas-
gow, Glasgow, U.K. His main research inter-
ests include medical diagnostics and imaging,
with a track record of spin-out, and translation
of devices into industry and practice. He was
elected as a Fellow of the Royal Academy of
Engineering (U.K.’s national academy of engi-
neering) and a Fellow of the Royal Society of
Edinburgh (Scotland’s national academy of arts,

humanities and sciences). He has authored or coauthored more than
260 paper, 18 books and book chapters and has an H-index of 48.

Qammer H. Abbasi (Senior Member, IEEE) is
currently a Reader with the James Watt School
of Engineering, University of Glasgow, Glasgow,
U.K., and the Deputy Head for Communication
Sensing and Imaging Group. He has authored
or coauthored more than 350 leading interna-
tional technical journal and peer reviewed con-
ference papers and ten books. He was the re-
cipient of several recognitions for his research,
including URSI 2019 Young Scientist Awards,
U.K. exceptional talent endorsement by Royal

Academy of Engineering, Sensor 2021 Young Scientist Award, National
talent pool award by Pakistan, International Young Scientist Award by
NSFC China, National interest waiver by USA and eight best paper
awards. He is a Committee Member of IEEE APS Young professional,
Sub-committee Chair of IEEE YP Ambassador program, IEEE 1906.1.1
standard on nano communication, IEEE APS/SC WG P145, IET An-
tenna & Propagation, and healthcare network. He is also a member of
IET and a Fellow of RET and RSA.

Muhammad Ali Imran (Senior Member, IEEE)
is currently the Dean of the University of Glas-
gow UESTC, Glasgow, U.K., and a Professor
of wireless communication systems. He also
heads the Communications, Sensing and Imag-
ing Research Group with the University of Glas-
gow, and is the Director of Glasgow-UESTC
Centre for Educational Development and Inno-
vation. He is an Affiliate Professor with The Uni-
versity of Oklahoma, Norman, OK, USA, and
a Visiting Professor with 5G Innovation Centre,

University of Surrey, Guildford, U.K.. He has more than 20 years of
combined academic and industry experience with several leading roles
in multi-million pounds funded projects. He has filed 15 patents, has
authored or coauthored more than 400 journal and conference publi-
cations, edited seven books and authored more than 30 book chapters,
successfully supervised more than 40 postgraduate students at Doctoral
level. His research interests include self organised networks, wireless
networked control systems, Internet of Things, and the wireless sensor
systems. He has been a consultant to international projects and local
companies in the area of self-organised networks. He is a Fellow of IET,
Senior Fellow of HEA, Fellow of Royal Society of Arts, and Fellow of
Royal Society of Edinburgh.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


