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Abstract 
In urban transportation systems, taxis are regarded as flexible, convenient, and time-saving. 
Taxi demand is affected by various built-environment factors and by the time of the day. 
Although many studies have investigated correlations between taxi demand and the built 
environment, the direct and spillover effects of built environment factors on taxi demand have 
not been examined at a fine spatial scale. To address this gap in the literature, this paper 
employs spatial econometric models using GPS-tracked taxi trips, mobile signaling data, and 
points of interest (POIs) to study taxi demand in Beijing at a 1-kilometer square grid resolution. 
The results show that, in the morning and evening peak hours, road network density has the 
strongest (positive) direct and indirect impact on taxi ridership. A relationship is also found 
between public transportation and taxi ridership: bus coverage has positive direct effects and 
insignificant indirect effects on taxi pick-ups and drop-offs, while subway coverage has 
negative indirect effects, suggesting that it may absorb taxi demand from surrounding grids. 
Results also indicate that various built-environment factors affect taxi demand differently at 
morning and evening peak times. This study reveals the complex nature of taxi ridership and 
has important implications for policymakers, transport planners, and other stakeholders in 
megacities around the world. 
 
 
 
1. Introduction 
Taxis play a vital role in urban transportation because of the flexibility of the door-to-door 
service they offer and their 24/7 availability. A good understanding of the temporal and spatial 
distribution of taxi trips as well as the factors that have substantial influences on taxi demand 
can help governments and policymakers design a well-connected multi-modal transportation 
system. A multimodal transportation system can address the increasing congestion and 
emission problems in metropolitan areas and better satisfy passengers’ needs for transit 
(Çetin & Yasin Eryigit, 2011; Schaller, 2005). 
 
Many studies have examined the relationship between the built environment and travel 
behavior in terms of distance, duration, and mode choice (Cervero 2002; Dong and Zhu 2015; 
Ewing 2015; Wang, 2001; Antipova et al., 2011; Ewing and Cervero, 2010; Ewing et al., 2015; 
Zhou et al., 2019; Zhu, 2012, 2013; Zhu et al. 2013, 2017, 2018, 2020). These studies have 
generally agreed that built environment factors, including residential and employment density, 
land use diversity, distance to public transit, and destination accessibility may all significantly 
influence travel behavior. Recently, researchers have begun to explore the impacts of socio-
demographic and built environment factors on taxi demand and related travel behavior. For 
example, McNally (2008) proposed that population, employment, and other socio-
demographic factors can all affect the number of taxi passengers. Qian and Ukkusuri (2015) 
found that a lower median income level is associated with a smaller number of taxi trips in 
particular places in New York City. Most recently, Yu and Peng (2019) suggested that built 
environment factors also significantly impact the demand for ride-sourcing services. Following 
the theoretical framework that has been generalized by this research stream, this study 
investigates the relationships between taxi ridership, the urban built environment, and 
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neighborhood socioeconomic factors. Since many cities lack disaggregated data at a fine 
geographical level, the first contribution of this paper is to offer an exemplary framework for 
researchers to incorporate and utilize various types of big data, including taxi origin and 
destination data (O-Ds), mobile signaling data, points of interest (POIs), and other web data.  
 
Although some studies have examined the built environment and taxi ridership, few have 
considered the spatial autocorrelations associated with both taxi ridership and built 
environment factors. Moreover, few studies have identified the spatial spillover effects of the 
various built environment factors that influence taxi demand. To fill this gap, this study uses 
spatial econometric models that take into consideration the spatial autoregressive process. By 
introducing the spatial weight matrix, we can more accurately estimate the direct (local) and 
indirect (spillover) effects of the explanatory variables on the outcome variable (Anselin, 1988). 
Therefore, the second contribution of this research is to provide a more comprehensive 
understanding of how different built environmental characteristics and socioeconomic 
variables influence taxi ridership via their local and spillover effects.  
 
Furthermore, the spatial distributions of taxi ridership exhibit different patterns during 
morning versus evening peak hours (Liu, Wang, Xiao, & Gao, 2012; Zhu, Huang, Guibas, & 
Zhang, 2013). It is reasonable to speculate that there is some level of temporal heterogeneity 
in the relationships we want to test. Hence, the third contribution of this paper is to explore 
how built environment factors affect taxi O-Ds differently at different times (i.e., morning vs. 
evening). 
 
Applying an innovative approach that combines spatial-temporal big data analytics with 
traditional spatial economic models, this study provides a comprehensive picture of how 
various built environment and neighborhood socioeconomic factors influence taxi ridership, 
both in local neighborhoods via direct effects and in nearby neighborhoods via spillover 
effects. We find that these built environment factors have different direct and indirect impacts 
on taxi ridership and that these effects vary by time (i.e., morning vs. evening peak). For 
example, road network density may not only directly increase local taxi demand but also have 
spillover effects inducing more taxi ridership in neighboring areas. Similarly, different types of 
public transportation have different impacts on taxi ridership. Bus coverage has positive direct 
effects on local taxi ridership but insignificant spillover effects. However, subway coverage 
shows negative indirect effects on taxi pick-ups and drop-offs during both peaks, suggesting 
that it may absorb taxi demand from nearby cells. Additionally, the results show different 
relationships between various categories of points of interest (POI) and taxi ridership. During 
the morning peak, the number of POIs in public management and services increase local taxi 
demand, while those in residences and related facilities have negative indirect effects on taxi 
pick-ups in surrounding areas. Meanwhile, POIs in commercial and recreational services and 
POIs in manufacturing and offices both have positive effects on local taxi pick-ups during the 
evening peak. POIs in transportation services have a positive direct impact on taxi demand 
during both morning and evening peaks.  
 
Based on these results, we suggest that transportation management agencies should pay 
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close attention to the direct and spatial spillover effects of various built environment factors 
on taxi ridership. For example, because road network density not only affects local taxi 
ridership but also demand in adjacent areas, it is necessary for transportation planners to 
comprehensively consider the road layout in surrounding areas. Moreover, the interaction 
between different public transportation modes and taxi usage should be included in taxi 
demand modeling and multi-modal transportation planning. As ride-sourcing services such as 
Uber and Lyft become increasingly popular around the world, this research also has important 
planning implications for the improved integration of these services into the existing multi-
modal transportation system. 
 
 
2. Literature review 
Taxi demand in cities is usually imbalanced, with temporal and/or spatial gaps between taxi 
services and demand. Imbalanced taxi demand results in empty-load vehicle running, traffic 
congestion, and air pollution. Hence, it is essential that urban transport planners have an in-
depth understanding of taxi demand. Many studies have confirmed an imbalanced spatial 
distribution of taxi demand. For example, about 90 percent of taxi trips were found to take 
place in downtown areas (i.e., Manhattan) in New York City (Qian and Ukkusuri, 2015); taxi 
demand was found to differ between urban districts in Munich (Jager et al., 2016); and pick-
ups and drop-offs of taxi trips were found to be imbalanced at a local spatial scale in Shanghai 
(Liu et al., 2012). With this in mind, researchers have employed Geographically Weighted 
Regression (GWR) models in taxi demand analysis to better explain the imbalance of taxi 
ridership (Qian and Ukkusuri, 2015; Li et al., 2019; Chen et al. 2021; Wang and Noland, 2021; 
Yuan et al. 2021). Spatial heterogeneity and the non-linear spatial patterns of taxi demand 
have been considered in their models. However, spatial spillover effects remain under-
researched.  
 
Spatial spillover effects refer to the interaction effects among nearby geographical units due 
to their spatial dependence (i.e., spatial autocorrelation). Some preliminary studies have 
taken spatial autocorrelation into consideration in analyzing the factors influencing taxi 
demand or ridership (see a summary in Supplementary File). For instance, two conference 
papers, Correa et al. (2017) and Pan et al. (2019) both used linear models, spatial error models, 
and spatial lag models to examine the spatial distribution of traditional taxis, e-hailing taxis, 
and/or Uber ridership in New York City. Lavieri et al. (2018) developed a spatial lag multivariate 
count model to explore the factors attracting ride-sourcing trips in Austin. Ni & Chen (2020) 
used K-means clustering and spatial lag model to explore the impact of built-environment 
features on the use of dockless bike sharing and taxis to serve as transfer modes for metro in 
Beijing. Similarly, Zhang et. al (2020) adopted mixed modeling structure of spatial lag and 
simultaneous equation models to investigate the influencing factors on traditional taxi and 
app-based taxi demand in New York City. However, a thorough review of the existing literature 
shows that no empirical research to date has considered: 1) the spatial autocorrelation in 
explanatory variables among geographical units (i.e., existing research only considers the 
spatial autocorrelation in outcome variable); 2) taking important further steps to actually 
calculate the spatial spillover effects and differentiate them from direct effects. Therefore, a 
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key contribution of this paper is to fill these gaps and provide more in-depth understanding of 
not only the direct (local) effects but also the spatial spillover effects of various factors on taxi 
demand.  
 
In addition to the spatial dimension, taxi demand imbalance also exists on a temporal scale. 
Taxi demand varies significantly over the course of the day (Liu et al., 2015) and over different 
days of the week (weekdays vs. weekends) (Zhao et al., 2016; Wang et al., 2020). Some studies 
have attempted to include temporal dynamics in taxi demand prediction (Phithakkitnukoon, 
2010; Veloso, 2011). Moreira-Matias (2013) combined three different time-series models with 
real-time taxi trip data to predict short-term demand with demand uncertainty. In transport 
geography, some studies have utilized the spatiotemporal characteristics of taxi trips to 
forecast passenger demand, such as Lee et al. (2008) and Yuan et al. (2011). More recently, 
machine learning algorithms have been used in taxi ridership prediction (Shao et al., 2015; 
Zhao et al., 2016; Zhou et al., 2019). In sum, taxi demand prediction models highlight the 
importance of the temporal heterogeneity in taxi ridership. In this regard, our paper also 
attempts to explain the temporal variations in taxi ridership in relation to various influencing 
factors; in particular, a comparison is made between morning and evening peak hours. 
 
Lastly, empirical research has started to explore specifically how taxi ridership may be 
influenced by built environment factors and socio-demographic variables (Comito et al., 2015; 
Comito Qian and Ukkusuri, 2016; Wang and Mu, 2018). For instance, Yang and Gonzales (2014) 
found that taxi ridership in New York is significantly correlated with population density, 
employment density, and education levels. Liu et al. (2020) found a strong correlation 
between taxi ridership and land use mix, population density, and road junctions in Beijing. 
Some research has also linked taxi trips to urban functions (Liu et al., 2021; Keler et al., 2020; 
Gong et al, 2016; Zhou et al., 2015; Hu et al., 2021).  Moreover, research on the relationships 
between taxis and other transportation modes, particularly public transit, has become 
increasingly important with the development of on-demand e-hailing platforms (Gonzales et 
al., 2014; Schaller, 2005; Ulak et al., 2020). Overall, most of these studies have utilized 
traditional census data to measure built environment at different geographical levels.  Yet 
census data at a fine geographic scale are not readily available for many cities in developing 
countries. Our research adopts a novel approach that utilizes various big data and open-source 
data, such as cell phone data, POI data, web-crawled housing transaction data, to measure a 
variety of built environment and socio-demographic variables. This approach could provide a 
useful framework for researchers in developing countries to carry out their own research on 
related topics.  
 
 
3. Data and methodology 
3.1 Study area, variables and data source 
3.1.1 Study area 
Beijing, the study area, had a population of 21.7 million and an urban area of 16,410 km2 in 
2017. Ding and Zhao (2014) found that Beijing's spatial structure fits the monocentric city 
model in their study on land development, housing prices, and residential and employment 
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distributions. In addition, Beijing has a six-ring road network, which has been used in some 
previous studies as the boundary to analyze urban transportation issues in Beijing (Kong et al., 
2017; Yao, Wu, Zhu, Gao,& Liu, 2019). However, in this study, our analysis covers only the area 
within the fifth ring road (Fig. 1) because of the spatial limitations of the mobile signaling data 
used in our models. Among Beijing’s sixteen municipal districts, two districts (Dongcheng and 
Xicheng) are entirely covered by our study area, and five (Haidian, Shijingshan, Chaoyang, 
Daxing, and Fengtai) are partly covered. In terms of spatial resolution, we acknowledge the 
modifiable area unit problem (MAUP), which means that the results will vary according to the 
scale of the research unit, resulting in statistical bias in spatial analysis (Openshaw & Taylor, 
1981). With this in mind, we divide the study area into 1 km-by-1 km square cells, following 
the method used in many previous studies (Kong, Liu, Wang, Tong & Zhang, 2017; Liu, Wang, 
Xiao and Gao, 2012; Liu, Gong, Gong and Liu, 2015; Louail et al., 2014). This results in 683 grid 
cells where both taxi trip data and mobile signaling data are available. 

 
Fig. 1 The research region 

 
3.1.2 Dependent variables 
The dependent variables of this study are taxi trip origins and destinations, which are 
represented by the number of taxi trips originating from each cell in the morning peak hours, 
the number of taxi trips ending in each cell in the morning peak hours, the number of taxi 
trips originating from each cell in the evening peak hours, and the number of taxi trips ending 
in each cell in the evening peak hours (Table 1). 
 
In this study, taxi trip records were extracted from GPS trajectory data generated by all taxis 
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in Beijing from April 1st to 26th 2015, with an average of 17,984 taxis each day in our study 
area for this time frame. Every taxi trip record in this dataset contains the geographic locations 
(i.e., longitude and latitude) of a taxi every 30 seconds and the time and location of each pick-
up and drop-off. With the successive trajectories of each taxi, each trip can be extracted and 
expressed in the following form: longitude and latitude of the pick-up location, longitude and 
latitude of the drop-off location, pick-up time, and drop-off time. An example trip is 
[(116.29253, 39.86538), (116.28003, 39.82736), 2015-4-15 15:36:31, 2015-4-15 15:49:39]. 
Because the dataset includes all taxis that operated in our study area during the study period, 
it can be considered to comprehensively reflect the real spatial and temporal distributions of 
taxi trips in Beijing. The average number of taxi trips starting or ending in the study area was 
approximately 340,000 per day, with a total of 26 days. All taxi trips were validated according 
to their travel distance and duration. That is, taxi trip records were excluded if the travel 
distance was less than 10 meters and the duration was less than 10 seconds. For each grid cell, 
we counted the number of taxi pick-ups and the number of drop-offs for each hour of each 
day. We then divided peak hours into the morning peak (7 AM – 9 AM) and evening peak (5 – 
7 PM). The average morning (or evening) peak-hour taxi trip origins (or destinations) in a grid 
cell were calculated as the total number of taxi pick-ups (or drop-offs) in that cell during 
morning (or evening) peak hours for all weekdays from April 1st to 26th, 2015, divided by the 
number of weekdays. Finally, we related taxi trip O-Ds with socioeconomic variables, public 
transit coverage, level of land development intensity, and different categories of POIs, all of 
which are aggregated at the same grid level. These explanatory variables are discussed below 
in detail.  
 
3.1.3 Independent variables 
The independent variables in this study were mobile signaling, POIs, coverage of subway 
stations and bus stops, average housing price, and other built environment factors such as 
road network, percent of road area, number of buildings, and average number of stories of 
buildings (Table 1). 
 
(1) Mobile signaling data 
In China, fine-grained and accurate employment and residential population data are 
unavailable for many cities. In such a situation, mobile signaling data can be an alternative for 
estimating the number of workers and residents at specific locations (Ding, Niu,& Song, 2016; 
Louail et al., 2014). This study employs mobile phone data from China Unicom, offered by 
Smart Steps Co., Ltd 1 . It is worth noting that China Unicom is one of the three largest 
telecommunication corporations, and its market share in Beijing is 29.6%. The other two 
corporations are China Mobile and China Telecom.  
 
Each mobile user was identified with an anonymous and unique ID from the original mobile 
signaling data. The time and duration of every user in a defined local service area were 

 
1Smart Steps is a data-sourcing company providing Mobile Signaling Data products for China Unicom (Smart Steps Digital 
Technology CO., LTD). In this paper, the authors obtained resident and employment distributions in 1km*1km grid cells from 
Smart Steps. 
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recorded according to the records of the base transceiver station the user’s mobile phone had 
connected with. With the original information, the program offered by Smart Steps identifies 
the employment and residential cell for each user. The identification rules are as follows: 
 
The work cell for a user is the cell in which the user stays most frequently between 9 AM and 
5 PM during all weekdays within a month. The residential cell for a user is the cell in which the 
user stays most frequently between 9 PM and 5 AM (of the next day) within a month. The 
numbers of employees and residents were then aggregated by 1 km-by-1 km grid cells and 
recorded in the dataset, allowing the residential and employment density in the grid network 
to be calculated. 
 
(2) POI data 
The original POI data, including 140,337 POIs located in the research area, fell within sixteen 
categories (finance and insurance services, hotels, living services, shopping, scenic spots, 
catering, sports and entertainment, companies and enterprises, business offices, residential 
buildings and facilities, government agencies and social organizations, hospitals and clinic 
services, living services, educational and social services, public facilities, and transport 
facilities) and were obtained from Baidu Map Services (http://map.baidu.com). Baidu is the 
largest web map service provider in China (Yao et al., 2017) with a large-scale user group. 
Since many original categories are further divided into multiple subcategories, overlapping 
often occurs between sub-categories (e.g., some restaurants not only belong to the Chinese 
restaurants subcategory under the category of catering services but also belong to the hotels 
category). Thus, reclassification is necessary. Referring to the classification system adopted in 
China’s standard land use planning, the POI data were reclassified into five categories: 
commercial and recreational services, manufacturing and offices, residence and related 
facilities, public management and services, and transportation services. 2  The final 
classification is shown in Fig.2. Then, the number of POIs in each new category was aggregated 
by grid cells. 
  

 
2 The number of POIs for transportation service are not included in our main models because of their overlap with bus and 
subway coverage, hence incurring potential collinearity issues.  
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Fig. 2 The reclassification of different categories of POIs 

 
 (3) Coverage of subway stations and bus stops 
The coordinates of bus stops and subway stations within the study area were obtained based 
on the POI data. The buffer area of each subway station or bus stop was generated using the 
coordinates as the center and 400m or 200m as the radius from the subway station or bus 
stop. The coverage of subway stations (or bus stops) in each cell was calculated as the ratio of 
the subway (or bus) buffer area to the total land area of the cell.  
 
(4) Average housing price 
The original locations and prices of housing units for sale were collected from a housing 
transaction platform (https://bj.lianjia.com) that is widely used in China. As there are no 
official data on the actual transaction prices of real estate in Beijing, this study adopts the 
housing prices published on this platform. The average housing price of each grid cell was 
estimated using the prices of all housing units for sale in the cell. 
However, housing prices were missing for some cells within our study area because of the lack 
of housing transactions in those cells as reported by the platform. In previous research, spatial 
interpolation methods such as the kriging method and inverse distance weighted method are 
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widely used to estimate land prices in unknown areas of cities (Chica-Olmo, 2007; Chica-Olmo, 
Cano Guervos, & Chica Olmo, 2013; Hu, Cheng, Wang, & Xie, 2012; Hu, Yang, Li, Zhang, & Xu, 
2016; Martínez, Lorenzo, &Rubio, 2000; Zhang, Tan, & Tang, 2015). Moreover, the kriging 
method has been proven to have the advantage of achieving faster and better global 
predictions when there is limited sample data (Montero-Lorenzo, 2009). Therefore, in this 
study, we used areal kriging, a kriging-based disaggregation technique in the Geostatistical 
Analyst extension of ArcGIS10.5, to address the problem of missing data in some cells (Fig.3 
(a)) by replacing missing values with interpolated values. This allowed for the collection of 
data over one set of polygons and predictions for a different set of polygons (Krivoruchko, 
Gribov, & Krause,2011). The final interpolation result is shown in Fig.3(b). 

 

Fig. 3(a) 

 

Fig. 3(b) 
Fig. 3 The original average housing price data (a) and the predicted average housing prices 

after areal kriging interpolation (b) 
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(5) Other built environment factors 
Road network data in Beijing were obtained from Open Street Map (www.openstreet.com), a 
collaborative project that includes a free editable map and geographic data, including street 
maps, that has been widely used as a data source for road networks (e.g., Wang et al., 2020). 
Then, the road area within each grid was calculated by multiplying the length of the road, the 
number of lanes, and the lane width (usually 3-4 m, depending on the class of the road) to 
obtain the total road area in the grid and the road area ratio of the grid. For example, the 
width of an expressway with six lanes is estimated to be 30 m. Note that we used the standard 
hierarchical road system in China to calculate road width.  
 
The spatial data of buildings were obtained from Gaode Map Services (http://lbs.amap.com/), 
one of the main online map service providers in China. The total number of buildings and the 
average number of stories of buildings in each grid were aggregated using these data. Due to 
data limitations, data for all independent variables in this study were obtained for 2018, which 
were the closest data available to match the taxi trip records for our study period. 
 
3.1.4 Descriptive statistics  
The descriptive statistics for all independent and dependent variables are summarized in Table 
1. The average number of taxi trips in the evening peak hours, including both origins and 
destinations, was larger than that in the morning peak hours, while the maximum number of 
taxi drop-offs in the evening peak hours was lower than that in the morning peak hours. This 
may be because people may have less diversified travel purposes and more concentrated and 
fixed destinations during morning peak hours than during evening peak hours. Additionally, in 
order to alleviate potential data heterogeneity issues and calculate elasticities, variables are 
transformed into logarithms in our models, except the ratio of land covered by 200m radius 
from bus stops in the grid cell, the ratio of land covered by 400m radius from subway stations 
in the grid cell, and the ratio of road area to total land area in the grid cell. We have tested for 
potential multicollinearity among explanatory variables using Variance Inflation Factor (VIF). 
As shown in Appendix 1, the maximum VIF value of all explanatory variables across all four 
models is 5.7, with a mean around 3.2, indicating no strong multicollinearity exists3.  
  

 
3 For VIF cutoff values commonly used by other research, please refer to Montgomery et al., 2012; Gareth et al., 2013; 
Chatterjee et al., 2015; Zhu, 2021. 
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Table 1. Summary statistics (Obs. = 683) 

Variables Mean Std. Dev. Min Max 
Number of taxi trip 
originations in the morning 
peak 

17.55 18.92 0.00 102.53 

Number of taxi trip 
originations in the evening 
peak 

20.02 22.67 0.00 124.14 

Number of taxi trip 
destinations in the morning 
peak 

15.78 19.57 0.03 226.53 

Number of taxi trip 
destinations in the evening 
peak 

19.80 21.34742 0.00 136.34 

Residential density (per km2)   5161.90 5040.97 16.00 35188.00 
Employment density (per km2)  6707.98 4732.45 14.00 22976.00 
Average housing price per m2 
(CNY) 

69620.46 21431.22 29248.00 179562.50 

Ratio of land covered by 200m 
radius from bus stops in the 
grid cell 

0.37 0.22 0.00 0.91 

Ratio of land covered by 400m 
radius from subway stations in 
the grid cell 

0.18 0.20 0.00 0.86 

Ratio of road area to total land 
area in the grid cell 

0.10 0.053 0.00 0.25 

Total number of buildings in a 
grid cell 

340.20 167.76 24.00 1791.00 

Average number of stories of 
buildings in a grid cell  

3.79 1.92 1.14 12.91 

Number of POIs in commercial 
and recreational services 

52.84 52.46 0.00 390.00 

Number of POIs in 
manufacturing and offices 

6.62 8.59 0.00 54.00 

Number of POIs in residence 
and related facilities 

18.94 15.68 0.00 87.00 

Number of POIs in public 
management and services 

65.33 58.32 0.00 291.00 

 
 
3.2 Methods 
3.2.1 Test for spatial autocorrelation 
Changes in number of taxi trips may be spatially dependent due to geographical proximity. 
The extent of spatial autocorrelation can be measured using Moran’s I index. Following Moran 
(1948), the global Moran’s I index is defined as follows:  
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                          (1) 
where S2 is the sample variance, n is the total number of grid cells, xi (xj) is the value of the 
attribute considered in area i (j), and Wij represents the elements of the spatial weight matrix, 
which is a binary contiguity matrix in this study. Positive values (usually between 0 and 1) of I 
indicate a positive spatial autocorrelation in the analyzed variable; that is, high (low) values 
surround a high (low) value. In contrast, negative values (usually between -1 and 0) of I 
indicate a negative spatial autocorrelation, with a high (low) value surrounded by low (high) 
values. If Moran’s I value is close to 0, spatial independence is suggested. Strong spatial 
autocorrelation means that a spatial model should be adopted in order to obtain unbiased 
estimates.  
 
3.2.2 Spatial econometric model 
This research focuses on taxi trip origins and destinations in the morning and evening peak 
hours. A series of spatial econometric models, such as the general nesting spatial (GNS) model, 
spatial Durbin model (SDM), spatial lag model (SLM), and spatial error model (SEM), can be 
used for our analyses. Following the specific-to-general rule to compare different spatial 
models, we selected SDM to estimate the impacts of built environment factors such as public 
transit coverage and land development intensity (e.g., the total number of buildings in a grid 
cell, the average number of stories of buildings in a grid cell), socio-economic variables, and 
different categories of POIs on taxi demand. The detailed model selection process is presented 
in section 4. 
 
Overall, SDM includes both endogenous and exogenous interaction effects, which will help 
protect against omitted variable bias. In addition, LeSage and Pace (2009) pointed out that 
even if the true data generation progress is the SLM or SEM, the use of SDM will ensure 
unbiased estimates for the explanatory variable parameters. Thus, this study applied SDM to 
estimate the impacts of various factors on the spatiotemporal distributions of taxi pick-ups 
and drop-offs. We divided the analyses into four models – the taxi origin models and taxi 
destination models during morning peak and evening peak hours. With these SDM models, 
we can not only estimate the direct effects of the explanatory variables on taxi trip origins and 
destinations in a local grid cell, but also measure their impacts on taxi trip O-Ds in neighboring 
cells (i.e., the spatial spillover effects). 

!"#$! = &∑ (!" × !"#$"#
"$% + +#! + , ∑ (!" × #"#

"$% + - + .																																				(2) 

.	~1(0, 5&$')																																																																															(3) 
 
where &  represents the endogenous effect, +  represents the direct effect of explanatory 
variables, and,represents its spatial spillover effect, - is the intercept, and . is the error term. 
In this study, W is specified as a row-normalized binary weight matrix. The off-diagonal 
elements wij=1 if units i and j share a common border, and zero otherwise. $' , is an N-
dimensional identity matrix. TAXI represents the number of taxi trip origins or destinations 
within the grid during the morning peak or evening peak. X is a collection of thirteen 
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explanatory variables: residential density, employment density, average housing price, ratio 
of land covered by 200m radius from bus stops in the grid cell, ratio of land covered by 400m 
radius from subway stations in the grid cell, ratio of road area to total land area in the grid cell, 
total number of buildings in a grid cell, average number of stories of buildings in a grid cell, 
number of POIs in commercial and recreational services, number of POIs in manufacturing 
and office, number of POIs in residence and related facilities, number of POIs in public 
management and services, and number of POIs in transportation services. Note that in this 
study, residential density is only included in the morning peak pick-up model and evening peak 
drop-off model, while employment density is only included in the morning peak drop-off 
model and evening peak pick-up model because of the nature of commuting trips. 
 
Additionally, because of the influence of feedback loops, the coefficient in spatial econometric 
models may be biased, leading to erroneous conclusions. LeSage and Pace (2009) proposed 
that the point estimations of spatial models may lead to the inaccurate interpretation caused 
by feedback loop effects, and the partial derivative represents a more valid basis for testing 
whether the spillover effects exist. Therefore, we further calculate the direct, indirect, and 
total effects using the spatial decomposition technique. According to the definition, the direct 
effect is the average extent to which the local outcome variable changes when a particular 
element of an explanatory variable in that unit itself changes. The indirect effect denotes the 
average impact of changing a particular element of an explanatory variable on the outcome 
variable of neighboring units or the average response of the outcome variable to the change 
in an explanatory variable from neighboring units. The total effect is defined as the sum of 
these two effects.  
 
 
4. Results 
4.1 Model selection 
Several tests were performed to identify the most appropriate model. First, a spatial 
autocorrelation test was applied to test for spatial dependence of the dependent variables. 
Table 2 lists the Moran’s I indexes of the taxi O-D points in the four different models. Moran’s 
I index is an indicator of global spatial autocorrelation. As shown in the table, the Moran’s I 
index of all four models exhibits statistically significant and large positive values, indicating 
that the distribution of taxi O-D points demonstrates high and positive spatial autocorrelation 
during the morning and evening peaks. Therefore, spatial econometric models that address 
these spatial effects should be adopted to accurately estimate the impact of different 
socioeconomic and built environmental factors on taxi trip origins and destinations. 
 
The procedure for model selection follows a general-to-specific rule (Elhorst, 2014). Therefore, 
the SDM was constructed as a starting point, including the spatial lags of both the dependent 
and explanatory variables. The Lagrange multiplier (LM) (Burridge, 1980) tests and robust LM 
tests (Anselin, Bera, Florax, & Yoon, 1996) for spatial lag and spatial error of four different 
models were applied to test whether the SDM should be degraded to an SLM or SEM. Under 
the null hypothesis that there is no spatial autocorrelation, the LMlag and LMerr statistics test 
the spatial lag and spatial errors, respectively (Pelin, 2016). The results are illustrated in Table 
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2, indicating that both the hypothesis of no spatially lagged dependent variable and the 
hypothesis of no spatially autocorrelated error term must be rejected at the 1% significance 
level. Additionally, we calculated the AIC, BIC and Log-likelihood values of all SDM, SLM and 
SEM models (as shown in Table 3 and Appendix 2). All these indicators suggest SDM 
consistently outperforms other models. In sum, we can conclude that SDM is the most 
suitable model for this research.  
 
Table 2. The Global Moran’s I, LM Test and Robust LM Test of four different models 
 Morning peak 

taxi pick-ups 
Morning peak 
taxi drop-offs 

Evening peak taxi 
pick-ups 

Evening peak 
taxi drop-offs 

Moran's I 0.702*** 0.765*** 0.741*** 0.731*** 
LMerr  121.535*** 93.620*** 95.029*** 86.268*** 
Robust LMerr 51.148 *** 28.124*** 14.734*** 25.225*** 
LMlag 107.132*** 127.982*** 171.889*** 135.792*** 
Robust LMlag 36.745*** 62.486*** 91.595*** 74.748*** 

Note: ***, **, and * indicate 1%, 5%, and 10% confidence levels, respectively. 
 
 
4.2 Empirical results of SDM 
Table 3 reports the regression results of all four SDM models. The coefficients of the spatial 
lag term (W×Y) are significant and positive in all four models, consistent with our model 
selection results. Table 4 decomposes the direct effects (local effects), indirect effects 
(spillover effects) and total effects of all explanatory variables on taxi origins and destinations 
during morning and evening peak hours. 
 
Table 3. Spatial regression results of four SDM models for taxi pick-ups and drop-offs during 

morning and evening peak hours 
 

 
Morning 
peak taxi 
pick-ups 

Morning 
peak taxi 
drop-offs 

Evening 
peak taxi 
pick-ups 

Evening 
peak taxi 
drop-offs 

Residential 
and 

employment 
densities 

Employment density (log)  0.192*** 0.161***  
 (6.37) (5.19)  

Residential density (log) 0.101***   0.078*** 
(3.08)   (2.87) 

Housing price Average housing price 
(log) 

0.137 0.061 0.183* 0.137 
 (1.28) (0.6) (1.76) (1.54) 
 Ratio of land covered by 

200m radius from bus 
stops in the grid cell 

1.363*** 0.834*** 1.244*** 0.956*** 
Public 

transportation 
(10.07) (6.60) (9.53) (8.55) 

Ratio of land covered by 
400m radius from subway 
stations in the grid cell  

0.098 0.285*** 0.156 0.171* 
(0.90) (2.81) (1.48) (1.90) 

Road network 
density 

Ratio of road area to total 
land area in the grid cell 

4.208*** 3.567*** 4.574*** 3.099*** 

 (0.90) (7.48) (9.31) (7.36) 
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Land 
development 
intensity 

Total number of buildings 
in a grid cell (log) 

0.014 0.05 0.009 0.038 
(0.25) (0.95) (0.16) (0.79) 

Average number of stories 
of buildings in a grid cell 
(log) 

0.811*** 0.412*** 0.442*** 0.582*** 
(9.43) (5.20) (5.41) (8.20) 

Public services Number of POIs in 
commercial and 
recreational services (log) 

0.096*** -0.03 0.138*** 0.208*** 
(2.80) (-0.95) (4.21) (7.40) 

Number of POIs in 
manufacturing and offices 
(log) 

0.037 0.127*** 0.184*** 0.092*** 
(1.37) (4.87) (6.81) (4.15) 

Number of POIs in 
residence and related 
facilities (log) 

0.093** 0.015 -0.002 0.086** 
(2.26) (0.40) (-0.06) (2.51) 

Number of POIs in public 
management and services 
(log) 

0.165*** 0.117*** 0.094** 0.098*** 
(4.09) (3.10) (2.42) (2.93) 

 Constant -3.526*** -2.391 -
3.867*** 

-3.16*** 

 (-2.99) (-2.16) (-3.39) (-3.20) 
Residential 
and 
employment 
densities 

W×Employment density 
(log) 

 -0.019 -0.049  
 (-0.25) (-0.64)  

W×Residential density 
(log) 

-0.017   0.006 

 (-0.24)   (0.10) 
Housing price W× Average housing price 

(log) 
0.011 -0.013 0.062 0.067 

 (0.17) (-0.2) (0.95) (1.24) 
Public 
transportation 

W×Ratio of land covered 
by 200m radius from bus 
stops  

-0.893*** -0.222 -0.788** -0.35 
(-2.72) (-0.73) (-2.50) (-1.30) 

W×Ratio of land covered 
by 400m radius from 
subway stations  

-0.481* -0.546** -0.652** -0.636*** 
(-1.77) (-2.17) (-2.51) (-2.83) 

Road network 
density 

W×Road area ratio -0.942 0.259 -1.085 0.657 

 (-0.88) (0.26) (-1.05) (0.74) 
Land 
development 
intensity 

W×Total number of 
buildings in a grid cell (log) 

0.093 0.001 -0.073 -0.088 
(0.78) (0.00) (-0.64) (-0.88) 

W×Average number of 
stories of buildings in a 
grid cell (log) 

-0.384** -0.064 -0.115 -0.297* 
(-1.97) (-0.37) (-0.64) (-1.86) 

Public services W×Number of POIs in 
commercial and 
recreational services (log) 

0.025 0.02 0.079 0.055 
(0.31) (0.27) (1.02) (0.82) 

W×Number of POIs in 
manufacturing and offices 
(log) 

0.114* -0.026 -0.035 0.02 
(1.83) (-0.41) (-0.53) (0.39) 
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Number of POIs in 
residence and related 
facilities (log) 

-0.214** -0.134 -0.043 -0.145** 
(-2.34) (-1.59) (-0.49) (-1.92) 

W×Number of POIs in 
public management and 
services (log) 

-0.006 0.08 0.04 -0.01 
(-0.06) (0.95) (0.46) (0.00) 

 W×Y 0.489*** 0.478*** 0.429*** 0.415*** 
 (9.46) (8.9) (7.79) (7.50) 
 AIC 922.15 862.03 823.47 653.30 
 BIC 1035.31 975.19 936.63 766.46 
 Log-likelihood -436.07 -406.01 -386.74 -301.65 
 Obs. 683 683 683 683 

Z-values in parentheses. Note: ***, **, and * indicate 1%, 5%, and 10% confidence levels, 
respectively. 

 
 

Table 4. Decomposition of the direct, indirect and total effects of explanatory variables on 
taxi pick-ups and drop-offs  

Morning 
peak taxi 
pick-ups 

Morning 
peak taxi 
drop-offs 

Evening 
peak taxi 
pick-ups 

Evening 
peak taxi 
drop-offs 

Direct effects 
Employment density (log)  0.197*** 0.163***  

 (6.69) (5.35)  
Residential density (log) 0.103***   0.08*** 

(3.21)   (3.03) 
Average housing price (log) 0.143 0.062 0.192** 0.145 

(1.32) (0.61) (1.84) (1.62) 
Ratio of land covered by 200m radius from 
bus stops in the grid cell 

1.346*** 0.848*** 1.227*** 0.959*** 
(9.89) (6.69) (9.43) (8.61) 

Ratio of land covered by 400m radius from 
subway stations in the grid cell  

0.065 0.254** 0.117 0.136 
(0.57) (2.43) (1.1) (1.48) 

Ratio of road area to total land area in the 
grid cell 

4.296*** 3.717*** 4.631*** 3.221*** 
(8.51) (7.89) (9.56) (7.76) 

Total number of buildings in a grid cell (log) 0.022 0.052 0.004 0.033 
(0.39) (1.00) (0.07) (0.71) 

Average number of stories of buildings in a 
grid cell (log) 

0.813*** 0.422*** 0.447*** 0.579*** 
9.46 (5.34) (5.5) (8.22) 

Number of POIs in commercial and 
recreational services (log) 

0.101*** -0.03 0.147*** 0.217*** 
(2.96) (-0.94) (4.51) (7.77) 

Number of POIs in manufacturing and 
offices (log) 

0.047* 0.13*** 0.187*** 0.096*** 
(1.76) (4.97) (6.96) (4.37) 

Number of POIs in residence and related 
facilities (log) 

0.08* 0.006 -0.005 0.079** 
(1.96) (0.15) (-0.14) (2.34) 
0.171*** 0.127*** 0.099** 0.100*** 
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Number of POIs in public management and 
services (log) 

(4.25) (3.40) (2.58) (3.04) 

Indirect effects 
Employment density (log)  0.124 0.031  

 (1.04) (0.28)  
Residential density (log) 0.056   0.059 

(0.47)   (0.68) 
Average housing price (log) 0.136 0.027** 0.220** 0.190** 

(1.29) (0.27) (2.25) (2.57) 
Ratio of land covered by 200m radius from 
bus stops in the grid cell 

-0.392 0.301 -0.399 0.071 
(-0.73) (0.62) (-0.86) (0.19) 

Ratio of land covered by 400m radius from 
subway stations in the grid cell  

-0.752 -0.698 -0.916** -0.866** 
(-1.60) (-1.63) (-2.26) (-2.53) 

Ratio of road area to total land area in the 
grid cell 

1.944 3.349** 1.37 2.979** 
(1.18) (2.23) (0.96) (2.47) 

Total number of buildings in a grid cell (log) 0.175 0.041 -0.109 -0.111 
(0.89) (0.23) (-0.66) (-0.78) 

Average number of stories of buildings in a 
grid cell (log) 

0.024 0.226 0.117 -0.085 
(0.08) (0.80) (0.44) (-0.37) 

Number of POIs in commercial and 
recreational services (log) 

0.124 0.009 0.215* 0.218** 
(0.95) (0.08) (1.92) (2.28) 

Number of POIs in manufacturing and 
offices (log) 

0.23** 0.059 0.069 0.089 
(2.21) (0.57) (0.7) (1.18) 

Number of POIs in residence and related 
facilities (log) 

-0.293 -0.215 -0.069 -0.168 
(-1.94) (-1.58) (-0.53) (-1.52) 

Number of POIs in public management and 
services (log) 

0.131 0.232* 0.125 0.062 
(0.89) (1.73) (0.98) (0.57) 

Total effects 
Employment density (log)  0.322*** 0.194*  

 (2.65) (1.7)  
Residential density (log) 0.159   0.139 

(1.31)   (1.58) 
Average housing price (log) 0.279 0.089 0.412*** 0.334*** 

(1.62) (0.54) (2.63) (2.69) 
Ratio of land covered by 200m radius from 
bus stops in the grid cell 

0.954* 1.149** 0.828* 1.03** 
(1.69) (2.25) (1.7) (2.53) 

Ratio of land covered by 400m radius from 
subway stations in the grid cell  

-0.687 -0.444 -0.799 -0.73** 
(-1.35) (-0.96) (-1.82) (-1.98) 

Ratio of road area to total land area in the 
grid cell 

6.24*** 7.066*** 6.001*** 6.20*** 
(3.61) (4.5) (4.04) (4.95) 

Total number of buildings in a grid cell (log) 0.197 0.093 -0.105 -0.078 
(0.98) (0.52) (-0.62) (-0.54) 

Average number of stories of buildings in a 
grid cell (log) 

0.836 0.648** 0.564* 0.494** 
(2.51) (2.18) (2) (2.05) 

Number of POIs in commercial and 
recreational services (log) 

0.225 -0.021 0.362*** 0.435*** 
(1.63) (-0.17) (3.07) (4.35) 
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Number of POIs in manufacturing and 
offices (log) 

0.277** 0.189* 0.256** 0.185** 
(2.55) (1.74) (2.49) (2.36) 

Number of POIs in residence and related 
facilities (log) 

-0.213 -0.209 -0.074 -0.09 
(-1.35) (-1.48) (-0.55) (-0.78) 

Number of POIs in public management and 
services (log) 

0.302* 0.359** 0.225* 0.162 
(1.94) (2.56) (1.69) (1.44) 

Z-values in parentheses. Note: ***, **, and * indicate 1%, 5%, and 10% confidence levels, 
respectively. 
 
 

4.2.1 Residential and employment densities 
As discussed in the methodology section, the morning peak pick-up and evening peak 
drop-off models include the residential density in a grid cell, while the morning peak 
drop-off and evening peak pick-up models include the employment density. First, in 
the morning peak taxi pick-up model, we find residential density has a significant and 
positive direct effect, indicating that a 1% increase in residential density is associated 
with a 0.10% increase in the number of taxi trip origins in the local grid. Meanwhile, 
no significant indirect effects are found. These results are similar to the findings of 
Zhang et al. (2018), who focused on influencing factors to determine the ridership 
distribution of taxi services in New York City. Commuters from home to workplaces or 
to transit stations are probably the main group of passengers that taxis pick up in the 
morning peak hours; thus, locations with a higher residential density usually have 
larger taxi demand.  
 
In the morning peak taxi drop-off model, employment density shows a similar 
tendency, with significant and positive direct impacts. A 1% increase in employment 
density can directly increase morning taxi trip drop-offs in the local grid by 0.20%. 
Additionally, such an increase will lead to a 0.32% rise in morning taxi drop-offs for the 
entire research area, according to the estimated total effects. We did not find 
significant spillover effects, suggesting that employment density of a grid cell or block 
does not affect the number of taxi trip drop-offs in surrounding areas. This is 
reasonable because taxis provide door-to-door services and the drop-off locations of 
most taxi trips are close to the destinations that the passengers want to go (e.g., 
workplace, transit station). 
 
In the evening peak taxi pick-up model, the direct effect of employment density is also 
significant and positive, indicating that a 1% increase in employment density can 
increase the number of taxi pick-ups in local grids by 0.16%. This confirms that higher 
job density incurs more taxi demand. Meanwhile, the insignificant spillover effects 
suggest again that this variable has a negligible impact on taxi demand in the 
surrounding areas.  
 
Lastly, in the evening peak taxi drop-off model, residential density is also found to have 
a significant and positive direct effect on taxi drop-offs, indicating that a 1% increase 
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in residential density can increase taxi drop-offs in the local grid by 0.08%. This finding 
is in line with Liu et al. (2012), who investigated the temporal variations of pick-ups 
and drop-offs and related them to different land-use features. They claimed that a 
typical residential area is a source area for taxi trips in the morning but a sink area in 
the evening.  
 
Overall, it is interesting to note that both residential density and employment density 
only have statistically significant direct effects but no significant spillover effects in all 
models. Moreover, cross-model comparisons (based on Chow test) suggest that the 
elasticity of taxi ridership (as measured in pick-ups and drop-offs) with respect to 
employment density is slightly larger than the elasticity with respect to residential 
density. This might be because taxi trips in employment (sub)centers are more 
clustered than in residential areas. 
 
4.2.2 Public transportation 
Regarding public transportation factors, bus and subway coverage have different 
effects on taxi ridership. Bus coverage has significant and positive direct effects in all 
four models, but no significant indirect effects. Meanwhile, subway coverage shows 
positive direct effects on taxi drop-offs in the morning peak, as well as significant and 
negative indirect effects on taxi pick-ups and drop-offs in the evening peak. Our 
estimates indicate that, in the morning peak models, a 10 percentage point increase 
in the ratio of bus 200-meter or transit 400-meter catchment areas leads to a 8.85% 
(note that 100*(e0.0848-1) = 8.850) and a 2.57% increase in taxi drop-offs in the local 
grid, respectively, while they both have no significant spillover effects on surrounding 
grids. In the evening peak models, bus coverage has similar direct effects on taxi pick-
ups and drop-offs compared to morning peak, with no statistically significant spillover 
effects; for subway coverage, only the spillover effects are significant -- a 10 percentage 
point increase in the ratio of subway 400-meter catchment area would lead to a 8.75% 
decrease in taxi pick-ups and a 8.30% decrease in drop-offs in adjacent grids.  
 
A comparison of the results across all four models suggests that, while bus and subway 
both have some level of positive direct effect on taxi pick-ups or drop-offs during 
different times of the day, they show different patterns of indirect effects. Subway 
coverage has a significant and negative indirect effect, suggesting it may absorb taxi 
demand from surrounding areas, whereas bus coverage’s indirect effect is statistically 
insignificant. Certainly, a possible explanation for the insignificant spillover effects of 
buses is that the effective service range of a bus stop is typically smaller than our unit 
of analysis (i.e., 1km*1km grids), such that the spillover effects cannot be identified at 
this spatial scale. Analyses at a finer scale may be able to detect indirect effects of bus 
coverage on taxi O-Ds.  
 
4.2.3 Land development intensity 
Land development intensity is measured by the total number of buildings and the 
average number of stories in a grid cell. While results show that the number of 
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buildings has neither direct nor indirect effects on taxi O-Ds, the average number of 
stories is estimated to have significant and positive direct effects in all four models. 
Note that the indirect effects of the average number of stories are also insignificant. In 
the morning peak hours, a 1% growth in the average number of stories in a grid can 
increase taxi pick-ups in that grid by 0.81% and taxi drop-offs by 0.42%. In the evening 
peak hours, a 1% growth in the average number of stories can increase taxi pick-ups 
and drop-offs in the local grid by 0.45% and 0.58%, respectively. These results suggest 
that areas containing more high-rise buildings (e.g., residential, commercial and office) 
are likely to generate more taxi demand, while the number of buildings have little 
impact after all other variables have been controlled. 
 
4.2.4 Housing prices 
For average housing prices, we find significant positive direct and indirect effects on 
taxi O-Ds in the evening peak pick-up model. A 1% increase in housing prices increases 
evening taxi pick-ups both in the local grid and in surrounding grids by 0.19% and 
0.22%, respectively. Interestingly, we also find that housing prices have little influence 
on taxi ridership in the morning peak, after controlling for other variables. Although 
people living in more expensive communities may be financially more capable of 
taking taxis, they are also more likely to drive their own cars in the morning peak hours, 
hence offsetting their need for taxis. Note that in the evening peak taxi drop-off model, 
this variable also shows no significant direct effects, which is consistent with the 
morning peak taxi pick-up model, because commuters leave home in the morning and 
return home in the evening.  
 
4.2.5 Road network density 
The road network density, as measured by the ratio of road area to total land area in 
the grid cell, is a good indicator of urban transport infrastructure quality. We find this 
variable has significant positive direct and indirect effects on taxi O-Ds in all models, 
suggesting that an improvement in road network density will increase taxi demand in 
both the local area and surrounding areas. This is likely because areas with a dense 
road network, such as business districts and urban centers, usually have high 
concentration of jobs and large travel demand. In addition, a higher exposure to 
available taxis on the road and less waiting time for passengers may also increase taxi 
ridership.  
 
4.2.6 Points of Interest 
In general, various POIs show different direct effects and indirect effects on taxi O-Ds. 
First, the number of POIs in public management and services have strong positive 
impacts on local taxi pick-ups and drop-offs in both peak times. For example, a 1% 
increase in the number of public management and service POIs will directly increase 
local taxi pick-ups by 0.17% and drop-offs by 0.13% in the morning, but has no 
significant spillover effects. Moreover, the number of POIs in manufacturing and 
offices and the number of POIs in commercial and recreational services both show 
significant and positive direct effects on taxi O-Ds, but the former has some positive 
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spillover effects in the morning peak and the latter only has (positive) spillovers in the 
evening peak.  
 
Note that we did not consider the POIs for transportation service in our main models 
because of their potential collinearity with bus and subway coverage. However, as a 
robustness check, we also tested adding the number of POIs for parking (i.e., a subset 
of transportation services that is less likely to be correlated with bus and subway 
coverage) into our models. The estimation results are shown in Appendix 3. Although 
the VIF of parking POIs is as high as 7.25, we find no major differences in model 
estimates compared to our original models, in terms of both the sign and the 
magnitude of most coefficient estimates. 
 
 
5. Conclusions 
This research provides some insight into the complex spatial and temporal patterns of 
taxi ridership via the application of a variety of big data and a comprehensive 
investigation of its relationships with built environment and neighborhood 
socioeconomic factors. Moreover, we adopt a spatial econometrics model to examine 
not only the direct effects but also the spillover effects of these factors on the spatial 
and temporal variations of taxi pick-ups and drop-offs. The findings have important 
implications for urban planners and policymakers in their efforts to improve the 
balance between taxi services and demand, reduce traffic congestion, and enhance 
the efficiency of the multi-modal transportation system. Based on multi-sourced big 
data, this study also provides a useful framework to generate various built 
environment variables that are not directly provided by government agencies in many 
countries, such as residential and employment densities, the number of POIs, public 
transit stations, and median housing price.  
 
Our results show that road network density has the largest impact on taxi ridership. It 
increases both taxi pick-ups and drop-offs during morning and evening peak hours. 
More importantly, it increases taxi O-Ds not only in the local grid cell but also in 
surrounding cells. These findings suggest that simply increasing the road density in one 
small area but not the surrounding areas may cause traffic bottlenecks and result in 
traffic congestion in the whole area. Transportation planners should comprehensively 
consider the road layout in the entire area in order to reduce traffic congestion.  
 
We also find that the two public transit modes have different effects on taxi ridership. 
Bus coverage has significant and positive direct effects on taxi O-Ds during both 
morning and evening peak hours but no spillover effects. Meanwhile, subway coverage 
has significant and positive direct effects in the morning peak taxi drop-off model, but 
its spillover effects are found to be significant and negative in two evening peak models. 
While the strong negative indirect effects of subway coverage indicate that the subway 
stations may absorb taxi demand in surrounding grids, the positive direct effects of 
both bus and subway coverage suggest that they may increase taxi demand in the local 
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grid. Such findings are useful for designing and improving the multi-modal 
transportation system to better integrate bus, subway, and taxi usage, in order to 
enhance mobility, reduce traffic congestion, and promote environmental sustainability. 
As for land development intensity, the results show that the direct effects of the 
average number of stories on taxi ridership are significant and positive in all four 
models, which is likely related to the large demand for taxis generated by people living 
or working in high-rise buildings where parking is often insufficient. Transportation 
planners need to pay special attention to the development of high-rise buildings and 
make sure the transportation impact analysis of these projects takes into account the 
additional taxi demand caused by such development.  
 
Moreover, both residential and employment densities have significant and positive 
direct effects on taxi O-Ds in two peak periods, but no significant indirect effects are 
found. As many large cities around the world continue to face increasing residential 
density and employment density, planners need to improve their travel demand 
models to specifically incorporate the extra taxi trips generated by the higher densities, 
thereby improving the accuracy of those forecasting models.  
Lastly, different categories of POIs also affect taxi ridership, among which the POIs in 
transportation services consistently have positive and direct effects in all four models. 
Other types of POIs, such as those in public management and services and those in 
manufacturing and offices, also show some level of positive direct effect on taxi pick-
ups and drop-offs. These findings suggest that urban travel demand modeling should 
also take into account the number of various POIs because they may affect taxi 
ridership and hence influence traffic.   
 
To some extent, ride-sourcing services such as DiDi in China and Uber are quite similar 
to taxi services, especially when many taxi services around the world have launched 
their own mobile apps in recent years to better assist dispatching vehicles to areas 
with high demand for taxis. With ride-sourcing services becoming increasingly popular 
around the world, this research also has important planning implications for better 
integrating these services into the existing multi-modal transportation system and 
improving overall transport efficiency.  
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Appendix 1 Results of VIF test. 
 Morning peak 

taxi pick-ups 
Morning peak 
taxi drop-offs 

Evening peak 
taxi pick-ups 

Evening peak 
taxi drop-
offs 

Employment 
density (log) 

 4.09 4.09  

Residential 
density (log) 

3.27   3.27 

Average housing 
price (log) 

1.53  1.59 1.59 1.53  

Ratio of 200m 
radius from bus 
stops to grid cell 

2.57 2.58 2.58 2.57 

Ratio of 400m 
radius from 
subway stations 
to grid cell 

1.44 1.44 1.44 1.44 

Road area ratio 1.96 1.94 1.94 1.93 
Total number of 
buildings in a grid 
cell (log) 

2.58 2.54 2.54 2.58 

Average number 
of stories of 
buildings in a grid 
cell (log) 

3.04 3.00 3.00 3.04 

Number of POIs 
in commercial 
and recreational 
services(log) 

5.25 5.22 5.22 5.25 

Number of POIs 
in manufacturing 
and offices (log) 

1.93 2.70 2.93 2.36 

Number of POIs 
in residence and 
related facilities 
(log) 

5.43 5.25 5.25 5.43 

Number of POIs 
in public 
management and 
services (log) 

5.70 5.68 5.68 5.70 

Mean VIF 3.19 3.28 3.28 3.19 
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Appendix 2 Results of SLM and SEM Models 

 
 

Morning 
peak taxi 
pick-ups 

Morning 
peak taxi 
drop-offs 

Evening 
peak taxi 
pick-ups 

Evening 
peak taxi 
drop-offs 

  SLM SEM SLM SEM SLM SEM SLM SEM 

Residenti
al and 
employm
ent 
densities 

Employm
ent 
density 
(log) 

  0.18
*** 

0.03
*** 

0.15
*** 

0.22
***   

Residenti
al density 
(log) 

0.08
*** 

0.03
***     

0.02
*** 

4.84
*** 

Housing 
price 

Average 
housing 
price 
(log) 

0.10  0.1*
** 

0.1*
** 

0.06  0.15
* 

0.42
*** 

0.07
*** 

4.47
*** 

Public 
transport
ation 

Ratio of 
200m 
radius 
from bus 
stops to 
grid cell 

1.27
*** 

0.14
*** 

0.14
*** 

0.81
*** 

1.16
*** 

1.23
*** 

0.11
*** 

8.02
*** 

Ratio of 
400m 
radius 
from 
subway 
stations 
to grid 
cell 

0.03  0.11
* 

0.11
* 

0.22
** 

0.06  0.27
*** 

0.09  3.1*
** 

Road 
network 
density 

Road 
area ratio 

4.49
*** 

0.51
*** 

0.51
*** 

3.93
*** 

4.68
*** 

4.74
*** 

0.39
*** 

7.48
*** 

Land 
develop
ment 
intensity 

Total 
number 
of 
buildings 
in a grid 
cell (log) 

0.07  0.06  0.06  0.06  -0.02  -0.03  0.04  -0.10  

Average 
number 
of stories 
of 
buildings 

0.76
*** 

0.09
*** 

0.09
*** 

0.41
*** 

0.42
*** 

0.48
*** 

0.07
*** 

8.42
*** 
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in a grid 
cell (log) 

Public 
services 

Number 
of POIs in 
commerc
ial and 
recreatio
nal 
services(l
og) 

0.12
*** 

0.03
*** 

0.03
*** 

-0.01  0.17
*** 

0.12
*** 

0.03
*** 

6.42
*** 

Number 
of POIs in 
manufact
uring and 
offices 
(log) 

0.04
* 

0.03
*** 

0.03
*** 

0.12
*** 

0.17
*** 

0.2*
** 

0.02
*** 

5.37
*** 

Number 
of POIs in 
residence 
and 
related 
facilities 
(log) 

0.05  0.04
*** 

0.04
*** 

-0.01  -0.02  0.02  0.03
* 

2.88
*** 

Number 
of POIs in 
public 
manage
ment and 
services 
(log) 

0.16
*** 

0.04
*** 

0.04
*** 

0.12
*** 

0.08
** 

0.15
*** 

0.03
*** 

4.48
*** 

 Constant 
-

3.33
*** 

1.20
*** 

1.20
*** 

-
2.49
*** 

-
3.28
*** 

-
6.45
*** 

0.79
*** 

-
5.66
*** 

 W×Y 0.26
***  0.05

***  0.28
***  0.02

***  

 W×E  0.05
***  0.06

***  0.57
***  9.57

*** 
 Obs. 683 683 683 683 683 683 683 683 

 AIC 942.
837 

941.
77 

816.
49 

891.
47 

866.
09 

905.
46 

661.
37 

719.
57 

 BIC 1006
.21 

1005
.14 

879.
86 

954.
84 

929.
46 

929.
46 

724.
74 

782.
94 

 Log-
likelihood 

-
457.
42 

-
456.
88 

-
394.
24 

-
431.
74 

-
419.
04 

-
438.
73 

-
316.
69 

-
345.
78 
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 R-square 0.88
97 

0.88
17 

0.88
97 

0.86
86 

0.90
91 

0.89
66 

0.92
04 

0.90
73 

Note: The superscripts ***, **, and * indicate that the coefficient is statistically 
significant at the 1%, 5%, and 10% level 
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Appendix 3 Robustness check: SDM estimation results (with POIs in parking services 
included) 

 
 

Morning 
peak taxi 
pick-ups 

Morning 
peak taxi 
drop-offs 

Evening 
peak taxi 
pick-ups 

Evening 
peak taxi 
drop-offs 

Residential 
and 

employmen
t densities 

Employment density 
(log) 

 0 .17*** 0.14***  
 (5.85) (4.63)  

Residential density 
(log) 

0.10**   0.08** 
(3.18)   (3.01) 

Housing 
price 

Average housing price 
(log) 0.15 0.09 0.21* 0.15 

 (1.47) (0.98) (2.13) (1.72) 
 Ratio of land covered 

by 200m radius from 
bus stops in the grid 
cell 

1.22*** 0.68*** 1.09*** 0.82*** 
Public 

transportati
on 

(9.17) (5.56) (8.62) (7.51) 

Ratio of land covered 
by 400m radius from 
subway stations in the 
grid cell  

0.12 0.31** 0.19* 0.19* 

(1.12) (3.24) (1.84) (2.23) 

Road 
network 
density 

Ratio of road area to 
total land area in the 
grid cell 

3.79*** 3.14*** 4.15*** 2.68*** 

 (7.60) (6.84) (8.76) (6.59) 
Land 
developme
nt intensity 

Total number of 
buildings in a grid cell 
(log) 

-0.01 0.03 -0.01 0.01 

(-0.15) (0.59) (-0.23) (0.32) 

Average number of 
stories of buildings in 
a grid cell (log) 

0.68*** 0.27*** 0.30*** 0.45*** 

(7.92) (3.44) (3.73) (6.46) 

Public 
services 

Number of POIs in 
commercial and 
recreational services 
(log) 

0.04 -0.09** 0.08* 0.16*** 

(1.26) (-2.79) (2.55) (5.66) 

Number of POIs in 
manufacturing and 
offices (log) 

-0.01 0.08** 0.14*** 0.044* 

(-0.48) (3.05) (5.10) (1.97) 

Number of POIs in 
residence and related 
facilities (log) 

0.07 -0.01 -0.03 0.06 

(1.68) (-0.36) (-0.81) (1.85) 

Number of POIs in 
public management 
and services (log) 

0.11** 0.06 0.03 0.05 

(2.81) (1.55) (0.92) (1.39) 

Number of POIs in 
parking services (log) 

0.25*** 0.29*** 0.28*** 0.25*** 
(6.51) (8.06) (7.68) (7.86) 
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 Constant -3.49** -2.42* -3.87*** -3.06** 
 (-3.04) (-2.28) (-3.52) (-3.22) 
Residential 
and 
employmen
t densities 

W×Employment 
density (log) 

 -0.07 -0.04  
 (-0.90) (-0.54)  

W×Residential density 
(log) -0.07   -0.04 

 (-1.01)   (-0.75) 
Housing 
price 

W× Average housing 
price (log) -0.02 -0.06 0.01 0.03 

 (-0.37) (-1.01) (0.22) (0.65) 
Public 
transportati
on 

W×Ratio of land 
covered by 200m 
radius from bus stops  

-0.85*** -0.17 -0.74* -0.31 

 (-2.67) (-0.58) (-2.44) (-1.19) 
 W×Ratio of land 

covered by 400m 
radius from subway 
stations  

-0.55** -0.59* -0.69** -0.69*** 
 

(-2.08) (-2.46) (-2.77) (-3.21) 

Road 
network 
density 

W×Road area ratio 
-0.53 0.86 -0.52 1.06 

 (-0.50) (0.90) (-0.52) (1.25) 
Land 
developme
nt intensity 

W×Total number of 
buildings in a grid cell 
(log) 

0.21 0.11 0.03 0.02 

 (1.69) (0.96) (0.27) (0.19) 
 W×Average number 

of stories of buildings 
in a grid cell (log) 

-0.21* 0.11 0.06 -0.12 
 (-1.08) (0.64) (0.33) (-0.78) 

Public 
services 

W×Number of POIs in 
commercial and 
recreational services 
(log) 

0.04 0.03 0.08 0.06 

 (0.45) (0.39) (1.10) (0.98) 

 W×Number of POIs in 
manufacturing and 
offices (log) 

0.12* -0.01 -0.01 0.03 
 (1.89) (-0.10) (-0.23) (0.58) 

 Number of POIs in 
residence and related 
facilities (log) 

-0.22** -0.15 -0.06 -0.15** 
 (-2.43) (-1.84) (-0.70) (-2.01) 

 W×Number of POIs in 
public management 
and services (log) 

0.04 0.13 0.09 0.05 
 (0.41) (1.52) (1.04) (0.66) 

 W×Number of POIs in 
parking services (log)  

-0.13 -0.16* -0.16* -0.15* 
 (-1.37) (-1.92) (-1.95) (-1.96) 
 W×Y 0.50*** 0.49*** 0.47*** 0.44*** 
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 (9.38) (9.38) (8.84) (8.08) 
 Obs. 683 683 683 683 
 R-square 0.89 0.90 0.91 0.93 

Note: The superscripts ***, **, and * indicate that the coefficient is statistically 
significant at the 1%, 5%, and 10% level. 
 


