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Abstract
We present a two-sided one-to-one market setting where one side of the market is
objectively ranked. Constraints prevent agents on the other side from matching with
agents who are ranked higher than an agent-specific threshold. The domain allows for
indifferences, with preferences of one side being derived from amaster preference list,
while agents on the other side have general preferences. We analyze matchings with
respect to two standard properties: stability and efficiency. Having met these standard
goals, the designer facing this problem may additionally care about a third criterion:
the size of the matching. We find that for the proposed domain all stable matchings
have the same size. We characterize the set of stable and efficient matchings for the
problem. Our results show that every matching that is both stable and efficient is
hierarchical by nature in a precise sense.

Keywords Assignment · Matching · Indifferences · Stable-size · Serial dictatorship

JEL Classifications C78 · D47 · D82

1 Introduction

Consider a two-sided one to onemarket setting, where agents on one side of themarket
(say “Projects”) are grouped into indifference classes that are exogenously ranked, and
agents on the other side (say “Firms”) prefer higher ranked projects. However, each
firm face internal feasibility constraints that prevent her from matching with projects
ranked above an individual threshold. Examples include—(1) the refugee matching
problem: where benevolent hosts with a limited number of beds to spare, are willing
to shelter refugee families in their homes in exchange for a monetary reward (which
is increasing in family size) from the government; (2) firms competing for large-scale
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governmental projects over which there is generally a consensus as to which ones are
more desirable, but firm-specific capacity constraints (technological, deadline, budget,
etc.) prevent it fromgoing after very top projects; (3) the slot allocation problem:where
slots are arranged on a line with earlier slots ranked higher, users arrive over time and
wish to be served as early as possible once they do, for instance, researchers wishing to
use a supercomputer, shipswanting to load/unload cargo at a port, etc. Being indifferent
between different options is a ubiquitous phenomenon in our society, and the above
examples are no exception.

These observations collectively inform our assumptions on the preference domain.
We assume that projects are exogenously ranked (but several projects can have the
same rank, thus giving rise to indifference classes), and each firm f faces a threshold
t f . This firm f prefers projects of higher rank, but projects of rank above t f are
not acceptable to her. Preferences of firms thereby have a nested structure (formally
presented in Sect. 2). Each project j can have arbitrary (non-strict) preferences over
firms but prefers any firm to remaining unmatched. Taking preferences of both sides
into account, firms must be matched to projects in a one-to-one fashion.

We pursue two important design goals that are standard in the literature. The first
is stability, which ensures that agents would accept the matching proposed by the
designer and would not try to individually renegotiate it. To define it, we rely on the
notion of strong blocking: two agents form a pair and block a matching if each agent
in the pair strictly prefers the other over their current match.1 The second is efficiency,
i.e., the matching cannot be Pareto improved upon at any preference profile. Having
met these two goals, in the above examples, the designer may additionally wish to
improve welfare by maximizing as much as possible the size (i.e., the total number of
matched pairs) of the proposed matching.

In our domain with indifferences, all stable matchings have the same size (Propo-
sition 1). To the best of our knowledge, it is the first non-trivial non-strict preference
domain in the literature where this fact holds. This implies that, in the space of sta-
ble and efficient matchings, the designer is not constrained by welfare considerations
regarding the matching size. The absence of this constraint has an important practical
implication. This is because, finding a stable matching that maximizes size is a compu-
tationally hard problem in domains with indifferences, even under severe restrictions
on preferences.2

We propose two assignment rules, both of which always generate a stable and
efficientmatching for anygivenproblem.The rules are in the spirit of the classical serial
dictatorship rule, where an ordering of projects (in the queue) is used to determine the
allocation of firms: the first project in the queue picks his best firm and leaves with that
firm, from what remains the second project in the queue picks, from what remains the
third project in the queue picks and so on.3 The first rule, which we call the decreasing

1 This notion is called weak stability in the literature, but we refer to it simply as stability. Irving (1994)
proposes two other natural definition of stability in the presence of indifferences: strong stability and super
stability. These are stronger notions, but contrary to weak stability, they are not guaranteed to exist.
2 For additional details on these restrictions, see Manlove et al. (2002), Irving et al. (2008). For a brief
discussion see the second paragraph in Sect. 1.2.
3 The rule therefore starts with the set of all firms, and at every step a firm is eliminated.
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refined priority rule, adds two additional tweaks to this procedure. Firstly, the priority
(queue) order over projects used by the rule is always aligned with the exogenous
ranking over the indifference classes of projects: the projects in the top indifference
class appear first in the queue order, followed next by projects in the second-from-top
indifference class, and so on (see, Definition 2). This ensures stability. Secondly, the
rule starts with the set of matchings instead of the set of firms. Following the queue
order, at every step, the rule eliminates all4 matchings where the project being assigned
does not get his best firm (one of his best firms if there are many), from the set of
matchings available at that step. This refinement ensures that the resulting matching
is efficient, in the presence of indifferences. This is elaborated further in Example 1
and the discussion thereafter.

Stability and efficiency do not however characterize the decreasing refined priority
rule (Proposition 4). Nevertheless, we show that every matching that is both stable and
efficient can be generated by a decreasing (non-refined) priority rule. Therefore, in our
proposed domain, stable and efficient matchings are arguably hierarchical by nature:
they can be thought of as an outcome of projects being arranged in a queue order, with
each project receiving one of their best firms in turn from the set of remaining firms
(Proposition 6).

Motivated by the above observation, we propose another class of rules that we
call the Pareto improved decreasing priority rule. Stability and efficiency completely
characterize this class (Proposition 8). The rule works in two steps. In the first step,
a matching is constructed using a queue order over projects, that is aligned with the
exogenous ranking over projects (just as discussed above, thereby ensuring stability).
Then in the second step, it tests for the presence of Pareto improvement (PI) cycles,
a notion introduced by Erdil and Ergin (2017). The absence of PI-cycles in a stable
matching guarantees that it is efficient: in our domain, a stable matching can be Pareto
dominated if and only if projects can form a trading cycle, where every project and
firm involved gets weakly better off, with at least one of them getting strictly better
(Proposition 7).

We proceed to discuss the strengthening of the stability notion to strong stability.
We show that strongly stablematchings (those where there are not evenweak blocking
pairs where only onemember of the pair strictly benefits) exist rarely, and imply a very
specific structure on both preferences and the strongly stable matchings themselves. If
they do exist, then at that corresponding profile, the set of all strongly stable matchings
is exactly equal to the set of all matchings that can be generated by some decreasing
refined priority rule (Proposition 9).

1.1 Outline of the paper

In the following sub-section, we discuss the connection of this work with the existing
literature. In Sect. 2 we present the formal model and the result that stable matchings
have the same size. Section 3 focuses on stable and efficientmatchings and presents the
formal definitions for candidate assignment rules to find them. Section 4 discusses the

4 As opposed to eliminating only one firm from the set of available firms.
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strengthening of stability notion to strong stability. A concluding discussion follows.
Some proofs are relegated to the “Appendix”.

1.2 Relation to literature

It is well known that, in a bilateral matching problem, when every agent has a strict
(but arbitrary) preference over agents on the other side, the size of all stable matchings
are identical, a consequence of the Lone Wolf Theorem5 (McVitie and Wilson 1970;
Gale and Sotomayor 1985). This result breaks down if we allow for general prefer-
ences (Roth and Sotomayor 1990). However, in our domain with indifferences, the
equivalence of stable matchings with respect to size remains true.

This paper contributes to the literature onmatchingwith indifferences. In particular,
it is closely related to the Stable Marriage problem with Ties and Incomplete Lists
with a Master List (Irving et al. 2008). The term “Ties” simply means indifferences
in our context; “Incomplete Lists” refer to the fact that each agent’s preference list
may consist of only a subset of the members of the other side (the acceptable partners
of this agent); and, an agent’s preference list contains her acceptable partners ranked
precisely according to the “Master List” . In the above problem, Irving et al. note that
even when preferences of both sides are derived from a master list,6 weakly stable
matchings need not have the same size, and subsequently discusses the algorithmics of
finding weakly stable matchings that maximize size. In our model, where preferences
of only one side are derived from a master list, while preferences of the other side
are not incomplete;7 weakly stable matchings necessarily have the same size. This
result is therefore of practical significance since, in the presence of incomplete lists
and ties (indifferences), finding a weakly stable matching that maximizes size is a
hard problem; even under restrictions on the number and length of ties (Manlove
et al. 2002), or preferences of both sides being limited to a master list (Irving et al.
2008).8 On structural results, Manlove (2002) proves the lattice structure of the set of
strongly stable matchings with ties (without allowing for incomplete lists) and notes
the absence of such a structure for the set of weakly stable matchings. Our structural
results, therefore, do not concern the set of weakly stable matchings. We argue instead
that, every matching that is both (weakly) stable and efficient admits a hierarchical
structure in a precise sense.

Erdil and Ergin (2017) study a very general two-sided many-to-one matching
domain with indifferences. Apart from PI-cycles that we use in this paper, the notion
of PI-chains plays an important role in the algorithm they propose. The presence
of PI-chains in a stable matching indicates the possibility for welfare improvement
by accommodating a previously unmatched project and reshuffling existing matches,
eventually leading to an increased matching size. By the size-equivalence result, such
a scenario does not arise in our domain. In our more restricted setting, we are addi-

5 The theorem illustrates that the set of unmatched agents does not depend on the choice of stable matching.
6 Note that, there are two master lists, one for each side of the market.
7 We assume that each project prefers any firm over remaining unmatched.
8 For a comprehensive survey on algorithmic results related to matching with indifferences, we refer the
reader to Manlove (2013).
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tionally able to pin down the structure of stable and efficient matchings as well as
strongly stable matchings. In fact, we fully characterize the set of all stable and effi-
cient matchings, and the set of all strongly stable matchings (whenever they exist).

Other matching applications with indifferences include: the school choice problem
with weak priorities (Erdil and Ergin 2008; Ehlers and Erdil 2010);9 the housing
market model where agents are initially endowed with a house (Aziz and De Keijzer
2012); kidney exchange models (Roth et al. 2005; Andersson and Kratz 2020). Unlike
in our model, in these studies, welfare of only one side of the market is relevant, i.e.,
the efficiency notion is one-sided.

Our mechanism design problem involves matching agents to each other without
the possibility of resorting to money or lotteries. As a consequence, most fairness
requirements are immediately out of reach. Any matching will therefore favour some
agents and leave others largely unsatisfied. In such settings, it is widely observed that
resulting mechanisms tend to have a hierarchical structure. Formally proving, or even
formalizing this statement is however elusive. Under strict preferences some results
are obtained: see, for instance, pure assignmentmodels without transfers and exchange
models in Svensson (1999), Pápai (2000), and Pycia and Ünver (2017). Under non-
strict preferences, we are only aware of Svensson (1994) and Bogomolnaia et al.
(2005). Most of these papers attempt to characterize the set of incentive-compatible
(in a strong sense of strategy-proofness) and efficient mechanisms and demonstrate
that they have a hierarchical structure.

We study a more general setting in this paper. Our model can be considered as
an extension of the “house allocation” model. Here the role of “houses” is played
by “firms” . But contrary to that model, firms now have preferences, albeit rather
homogeneous ones. When all projects have the same rank, our model is reduced to the
“house allocation” model with general non-strict preferences. In this reduced model,
Bogomolnaia et al. (2005) showed that the set of all stable and efficient assignments is
equal to the set of all assignments obtained by some refined priority rule.10 In our more
general case, the results have a similar flavour.Adecreasing refined priority rule always
outputs a stable and efficient matching. Every stable and efficient matching is a result
of a decreasing (non-refined) priority rule. The set of all stable and efficient matchings
is equal to the set of all matchings that can be generated by some Pareto improved
decreasing priority rule. If a preference profile admits strongly stable matching(s),
then the set of all strongly stable matchings is equal to the set of all matchings that
can be generated by some decreasing refined priority rule.

Finally, the preference domain studied in this paper is also related to that of the
refugee matching problem discussed by Andersson and Ehlers (2020). In their model,
refugee families (projects) are also ordered according to family size giving rise to
blocks containing projects of the same size.Hosts (firms) have limited beds and there-
fore their preferences have a nested structure11 over these blocks similar to ours.
The differences are as follows. Firstly, in our domain, hosts are necessarily indiffer-

9 Preferences of agents (students) in these studies are however strict.
10 Since all projects have the same rank, the notion of a decreasing priority order plays no role.
11 Hosts prefer refugee families of greater size subject to the condition that the host has a sufficient number
of beds.
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ent between all refugee families in the same block (as a result we have indifference
classes); while in their model, hosts can have general preferences over refugee families
within the same block while respecting the nested structure between blocks. Secondly,
contrary to our domain, their model do not elicit any preferences from refugee fami-
lies whatsoever. It is important to take into account their preferences: there is growing
evidence that the initial placement of refugee families greatly affects outcomes like
education, job prospects, and earnings; which in turn profoundly alters their lifetime
welfare, as most refugees do not move from the localities to which they are resettled
for many years (Åslund and Rooth 2007; Damm 2014; Jones and Teytelboym 2017;
Åslund et al. 2010; Martén et al. 2019). As described in Jones and Teytelboym (2018),
ignoring preferences for refugees has even caused families seeking shelter in Finland
to cancel their asylum applications.

2 Model

Throughout the rest of this article,weuse the project-firm terminology for convenience.
We take the liberty to personify projects and firms, and whenever convenient, we
refer to them using pronouns “he” and “she” , respectively. There is a finite set J =
{1, 2, ..., |J |} of projects, and a finite set F of firms. Let A = J∪F denote the set of all
agents. Furthermore, J is partitioned into a set of indifference classes {J1, J2, ..., Jp},
and there is an exogenously given (strict) order � over these classes. Without loss of
generality, suppose it is Jp � Jp−1 � ... � J1. All the above ingredients are fixed for
the rest of the paper.

The preference domain

The preference relation of every firm f ∈ F is completely identified by a threshold
t f ∈ {1, 2, ..., p} that she reports. Let R∗

k be a weak order (complete and transitive
relation) over J ∪ { f }( f ∈ F

)
defined as follows:

Jk P
∗
k Jk−1 P

∗
k ...J1 P

∗
k f P

∗
k Jp I

∗
k Jp−1 ... I ∗

k Jk+1

where P∗
k and I ∗

k are the antisymmetric and symmetric parts of R∗
k , respectively, and

k ∈ {1, 2, ..., p}. Then, the preference relation of a firm f ∈ F with threshold t f ,
denoted by R f , is given by R f ≡ R∗

t f where t f ∈ {1, 2, ..., p} and the f in the definition
of R∗

t f is to be interpreted simply as the corresponding firm f . Preferences of firms
have a nested structure in the sense that if for two firms f and f ′, we have R f ≡ R∗

k
and R f ′ ≡ R∗

k′ with k > k′, then over the indifference classes Jk′ , Jk′−1, ..., J1, both
R f and R f ′ are identical.

Preference of a project j ∈ J , denoted by R j , is a weak order over the set F ∪ { j}.
Let Pj and I j denote the antisymmetric and symmetric parts of R j , respectively.

Let R = (Ri )i∈J∪F denote a profile of preferences. Given a profile R, we
will say that a firm f

(
resp., project j

)
is acceptable to a project j

(
resp.,firm f

)
if
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f Pj j
(
resp., j P f f

)
. We will say that a project j and a firm f are compatible if they

are mutually acceptable to each other. We assume throughout that all projects find
every firm acceptable, i.e., for any project j ∈ J , we assume that f Pj j ∀ f ∈ F .

Finally, let R denote the set of all such preference profiles.

Notations and definitions

A matching is a function μ : J ∪ F → J ∪ F such that:

– μ( j) ∈ F ∪ { j} ∀ j ∈ J
– μ( f ) ∈ J ∪ { f } ∀ f ∈ F
– μ( f ) = j ⇐⇒ μ( j) = f , ∀ j ∈ J , f ∈ F

Let M be the set of all possible matchings.
Given a preference profile R ∈ R, let us define partial orders RA, RJ , and RF on

the set of matchings as follows. Let μRJ ν, if μ( j)R jν( j) for every j ∈ J ; let μRFν,
if μ( f )R f ν( f ) for every f ∈ F ; and let μRAν, if μRJν and μRFν. Let IA, IJ and
IF denote the symmetric parts, and let PA, PJ and PF denote the asymmetric parts of
these relations.

A matching μ ∈ M is individually rational at profile R ∈ R if every agent is
acceptable to his or her mate, i.e., � i ∈ A such that i Piμ(i).

A matching μ ∈ M is strongly blocked at profile R ∈ R by a pair ( j, f ) ∈ J × F ,
if j Pf μ( f ) and f Pjμ( j). A matching μ ∈ M is weakly blocked at profile R ∈
R by a pair ( j, f ) ∈ J × F , if j R f μ( f ) and f R jμ( j), and at least one of these
two relations holds strictly. A matching μ ∈ M is stable at profile R ∈ R, if it is
individually rational and is not strongly blocked by any pair of agents. A matching μ

∈ M is strongly stable at profile R ∈ R, if it is individually rational and is not even
weakly blocked by any pair of agents.

Amatching ν Pareto dominates a matchingμ at profile R if νPAμ, i.e., all projects
and firms weakly prefer ν to μ, and at least one project or a firm strictly prefers ν to
μ. A matching μ ∈ M is efficient at profile R ∈ R if it is not Pareto dominated by
another matching at R.

The size of amatchingμ ∈ M is defined as the total number of pairs ( j, f ) ∈ J×F
such that μ( j) = f .

Recall that J is partitioned into a set of indifference classes. Consider one such class
Jk , k ∈ {1, 2, ..., p}. Now consider a project j ∈ Jk and a firm f with R f ≡ R∗

s where
s < k. Then, given the way the preference R∗

s is defined, project j is not acceptable
to her. Then, although project j considers firm f as an acceptable match, individual
rationality dictates that they are not matched to each other. Therefore, it will be useful
to keep track of all firms that considers the class Jk as acceptable.

Given a preference profile R and some k ∈ {1, 2, ..., p}, letC(Jk, R) denote the set
of firms that find projects in Jk acceptable, i.e., for every firm f ∈ C(Jk, R) we have
R f ≡ R∗

s where s ≥ k (therefore, Jk Pf f ). Given the nested structure of preferences,
for k′ < k, every firm that considers Jk acceptable also finds Jk′ acceptable but
not necessarily the other way round. As a result, we have an inclusion: C(Jp, R) ⊂
C(Jp−1, R) · · · ⊂ C(J1, R). Let J<k be a shorthand to denote Jx with x < k. J≤k ,
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J≥k and J>k are similarly defined. Finally, note that every firm f ∈ C(Jk, R) strictly
prefers Jk over J<k , i.e., for every f ∈ C(Jk, R) we have Jk Pf J<k .

Given a matching μ, for every indifference class Jk , k ∈ {1, 2, ..., p}, the set of
projects in Jk that are matched under μ are collected in the set below:

Jμ
k = { j ∈ Jk | μ( j) �= j}

In our preference domain, stable matchings are equivalent with respect to size.

Proposition 1 Given any profile of preference R ∈ R, any two stable matchings μ

and μ′ must have the same size. In particular, for every k ∈ {1, 2, ..., p},

|Jμ
k | = |Jμ′

k |

Proof Consider first the top indifference class of projects Jp. Let μ and μ′ denote
two stable matchings such that |Jμ

p | > |Jμ′
p |, i.e., fewer projects from Jp are matched

under μ′ compared to μ. Since a project in Jp can only be matched to some firm in

C(Jp, R), this means that there are at least |Jμ
p | firms in C(Jp, R). But only |Jμ′

p |
of them are matched under μ′. This implies that there exists at least one firm f ∈
C(Jp, R) that was matched to a project in Jp under μ but is either unmatched or is

matched to a project in J<p under μ′. But |Jμ
p | > |Jμ′

p | implies there is a project j
∈ Jp that is matched under μ but not under μ′. Pair ( j, f ) would then block μ′, a
contradiction to the stability of μ′.

Next, let k < p be the largest integer such that there exist two stable matchings

μ and μ′ such that |Jμ
k | > |Jμ′

k |, i.e. fewer projects from Jk are matched in μ′ than
in μ. Therefore, both μ and μ′ matches the same number of projects from classes,

Jk+1, Jk+2, ..., Jp , i.e. we have |Jμ
q | = |Jμ′

q | = Xq ∀q ∈ {k + 1, k + 2, .., p}. Let the
total number of such projects be X . Thus,

X = Xk+1 + Xk+2 + ... + X p

This means that there are at least X firms in C(Jk+1, R). Now, since |Jμ
k | projects are

matched underμ, it must be the case that there are at least X +|Jμ
k | firms inC(Jk, R).

However, only X+|Jμ′
k | < X+|Jμ

k | firms fromC(Jk, R) arematched to some project
from J≥k under μ′. Therefore, there is a firm f ∈ C(Jk, R) that is either unmatched

or is matched to a project in J<k (less preferred to Jk) under μ′. Also, |Jμ
k | > |Jμ′

k |
implies there is at least one project j ∈ Jk which is unmatched under μ′. Then pair
( j, f ) blocks μ′, a contradiction.

��
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3 Assignment rules for stable and efficient matchings

We propose and discuss various candidate assignment rules to solve any instance of
the given problem.

Let us recall that, the exogenously given order over the indifference classes of
projects {J1, J2, ..., Jp} is given by: Jp � Jp−1 � ... � J1.

The assignment rules we discuss are parameterized by a priority order over projects.
A priority order (or, queue order) over the set of projects J is a bijection mapping
σ : J → J . To refer to positions in a queue order, we will use the phrase queue slots.

Since preferences of one side (firms) are aligned (see, Sect. 2), a natural starting
point is the priority rule (or, the serial dictator rule), where the other side (projects)
is ordered in a queue and allowed to choose a firm in turn. Next, we define this rule
formally.

Recall that C(Jk, R) denotes the set of firms that are compatible with projects in Jk
at preference profile R. For ease of presentation, in the notation below, we suppress
its dependence on R and denote it simply by C(Jk).

For any given subset of firms F̄ ⊂ F , a preference profile R, and a project j ∈ Jk ,
denote by

B j (F̄ | R) =
{

{ f ∈ F̄ ∩ C(Jk) | f R j f
′ ∀ f ′ ∈ F̄ ∩ C(Jk)}, if F̄ ∩ C(Jk) �= ∅

{ j}, otherwise

the subset of F̄ consisting of best compatible firms for project j among all compatible
firms in F̄ ; if every firm in F̄ is incompatible with project j , it is just the set containing
project j .

Definition 1 The priority rule is parameterized by an arbitrary priority order σ over
projects. For any fixed priority order σ , the priority rule is a correspondence ψ P

σ :
R � M such that, for any preference profile R we have that ψ P

σ (R) = M , with M
denoting a set of matchings, where every matching μ ∈ M is constructed iteratively
such that:

μ(σ(1)) ∈ Bσ(1)
(
F

∣∣R
)

μ(σ(2)) ∈ Bσ(2)
(
F \{

μ(σ(1))
} ∣∣ R

)

μ(σ(3)) ∈ Bσ(3)
(
F \{

μ(σ(1)), μ(σ (2))
} ∣∣ R

)

...

μ(σ (|J |)) ∈ Bσ(|J |)
(
F \{

μ(σ(1)), μ(σ (2)), ..., μ(σ (|J | − 1))
}∣∣R

)

In words, the priority rule sequentially (according to priority order σ ) assigns every
project to one of his best compatible firms at every iteration, from the set of remaining
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compatible firms at that iteration. If no compatible firm is available, then the project
remains unmatched. Since preferences exhibit indifferences, based on the choicemade
at each iteration, several different matchings may be reached by this rule for any fixed
profile of preferences.

Given any profile R, an outcome of the priority rule, i.e., a matching μ ∈ ψ P
σ (R)

for some priority order σ , is not necessarily stable. This is because the priority order σ
is not necessarily aligned with the exogenous order � over the indifference classes of
projects. That is to say, for two projects j ∈ Jk and j ′ ∈ J<k ,12 it may be the case that
σ( j ′) < σ( j), i.e., project j ′ is assigned earlier. Therefore, if project j ′ is assigned to
some firm f ∈ C(Jk, R) that project j strictly prefers to his own partner, then ( j, f )
forms a strong blocking pair since firm f is also compatible with project j and hence
prefers project j over j ′.

The above observation necessitates that the priority order be alignedwith the exoge-
nous order Jp � Jp−1 � ... � J1. Accordingly, we define next the notion of a
decreasing priority order, and correspondingly, the decreasing priority rule. Indeed,
it turns out that this new rule solves the above-mentioned issue and always outputs a
stable matching (see, Proposition 2).

Definition 2 For any priority order σ , the associated decreasing priority order,
denoted by σ D , is evaluated in the following way.

For any two projects i and j , let i ∈ Jx and j ∈ Jy . Then σ D is derived from σ

such that:

* if x > y, then σ D(i) < σ D( j)
* if x = y, then σ D(i) < σ D( j) ⇐⇒ σ(i) < σ( j)

A priority order σ is called a decreasing priority order if σ = σ D .

In words, for any given priority order σ , the associated decreasing priority order σ D

aligns the priority of projects according to the exogenous order � over the indifference
classes of projects: any project j ∈ Jk gets a better priority in σ D over all projects
j ′ ∈ J<k ; while, if two projects j, j ′ ∈ Jk , i.e., they belong to the same indifference
class, then their relative priority in σ D remains the same as in the original priority
order σ .

Definition 3 Thedecreasingpriority (DP) ruleψDP
σ with respect to anyfixedpriority

order σ , is simply the priority rule with respect to the associated decreasing priority
order σ D . That is, for any preference profile R, we have,

ψDP
σ (R) = ψ P

σ D (R)

Proposition 2 Consider a preference profile R ∈ R and let μ ∈ ψDP
σ (R), then μ is

stable but not necessarily efficient.

12 J<k is a shorthand to denote Jx for some x < k.
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The proof of stability appears in the “Appendix”. The intuition is as follows: since
the priority order over projects is aligned according to �, whenever a firm f strictly
prefers a project j over her own partner, it must be the case that this firm f was
available to be assigned to project j , which in turn implies project j either prefers his
current partner over firm f or is indifferent between them. As a result, the blocking
pair of the kind discussed above in the context of the priority rule never forms.

Although always stable, the output (matching) produced by the DP rule is not
necessarily efficient. This inefficiency stems from the combination of two facts. At
any given iteration, firstly, the rule does not take into account the preferences of projects
that are to be matched in subsequent iterations; and secondly, preferences of projects
exhibit indifferences. The following example illustrates this inefficiency.

Example 1 Consider a single indifference class J = {1, 2} of projects and two firms
A and B, both of which are compatible with this class.

Suppose preferences of projects are as follows below:

R1 R2

A , B A
B

Then, ψDP
σ (R) =

{(
1 2
A B

)
,

(
1 2
B A

) }
for the priority order σ : σ(1) = 1, σ (2) =

2. It is easy to check that both these matchings are stable, while only the second is
also efficient.

In the above example, project 1 is indifferent between firm A and B, and project 1
has the higher priority. Just ensuring that this project gets one of his best compatible
firmswithout considering that project 2 strictly prefers firm Amay lead to inefficiency.
Additional refinements or adjustments are therefore necessary to guarantee efficiency.
Specifically, in any iteration, if one encounters the scenario that there are multiple
best compatible firms for the project in question, one must find a way to not outright
eliminate any possibility that does not hurt this concerned project. Doing so allows
for utility gains to be had in future iterations.

Accordingly, unlike in the case of the priority rule, where we start from the set of all
firms and remove a firm at every iteration; we instead modify the procedure and start
from the set of all matchings. At any iteration, it is then possible to keep every option
(matching) where the currently assigned project receives one of his best compatible
firms (even if there are multiple such firms), allowing for full utility gains to be had
in future iterations. We call this modified procedure the refined priority rule.

To formally define it, we will use the notation B∗( · | R), which is the counterpart
of B( · | R) presented earlier in the context of the priority rule. The difference is that B
operates on a set of firms, while B∗ operates on a set ofmatchings.Wewill additionally
require the following notation.

Given a set of matchings M ⊂ M, a preference profile R, and a project j ∈ Jk ,
denote by C∗

j (M, R) := {μ ∈ M | μ( j) ∈ C(Jk, R)}, the subset ofM where project
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j is matched to a firm that is compatible with this project at preference profile R. For
ease of presentation, we suppress the dependence of C∗

j (M, R) on R, and denote it
simply by C∗

j (M).
For any given set of matchings M ⊂ M, a preference profile R, and a project

j ∈ Jk , let

B∗
j (M | R) =

{
{μ ∈ C∗

j (M) | μ( j) R j μ
′( j) ∀μ′ ∈ C∗

j (M)}, ifC∗
j (M) �= ∅

{μ ∈ M | μ( j) = j}, otherwise

denote, the subset of M consisting of the best compatible matchings for project j in
the sense that project j ismatched to one of his best-ranked compatible firms among all
matchings in M . If there are no matchings where project j is matched to a compatible
firm, B∗

j (M | R) is simply the subset of M consisting of all matchings where project
j is unmatched.

Definition 4 A refined priority (RP) rule with respect to any fixed priority order σ ,
is a correspondence ψ RP

σ : R � M such that, for any preference profile R, we have
that ψ RP

σ (R) = M|J |, where M|J | is defined as follows. Let M0 = M (the set of all
possible matchings),

M1 = B∗
σ(1)

(
M0 | R)

M2 = B∗
σ(2)

(
M1 | R)

...

M|J | = B∗
σ(|J |)

(
M|J |−1 | R)

Clearly, the above rule can be multi-valued, but note that a direct consequence of
its definition is that all projects are indifferent between all elements (matchings) in
M|J |.

Definition 5 The decreasing refined priority (DRP) rule ψDRP
σ with respect to any

fixed priority order σ , is simply the RP rule with respect to the associated decreasing
priority order σ D . That is, for any preference profile R, we have,

ψDRP
σ (R) = ψ RP

σ D (R)

Proposition 3 Consider a preference profile R ∈ R and let μ ∈ ψDRP
σ (R), then μ is

both stable and efficient at R.

The formal proof of the proposition appears in the “Appendix”. Here we present an
informal discussion. The DRP rule always uses a priority order that is aligned with the
exogenous order Jp � Jp−1 � ... � J1. This ensures that any selection (matching)
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from the set ψDRP
σ (R) is stable13 at profile R. Since this rule is also refined,14 any

selection from ψDRP
σ (R) also happens to be efficient at profile R. Intuitively, since at

every iteration, the rule only eliminates those matchings in which, the project assigned
at that iteration does not get one of his best firms conditional on every project in all
previous iterations receiving one of their best firms; it leaves no room for increasing
welfare further. Any attempt at increasing an agent’s welfare must come at the expense
of another.

Next, we discuss the structure of matchings that are both stable and efficient. For
any given preference profile, we ask, whether or not every stable and efficientmatching
at that profile always results from one of the earlier defined rules.

Proposition 4 There exists a preference profile R, and a matching μ that is stable and
efficient at R such that μ /∈ ψDRP

σ (R).

Proof Consider the following example.
Suppose we have indifference classes J2 = {1, 2} and J1 = {3} of projects and three
firms F = {A, B,C} that are compatiblewith all projects. Let preferences be as below:

(a) Projects (b) Firms

R1 R2 R3 RA RB RC

A , B A B 1, 2 1, 2 1, 2
C C A, C 3 3 3

B

The matching μ =
(
1 2 3
A C B

)
is stable and efficient at R.

The two decreasing priority orders are:

σ : σ(1) = 1, σ (2) = 2, σ (3) = 3
σ̄ : σ̄ (1) = 2, σ̄ (2) = 1, σ̄ (3) = 3

It is easy to verify that μ /∈ ψDRP
σ (R) and μ /∈ ψDRP

σ̄ (R). ��
Proposition 4 implies that stability and efficiency do not characterize the decreasing

refined priority rule.

Proposition 5 There exists a preference profile R, and a matching μ that is stable and
efficient at R such that μ /∈ ψ RP

σ (R).

Proof Consider the following example with two projects J = {1, 2} and two firms
F = {A, B}. Preferences are as under:
13 See discussion preceding Definition 2.
14 Refer to the section following Example 1 for an elaborate discussion.
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(a) Projects (b) Firms

R1 R2 RA RB

A , B A 1 1
B 2 2

The matching μ =
(
1 2
A B

)
is stable and efficient at this profile.

But the refined priority rulewith both possible priority orders produces thematching

μ′ =
(
1 2
B A

)
. ��

For the example in the preceding proof, μ and μ′ are the two stable and efficient
at profile R. For priority order σ with σ(1) = 1 and σ(2) = 2, we have, ψDP

σ (R) =
{μ,μ′}, while ψ RP

σ (R) = {μ′}. This difference is driven by the fact that the latter
operates on the set of matchings while the former on the set of firms. Project 2 strictly
prefers μ′ to μ while project 1 is indifferent between them. Using the RP rule, both μ

and μ′ survives after the first iteration and μ is thereafter eliminated by project 2. But
if project 1 is assigned to A = μ′(2) in the first iteration, it is no longer available for
project 2. Therefore, μ can still be generated by using a DP rule.

In Proposition 6 below, we show that every stable and efficient matching can be
generated by a DP rule. This demonstrates that matchings that are both stable and
efficient are hierarchical by nature: they can be thought of as a result of projects
being arranged in a queue order, with each project being matched to one of his best
firms in turn, from the set of remaining firms. Efficiency is necessary for this result
to hold. Stable but not efficient matchings do not necessarily admit this structure, as
demonstrated by the following example.

Example 2 Consider the following. One indifference class J = {1, 2} of projects. Two
firms A and B, both of which are compatible with this class. Preferences of projects
are as under:

R1 R2

A B
B A

The matching μ =
(
1 2
B A

)
is stable but not efficient. It is easy to check that there is

no priority order σ such that μ ∈ ψ P
σ (R).

Proposition 6 Consider a preference profile R ∈ R and let μ be a stable and efficient
matching at R. Then, there is a priority order σ over projects such that μ ∈ ψDP

σ (R).
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The formal proof of this proposition appears in the “Appendix”. We briefly outline
the proof steps next. Fix any indifference class of projects Jr . Since μ is stable at R, a
firm f ∈ C(Jr , R) is matched to some project in J<r underμ only in the event that all
projects in Jr are already matched to some firm in C(Jr , R) that they weakly prefer
over this firm f . Thus, in a stable matching, the demand of projects in Jr is catered
to before projects in J<r ; and accordingly projects in Jr receive an earlier queue slot
compared to projects in J<r . This means the priority order is decreasing. We still need
the individual queue slots for projects within every indifference class. Fix the top class
Jp. By efficiency, we must have that at least one project in Jp is matched to his best
firm under μ. This fact identifies precisely the project(s)15 which receive the earliest
queue slot within projects in Jp. Removing the corresponding matched firms from the
set of firms and repeatedly applying the same arguments until we exhaust Jp gives
the individual queue slots for all projects within Jp. Finally, repeating the process for
Jp−1, Jp−2, . . ., J1 in turn, completes the proof.

It is important to note here that, even though one can always find a priority order
σ such that μ ∈ ψDP

σ (R) for any matching μ that is stable and efficient at R; every
selection (matching) from the set ψDP

σ (R), in spite of always being stable, is not
guaranteed to be efficient (see, Proposition 2 or Remark 1).

LetΣ denote the set of all possible decreasing priority orders over the set of projects.
For any profile R, denote by MSE (R) the set of all stable and efficient matchings at
R. Next denote by MDP (R) := ∪σ∈Σ ψDP

σ (R), the set of all matchings that can be
obtained using some DP rule. Similarly, letMDRP (R) denote the set of all matchings
that can be obtained using some DRP rule.

The preceding results can be summarised as follows:

Remark 1 For any preference profile R ∈ R,

MDRP (R) ⊆ MSE (R) ⊆ MDP (R)

with, there existing profiles where one or both of these inclusions above are strict.

Next, we define another class of rules that Pareto improves upon the DP rule. We
make use of the notion of Pareto improvement cycles introduced by Erdil and Ergin
(2017) (henceforth, EE’17). Since the DP rule always outputs a stable matching, in
the discussion below we implicitly assume that the matching is stable.

We start by noting that Pareto improving upon a stable matching preserves stability,
an implication of the following lemma.

Lemma 1 Let μ be a stable matching. Let ν be another matching that every agent
weakly prefers to μ, i.e., νRAμ. Then, ν must also be stable.

Proof Since μ is stable, it is individually rational, and therefore ν is also individually
rational. Next, assume that ν is not stable. Suppose ( j, f ) ∈ J × F strongly blocks

15 If there are multiple such projects, any order between them works.
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ν. Then, f Pjν( j) and j Pf ν( f ). But then f Pjν( j)R jμ( j) and j Pf ν( f )R f μ( f ),
implying that ( j, f ) strongly blocks μ, a contradiction. ��

Definition 6 Fix a profile R and a matching μ. A Pareto improvement (PI) cycle
consists of projects j1, j2, ..., jn ≡ j0 (n ≥ 2) such that:

(a) Every project jt is matched to a firm.
(b) μ( jt+1)R jtμ( jt ) and jt Rμ( jt+1) jt+1 ∀t ∈ {0, 1, ..., (n − 1)}.
(c) At least one of the preference relations in (b) is strict, for some t ∈ {0, 1, ..., (n −

1)}.
Every project jt in a PI-cycle weakly prefers the firm of the following project jt+1,

and the firm μ( jt+1) matched to the latter would not mind swapping project jt+1 with
jt . Additionally, at least one project strictly envies the following project, or at least one
firm μ( jt+1) strictly prefers jt to jt+1. If there is a PI-cycle, then a Pareto dominating
matching ν can be obtained by matching each project in the cycle to the firm of the
next project:

ν( j) =
{

μ( jt+1) if j = jt for some t ∈ {0, 1, ..., n − 1}
μ( j) otherwise.

By implementing a PI-cycle, wemean constructing the newmatching ν that Pareto
dominates μ as above. The existence of at least one PI-cycle therefore imply that μ

is not efficient. Proposition 7 below shows that the converse of this is also true: if μ

is stable and admits no PI-cycle, then μ must be efficient. This result is an adaptation
of Theorem 1 in EE’17 to our domain. In their more general setting, to ascertain if a
stable matching is efficient, one needs to additionally test for the existence of Pareto
improvement (PI) chains. PI-chains are defined in a similar fashion, except that PI-
chains accommodate a previously unmatched project (thereby increasing thematching
size) by readjusting assignments in the manner described above. PI-chains do not play
any role in our model: by the size-equivalence result in Proposition 1, it is impossible
to accommodate a previously unmatched project without hurting another.

A directed graph G = (V , E) consists of a set V of vertices and a set E of directed
edges, where a directed edge (henceforth, edge) is an ordered pair of vertices, i.e., an
element of V × V . Let us denote an edge (x, y) as x → y. A cycle in G consists of
distinct vertices x0, ..., xn−1(n ≥ 2) such that x0 → x1 → · · · → xn−1 → xn ≡ x0.
Note that, given a directed graph, if each vertex of this graph has exactly one incoming
and one outgoing edge, then each edge of the graph is part of a cycle.16

Proposition 7 A stable matching is efficient if and only if it does not admit any PI-
cycles.

Proof (if part) Assume thatμ is stable but not efficient. Suppose ν Pareto dominatesμ.
Since μ is stable and νPAμ, Lemma 1 and Proposition 1 imply that the set of projects

16 There may be multiple cycles, but every edge is necessarily part of one such cycle.
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and firms that are matched in ν is identical to that inμ. Among these matched projects,
collect in Ĵ := { j ∈ J | ν( j) �= μ( j)} all those that are matched to different firms in
the two matchings. Note that | Ĵ | ≥ 2.Next, construct a directed graphG with Ĵ as the
set of vertices in the following manner. For any project j ∈ Ĵ , take the unique firm f
such that ν( f ) = j . Find the project j ′ such that μ( f ) = j ′. Clearly j ′ ∈ Ĵ . Let there
be an edge j → j ′. Since νPAμ, it is easy to check that if j → j ′ then μ( j ′)R jμ( j)
and j Rμ( j ′) j ′. If one of these preferences is strict, denote the corresponding edge by
j � j ′, and call it a strict edge.
Given the way edges are defined, every vertex in G must have exactly one outgoing

and one incoming edge. Therefore, each edge of G is part of a cycle. Since ν Pareto
dominates μ, G must have at least one strict edge. As a result, there is at least one
cycle containing a strict edge, that leads to a PI-cycle.

The other direction is easy to see. ��

Definition 7 ThePareto improveddecreasing priority (PIDP) rule is parameterized
by an arbitrary priority order σ over projects. For any fixed priority order σ , the PIDP
rule is a correspondence ψ P I DP

σ : R � M such that for any preference profile R,
we have that ψ P I DP

σ (R) = M , where M denotes a set of matchings such that every
μ ∈ M satisfies the following:

(a) μ ∈ ψDP
σ (R).

(b) μ does not admit a PI-cycle.

For any given priority order, at every preference profile, the PIDP rule outputs a
subset of the set of matchings produced by the DP rule, by eliminating all those that
admit at least one PI-cycle.

Fix a priority order σ and a profile R. Consider amatchingμ ∈ ψDP
σ (R). Suppose it

admits aPI-cycle. Letμ′ beobtainedby implementing aPI-cycle. Then,μ′ ∈ ψDP
σ (R).

Therefore, at any profile R, the following procedure leads to the same set of matchings
(M) as the PIDP rule:

Select (iteratively) a matching fromψDP
σ (R). It is always stable. As long as it is not

efficient, by Proposition 7 there will always be a PI-cycle. If so, find a new matching
by implementing a PI-cycle. This matching will also be stable by Lemma 1. Repeat
this process as long as the new matching does not have a PI-cycle. Since the model is
finite, an efficient matching will be found in finitely many steps. Collect this matching
in the set M if it is not already present. EE’17 shows that the search for PI-cycles is
computationally efficient, thereby making the process of finding a stable and efficient
matching fast.

It is then clear that the PIDP rule always gives a stable and efficientmatching. In fact,
stability and efficiency completely characterize the class of PIDP rules (Proposition
8).

Denote by MP I DP (R) := ∪σ∈Σ ψ P I DP
σ (R), the set of all matchings that can be

obtained using some Pareto improved decreasing priority rule.
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Proposition 8 For any preference profile R ∈ R,

MSE (R) = MP I DP (R)

Proof Follows from Propositions 2, 6 and 7. ��

4 Strongly stable matchings

Strongly stablematchings are not guaranteed to exist in our preference domain (see, for
instance, the example used in Proposition 5 which does not admit any strongly stable
matching). In fact, the existence of a strongly stable matching is a rare event, and
implies a very specific structure of both preferences and the strongly stable matchings
themselves. We outline this phenomenon using the lemmas presented below.

In what follows we assume that the preference profile admits at least one strongly
stable matching (henceforth, SSM).

Lemma 2 Every SSM is efficient.

Proof Let μ be a SSM that can be Pareto improved by matching μ′. There is an agent
x (firm or project) who strictly prefers μ′ to μ. Hence, x is matched at μ′, say to some
agent y. Since μ′ is Pareto superior to μ, y is at least as well at μ′ as at μ. Hence, the
pair (x, y) weakly blocks μ, a contradiction to μ being a SSM. ��

Lemma 3 In any SSM, for every k ∈ {1, 2, . . . , p}, the set of projects Jk is either fully
matched or fully unmatched.

Proof Fix a SSM μ. Suppose there are two projects i, j ∈ Jk , such that i is matched
with firm f at μ while j is unmatched. Since firm f is indifferent between projects i
and j , the pair ( j, f ) weakly blocks μ, a contradiction. ��

For any matchingμ and a set of projects Ĵ , letμ( Ĵ ) denote the set of firms matched
with some project in Ĵ .

Lemma 4 Fix a preference profile and a SSM μ. For any k ∈ {1, 2, . . . , p}, let Fk
denote the set of firms that are not matched with some project in ∪p

x=k+1 Jx at μ.
Then,

(a) For any matched project j ∈ Jk , firm μ( j) belongs to the top indifference class of
this project j among all compatible firms of project j in the set Fk.

(b) A firm f ∈ Fk \μ(Jk) does not belong to the top indifference class (within com-
patible firms in Fk) of any project j ∈ Jk .

(c) μ(Jk) = Tk, where Tk ⊂ Fk is the set of firms that are in the top indifference class
(within compatible firms in Fk) for at least one project j ∈ Jk.
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Proof Part (a): If project j would strictly prefer some firm f ∈ Fk toμ( j), then ( j, f )
would weakly block μ (firm f cannot strictly prefer its current match to j , since it is
not matched to a project of better rank).

Part (b): Any firm f ∈ Fk\μ(Jk) compatible with projects in Jk , prefers any project
j ∈ Jk to its match in μ. If this firm f is in the top (within compatible firms in Fk)
indifference class of any such project j ∈ Jk , then project j is indifferent between
firms f and μ( j). Hence ( j, f ) weakly blocks μ, a contradiction.

Part (c): Take any firm f ∈ μ(Jk). Then by Part (a), we have f ∈ Tk and so,
μ(Jk) ⊂ Tk . Next, assume for contradiction that f ∈ Tk but f /∈ μ(Jk). This means
f ∈ Fk \μ(Jk). Then by Part (b) we have, f /∈ Tk , a contradiction. Thus, f ∈ μ(Jk)
and so, Tk ⊂ μ(Jk). Hence μ(Jk) = Tk . ��

Lemma 5 Let μ be a SSM at preference profile R. Suppose k∗ ∈ {1, 2, . . . , p} is the
largest integer such that there is a project j ∈ Jk∗ which is matched at μ. Then,

(a) There does not exist a firm f that is compatible with projects in J>k∗ at preference
profile R.

(b) Jk∗ is always fully matched at every SSM at R.

Proof (a): If such a firm would exist, then that firm would form a weak blocking pair
with a project of rank better than k∗.

(b): Since there is a project j ∈ Jk∗ which is matched at μ, the firm μ( j) finds
projects in Jk∗ compatible. By Lemma 4(a), this firm μ( j) belongs to the top indiffer-
ence class of project j among all his compatible firms. Therefore, this firm μ( j) must
be matched to a project in Jk∗ (possibly different from j) in every other SSM. This
implies at least one project in Jk∗ must be matched at every SSM at R. By Lemma 3,
Jk∗ must then be fully matched in every SSM at R. ��

Lemma 6 Suppose μ and μ′ are two SSMs at a given preference profile R. Then the
set of firms matched to every indifference class of projects Jk remains the same across
these two SSMs, i.e.,

μ(Jk) = μ′(Jk) ∀k ∈ {1, 2, . . . , p}.

Proof Let k∗ ∈ {1, 2, . . . , p} be the largest threshold such that projects in Jk∗ are
compatible for some firm in F at preference profile R. Then by individual rationality,
all projects in J>k∗ are unmatched in both μ′ and μ. Thus, μ(Jk) = μ′(Jk) ∀k ∈
{k∗ + 1, k∗ + 2, . . . , p}. Moreover, Lemma 5 implies that both μ′ and μ must fully
match all projects in Jk∗ . By Lemma 4(c) we have that, μ(Jk∗) = Tk∗ = μ′(Jk∗),
where Tk∗ is the set of all firms which are in the top indifference class for at least one
project in Jk∗ .

Next let k∗∗ ∈ {1, 2, . . . , k∗ − 1} be the largest threshold such that projects in Jk∗∗
are compatible for some firm in F \Tk∗ at preference profile R. If k∗∗ < k∗ − 1,
then projects in Jk∗∗+1, Jk∗∗+2,... , Jk∗−1 are unmatched in both μ and μ′, since there
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are no compatible firms for these projects at preference profile R that are not already
matched to some better-ranked project in both μ and μ′. Furthermore, by Lemma 5
and Lemma 4(c) we have μ(Jk∗∗) = Tk∗∗ = μ′(Jk∗∗).

Proceeding in this fashion completes the proof. ��

Lemma 7 If a preference profile admits more than one SSM, all projects are indifferent
between them.

Proof Follows from Lemmas 4(a) and 6. ��

The implications from the preceding lemmas can be summarized as follows. If
a preference profile admits at least one SSM, then in every such SSM, any set of
projects Jk of a given rank is either fully matched or fully unmatched. Moreover,
in every such SSM, projects in Jk are matched to the same set of firms (and those
firms are the best for these projects among all compatible firms not matched with a
better-ranked project). These observations drive the equivalence result in Proposition
9: if a preference profile admits at least one strongly stable matching, then the set of
all strongly stable matchings at that profile is exactly equal to the set of all matchings
that can be generated by a decreasing refined priority rule at that profile. The proof
appears in the “Appendix”.

For any preference profile R, let MSS(R) denote the set of all matchings that
are strongly stable at profile R. Also recall that MDRP (R) denotes the set of all
matchings which can be obtained using some decreasing refined priority rule, i.e.,
MDRP (R) = ∪σ∈Σ ψDRP

σ (R), where Σ denotes the set of all possible decreasing
priority order. The following proposition establishes the relationship between these
two sets.

Proposition 9 Assume that preference profile R ∈ R admits a strongly stable match-
ing. Then,

MSS(R) = MDRP (R)

5 Concluding remarks

This article proposes a two-sided matching domain where preferences of one side of
the market are derived from a master preference list, while agents on the other side
have general preferences. The domain permits indifferences. It has been shown that
stablematchings have the same size.We have discussedwhy this is a positive result due
to its practical significance. Our discussion on the assignment rules demonstrates the
hierarchical nature of stable and efficient matchings for the problem. In particular, we
have shown that the set of stable and efficient matchings in this domain is completely
characterized by the Pareto improved decreasing priority rule. We have also discussed
the more demanding notion of strong stability and shown that its existence is not
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guaranteed. If they do exist, then the set of strongly stable matchings is completely
characterized by the decreasing refined priority rule. Next, we make some additional
remarks about our results.

Firstly, we have not analyzed the strategic aspects of our assignment rules. It is easy
to check that the decreasing refined (and, non-refined) priority rule is not manipulable
by an individual project. This is not surprising given that the serial dictatorship rule is
well known to be strategy-proof. One can also easily check that they are not manip-
ulable by firms. Recall that the set of projects J is partitioned into {J1, J2, ..., Jp}.
We have implicitly assumed that the block to which any particular project belongs, is
publicly observable. If this information is privately held, then projects can manipulate
the decreasing priority order by their reports, and thereby the assignment rules.

Secondly, note that the assignment rules we have discussed are expensive in terms
of the information that the designer must elicit about every project’s preference over
the entire set of firms. This may become a major concern as the number of agents
gets very large. It is in regard to this observation that Proposition 6 has an important
implication.

We know fromProposition 6 that, for anymatchingμ that is both stable and efficient
at a preference profile R, there is a (decreasing) priority order σ over projects and a
(weakly) decreasing sequence {Γ j }|J |

j=1 of choice sets consisting of firms, such that
μ(σ( j)) ∈ Bσ( j)(Γ j , | R) for all j ∈ J .We conjecture the existence of a sophisticated
procedure whereby a stable and efficient matching may be obtained by a recursively
defined procedure, where at each step and given the data from previous steps, a choice
set for every “project” is defined. The “project” then only needs to report the maximal
elements from the choice set. The advantage of such a procedure would be that the
projects will no longer need to report the entire preference over the complete list
of firms. This can reduce the information elicitation burden greatly and hence can
be of particular relevance from a practical standpoint when the number of agents is
significantly large. We leave the study of the existence of such a rule open for future
investigation.
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Appendix

Proof Proposition 2 Fix a preference profile R ∈ R, and let μ ∈ ψDP
σ (R) for some

decreasing priority order σ . Suppose μ is not stable: some project j and some firm f
block. This implies project j and firm f form a compatible pair. Let project j ∈ Jk :
thenfirm f ∈ C(Jk, R).Note that, it cannot be the case that both j and f are unmatched
at μ as the rule requires that a project is always assigned a firm if a compatible firm is
available. There are three possible remaining cases:

1. μ( j) = j , μ( f ) = j ′ : only firm f is matched.
2. μ( j) = f ′, μ( f ) = f : only project j is matched.
3. μ( j) = f ′, μ( f ) = j ′ : both project j and firm f are matched.

Case: 1—Since ( j, f ) block we have: j P f j ′ which implies j ′ ∈ J<k . Since ordering
is decreasing, this means σ( j) < σ( j ′). Since project j comes ahead of project j ′ in
the ordering and remains unmatched, it must be the case that all firms compatible with
j were already matched to some project which was ahead in the queue compared to
j . This means, every firm in C(Jk, R) which is matched under μ, is matched to some
project in J≥k . In particular also firm f . But then μ( f ) = j ′ ∈ J<k , a contradiction.

Case: 2—Since a firm once matched never gets unmatched, firm f was available to
project j when it was assigned f ′. This implies μ( j) = f ′R j f . But since ( j, f )
block, we have f Pj f ′, which is not possible.

Case: 3—Since ( j, f ) block we have: j Pf j ′ which implies j ′ ∈ J<k, which implies
σ( j) < σ( j ′). Now, since project j comes ahead in the queue butμ( f ) = j ′, it means
that firm f was available when project j was assigned firm f ′. This means that f ′R j f .
But since ( j, f ) block, we have f Pj f ′, which is not possible. ��
Proof of Proposition 3 Fix a preference profile R ∈ R and letμ ∈ ψDRP

σ (R). Stability
of μ follows from arguments in the same vein as in the proof of Proposition 2 with
very minor modifications. We omit it here for the sake of brevity. We proceed to show
thatμ is efficient. The only way to increase the utility of a project j is to expand the set
Mσ( j)−1 of feasible matchings to choose from. This is not possible without decreasing
the utility for some project j ′ such that σ( j ′) < σ( j). This is because, if all projects
ahead of j in the queue were utility invariant when this welfare improving matching
(after carrying out the reshuffling steps) was added, they would not have removed it in
the first place. In particular, all (un)matched projects in μ must remain (un)matched
after any reshuffling of agents to improve the welfare of any firm. Consequently, such
a firm (whose welfare is possibly improved) must have been matched at μ. Also, any
such reshuffling attempt requires that the matched projects remain indifferent between
partners, before and after the swaps take place.

Suppose next that firm f can be made better without hurting any other agent. Let
k∗ be the largest integer such that f ∈ C(Jk∗ , R), i.e., firm f ’s best-ranked acceptable
projects are Jk∗ . Since firm f gets a utility kick, it must mean that f was matched to a
project j ∈ J<k∗ . Let μ( f ) = j ∈ Jk j . Suppose in the new matching, f gets project
j ′ ∈ Jk j ′ . Then, k

∗ ≥ k j ′ > k j : j ′ has a better exogenous rank compared to j . Then
firmμ( j ′) that becomes partner-less as a result must be assigned a project in J≥k j ′ . But
this project was also matched in μ. Therefore, the firm that then becomes partner-less
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must also be assigned a project in J≥k j ′ and so on. Thus, the Pareto improvement swaps
to begin with, must sequentially involve projects in J≥k j ′ and firms inC(Jk j ′ , R). Now,
let X be the total number of projects in J≥k j ′ that were matched in μ. This implies
that X firms in C(Jk j ′ , R) were matched to projects with a rank strictly better than
project j . Firm f was not one such firm. But since no more than X projects in J≥k j ′
can be matched after the reshuffling, there must be a firm in C(Jk j ′ , R) that now is
either unmatched or matched to some project in J<k j ′ , a contradiction. ��

Proof of Proposition 6 Fix a preference profile R ∈ R and letμ be a stable and efficient
matching. We have to show that there is a (decreasing) priority order σ over projects
and a (weakly) decreasing sequence {Γ j }|J |

j=1 of choice sets consisting of firms, such
that μ(σ( j)) ∈ Bσ( j)(Γ j ) for all j ∈ J .

Consider first the top set of projects Jp. If one such project is not matched, but
some firm compatible with it (i.e. firm in C(Jp, R)) is matched with a project in J<p,
it violates stability. Thus, either all these projects are matched or all firms compatible
with them are matched to a project in Jp, depending on whether |Jp| � |C(Jp, R)|.
Now, since μ is efficient, there must exist at least one project in Jp who gets his best
firm (one of his best firms if there are many) in C(Jp, R). To see why suppose not.
Next, let an arrow go from each project in Jp to all his top choice of firms. Let another
set of arrows go from all firms in C(Jp, R) who are matched to some project in Jp,
to their corresponding matches. Since the set of agents is finite, there always exists a
cycle following arrows. Exchanging along this cycle leads to a Pareto improvement,
a contradiction. Collect all such projects that get one of their best firms under μ in the
set X1

p. Next choose a bijection σ 1
p : X1

p −→ {1, 2, ..., |X1
p|}. For any Y ⊂ J , let μ(Y )

denote the set (possibly empty) of firms matched to some project in Y . Next, consider
the set Jp\X1

p of projects and the set C(Jp, R)\μ(X1
p) of firms. Since μ is efficient

we again get a set X2
p of projects who get their top choice in C(Jp, R)\μ(X1

p). Again
choose a bijection σ 2

p : X2
p −→ {|X1

p| + 1, |X1
p| + 2, ..., |X1

p| + |X2
p|}. Remove the set

of matched agents and proceed in the same fashion until we exhaust Jp. We will have
a collection of n p sets X1

p, X
2
p, ..., X

np
p and corresponding orderings σ 1

p, σ
2
p, ..., σ

n p
p .

If |Jp| > |C(Jp, R)|, i.e. there are not enough firms (compatible with Jp), then X
np
p

contains all projects in Jp which are unmatched (in the absence of compatible firms,we
slightly abuse the notion of top choice to also mean unmatched). If |Jp| < |C(Jp, R)|,
all projects are matched, and by stability we have, every project in Jp weakly prefers
their matched firm over all compatible firms that are unmatched or matched to projects
in J<p. This fact, together with the way Xi

p’s are defined, we see that every project
in Jp is matched to one of their best available compatible firms when they allowed to
choose (following the order).

Next, consider the second best set of projects and carry out the same procedure,
followed by the third best and so on. To elaborate, proceeding in decreasing order, for
each k ∈ {p − 1, p − 2, ..., 1}, let us consider projects in Jk and firms in C(Jk, R)\⋃p

i=k+1 μ(Ji ). Then, by carrying out the same steps outlined earlier we will get a
collection of nk sets {Xi

k}nki=1, and corresponding orderings {σ i
k }nki=1. Once we do this

for every k, we finally have a collection {Xi
k} k=1(1)p

i =1(1)nk
and {σ i

k } k=1(1)p
i =1(1)nk

.
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Next, define the priority orderσ such thatσ( j) = σ i
k ( j), if j ∈ Xi

k .Note thatσ is, by
construction, aligned with the exogenous order over projects: Jp � Jp−1 � ... � J1.

Finally, defining the collection {Γ j }|J |
j=1 of choice sets consisting of firms such that;

Γ1 = F , and for j = {2, 3, ..., |J |}, Γ j = F \⋃ j−1
i=1 μ(σ(i)), we have the desired

proof. ��
Proof of Proposition 9 We use the lemmas in Sect. 4 including the notations therein.
Suppose R is such a preference profile that admits a SSM.

Let k∗ ∈ {1, 2, . . . , p} be the largest threshold such that projects in Jk∗ are com-
patible for some firm in F at preference profile R. Then by individual rationality, all
projects in Jk∗+1 ∪ Jk∗+2 ∪ · · · ∪ Jp remain unmatched at every SSM at preference
profile R. Moreover, all projects in Jk∗+1 ∪ Jk∗+2 ∪ · · · ∪ Jp are also unmatched at
every matching that is output by any decreasing refined priority rule by definition.

Since there is a compatible firm for projects Jk∗ at profile R, at least one such
project, can be, and must be, matched. Moreover, since preference profile R admits a
SSM, by Lemma 3,

– All projects in Jk∗ can be matched.
– All projects in Jk∗ can be matched to Tk∗ such that each project is matched to a
best compatible firm for that project from within the set F .

– Firms in the set F \Tk∗ are not in the top indifference class (within compatible
firms in F) for any project in Jk∗ .

This implies that, no matter what ordering of projects within Jk∗ is used by the
decreasing refined priority rule, the rule always outputs a set ofmatchings that matches
Jk∗ to Tk∗ (and never to a firm in F \Tk∗ ), with every project in Jk∗ getting one of
their best compatible firm in F . Since every SSM at profile R satisfies the above bullet
points, the result is true for projects in Jk∗ .

Note that, the set of matchings from which projects of rank lower than k∗ gets to
pick from in the decreasing refined priority rule, never contains a matching where this
lower-ranked project is matched to a firm in Tk∗ . Moreover, firms in Tk∗ never prefer
these lower-ranked projects to their SSMmatch. Next, let k∗∗ ∈ {1, 2, . . . , k∗ − 1} be
the largest threshold such that projects in Jk∗∗ are compatible for some firm in F\Tk∗ at
preference profile R. If k∗∗ < k∗ −1, then all projects in Jk∗∗+1∪ Jk∗∗+2∪· · ·∪ Jk∗−1
remain unmatched at every SSM at preference profile R; as well as at every matching
that is output by any decreasing refined priority rule (by definition) at profile R. By
the same arguments as above, every SSM and every decreasing refined priority rule at
preference profile R, matches projects in Jk∗∗ to Tk∗∗

(
and never to a firm in(F\Tk∗)\

Tk∗∗
)
, with every project in Jk∗∗ getting one of their best compatible firms in F \Tk∗ .

Continuing in this manner we have the desired result. ��
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