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Access Control for Ambient Backscatter Enhanced
Wireless Internet of Things
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Yao Sun, Senior Member, IEEE, and Bin Cao, Senior Member, IEEE

Abstract—Beyond fifth-generation (B5G) and future networks
face the challenges of spectral, energy and cost efficiency for
large-scale machine-type communications. Recently, emerging
ambient backscatter communication (AmBC) technology pro-
vides a promising paradigm for the development of green Internet
of Things (IoT) networks in B5G era. Unlike existing work on
AmBC which mostly focuses on physical layer with relatively
ideal model, i.e., classic three-nodes model composed of radio
frequency (RF), backscatter device (BD) and IoT device, this
paper studies the access control strategy, including coefficient
design and device association, from the perspective of networking.
Assuming whether channel information is available a-priori, we
propose online and offline access control strategies respectively.
For offline access control strategy, we leverage the difference of
two convex functions approximation (DCA) and dual decompo-
sition to transform the non-concave optimization problem into
the concave one, and design a distributed access control strategy
called DCA-S. Furthermore, for the case that channel information
is assumed to be unknown in advance due to the dynamics of
primary and backscatter networks, we design a combinatorial
multi-armed bandit (CMAB) access control strategy (CMAB-S).
Numerical results show that the proposed DCA-S and CMAB-S
can achieve significant performance improvement of the system
in both cases of available and unavailable channel information
compared with benchmark schemes.

Index Terms—Ambient Backscatter Network, Internet of
Things, Coefficient Design, Device Association.

I. INTRODUCTION

The vision of beyond fifth-generation (B5G) and future 6G
wireless networks is expected to achieve ubiquitous connectiv-
ity, with aim of supporting much higher spectral/energy/cost
efficiency, higher data rate (up to 1Tbps), lower end-to-
end latency (< 1ms), higher connection density (≥ 107

devices/km2), etc. [1]. In this context, a new forecast is that
there will be 50 ∼ 75.4 billion connected devices by 2025
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and 79.4 zettabytes of data [2], driven by the tremendous
evolution of internet of things (IoT) and various content-based
services. However, current IoT is still at its infancy stage,
due to the extremely severe challenges brought by large-scale
deployment and wide-range commercialization of IoT systems.
In particular, the connectivity of tens of billions of IoT devices
poses extremely high stress on spectrum, energy and cost
efficiency, which hinders the effective support of massive
IoT applications. Besides, the limited battery capacity of IoT
devices is another challenge to be tackled. In order to support
the large expansion of connected IoT devices for B5G/6G era,
it is highly desirable to improve spectrum utilization and power
efficiency for wireless communication systems.

Backscatter communication is envisioned as a promising
technology for low-power wireless communication systems.
As a well-known application, radio frequency identification
(RFID) system uses passive and low-cost devices for com-
munications, where a dedicated carrier generator such as a
reader is required to generate radio frequency (RF) signals to
power the tags. Without using dedicated spectrum resources,
ambient backscatter communication (AmBC) [3] was proposed
to enable wireless devices to communicate using ambient RF
signals as the only source of power, such as using orthogonal-
frequency-division-multiplexing (OFDM) signals [4]. AmBC
is expected to effectively solve spectral, energy and cost
efficiency problems for large-scale machine-type communica-
tions, so that the communications between IoT devices can
be realized almost everywhere and anytime. Fig. 1 shows
the three-nodes backscatter communication model including
backscatter device (BD), IoT device and ambient RF source.
By harvesting energy from primary transmissions such as WiFi
and cellular systems, BDs reflect the surrounding ambient
signal by adjusting RF impedance switch under the backscatter
controller, so that data is backscattered to an IoT device.

In recent years, most related work [5]–[10] focuses on the
fundamentals of backscatter communications in physical layer,
while considering relatively ideal single-RF based topology
such as three-nodes model. However, the limitation of single-
RF source could not be sufficient to support high through-
put and wide coverage for massive IoT devices, especially
considering the dynamics of direct and backscatter signals.
Consequently, multi-RF AmBC can be exploited to improve
the usability of ambient RF signals and enable flexible net-
work deployment by using appropriate ambient RF sources in
practical scenarios. Instead of focusing on the performance
assurance of single backscatter network, an access control
scheme for both primary and backscatter communications is
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Fig. 1: Example of the access control strategy in multi-RF backscatter networks.

essential to increase the transmission efficiency and reduce
mutual interference of the system.

Due to the different characteristics of ambient RF sources
and devices, the access control scheme needs to effectively
tackle the problems of BD selection, user association, RF
admissibility, coefficient design, which are the main design
challenges. As shown in Fig. 1, an AmBC underlaying primary
networks may have multiple access points (APs) with different
capabilities, e.g., high power-AP (H-AP) and low power-AP
(L-AP). As a result, the access control scheme is needed to
decide which AP and BD to associate with to establish primary
and backscatter transmissions, so as to achieve satisfactory
overall network performance. Meanwhile, the backscatter con-
troller adjusts the coefficient of individual BDs according to
RF impedance switch. On the one hand, the associated AP
affects both the QoSs of primary and backscatter transmissions
due to spectrum multiplexing. On the other hand, appropriate
coefficient design and device association can reduce mutual
interference. In this way, the achievable transmission capacity
of the primary and backscatter systems can be maximized by
properly exploiting the RF source and BD.

Inspired by these observations, this paper focuses on the
access control strategy in multi-RF backscatter networks from
the perspective of networking. The main contributions in this
work are summarized as follows.
• First, in order to characterize the throughput maximiza-

tion problem, we establish the primary and backscatter
transmission models based on a time-slotted manner. We
formulate the access control strategy problem with the
objective of maximizing the weighted throughput sum of
primary and backscatter networks under QoS constraints.
To the best of our knowledge, this is the first work that
studies coefficient design and device association in multi-
RF scenario of AmBC.

• Next, we consider an offline optimization approach to

solve the access control problem when the estimate of
channel state information (CSI) is assumed to be available
a-priori based on pilot signals. In order to convert the
original problem into a mathematically tractable form,
we first exploit the special structure of the optimization
problem and slack the decision variables reasonably. Then
we use the classic difference of two convex functions ap-
proximation (DCA) method to transform the original non-
concave problem into the concave one. In order to reduce
the computational complexity, the original problem is
further decomposed into several subproblems with lower
dimensions by using dual decomposition theory, and a
distributed DCA-based access control strategy (DCA-S)
is proposed.

• In addition, assuming that the priori CSI is unavailable
in advance, due to the dynamics of both the primary
and backscatter networks, we propose an online access
control strategy based on learning optimization. With
the long-term optimization objective, the access control
strategy is formulated as a combinatorial multi-armed
bandit (CMAB) problem, and a modified upper confi-
dence bound (UCB) algorithm called CMAB-based ac-
cess control strategy (CMAB-S) is designed while taking
into account one-shot offline solution.

• Finally, we provide numerical results to validate the
performance of the proposed DCA-S and CMAB-S.
Compared with benchmarks, DCA-S and CMAB-S can
achieve significant improvement in average throughput
and the number of admissible IoT devices for both cases
of available and unavailable priori channel information.

The rest of this paper is organized as follows. In Section II,
we illustrate the system model and problem formulation for
AmBC enabled IoT networks. Section III presents the offline
DCA-S access control strategy. Then we propose a CMAB-
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S access control strategy based on learning optimization in
section IV. In Section V, we evaluate the performance and
discuss the results. Section VI reviews the related work, and
finally, Section VII concludes the whole paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a backscatter communication system consisting
of an H-AP and K L-APs, in which L IoT devices and M
BDs are randomly distributed within the maximum service
distance (MSD) [5]. Within the MSD, each IoT device can
communicate with the associated AP with different orthogonal
frequency resources [6]. In addition, BD can transmit informa-
tion to IoT devices by modulating its data bits over ambient
signals. For example, IoT devices can select the optimal WiFi
RF source based on the location, signal strength, etc., and
cooperatively receive data from WiFi and wearable sensors
for body area network applications. Let the set of APs be
K = {1, 2, ...,K}, the set of BDs be M = {1, 2, ...,M},
the set of IoT devices be L = {1, 2, ..., L}, and the set of
antennas be A = {1, 2, ..., A}. Each IoT device is equipped
with A (A ≥ 1) antennas to improve backscatter signal gain
by using antenna diversity [7]. Note that the high-throughput
backscatter transmission can be achieved when the number of
the received antennas satisfies A > K [8]. For simplicity,
flat-fading channel model is considered in this paper, where
all channels remain constant during each time slot, but they
can independently vary in different intervals [7] [11]. During
each time slot, the direct link from AP k to the a-th antenna
of IoT device l is denoted by fk,l,a, the forward link from
AP k to BD m is denoted by hk,m, and the backscatter link
from BD m to the a-th antenna of IoT device l is denoted by
gm,l,a, where k ∈ K, m ∈M, l ∈ L, and a ∈ A.

For the co-existence of primary and backscatter commu-
nications, each IoT device receives backscattered signals in
separate time slots [12], which is typical time division multiple
access (TDMA) mode. Within a time slot, all BDs adjacent to
the currently communicating IoT device can share the same
time slot and spectrum for backscatter transmission. Despite
the low transmission efficiency, TDMA can avoid interference
among BDs and save bandwidth resources.

A. Primary and Backscatter Transmissions

In time slot n, the direct link signal received by IoT device
l from AP k is rd

k,l (n) =
∑
a∈Afk,l,a

√
P d
k,l,ask,l (n), where

sk,l (n) denotes the signal transmitted from AP k to IoT device
l. Suppose that sk,l (n) is the unit power signal and follows the
standard circular symmetric complex gaussian (CSCG) distri-
bution [5], i.e., sk,l (n) ∼ CN (0, 1). P d

k,l,a =
P s

kG
s
kG

d
l,aλ

2

(4π)2(Ld
k,l)

v1

is the average received signal power from AP k to the a-th
antenna of IoT device l, where P s

k is the transmit power of
AP k, Gs

k is the transmitter antenna gain, Gd
l,a is the receiver

antenna gain, λ is the wavelength of the signal, v1 is the path
loss exponent, and Ld

k,l is the distance from BS k to IoT device
l [12].

Because of the double fading effect, the signal of backscatter
link is typically weaker than that of the direct link. In

other words, the transmission rate of backscatter links is
lower than that of direct links, which is suitable for low-
rate transmission and cos-sensitive scenarios. Suppose that
the symbol period Tc of BD covers W (W ≥ 1) symbol
periods Ts of AP, i.e., Tc = WTs. Therefore, during a
primary transmission period, the backscatter signal received
by IoT device l from BD m in time slot n can be expressed
as rc

m,l (n) = αk,m,lhk,m
∑
a∈A gm,l,a

√
P c
m,l,ask,l (n) cm,l,

where n = 1, 2, ...,W , αk,m,l is the backscatter coefficient

of BD m, P c
m,l,a =

P b
k,mG

b
mG

d
l,aλ

2

(4π)2(Lc
m,l)

v3 is the average received

signal power from BD m to the a-th antenna of IoT device
l, P b

k,m =
P s

kG
s
kG

b
mλ

2

(4π)2(Lb
k,m)

v2 is the average received signal power

from AP k to the BD m, Gb
m is the antenna gain of BD

m, Lb
k,m is the distance from AP k to BD m, Lc

m,l is the
distance from BD m to IoT device l, v2 and v3 are the path loss
exponents. Let cm,l be the message transmitted from BD m to
IoT device l, and cm,l ∈ {0, 1}. When cm,l = 1, backscatter
state is triggered and bit “1” is transmitted from BD m to
IoT device l. Otherwise cm,l = 0, there is no information for
backscatter transmission.

In time slot n, the signal summation of the primary trans-
mission rd

k,l (n) and backscatter transmission rc
m,l (n) at the

a-th antenna can be expressed as

rl,a (n) =√
P d
k,l,a

(
fk,l,a + αk,m,lhk,mgm,l,a

√
`cm,l

)
sk,l (n) + ul,a (n) ,

(1)

where n = 1, 2, ...,W , ` =
(Gb

m)
2
λ2(Ld

k,l)
v1

(4π)2(Lb
k,m)

v2(Lc
m,l)

v3 , and ul,a (n)

is the complex gaussian noise.

Based on the decoding strategy and successful interfer-
ence cancellation (SIC) technology [7], the IoT device first
decodes sk,l (n) by treating backscatter signals as interfer-
ence. Meanwhile, the interference from other APs is not
considered in the system, which is because the co-channel
interference caused by channel reuse can be efficiently mit-
igated by operating adjacent APs in different frequencies.
We denote the decoding matrix as Ω = [Ω1; Ω2], where
Ω1 = [ω1,1, . . . , ω1,A] is the decoding vector of primary
transmission and Ω2 = [ω2,1, . . . , ω2,A] is the decoding vector
of backscatter transmission. Multiplying by different decoding
matrices such as MRC, MMSE and ZF, the primary and
backscatter signals can be decoded at the receiver separately,
that is, Ω × [rl,1 (n) ; . . . ; rl,A (n)]. Note that the detailed
decoding strategy can be referred to [7].

For primary transmission, the signal to interference
plus noise ratio (SINR) γd

k,m,l is given by γd
k,m,l =∑

a∈A
ω1,a|fk,l,a|2P d

k,l,a

αk,m,l
1
W

W∑
n=1

∑
a∈A

ω1,a|hk,m|2`|gm,l,a|2P d
k,l,a+σ2

1

, where σ2
1 =∑

a∈A
ω1,aul,a (n). According to the definition in [8] [11] [13],

the primary transmission throughput from BS k to IoT device
l can be expressed as

Rd
k,m,l = log

(
1 + γd

k,m,l

)
. (2)
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After sk,l (n) is removed from rl (n), the SNR
for decoding backscatter signal can be expressed as

γb
k,m,l =

W∑
n=1

αk,m,l

∑
a∈A

ω2,a|hk,m|2`|gm,l,a|2P d
k,l,a

σ2
2

, where
σ2

2 =
∑
a∈A

ω2,aul,a (n). Since the symbol period of Tc covers

W successive symbol periods Ts of AP, the SINR used to
decode BD symbol can be regarded as increasing W times,
and the symbol rate reduces 1/W times [8] [13]. Hence, the
achievable backscatter throughput from BD m to IoT device
l using AP k as source can be expressed as

Rb
k,m,l=

1

W
log
(
1 + γb

k,m,l

)
. (3)

B. Problem Formulation

Our design problem of this paper can be stated as: maximiz-
ing the weighted sum of primary and backscatter throughput
subject to specific QoS constraints. Based on the primary and
backscatter throughput in Eqs. (2) and (3), we can formulate
the access control problem as

max
∑
l∈L

∑
m∈M

∑
k∈K

uk,lvm,l
[
ρR̄d

k,m,l + (1− ρ) R̄b
k,m,l

]
,

(4)

s.t. C1 :
∑
k∈K

uk,l = 1, ∀l ∈ L, (4-1)

C2 :
∑
l∈L

vm,l = 1, ∀k ∈ K, (4-2)

C3 : αmin ≤ αk,m,l ≤ αmax, ∀m ∈M, (4-3)

C4 :
∑
k∈K

∑
m∈M

uk,lvm,lR
d
k,m,l ≥ Rth

l , ∀l ∈ L, (4-4)

C5 : uk,l, vm,l ∈ {0, 1} , ∀ (k,m, l) ∈ K ×M×L,
(4-5)

where ρ is the weight factor, ρ ∈ [0, 1]. R̄d
k,m,l = Rd

k,m,l/R
nor
d

and R̄b
k,m,l = Rb

k,m,l/R
nor
b are the normalized throughput in

order to fill a gap of backscatter and primary throughput,
i.e., Rnord and Rnorb are constant. uk,l and vm,l are 0-1
decision variables used to pair AP k, BD m and IoT device
l, where uk,l = 1 and vm,l = 1 if the l-th IoT device is
associated with the k-th AP and m-th BD and uk,l = 0 and
vm,l = 0 otherwise. Constraint (4-1) means that each IoT
device can only access one AP in one time slot. Constraint (4-
2) guarantees the backscatter transmission via IoT device l and
BD m in one time slot. Constraint (4-3) guarantees the feasible
regime of backscatter coefficient. Constraint (4-4) ensures that
the QoS requirements of the primary transmission must meet a
minimum threshold Rth

l . Constraint (4-5) states that the access
variables are 0-1 integer.

III. ACCESS CONTROL STRATEGY BASED ON OFFLINE
OPTIMIZATION

A. The Offline Access Control Strategy

We propose to apply alternative iteration method to jointly
optimize coefficient design and device association in an offline
manner. In details, our solution to the joint coefficient design
and device association problems is described as follows.

• Coefficient design: Give a specific device association
solution, the optimization of coefficient design is still
mathematically intractable due to the non-concave struc-
ture of the problem. With this property, we first rewrite
this non-concave optimization problem into the difference
of two concave functions. After that, exploiting this
special structure, the DCA method is used to transform
the non-concave optimization problem into the concave
one. Furthermore, the large-scale optimization problem
can be decomposed into a master problem and several
subproblems, and the optimal coefficient design can be
solved using dual decomposition theory.

• Device association: In order to guarantee the QoS re-
quirements of primary transmission, we should determine
the set of accessible IoT devices and BDs that satis-
fies the minimum rate requirement Rth

l . For the fixed
backscatter coefficient, we adopt relaxation and decou-
pling methods to convert device association subproblems
into a mathematically tractable problem. As a result, the
integer programming is transformed into the difference
of two concave functions, and a DCA-heuristic method
is developed to solve device association problem to obtain
a suboptimal solution.

Based on the solutions to subproblems, the master prob-
lem updates dual variables for each subproblem. Finally, the
iteration continues until a convergence condition is satisfied.

B. DCA for Coefficient Design Problem

We can observe that the objective function (4) and constraint
(4-4) can be rewritten as the difference between two concave
functions with respect to f (·) and g (·), which is equivalent
to the original coefficient problem. Given fixed uk,l and vm,l,
the coefficient design problem can be rewrite as follows.

max
α

f (α)− g (α)

=
∑
l∈L

∑
m∈M

∑
k∈K

(
f1 (αk,m,l) + f2 (αk,m,l)︸ ︷︷ ︸

f(αk,m,l)

−g (αk,m,l)
)
,

(5)
s.t. C4 : f1 (α)− g (α) =∑

m∈M

∑
k∈K

(
f1 (αk,m,l)− g (αk,m,l)

)
≥ Rth

l , and C3,

(5-1)

where α = {αk,m,l,∀ (k,m, l) ∈ K ×M×L} is the vector
of backscatter coefficient, and f1 (αk,m,l), f2 (αk,m,l) and
g (αk,m,l) are shown in Eq. (6).

We can find that the objective function in (5) is indeed
the difference of two concave functions f (α) and g (α).
However, the objective function f (α)−g (α) is non-concave.
Therefore, it is intractable to apply conventional convex or
quasi-concave algorithms to solve this problem. To optimize
backscatter coefficient in (5), we exploit the special structure
of the optimization objective, and propose to use DCA method
to solve such a non-concave problem.

The main idea of DCA is as follows. For the difference of
two concave functions, the minuend g (·) is approximated by
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

f1 (αk,m,l) =wk,m,lρ log

(
αk,m,l

1
W

W∑
n=1

∑
a∈A

ω1,a|hk,m|2`|gm,l,a|2P d
k,l,a +

∑
a∈A

ω1,a|fk,l,a|2P d
k,l,a + σ2

1

)
,

f2 (αk,m,l) =wk,m,l (1− ρ) 1
W

[
log

(
αk,m,l

W∑
n=1

∑
a∈A

ω2,a|hk,m|2`|gm,l,a|2P d
k,l,a + σ2

)
− log

(
σ2

2

)]
,

g (αk,m,l) = wk,m,lρ log

(
αk,m,l

1
W

W∑
n=1

∑
a∈A

ω1,a|hk,m|2`|gm,l,a|2P d
k,l,a + σ2

1

)
,

(6)

its first-order Taylor expansion around some feasible points,
so as to solve the resultant concave function and obtain the
global optimal solution. For clarity and conciseness, we first
give the following definitions:

Q1
k,l =

∑
a∈A

ω1,a|fk,l,a|2P d
k,l,a,

Q2
k,m,l = 1

W

W∑
n=1

∑
a∈A

ω1,a|hk,m|2`|gm,l,a|2P d
k,l,a,

Q3
k,m,l =

W∑
n=1

∑
a∈A

ω2,a|hk,m|2`|gm,l,a|2P d
k,l,a.

(7)

Then, in the s-th iteration, coefficient design problem in Eq.
(5) can be transformed into a DCA function around feasible
point α [s], which can be regarded as an upper bound of
g (α [s]) at α [s], expressed as.

max
α
f (α)− g (α [s])−∇g (α [s]) (α−α [s]) (8)

s.t. C̃4 : f1 (α)− g (α [s])−∇g (α [s]) (α−α [s]) ≥ Rth
l ,

C3, and C5, (8-1)

where ∇ is the gradient, and ∇g (α [s]) (α−α [s]) can be
expressed by

∇g (α [s]) (α−α [s]) =∑
k∈K

∑
m∈M

∑
l∈L

[
uk,lvm,lρQ

2
k,m,l (αk,m,l − αk,m,l [s])(

αk,m,l [s]Q2
k,m,l + σ2

1

)
ln 2

]
.

We can observe that objective function in Eq. (8) is a
concave function with respect to αk,m,l. Therefore, effective
convex optimization methods can be adopted to solve the
above optimization problem. In the following, we elaborate
on how to solve the optimization problem in Eq. (8) using
Lagrange duality and decomposition theory. First, we trans-
fer constraint C̃4 into the objective function with Lagrange
multipliers and define the Lagrange as follows.

L (α,λ) = f (α)− g (α [s])−∇g (α [s]) (α−α [s])

+

L∑
l=1

λl

(
f1 (α)− g1 (α [s])−∇g (α [s]) (α−α [s])−Rth

l

)
,

(9)

where λ = {λl,∀l ∈ L} is the Lagrange multiplier associated
with constraint C̃4. Then, the Lagrange dual function can be
expressed as

min
λ

max
α

L (α,λ) , s.t. λl ≥ 0, ∀l ∈ L, and C3. (10)

The Lagrange dual can be solved by alternately optimizing
α and λ. Obviously, such optimization method requires a
centralized controller for all APs, BDs and IoT devices.

However, due to the requirements of low cost and low power
consumption, limited resources and delay requirements make
it difficult to support such centralized solution. Therefore, we
resort to distributed algorithms instead of directly solving the
Lagrange dual. Next, we exploit the decomposability structure
in Eq. (9) and adopt dual decomposition theory to decompose
the original large problem into distributively solvable master
problem and subproblems.

Since L (α,λ) does not include cross-term of λ, the La-
grange dual function in Eq. (10) can be equivalently expressed
as the sum of subproblems Ll (αk,m,l, λl) (defined in Eq. (11))
by exchanging the computation order, as shown below.

min
λl

max
αk,m,l

∑
l∈L

(
Ll (αk,m,l, λl) + λlR

th
l

)
, (12)

s.t. λl ≥ 0, ∀l ∈ L, and C3. (12-1)

In this way, the optimization problem defined by Eq. (12)
can be separated into two loops of optimization. In the inner
loop, we have L subproblems, i.e., Ll (αk,m,l, λl). In the outer
loop, the dual variable λl can be updated by minimizing the
Lagrange dual function in Eq. (12).

1) The inner loop: Given fixed λl, subproblem
Ll (αk,m,l, λl) can be expressed as

max
αk,m,l

Ll (αk,m,l, λl) , s.t. C3. (13)

Using dual decomposition, we can solve each subprob-
lem Ll (αk,m,l, λl) separately and get the following solution
αk,m,l [s+ 1]:

αk,m,l [s+ 1] = arg max
C3

Ll (αk,m,l, λl) . (14)

Due to the strict concavity of subproblem Ll (αk,m,l, λl),
αk,m,l [s+ 1] can be efficiently solved by available convex
optimization solvers [14] [15].

2) The outer loop: Based on the obtained solutions to the
subproblems, dual variable λ can be obtained by solving the
following master dual problem:

min
λl

D (λl) =
∑
l∈L

(
Lmaxl (αk,m,l, λl) + λlR

th
l

)
, (15)

s.t. λl ≥ 0, ∀l ∈ L, (15-1)

where Lmaxl (αk,m,l, λl) is the maximum value of the La-
grangian solved in Eq. (13) for a given λl. Since subproblem
Ll (αk,m,l, λl) is convex, the strong dual holds and the duality
gap is zero. Therefore, the minimum value of the master prob-
lem is equal to the maximum value of the sum subproblems.

Leveraging subgradient method, dual variables λl can be
updated for each subgradient of Ll (αk,m,l, λl), as shown
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Ll (αk,m,l, λl) =
∑
m∈M

∑
k∈K

[
f (αk,m,l)− g (αk,m,l [s])−∇g (αk,m,l [s]) (αk,m,l − αk,m,l [s])

]
+ λl

( ∑
m∈M

∑
k∈K

[f1 (αk,m,l)− g (αk,m,l [s])−∇g (αk,m,l [s]) (αk,m,l − αk,m,l [s])]

)
.

(11)

below.

λl [s+1]=
[
λl [s]− δ [s]

(
f1 (α)− g (α [s])−

∇g (αk,m,l [s]) (αk,m,l − αk,m,l [s])−Rth
l

)]+
,

(16)

where δ [s] > 0 is a sufficiently small positive step-size,
and [·]+ guarantees that the dual variable λl [s+ 1] is in a
nonnegative regime.

In DCA function, g (α) is upper bounded by its first-
order Taylor expansion around feasible solution α [s]. Hence,
DCA function provides a well approximated lower bound
minimization for the original problem, i.e., h (α) = f (α) −
g (α) ≥ f (α) − g (α [s]) − ∇g (α [s]) (α−α [s]) =
h̃ (α). Since constraints are compact, the following con-
dition is satisfied: h (α [s+ 1]) ≥ f (α [s]) − g (α [s]) −
∇g (α [s]) (α [s+ 1]−α [s]) ≥ h (α [s]). According to
Cauchy theorem, sequence α (s) always converges with the
increase of s [14].

For coefficient design problem, we can obtain a KKT
optimal solution. According to [16], at least a KKT
solution can be obtained if the objective function is
differentiable and can be written as the DCA structure
f (α) − g (α) under a convex feasible set. Furthermore,
we can conclude that the global optimal solution can
be obtained if f (α) − g (α) does not exceed one peak
(valley) point, which ensures that the DCA algorithm does
not fall into a local optimal solution. For uk,lvm,l = 1,
f (αk,m,l) − g (αk,m,l) can be equivalently expressed as:
R(αk,m,l) = ρ log

(
1 + 1/(αk,m,lQ

5
k,m,l +Q6

k,m,l)
)

+

(1− ρ) /W log
(

1 + αk,m,lQ
4
k,m,l

)
, where Q4

k,m,l =

Q3
k,m,l/σ

2
2 , Q5

k,m,l = Q2
k,m,l/Q

1
k,l, and Q6

k,m,l =
σ2

1/Q
1
k,m,l. Obviously, we can observe that the

first term log
(

1 + 1/(αk,m,lQ
5
k,m,l +Q6

k,m,l)
)

is a
monotonically decreasing function, and the second term
log
(

1 + αk,m,lQ
4
k,m,l

)
is a monotonically increasing

function. Therefore, the function R(αk,m,l) has at most one
peak (valley) point, which is similar with the property of the
function log (1 + x) + log (1 + 1/x).

C. DCA for Device Association Problem

Intuitively, device association problem can be formulated as
a combinatorial integer programming involving 0-1 variables,
and the complexity of straightforward brute-force search over
the sets of APs K, BDs M and IoT devices L is obviously
infeasible in large-scale deployment. Inspired by the hidden
DCA structure [17], our strategy is to adopt relaxation and

DCA methods to convert the original problem (4) into a math-
ematically tractable form. It is worth noting that this relation
reduces the complexity of combinatorial integer programming.
In this way, we can formulate device association problem as a
DCA function and develop a DCA-based heuristic algorithm
to solve the optimization problem efficiently.

By relaxing binary variables, the constraint C5 can be
written as its equivalent form:

C̃5 : uk,l, vm,l ∈ [0, 1] ,∀ (k,m, l) ∈ K ×M×L,
C6 :

∑
k∈K

∑
l∈L

(
uk,l − u2

k,l

)
≤ 0,

C7 :
∑

m∈M

∑
l∈L

(
vm,l − v2

m,l

)
≤ 0,

(17)

where C6 and C7 are auxiliary constraints, used to restrict the
value of continuous variable in domain {0, 1} [17] [18].

Since uk,l ∈ {0, 1} is equivalent to
∑
k∈K

∑
l∈L

(
uk,l − u2

k,l

)
=

0, the binary set uk,l ∈ {0, 1} is the difference of two
convex sets [0, 1] and C6 :

∑
k∈K

∑
l∈L

(
uk,l − u2

k,l

)
≤ 0,

i.e., {0, 1} = [0, 1] / {uk,l ∈ C6}. Similarly, the binary set
vm,l ∈ {0, 1} is the difference of two convex sets [0, 1] and
C7 :

∑
m∈M

∑
l∈L

(
vm,l − v2

m,l

)
≤ 0 [17].

In other words, the constraints C̃5, C6 and C7

satisfy the DCA function. Furthermore, the cross-term
uk,lvm,l can be equivalently replaced by uk,lvm,l =
1
2 (uk,l + vm,l)

2 − 1
2

(
u2
k,l + v2

m,l

)
. Given fixed αk,m,l and

substituting uk,lvm,l = 1
2 (uk,l + vm,l)

2− 1
2

(
u2
k,l + v2

m,l

)
into

optimization problem in Eq. (4), device association problem
can be expressed as the difference between two convex func-
tions with respect to uk,l and vm,l. Meanwhile, we can observe
that device association problem becomes separable due to the
absence of coupling constraints. Therefore, device association
problem can be decomposed into L equivalent subproblems to
be solved separately. For the l-th subproblem, we have

max
uk,l,vm,l

∑
m∈M

∑
k∈K

1

2
(uk,l + vm,l)

2
R (αk,m,l [s])−

∑
m∈M

∑
k∈K

1

2

(
u2
k,l + v2

m,l

)
R (αk,m,l [s]), (18)

s.t. C̃5, C6, and C7, (18-1)

where R (αk,m,l [s]) = ρR̄d
k,m,l + (1− ρ) R̄b

k,m,l. To handle
the nonconvex constraints C6 and C7, we can integrate the
constraints into the optimization objective by associating two
Lagrange multipliers µ1 and µ2. Hence, the Lagrange dual
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function is given by

min
µ1,µ2

max
uk,l,vm,l

L (uk,l, vm,l, µ1, µ2) =

Pl (uk,l, vm,l)−Ql (uk,l, vm,l) , (19)

s.t. C̃5, µ1 and µ2 ≥ 0, (19-1)

where

Pl (uk,l, vm,l) =
∑
m∈M

∑
k∈K

1

2
(uk,l + vm,l)

2
R (αk,m,l [s])−

µ1

∑
k∈K

uk,l +

(∑
k∈K

uk,l

)2
−

µ2

 ∑
m∈M

vm,l +

( ∑
m∈M

vm,l

)2
 , (20)

Ql (uk,l, vm,l) =
∑
m∈M

∑
k∈K

1

2

(
u2
k,l + v2

m,l

)
R (αk,m,l [s])−

µ1

∑
k∈K

(uk,l)
2 +

(∑
k∈K

uk,l

)2
−

µ2

 ∑
m∈M

(vm,l)
2 +

( ∑
m∈M

vm,l

)2
 .

(21)

Since the strong Lagrangian duality holds for Eq. (19) with
appropriately chosen 0 < µ0 < +∞ [17], the optimization
problem in Eq. (18) is equivalent to the following convex
optimization problem for µ1, µ2 ≥ µ0:

min
uk,l,vm,l

L (uk,l, vm,l, µ1, µ2) , s.t. C̃5. (22)

Although both terms P (uk,l, vm,l) and Q (uk,l, vm,l)
in L (uk,l, vm,l, µ1, µ2) are convex over uk,l and vm,l,
the difference of two convex functions is not necessar-
ily convex. In order to approximate optimization objective
L (uk,l, vm,l, µ1, µ2) to a convex function, we employ DCA
algorithm by constructing a convex function using the first
order Taylor approximation of minuend Q (uk,l, vm,l). In the
s-th iteration, Eq. (18) can be transformed into a DCA function
around feasible points uk,l [s] and vm,l [s], which is an upper
bound of device association problem, expressed as.

max
uk,l,vm,l

Pl (uk,l, vm,l)−Ql (uk,l [s] , vm,l [s])−

∇uk,l
Ql (uk,l [s] , vm,l [s]) (uk,l − uk,l [s])−

∇vm,l
Ql (uk,l [s] , vm,l [s]) (vm,l − vm,l [s]) , (23)

s.t. C̃5. (23-1)

Solving the above subproblem, we can obtain

(uk,l [s+ 1] , vm,l [s+ 1]) = arg max
uk,l,vm,l

(23). (24)

D. DCA-S Algorithm for Access Control Strategy

So far, we have discussed how to optimize coefficient
design and device association problems in a distributed way

Algorithm 1: DCA-S algorithm to solve access control
strategy
Input : Network topology (K, L, M ) and channel

state (hk,m, gm,l and fk,l,a)
Output: αk,m,l, uk,l and vm,l

1: Initialize:
Set s = 0, λl [s] = 0, choose αk,m,l [s] from the feasible
set C̃3 ∩ C̃5, choose uk,l [s] and vm,l [s] from C̃6, set µ1

and µ2 to a sufficiently large value
2: Compute Rl [s] according to Eq. (4)
3: repeat
4: for l = 1: L do
5: The inner loop: obtain backscatter coefficient

αk,m,l [s+ 1] according to Eq. (14)
6: The outer loop: update dual variable λl [s+ 1]

according to Eq. (16)
7: Obtain uk,l [s+ 1] and vm,l [s+ 1] according to Eq.

(24)
8: Compute gap = Rl [s+ 1]−Rl [s]
9: end for

10: until gap ≤ threshold
11: return αk,m,l [s+ 1], uk,l [s+ 1] and vm,l [s+ 1]

respectively. On this basis, we present an effective algorithm
for DCA-based access control strategy, called DCA-S. In the
s-th iteration, the access control strategy can be formulated
by solving coefficient design subproblem in Eq. (14) and
device association subproblem in Eq. (24). Algorithm 1
summarizes DCA algorithm to solve coefficient design and
device association problems described in this section.

The computational complexity of DCA-S algorithm is
O (MKFαFu,v), where Fα and Fu,v are the number of
iterations for updating αk,m,l and (uk,l, vm,l), respectively.
From simulation results, we will see that DCA-S algorithm
has a relatively fast convergence speed.

IV. ACCESS CONTROL STRATEGY BASED ON ONLINE
OPTIMIZATION

In Section III, we have proposed an offline DCA-S al-
gorithm for solving the access control problem with known
CSI. However, DCA-S algorithm requires real-time CSI on
IoT devices, which in turn increases signaling overhead in a
time slot-based backscatter network. Furthermore, due to the
dynamics of wireless channels (e.g., channel fading, double-
fading effect, etc.), channel information is unknown in advance
and it is infeasible for each IoT device to obtain global
information for all APs and BDs. As a result, the access control
strategy represented by the proposed DCA-S algorithm is an
instantaneous decision and cannot fully reflect the impact of
network dynamics on decision-making, which may not always
be the best policy for time-varying environments.

To optimize network performance in an online manner,
we next propose a multi-armed bandit (MAB) framework for
designing an access control strategy, while making use of
coefficient design using DCA-S algorithm. The main idea of
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MAB is to model a scenario in which an agent makes the
optimal decision from a set of actions over time in rounds.
For the decision made in each round, the agent will obtain
a stochastic reward from the environment. Without knowing
underlaying reward distribution, the optimal policy of MAB
is needed to balance the exploitation of currently optimal
policy while conducting an exploration of other policies that
may turn out to be superior in the long run. By interacting
with the environment, the decision-maker will gradually learn
statistical knowledge about the reward distribution and make
the optimal decisions to maximize the cumulative reward
instead of immediate reward, so as to achieve long-term
satisfactory system performance in dynamic environments.

A. CMAB-based Access Control Strategy (CMAB-S)

In MAB framework, each decision-maker sequentially se-
lects an arm to pull from a set of predefined arms, and feeds
back a corresponding reward from an unknown distribution.
To formulate the MAB-based solution for the access control
problem, each IoT device can be regarded as a decision-maker,
and each arm corresponds to a pairing of the BDs to APs.
Assuming that the decision-makers have no prior knowledge
of network state information, once an arm is pulled in each
round, the throughput in Eq. (4) can be regarded as a reward.

Different from the standard MAB mode, the arm in
our problem is always a combinatorial action with two-
dimension space. To construct the combinatorial action, we
represent the joint arm selected in the t-th round as abl (t) =
(uk,l (t) , vm,l (t)), where b is the index of the Cartesian prod-
uct set, e.g., b ∈ B = K ×M = {(k,m) | k ∈ K,m ∈M}.
The joint arm abl (t) of all IoT devices can constitute a strategy
set Π =

{
ab1 (t) , ab2 (t) , · · · , abL (t)

}
. To find the optimal

strategy Π∗, we formulate the problem as a combinatorial
MAB (CMAB) with aim of maximizing the cumulative reward
in finite T rounds. As a result, the optimal CMAB-S is
formulated as

Π∗ = arg max
Π

∑
t∈T

∑
l∈L

Rl
(
abl (t)

)
, s.t. C1, C2, C4, and C5,

(25)

where Rl
(
abl (t)

)
=

∑
m∈M

∑
k∈K

uk,l (t) vm,l (t) [ρRd
k,m,l +

(1− ρ)Rb
k,m,l].

In the problem (25), we can observe that the reward
Rl
(
abl (t)

)
of IoT device l is independent of other IoT devices.

As a result, the strategy made by decision-maker l does not
affect the behavior of other decision-makers. Therefore, the
independent decision-makers can make the optimal strategy
in a decentralized way, such that the overall optimization can
be accomplished. The optimal CMAB-S Π∗ in problem (25)
can be obtained in a decentralized way as follows.

abl
∗

= arg max
Π

=
∑
t∈T

Rl
(
abl (t)

)
(26)

A straightforward method for solving a CMAB problem
of independent decision-makers is to apply upper confidence
bound (UCB) policy [19]. In UCB policy, the optimal joint
arm abl (t) can be selected for maximizing the average reward

associated with a confident interval. Specifically, in each
round, when joint arm abl (t) is pulled, the corresponding
average reward and the number of times that the joint arm
abl (t) has been pulled so far can be observed and stored. In
turn, the optimal strategy can be updated based on the index
of UCB policy, which is the average reward plus a confident
interval to balance exploitation and exploration.

Since UCB policy is related to historical data, two tables
with K×M dimensions are needed to store the average reward
and the number of times for pulling each arm abl (t) [20]. Here
we define the average reward ϕ̆l(t)K×M and the number of
times nbl (t)K×M that the joint arm abl (t) has been pulled
during t rounds. First, in the (t+ 1)-th round, if the joint arm
abl (t+ 1) is pulled, the number of times nbl (t+ 1) can be
updated by nbl (t+ 1) = nbl (t) + 1.

Once the joint arm abl (t+ 1) is pulled in the (t + 1)-th
round, the weighted sum throughput can be observed as an
immediate reward. However, selecting both actions k and m
simultaneously may violate the QoS constraints. In order to
avoid this problem, we define a penalized average reward to
punish pulling an arm that violates QoS constraints in each
round. In the (t + 1)-th round, the average reward ϕ̆bl (t+ 1)
from joint arm abl can be expressed as

ϕ̆bl (t+ 1) =


nb
l (t)ϕ̆b

l (t)+Rl(abl (t+1))
nb
l (t+1)

, if Rd
k,m,l ≥ Rth

l ,

nb
l (t)ϕ̆b

l (t)

nb
l (t+1)

, otherwise.
(27)

By maximizing the index of UCB policy, the optimal joint
action is given by

abl (t+ 1) = arg max
abl

(
ϕ̆bl (t) + θ

√
3 lnT

2nbl (t)

)
, (28)

where θ = max1≤t′≤t ϕ̆
b
l (t′),

√
3 lnT
2nb

l (t)
is the exploration term

to encourage the exploration of less selected arms, and the
constant defining confidence interval is 3/2 [19].

B. Analysis of Expected Regret for CMAB-S

Due to the existence of the exploration component, the strat-
egy selected by decision-makers may not always be the best.
To evaluate the quality of the selected action in each round,
the conception of expected regret is introduced to measure the
performance loss between the expected cumulative reward of
the optimal action and that of the selected action, expressed
as.

Regret = ϕ∗l t−
∑
b∈B

E
[
nbl (t)

]
ϕ̆bl (t) , (29)

where ϕ∗l = maxabl ϕ̆
b
l (t) is the best expected reward, and

E[nk,m (t)] is the expected number of plays for arms k and
m in the first t rounds.

Next, the expected regret bound of UCB can be proved
based on Lemma 1 and Corollary 1.

Lemma 1: If UCB policy is run on a finite number of arms,
the expected regret is uniformly logarithmic over all rounds,
for all reward distributions with bounded support in [0, 1].

Proof: cf. [21] for proofs.
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Algorithm 2: CMAB-S algorithm for AmBC access
control

Input : Network topology (K, L, M ) and αk,m,l
Output: uk,l and vm,l

1: Initialize: set t = 0
2: Pull each joint arm abl (t) once, ∀b ∈ B
3: Set the number of times nbl (t) = 1 and compute average

reward ϕ̆bl (t) using Eq. (27)
4: for t = 1: T do
5: Select the joint action abl (t+ 1) according to UCB

index in Eq. (28)
6: Update nbl (t) and ϕ̆bl (t) using Eq. (27)
7: end for
8: return abl

∗
= maxb∈B ϕ̆

b
l (t+ 1)

Corollary 1: For the proposed CMAB-S, the ex-
pected regret of UCB policy is bounded as: Regret ≤√
KMt

(
6 log (t) + π2

3 + 1
)
.

Proof: To meet the condition of Lemma 1, we can rewrite
Eq. (28) as

abl (t+ 1) =

arg max
abl

( ϕ̆bl (t)

θ
+

√
3 lnT

2nbl (t)
−min

{
0, Rd

k,m,l −Rth
l

}2
)
.

In Eq. (30), θ is a constant value to normalize µ̂ in [0, 1].
As the normalized reward is in [0, 1], according to Fact 1,
Eq. (30) can achieve the logarithmic regret bound over rounds
when using UCB policy. Furthermore, since θ is a constant
value, Eq. (30) is equivalent to Eq. (28), thereby yielding the
same solution. Therefore, the expected regret is bounded by
uniformly logarithmic over rounds for the proposed CMAB-S.

Furthermore, the expected regret can be rewritten as

Regret = ϕ∗l t−
∑
b∈B

E
[
nbl (t)

]
ϕ̆bl (t)

= E
[∑
b∈B

nbl (t)
(
ϕ∗l − ϕ̆bl (t)︸ ︷︷ ︸

4b

)]
=
∑
b∈B

√
Enbl (t)

√
Enbl (t)4b . (30)

Using Cauchy-Schwarz inequality, we have Regret ≤√∑
b∈B Enbl (t)

∑
b∈B Enbl (t)42

b .
According to [21] and [22], we can get

∑
b∈B Enbl (t) = t

and E
[
nbl (t)

]
≤ 6 log(t)

4b
2 +π2

3 +1. Substituting both of them into

Regret, we can obtain Regret ≤
√
KMt

(
6 log (t) + π2

3 + 1
)
.

Based on above analysis, CMAB-S algorithm for solving
AmBC access control problem can be summarized in Algo-
rithm 2.

V. PERFORMANCE EVALUATION

In this section, we conduct three sets of experiments to
compare the performance of DCA-S and CMAB-S with three
baseline schemes as follows.

Fig. 2: A backscatter network with two-tier cell network, where blue diamond
is H-AP, light-blue circulars are L-APs, red triangles are BDs, and black dots
are IoT devices.

• Exhaustive searching based algorithm (ESA): The brute-
force method is used to find the optimal access solution
via exhaustive searching over KML possible solutions,
where coefficient design problem can be solved by con-
ventional solvers, e.g., YALMIP optimization tool [23].

• Max-Difference based algorithm (MDA): To the best of
our knowledge, there is no explicit solution to address
access control strategy with the QoS constraints. Inspired
by [9], one solution is to select suitable AP and BD with
the largest difference in terms of the channel gain between
direct and backscatter links.

• Max-Weighted SINR based algorithm (MWSA): Inspired
by [24], a modified scheme is designed for performance
evaluation of our proposed DCA-S and CMAB-S based
on a conventional Max-SINR scheme. Specifically, under
the QoS constraints and given solved coefficient solution,
the MWSA scheme is to select the suitable AP and BD
with the largest weighted SINR sum of the direct and
backscatter links.

A. Simulation Parameter Settings

In this paper, we consider a backscatter network parasitizing
a two-tier cellular network. In the two-dimensional Euclidean
plane, an H-AP is located in the center of an area of 100 square
meters, and the locations of L-APs, BDs and IoT devices
are modeled by three homogeneous Poisson Point Processes
(PPPs) with average values ΦK , ΦM and ΦL [6]. According
to [9] and [11], BDs and IoT devices are located at a distance
of 10-100 meters outside from AP, and the transmit power of
H-AP and S-AP is set to 40 dBm and 20 dBm respectively.
For clarity, we construct the network topology as a poisson-
voronoi tessellation graph [25] with ΦK = 5, ΦM = 5ΦK ,
and ΦL = 10ΦK , as shown in Fig. 2.

In addition, we set the noise power σ2 = −101 dBm,
Gb
m = Gd

l,a = Gs
k = 1.5 dB, v1 = 3, v2 = v3 = 2,

F = λ2

(4π)2
= −40 dB, and W = 50 [9] [11]. The

feasible regime of backscatter coefficient is set as [0.2, 1]. For
simplicity, all the channel information of direct and backscatter
links are assumed to follow flat-fading, and can be generated
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Fig. 3: Iteration and Learning Process

based on CSGN., i.e., fk,l,a, gm,l,a and hk,m ∼ CN (0, 1)
[10].

B. Iteration and Learning Process
This experiment shows the iteration process of DCA-S. For

DCA-S scheme, the convergence threshold is set to 0.0001 and
the initial feasible solution of backscatter coefficient is set to
0.2. In order to obtain DCA-S strategy, the DCA function of
coefficient design problem in Eq. (12) and device association
problem in Eq. (23) can be solved using optimization solver
YALMIP in each iteration. As shown in Fig. 3(a), we can
observe that DCA-S scheme can eventually converge a stable
value in a fast speed (no more than 5 times). Note that
the observed number of iterations is updated by the outer
loop, and the iteration process for solving coefficient design
and device association depends on the adopted optimization
solver. Furthermore, with the increase of weight factor ρ, the
convergence speed of DCA-S is accelerated. In particular, as
the weight factor approaches 1, the maximum value of the
DCA function can be reached closer to the lower bound of
the constraints, i.e., the initial feasible solution 0.2. This is
because the weight of the primary transmission is larger than
that of the backscatter transmission, and the optimal solution
can be obtained at the lower bound of the feasible regime.

Next, we illustrate the learning process of CMAB-S with
respect to time slot, where the cumulative regret is used to
evaluate the cumulative difference between the best expected
reward and that by adopting the UCB policy. As shown in
Fig. 3(b), we can observe that the cumulative regret increases
sharply before 105 time slot. During this period, the IoT
devices tend to explore the arm that may not be currently
optimal, so as to learn the statistic characteristics of the reward
distribution in a dynamic scenario. After that, the cumulative
reward grows slowly with respect to time slot, which means
that IoT devices tend to exploitation (choose the best arm with
the highest reward distribution) rather than exploration.

C. Performance Comparisons
In the second experiment, we evaluate the performance of

the offline algorithm DCA-S when the complete CSI is known
a-priori.

First, we simulate the throughput performance of DCA-
S, MWSA and MDA schemes under MRC, MMSE and ZF
decoding strategies. For each IoT device, the received signals
can be first multiplied by corresponding MRC, MMSE and
ZF decoding matrices. Then, primary and backscatter signals
are recovered based on SIC-based detectors, as described in
[7]. In this experiment, QPSK and BPSK modulations are
used to generate primary and backscatter signals. The primary
transmission rate Rs is set to 1 kbps and the backscatter
throughput is Rc = 1

WRs. For simplicity, each time slot
includes a primary signal and W backscatter signals. Con-
sidering the effect of Rayleigh fading and double-fading, the
actual throughput is calculated as the probability of successful
decoding multiplied by the transmission rate in a statistical
manner. In the following, we vary the direct link SNR[dB]
from 0 dB to 20 dB, and backscatter link SNR is -10 dB
lower than that of direct link [7].

Fig. 4(a) and Fig. 4(b) show the primary and backscatter
throughput under classical three-node model. We can observe
that both primary and backscatter throughput of MRC, MMSE
and ZF increase with the increase of SNR. Meanwhile, both
primary and backscatter throughput of MMSE are better
than ZF and MRC, and can achieve suboptimal performance
compared with the optimal maximum likelihood detection.
Furthermore, Fig. 4(c) and Fig. 4(d) show the primary and
backscatter throughput under multi-RF source scenario. We
can observe that the primary throughput of the proposed DCA-
S is better than MWSA and MDA schemes. However, the
backscatter throughput of the DCA-S is not always better than
MWSA and MDA schemes, except DCA-S under MMSE. This
is because different decoding strategies lead to different access
control, and backscatter signal is weaker -10 dB than primary
signal, resulting in worse detection errors.

In the following, we consider a particulate time slot and
MRC decoding strategy to maximize the weighted sum of
primary and backscatter throughput. Fig. 5 illustrates the
impact of QoS threshold on the average throughput and the
ratio of admissible IoT devices, where the weight factor is set
to 0.5. As shown in Fig. 5(a), we can observe that the proposed
DCA-S can achieve higher performance gains compared with
the benchmark schemes. Meanwhile, the proposed DCA-S
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Fig. 4: Throughput performance comparisons under MRC, MMSE and ZF.
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Fig. 5: Performance comparisons vs. QoS threshold when the channel information is known.

can achieve almost the same performance as ESA. As the
QoS threshold increases, the average throughput of the four
schemes decrease due to the higher possibility of violating
QoS constraints. Meanwhile, Fig. 5(b) shows that the ratio of
admissible IoT devices of DCA-S is larger than that of MDA
and MWSA, thus resulting in higher performance gain.

Fig. 6 shows the performance of DCA-S with weighted
factor varying from 0.1 to 0.9, where the QoS constraint
is set to 15. Obviously, the average throughput and the
ratio of admissible IoT devices of the proposed DCA-S are
always higher than that of other schemes, especially for small

weight factor (smaller than 0.6). Note that MWSA scheme
can approach the optimal performance of ESA and DCA-S
schemes when the weight factor increases from 0.6 to 0.9. This
is because MWSA scheme can be approximately regarded as
a Max-SINR scheme with the increase of weight factor, thus
resulting in near-optimal solution.

In the third experiment, considering the dynamics of CSI,
we evaluate the performance of CMAB-S when the channel
information is unknown a-priori. Since each IoT device and
BD only communicate within their corresponding time slots,
IoT devices can only observe the channel information from
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Fig. 6: Performance comparisons vs. weight factor when the channel infor-
mation is known.
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Fig. 7: Comparison of average throughput as a function of time slot for online
optimization.

the associated AP and BD and make access control decision
instantaneously. Therefore, the online schemes of DCA-S,
ESA, MWSA and MDA only have an estimation of incomplete
CSI, instead of global channel information for all APs and
BDs.

Fig. 7 illustrates the average throughput for online opti-
mization versus time slot, where we set the weight factor
to 0.2 and the QoS threshold to 15. We can observe that
the average throughput of CMAB-S significantly outperforms
other schemes. This is because CMAB-S prefers exploring
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Fig. 8: Performance comparisons vs. QoS threshold when the channel infor-
mation is unknown.

more possibilities rather than exploiting the currently optimal
access control strategy in a dynamic environment. With the
increase of time slot, CMAB-S can capture the statistic char-
acteristics of uncertain environment and gradually learn the
accurate estimation of reward distribution, so that the average
throughput of CMAB-S becomes higher than that of other
schemes.

Next, we evaluate the impact of QoS threshold on the
performance under dynamic CSI scenario, where we set the
weight factor to 0.5 and vary the QoS threshold from 10 to 20.
As shown in Fig. 8(a), we can observe that CMAB-S scheme
outperforms DCA-S, ESA, MWSA and MDA in average
throughput. According to Fig. 8(b), the ratio of admissible
IoT devices of CMAB-S that satisfies the QoS constraints is
always higher than other schemes. Note that in this experiment,
ESA may not be able to find the optimal solution due to
the inaccurate estimation of channel information. Therefore,
the performance of ESA is not always better than that of
DCA-S in the dynamic environment. Finally, we examine
the performance of the proposed online CMAB-S scheme
with varying weight factor. In this experiment, we set QoS
constraint to 15 and vary the weight factor from 0.1 to 0.9. As
shown in Fig. 9, the performance of CMAB-S is always higher
than that of other schemes, which validates the effectiveness
of the proposed scheme.
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Fig. 9: Performance comparisons vs. weight factor when the channel infor-
mation is unknown.

VI. RELATED WORK

A. Coefficient Design for AmBC Networks

In AmBC networks, coefficient design is indeed one of the
most important factors affecting backscatter links and thus
determines overall system performance. In full-duplex enabled
cognitive backscatter network, the authors of [5] consider that
a primary AP can transmit and receive signals simultaneously
via full-duplex communications. In such scenario, the joint
time scheduling, transmit power allocation, and coefficient
adjustment are investigated to maximize the throughput of
the AmBC system while guaranteeing the minimum rate re-
quirements of the primary system. For monostatic backscatter
communication, where carrier emitter and backscatter signal
reader are the same entity, the authors of [26] investigate
the throughput maximization problem by jointly optimizing
precoding vector, beamforming vector and backscatter coeffi-
cient. Considering the non-convexity of the joint optimization
problem, the authors of [26] design an individually-optimal
solution for precoding, beamforming, and backscatter coeffi-
cient.

Furthermore, wireless powered backscatter networks [27]
allow IoT devices to harvest energy, and then use the energy
to transmit data. In this context, the authors of [28] consider
a wireless powered backscatter network, and propose to max-
imize the energy efficiency by jointly optimizing transmission
power and backscatter coefficient. In order to ensure fairness

among co-channel backscatter links, the problem is reduced to
a max-min fairness optimization to solve. Moreover, in order to
increase transmission range and throughput, the authors of [12]
propose to integrate a hybrid backscatter communication into
wireless-powered communication networks in a heterogeneous
network (HetNet) environment. Depending on user location,
this work targets at maximizing throughput for Macro-zone
and WiFi-zone by optimizing time slots.

B. Device Association for AmBC Networks
From the perspective of network, the access control strategy

aims to properly pair IoT devices and BDs in backscatter
networks, so as to maximize the transmission capacity of pri-
mary and backscatter networks. The authors of [11] consider
a symbiotic environment between cellular and IoT networks
and focus on the user association problem in symbiotic radio
networks. Due to the difficulty of obtaining full real-time chan-
nel information, the authors of [11] adopt deep reinforcement
learning framework to infer the current information from the
historical information, and effectively design centralized and
distributed algorithms. In large-scale IoT scenarios, the authors
of [29] focus on multi-transmitter multi-receiver communica-
tions for a backscatter network. By allowing multiple active
communication pairs, the user association problem in such
system is formulated as maximizing the number of access
pairs, and a priority-based access strategy is proposed.

Considering the diversity gain of multiple tags, the au-
thors of [30] propose a multi-tag selection combining scheme
and analyze its outage performance under fully correlated
and partially correlated Nakagami-m channels. Moreover,
considering BD are capable of sleeping and active states,
the authors of [31] investigate the throughput maximization
problem through switching between sleep and active states
and optimize backscatter coefficient in active state. To solve
this optimization problem, a two-stage algorithm is proposed
to obtain the optimal control policy. In [32], the authors
investigate the throughput and bit error rate for a monostatic
multi-tag backscatter communication system and proposed a
general order tag selection criterion based on SNR. For the
considered multi-tag system, the achievable rate and average
bit error ratio are derived under a statistical delay constraint.
In [33], the authors consider the multiple-input-multiple-output
(MIMO) technology in multi-tag backscatter communications
and focused on the optimal transceiver design for throughout
fairness maximization. In [6], the authors focus on mathe-
matical modeling and performance analysis for an ambient
backscatter underlaying cellular networks. With the aim of
maximizing the outage performance, the optimal and near-
optimal time switching and power splitting schemes were pro-
posed to enable energy harvesting and ambient backscattering.

Different from the above studies, which mainly focus on
the single-RF source scenario and only consider BDs and IoT
devices association, we propose to jointly optimize coefficient
design and device association problems with the objective of
maximizing system throughput in multi-RF source scenario,
while satisfying the QoS guarantee of primary network. From
the perspective of access control, this is the first study that ex-
tends the ideal single-RF source AmBC to a general multi-RF
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source scenario, expecting to achieve higher data throughput
and connections.

VII. CONCLUSION

Ambient backscatter communication is an emerging tech-
nology to achieve spectral, energy and cost efficiency in
future wireless networks. In this paper, we have extended
the ambient backscatter communication from the ideal single-
RF source to a general multi-RF source scenario. In this
context, we have investigated the access control strategy in
multi-RF backscatter network from the perspective of system
throughput maximization. Leveraging the convex optimization
and dual decomposition techniques, an offline access control
strategy (DCA-S) was proposed when the channel information
is available a-priori in static scenario. Inspired by the obtained
offline solutions, we have further proposed an online access
control strategy (CMAB-S) based on combinatorial multi-
armed bandit considering the channel dynamics and incom-
plete channel information. Numerical results demonstrate that
our proposed DCA-S and CMAB-S can achieve significantly
performance improvement in terms of average throughput and
the number of admissible IoT devices as compared to the
traditional schemes in typical scenarios.
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