
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uasa20

Journal of the American Statistical Association

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uasa20

Robust Estimation of Large Panels with Factor
Structures

Marco Avarucci & Paolo Zaffaroni

To cite this article: Marco Avarucci & Paolo Zaffaroni (2022): Robust Estimation of
Large Panels with Factor Structures, Journal of the American Statistical Association, DOI:
10.1080/01621459.2022.2050244

To link to this article:  https://doi.org/10.1080/01621459.2022.2050244

© 2022 The Author(s). Published with
license by Taylor & Francis Group, LLC.

View supplementary material 

Published online: 11 Apr 2022.

Submit your article to this journal 

Article views: 144

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=uasa20
https://www.tandfonline.com/loi/uasa20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/01621459.2022.2050244
https://doi.org/10.1080/01621459.2022.2050244
https://www.tandfonline.com/doi/suppl/10.1080/01621459.2022.2050244
https://www.tandfonline.com/doi/suppl/10.1080/01621459.2022.2050244
https://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/01621459.2022.2050244
https://www.tandfonline.com/doi/mlt/10.1080/01621459.2022.2050244
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2022.2050244&domain=pdf&date_stamp=2022-04-11
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2022.2050244&domain=pdf&date_stamp=2022-04-11


JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
2022, VOL. 00, NO. 0, 1–12
https://doi.org/10.1080/01621459.2022.2050244

Robust Estimation of Large Panels with Factor Structures

Marco Avaruccia and Paolo Zaffaronib,c

aUniversity of Glasgow, Glasgow, UK; bImperial College Business School, London, UK; cUniversity of Rome La Sapienza, Rome, Italy

ABSTRACT
This article studies estimation of linear panel regression models with heterogeneous coefficients using
a class of weighted least squares estimators, when both the regressors and the error possibly contain a
common latent factor structure. Our theory is robust to the specification of such a factor structure because
it does not require any information on the number of factors or estimation of the factor structure itself.
Moreover, our theory is efficient, in certain circumstances, because it nests the GLS principle. We first show
how our unfeasible weighted-estimator provides a bias-adjusted estimator with the conventional limiting
distribution, for situations in which the OLS is affected by a first-order bias. The technical challenge resolved
in the article consists of showing how these properties are preserved for the feasible weighted estimator
in a double-asymptotics setting. Our theory is illustrated by extensive Monte Carlo experiments and an
empirical application that investigates the link between capital accumulation and economic growth in an
international setting. Supplementary materials for this article are available online.
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1. Introduction

This article studies estimation of linear panel regression models
with heterogeneous coefficients using a class of weighted least
squares estimators, when both the regressors and the error
possibly contain a common latent factor structure. Factor mod-
els represent one of the most popular and successful ways to
capture cross-sectional and temporal dependence, especially
when facing a large number of units (N) and time periods (T).
However, in our context, the possibility of a common factor
structure in both regressors and error leads to an endogeneity
problem, making estimation of panel data models by ordinary
least squares (OLS) invalid.

In principle, the endogeneity would be trivially resolved if
one could hypothetically observe the latent common factors
and use them in the OLS regression. Second, an efficiency
improvement over the OLS estimator can be achieved if the
true variance-covariance matrix of the idiosyncratic regression
error is known, leading to the generalized least squares (GLS)
estimator. Both of these two steps are not feasible in practice, as
we do not observe the latent common factors nor we have the
covariance matrix of the idiosyncratic error.

The contribution of this article is to show how to achieve
these two goals, despite the latency of the factors and of the
variance-covariance matrix of the idiosyncratic regression error.
Unlike other approaches, we do not advocate preliminary esti-
mation of the factor structure and, instead, we treat factors and
their loadings as nuisance parameters rather than objects of
interest. In particular, we construct a feasible weighted estimator
that resolves the endogeneity without any knowledge of the

CONTACT Paolo Zaffaroni p.zaffaroni@imperial.ac.uk Imperial College Business School, London, UK.
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1These includes the case of of weak endogeneity, when the loadings to the latent factors in the regressors and in the errors are cross-correlated, when the
latent factors’ space cannot be recovered from cross-sectional averages of the observable variates, a special case of which being when the number of
latent factors is arbitrarily larger than the number of heterogenous regressors.

common factors, qualifying our methodology as robust. This
appears to be the strongest feature of our methodology.

Moreover, the statistical properties of our estimator are pre-
served under several circumstances of interest that can arise
in the data.1 This is relevant as many existing estimation pro-
cedures designed to tackle the endogeneity problem in panel
regressions, such as the popular common correlated effects
(hereafter CCE) estimator of Pesaran (2006), become invalid,
that is, first-order biased, when any of the above circumstances
apply. Moreover, the large majority of the contributions do
not allow heterogeneity of the regression coefficients (see, e.g.,
Bai 2009). Resolving these problems, that is constructing an
estimator robust to endogeneity when alternative procedures
fail and allowing for heterogeneous slope coefficients, represents
our advancement in the literature of panel estimation with
interactive fixed effects.

Our work also advances the literature of GLS estima-
tion along two dimensions. In fact, first, under specific cir-
cumstances on the idiosyncratic error, the weighting scheme
adopted by our estimator achieves full efficiency, meaning that
it is asymptotically equivalent to a feasible GLS estimator. We
qualify this property as quasi-efficiency, given that these circum-
stances on the idiosyncratic error are not generally warranted.
Second, our work also contributes to the literature that demon-
strates how efficient estimation techniques not only lead to an
improvement of precision but, most importantly, may resurrect
the required asymptotic properties, in terms of bias, rate of
convergence, and distribution, when these fails in inefficient
approaches (see Phillips 1991; Robinson and Hidalgo 1997).
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Section C of the supplementary materials offers a complete
overview of these two vast streams of literature on estimation
of panel with interactive fixed effects and efficient estimation of
regression models.

We first consider the unfeasible weighted least squares esti-
mator for the regression coefficients, assuming that both the
covariance matrix of the idiosyncratic error and the latent
factors are known. This unfeasible estimator is asymptotically
equivalent to the (unfeasible) GLS estimator applied to the
variates after these have been projected on the space orthog-
onal to the common factors, according to the Frisch–Waugh–
Lovell theorem.2 It turns out that, regardless of the possibility of
endogeneity (i.e., when regressors and error are correlated), the
unfeasible estimator is T1/2-consistent and asymptotically nor-
mal. The unfeasible weighted estimator does not only represent
a more efficient estimator than OLS but provides an automatic
biased-adjusted estimator with desirable asymptotic properties,
when OLS is invalid due to the failure of strict exogeneity. This
result is due to an important insight, namely that the column
space of the weighting matrix is, asymptotically in T, orthogonal
to the column space of the matrix of common factors, that
is, it spans the null space of the common latent factors. Most
importantly, for our theory to go through, the norm of the
product between the weighting matrix and the factors’ matrix
is manifested at the fast rate O(T−1/2).

The substantial challenge arises when considering a feasible
version of the weighted least squares estimator. Our main insight
is that the feasible weighting matrix can be constructed using
the sample cross-sectional second-moment matrix of the OLS
residuals. Lack of consistency of the OLS estimator for the
regression coefficients would suggest that our feasible weighting
scheme is invalid, and, indeed, the feasible weighting matrix
does not converge to the unfeasible weighting matrix (in the
sense of element-by-element convergence).

The surprising crucial result established here is that the feasi-
ble weighting matrix maintains the asymptotic orthogonality to
the latent common factors, established for the unfeasible weight-
ing matrix, and at the same O(T−1/2)-rate. As a consequence,
we are able to show that the feasible estimator for the regression
coefficients is T1/2-consistent and asymptotically normal, as
both N, T diverge to infinity, making a complete use of the
panel dimension. This holds under the same circumstances for
which the OLS estimator is first-order biased. This is the most
intriguing aspect of our theory. Finally, an iterative evaluation
of our feasible estimator permits getting close to the unfeasible
weighted least squares estimator, and thus, to GLS efficiency,
under certain homogeneity assumptions for the idiosyncratic
error covariance matrix.

Our asymptotic distribution theory requires T2/N → 0,
whereas the milder T/N → 0 ensures consistency. This relative
speed spells out a neat dichotomy in terms of the role of T and N:
the faster rate of divergence for N is asked to estimate accurately
the weighting matrix required by our estimator, which in turn
mitigates the asymptotic bias. Instead, the slower divergence of
T controls the asymptotic variance of the weighted least squares

2Our simulation exercise shows that these two unfeasible estimators are
asymptotically equivalent when T is large.

estimator, dictating ultimately the estimator’s convergence to its
limiting distribution.

This article proceeds as follows. Section 2 illustrates the
panel model and the estimators studied in the article, with
the regularity assumptions described in Section 3. Our main
asymptotic results are in Section 4. Monte Carlo experiments
and an empirical application, which investigates whether capital
accumulation enhances economic growth for a panel of OCED
and non-OECD countries, are presented in Section 5. Section 6
concludes. The technical proofs, the literature survey, and fur-
ther material, are relegated to the supplemental materials.

2. Methodology: Model and Estimators

The notation adopted throughout the article is collected in
Appendix B, supplementary materials but we also define quan-
tities throughout the article when needed. Assume that the
observed variables obey a linear regression model with S com-
mon regressors dt = [dt1, . . . , dtS]′ and K heterogeneous regres-
sors xit = [xit1 . . . xitK]′. Following the convenient specification
put forward by Pesaran (2006), the model for the ith unit can be
expressed, in matrix form, as

yi = Dαi + Xiβi + ui, (2.1)

for an observed T×1 vector yi = [yi1, . . . , yiT]′, an observed T×
S matrix D = [d1 . . . dT]′ of common regressors, an observed
T × K matrix Xi = [xi1 . . . xiT]′ of heterogenous regressors,
an unobserved T × 1 vector ui = [ui1 . . . uiT]′ of regression
errors, and slope coefficients αi and βi. The presence of common
observed regressors are not necessary for our results, and, in
fact, complicate somewhat the asymptotic analysis but could
be relevant in practical applications, so we provide a unified
theory. In turn, the error vector satisfies the following latent
factor structure:

ui = Fbi + εi, with Eεi = 0 and �i := Eεiε
′
i , (2.2)

for an unobserved M × 1 vector of factor loadings bi, an
unobserved T × M matrix of common factors F = [f1, . . . , fT]′,
and an unobserved T × 1 vector of idiosyncratic errors εi =
[εi1 . . . εiT]′. We postulate that the heterogeneous regressors
satisfy

Xi = D�i + F�i + Vi, (2.3)

for an unobserved S × K matrix of factor loadings �i =
[δi1 . . . δiS]′ with δil = [δil1 . . . δilK]′, an unobserved M × K
matrix of factor loadings �i = [γ i1 . . . γ iM]′ with γ il =
[γil1 . . . γilK]′, and an unobserved T × K matrix of idiosyncratic
errors Vi = [vi1 . . . viT]′ with vit = [vit1, . . . vitK]′. Formulation
(2.3) can be substantially relaxed, for instance without imposing
a linear factor structure in the Xi, although certainly at the cost
of less primitive assumptions. However, (2.3) represents a simple
yet powerful way to allow dependence between the regressors
and the errors of (2.1) through the latent factor structure.3 In

3As explained below, by exploiting the linearity assumption embedded in
(2.2)–(2.3), the weighting scheme of our FWLS estimator implies that the
idiosyncratic components of Xi and ui , that is Vi and εi , respectively, dom-
inate the limiting properties of the FWLS estimator, as the terms involving
F become asymptotically negligible.
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this respect, an important generalisation consists of allowing the
Xi to depend nonlinearly on the F, a simple example of which
being when the Xi are function of polynomials in the F (see
Appendix F of the supplementary materials). The maintained
condition here is that K, S, and M do not vary with T and
N. However, most importantly, one does not need to know
virtually anything about M, not even an upper bound, as our
methodology will work regardless of whether M is either smaller,
equal, or bigger than K.4 Although model (2.1) is written as a
single regression across time for a given unit i, we assume that a
panel of observations {y1 . . . yN , X1 . . . XN} is available and fully
used within our methodology.

Our main objective is to estimate the heterogeneous slope
coefficients β i of (2.1). We defer discussion on estimation of the
slope coefficients αi of the common regressors to Section E of
the supplementary materials. As explained below, throughout
our analysis we always net out the effect of the common regres-
sors by premultiplying the data by MD := IT − D(D′D)+D′,
where IT is the identity matrix of dimension T and A+ denotes
the Moore–Penrose inverse of any matrix A. This allows us to
avoid making any assumptions on �i. Hence, one obtains

MDyi = MDXiβi + MDui. (2.4)

We consider three different estimators for the parameters β i,
namely the OLS and the unfeasible and feasible weighted least
squares estimators, hereafter indicated as the WLS and FWLS
estimators, respectively. Here we explain how to construct the
estimators and, subsequently, provide the intuition on how the
weighted estimators mitigate the endogeneity bias and, possibly,
achieve efficiency.

Regarding the OLS estimator for βi,

β̂
OLS
i := (X′

iMDXi)
−1X′

iMDyi. (2.5)

We now describe the weighted least squares estimators.
Proceeding along the lines of (Magnus and Neudecker

1988, sec. 11—chap. 13) we define the WLS estimator, whose
weighting matrix is based on taking the generalized inverse of
MDSiMD with Si := FBF′ + �i, as follows5

β̂
WLS
i := (

X′
iMD (MDSiMD)+ MDXi

)−1

X′
iMD(MDSiMD)+MDyi. (2.6)

The matrix (MDSiMD) is singular, leading to the complicate
expression for β̂

WLS
i of (2.6), but, by Lemma K.2 in the sup-

plemental materials , (MDSiMD)+ = D⊥
(
D′⊥SiD⊥

)−1 D′⊥,
where D⊥ spans the null space of D, namely the T × (T−S) full
rank matrix such that MD = D⊥D′⊥, where D′⊥D⊥ = IT−S.6

4Our results can be extended to the case of M (slowly) increasing with T as a
suitable rate.

5To motivate the expression for Si , notice that it can be obtained as the limit
of the cross-sectional average of theE(uiu′

i |{zt}), as N → ∞, for the special
homogeneity case �i = �. Here B defines the limit of N−1 ∑N

i=1 bib′
i ,

which we assume to be positive definite. Finally, pre and postmultiplication
by MD is a consequence of netting out the effect of the common regressors
D.

6Note that D⊥ is assumed full rank when T is large enough, and Si ≥ �i > 0,
because the latter has its minimum eigenvalue (uniformly) bounded away
from zero, ensuring that

(
D′⊥SiD⊥

)−1 is always well-defined a.s., despite Si
being random.

By substitution, setting for simplicity,

yi := D′⊥yi, Xi := D′⊥Xi, εi := D′⊥εi,
F := D′⊥F, ui := D′⊥ui, V i := D′⊥Vi, (2.7)

one obtains

β̂
WLS
i =

(
X′

iD⊥
(
D′⊥SiD⊥

)−1 D′⊥Xi
)−1

X′
iD⊥

(
D′⊥SiD⊥

)−1 D′⊥yi

= (
Xi

′S−1
i Xi

)−1 Xi
′S−1

i yi, (2.8)

where we set

S i := D′⊥SiD⊥ = FBF ′ + Xi with Xi := D′⊥�iD⊥.
(2.9)

This means that the WLS has now the more conventional
expression (2.8) of a weighted estimator for the model

yi = Xiβ i + ui, with ui = Fbi + εi, (2.10)

without involving Moore–Penrose matrices, that is, with respect
to a nonsingular weighting matrix S−1

i .7 Premultiplying the
data by D′⊥ reduces the sample size by S time series observa-
tions since now the yi and the Xi have T − S rows. Likewise,
considering again model (2.10), an equivalent representation to
(2.5) is β̂

OLS
i = (Xi

′Xi)−1Xi
′yi.

For the special case S = 0, that is when the common regres-
sors D are absent from the model, the above formulas continue
to be valid, by setting MD = D⊥ = IT , yielding, for example,
β̂

OLS
i = (X′

iXi)−1X′
iyi and β̂

WLS
i = (X′

iS
−1
i Xi)−1X′

iS
−1
i yi.

Considering model (2.10), our proposed FWLS estimator is
given by

β̂
FWLS
i :=

(
Xi

′ŜN
−1Xi

)−1
Xi

′ŜN
−1

yi, (2.11)

where

ŜN := N−1
N∑

i=1
ûiûi

′, with ûi := yi − Xiβ̂
OLS
i = MXi ui.

(2.12)
Again, the special case for the FWLS estimator when S = 0
in (2.1), that is when no common regressors are present, is
obtained replacing D⊥ with IT in (2.11) and (2.12). Finally,
our methodology also applies to the case of cross-sectional
regressions with factor structure (see, Andrews 2005).8

3. Assumptions

We now present our assumptions, which, thanks to the speci-
fication of model (2.1)–(2.3), appear relatively primitive. Recall
that, throughout our exposition, we always assume that N > T
holds, implied by condition T/N = o(1), as demanded by our
theory.

7Given the analogies between GLS and Seemingly Unrelated Regression
(SUR) estimator, one can in principle construct a SUR-type WLS estimator
(see Appendix H, supplementary materials for details).

8Details are available upon request.
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Assumption 3.1 (idiosyncratic innovation εit). The N × 1 vector
εt = (ε1t . . . εNt)′ satisfies the following equation:

εt = Rat , for t = 1, . . . T, (3.1)

where the N × N matrix of constants R = [rij], with rij not
varying with N for given i and j, has column- and row-norms
satisfying ‖R‖row + ‖R‖col < ∞, mini

∑N
j=1 |rij| > κ for some

0 < κ < ∞ (not always the same), and the elements of the N×1
vector at = (a1t , a2t , . . . , aNt)

′ follow a linear process,

ait =
∞∑

s=0
φisηi,t−s, max

i

∞∑
s=0

s2|φis| < ∞, with φi0 = 1,

(3.2)
where the elements of ηt = (η1t , . . . , ηNt)′ make an iid sequence
across i and t with Eηit = 0, E|ηit|12 < ∞ and the smallest
eigenvalue of their covariance matrix satisfying λ1(Eηtη

′
t) ≥

κ > 0. Moreover, for every complex number z satisfying |z| ≤ 1,

min
i

|φi(z)| > κ , where φi(z) :=
∞∑

s=0
φiszs. (3.3)

Remark 3.1. Assumption 3.1 is similar to Assumptions 1 and
2 in Pesaran and Tosetti (2011), and, with some variations, this
form of cross-sectional and time dependence has been adopted
also by Moon and Weidner (2015, 2017), and Onatski (2015).
The assumption above turns out to be extremely convenient
for establishing the asymptotic distribution of the WLS and
FWLS estimators along the lines of Theorem 1 in Robinson and
Hidalgo (1997). Notice that it implies that the sequence of the R
matrices, as N increases, makes a nested family of matrices.

Remark 3.2. Assumption 3.1 implies that, for every 2 ≤ h,
� ≤ 12,

max
i1

max
t1

N∑
i2...i�=1

T∑
t2...th=1

|cumh(εi1t1 , εi2t2 . . . , εi�th)| < ∞,

where the cumh(εi1t1 , εi2t2 . . . , εi�th) are the cumulants of order
h of εi1t1 , εi2t2 . . . , εi�th .

Remark 3.3. By (Brockwell and Davis 1991, Lemma 4.5.3)
(3.3) implies that the eigenvalues of the covariance matrices of
aj = (aj1, . . . ajT)′ are bounded and greater than κ for every
j. Easy calculations give �i = ∑N

j=1 r2
ijEaja′

j, implying that its
smallest and largest eigenvalues satisfy mini λ1(�i) > κ and
maxi λT(�i) < ∞.

Assumption 3.2 (regressor innovation Vi). The sequence
{vitk} is covariance stationary, with zero mean,
maxi maxk maxt E|vitk|14 < ∞, and they satisfy, for every
2 ≤ h, �, s ≤ 14, and 2 ≤ j ≤ h

max
k1...ks

max
i1

max
t1

N∑
i2...i�=1

T∑
t2...th=1

(1 + t2
j )|cumh(vi1t1k1 , . . . , vi�th ,ks )| < ∞,

where the cumh(vi1t1k1 , . . . , vi�th,ks) are the cumulants of order
h of vi1t1k1 , . . . , vi�th,ks . Moreover, mini λ1

(
Evitv′

it
)

> κ , where
v′

it = (vit1, . . . , vitK).

Remark 3.4. Assumption 3.2 implies that T−1V′
iVi

p−→
V′

iVi , where
p−→ means convergence in probability, with

mini λ1
(
V′

iVi

)
> κ . It follows that maxi

∥∥∥(
V′

iVi/T
)−1

∥∥∥ =
Op(1) as T diverges, where ‖·‖ is the Frobenius norm.

Remark 3.5. The vitk can be interpreted as the high-rank compo-
nents of the regressors xitk, adopting Moon and Weidner (2015)
terminology, as opposed to the D, which represents the low-rank
components. For instance, if for each k, the vitk are generated
as εit in Assumption 3.1, one obtains Vk = [vitk]T,N

t,i=1 =
Op(

√
max(N, T)) for every k (see the discussion in Moon and

Weidner (2015, Appendix 1) and Onatski (2015)). In contrast,
(
∑N

i=1 ‖D‖2)1/2 = (N ‖D‖2)1/2 = Op(
√

NT).

Assumption 3.3 (latent and observed factors). Set Z := [D, F] =
[zt,r] for 1 ≤ t ≤ T and 1 ≤ r ≤ M + S < ∞. Then,

Z′Z
T

p−→ Z′Z, with Z′Z :=
[

D′D D′F
F′D F′F

]
> 0,

(3.4)
and D′D > 0, F′F > 0, where > means positive defini-
tiveness. Moreover, we assume E ‖zt‖4 < ∞, where zt =
[zt,1, . . . , zt,M+S]′.

Remark 3.6. Equation (3.4) implies that
∥∥∥(

T−1F′MDF
)−1

∥∥∥ =
Op(1) (see Lütkepohl 1996, Result (4), sec. 9.11.2).

Remark 3.7. The factors D and F are allowed to be cross-
correlated as well as serially correlated, although not per-
fectly collinear. For instance, the joint dynamics of Z could be
described by a multivariate stationary ARMA. We are ruling
out trending behaviours in D and F, although our results can
be suitably modified to accommodate trends.

Assumption 3.4 (regressors). For every i, the T × (K + S) matrix
Zi := [D, Xi] has full column rank. Moreover, for T, N satisfying
1/T + T/N = o(1), the matrix N−1 ∑N

i=1 MZi uiu′
iMZi has full

rank with probability approaching one.

Remark 3.8. Assumption 3.4 requires enough cross-sectional
heterogeneity of the Xi across units. Simple manipulations show
that, with probability approaching one,

ŜN = D′⊥

⎛
⎝ 1

N

N∑
i=1

MZi uiu′
iMZi

⎞
⎠ D⊥ = 1

N

N∑
i=1

MXi uiui
′MXi > 0,

with ŜN as defined in (2.12).

Assumption 3.5 (loadings). �i and bi are nonrandom such that
maxi ‖�i‖ < ∞ and maxi ‖bi‖ < ∞ and, as N → ∞,

BN := 1
N

N∑
i=1

bib′
i → B > 0. (3.5)
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Additionally,

AN := 1
N

N∑
i=1

(
IM − �i�i

−1�i
′ F′MDF

T

)

bib′
i

(
IM − F′MDF

T
�i�i

−1�i
′
)

> 0 (3.6)

with

�i := �i
′ F′MDF

T
�i + V′

iVi . (3.7)

Remark 3.9. Assumption 3.5 characterizes the behavior of the
finite-dimensional matrices, namely AN and BN , that play a
key role in the behavior of the weighting matrix of the FWLS
estimator. We differ from the usual weighted OLS estimation
setup, as the FWLS weighting matrix can never be a diagonal
matrix, unless bi = 0M , that is an M × 1 vector of zeros.

Condition (3.5) implies that the factor structure (2.2) is
strong, as defined in Pesaran and Tosetti (2011). This is com-
monly assumed in the factor models literature. However, there
is a major difference between the factor models literature and
this article. In that literature, the goal is to estimate the factors,
and their loadings, and to do so one needs to eliminate the
effect of the idiosyncratic component, by means of the averaging
induced by the (static or dynamic) principal components. In
this article, the aim is the opposite, namely to get rid of the
factors, because they represent the source of the bias in the
OLS estimator for β i0. This is based on projection arguments,
rather than on averaging arguments which would not work here,
exploiting the properties of the weighting matrix ŜN

−1
, which

we demonstrate to (asymptotically) span the space orthogonal
to the factors. This is the key result that drives the asymptotic
results for the FWLS estimator.

Remark 3.10. The technical condition (3.6) is used in the
proof of Theorem 4.2. As shown in Appendix O.2, Lemma
O.2(iv), supplementary materials the matrices in brackets are
of full rank. Hence, (3.6) will be satisfied when there is enough
cross-sectional heterogeneity in the sample. Finally, our results
will not change if loadings are assumed random and cross-
sectionally independent from other parameters.

Assumption 3.6 (independence). The (dtp, ftq), visk, εju are mutu-
ally independent for every i, j and t, s, u, and p, q, k.

Remark 3.11. We are not allowing for any correlation between
any entries of εj and Xi. This rules out the possibility that Xi
contains a weakly exogenous component, and in this respect, we
are similar to Pesaran (2006) and Bai (2009). The implications
from generalizing this assumption, in particular when consid-
ering dynamic panels in which one element of Xi represents the
lagged dependent variable, are briefly discussed in Section G of
the supplementary materials.

Remark 3.12. Assumptions 3.2, 3.3, and 3.6 and Remark 3.6
imply that T−1X′

iXi
p−→ X′

iXi > 0 and T−1X′
iMDXi

p−→
X′

iMDXi > 0, for every i. Hence,
∥∥(T−1X′

iXi)−1∥∥ = Op(1)

and
∥∥(T−1X′

iMDXi)−1∥∥ = Op(1).

Remark 3.13. Assumption 3.6 implies that sometimes V i and εi
can be interchanged with Vi and εt without affecting the results;
that is, they give rise to the same limits. For instance, V ′

iV i =
�V′

iVi , εi ′εi = �ε′ε , and V ′
iεi = �V′

iε
.

4. Methodology: Asymptotics

The following two theorems enunciate the asymptotic proper-
ties of the OLS, WLS, and FWLS estimators, respectively, where
d−→ denotes convergence in distribution.

Theorem 4.1. When Assumptions 3.1, 3.2, 3.3, 3.4, 3.5, and 3.6
hold, as T → ∞, for any N,

(i) (OLS estimator)

T1/2(i
OLS)−1/2(β̂

OLS
i − β i − τ̂

OLS
i )

d−→ N (0, IK)

where the bias term satisfies

τ̂OLS
i := (Xi

′Xi)
−1Xi

′Fbi →p τOLS
i := Xi ′Xi

−1Xi ′Fbi,
(4.1)

and the asymptotic covariance matrix equals

i
OLS := Xi ′Xi

−1Xi ′XiXiXi ′Xi
−1. (4.2)

(ii) (WLS estimator)

T1/2(WLS
i )−1/2

(
β̂

WLS
i − β i

) d−→ N (0, IK) , (4.3)

where the asymptotic covariance matrix equals

WLS
i := −1

V ′
iX

−1
i V i

.

Remark 4.1. The OLS (and the WLS) estimator is functionally
independent of N, which plays no role in the asymptotic analysis
of Theorem 4.1. The OLS estimator is affected by a first-order
bias. To simplify the exposition, we centered the OLS estimator
around the sample bias τ̂OLS

i , as opposed to the population bias
τOLS

i . This has no relevant consequence as the scope of part (a)
of the theorem is simply to bring attention to the existence of
the bias plaguing the OLS estimator. Thus, the OLS estimator
is asymptotically unbiased if either bi = 0 or �i = 0 or, alter-
natively, for diagonal �F ′F as well as with �i and bi satisfying
γilbil = 0 for every l and i.

Remark 4.2. To gauge the intuition behind our WLS estimator,
suppose that S = 0 (no common regressors), and M = K = 1
(one latent factor and one heterogeneous regressor) where the
common factor vector equals the unit vector, that is, F = ιT ,
implying that model (2.1) can be written as

yi = Xiβi + ui with ui = biιT + εi and Xi = γiιT + vi. (4.4)

Then, Si = BιTι′T +IT = ιTι′T +IT where N−1 ∑N
i=1 b2

i → B =
1 and we set Eεiε

′
i = �i = IT . By the Shermann–Morrison

theorem (see Lemma L.2 in the supplementary materials) and
simple algebraic steps,

S−1
i ιT = ιT

(1 + ι′TιT)
= ιT

(1 + T)
, (4.5)
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that is, each element of the vector S−1
i ιT converges to zero at the

fast rate O(T−1).9 This fast rate is the key ingredient driving the
asymptotic properties of the WLS and FWLS estimators. In par-
ticular, examining the random component (which involves ui)
of our WLS estimator β̂

WLS
i = βWLS

i + (
XiS−1

i Xi
)−1 X′

iS
−1
i ui,

one obtains, by (4.5),

X′
iS

−1
i ui = (γiιT + vi)

′S−1
i (biιT + εi)

= v′
iS

−1
i εi + biγiT

(1 + T)
+ (bivi + γiεi)′ιT

(1 + T)

= v′
iS

−1
i εi + O(1) + Op(T−1/2)

= v′
iεi + Op(1) + O(1) + Op(T−1/2),

under our assumptions.10 Therefore, X′
iS

−1
i ui is asymptotically

equivalent to v′
iεi implying that the weighting matrix S−1

i anni-
hilates (asymptotically) the effect of the latent factors F =
ιT . This result demonstrates how the WLS estimator β̂

WLS
i

is asymptotically unbiased, because v′
iεi = Op(T1/2) and(

XiS−1
i Xi

)−1 = Op(T−1) under our assumptions.
Considering now the general case �i 
= IT , by the same steps

outlined above one obtains X′
iS

−1
i ui = v′

i�
−1
i εi + Op(1) and

XiS−1
i Xi = v′

i�
−1
i vi+Op(1), implying that the WLS estimator is

also asymptotically equivalent to the (unfeasible) GLS estimator,
derived under the assumption that �i is known.

The weighting matrix Si represents one of the many suitable
choices for a weighting matrix. The limiting properties of the
WLS estimator remain unchanged if one replaces B with any
other nonsingular positive definite matrix with bounded eigen-
values, although B emerges when considering the FWLS. In our
example above, we can replace B = 1 with any other positive
constant, and obtaining identical limiting properties of the WLS
estimator. In contrast, the matrix �i is critical in order to achieve
efficiency, as we have just outlined.

Further details are relegated to Section D of the supplemental
materials, where we extend the above arguments to the case of
generic latent factors F when observed common regressors are
allowed for (S > 0), and when M and K can be greater than one.

Remark 4.3. The assumption that the same latent factors F enter
into Xi and ui is without loss of generality. In fact, assume ui =
Gbi + εi, with the rows of G correlated but not identical to the
rows of F. Then the bias takes the form

τOLS
i = Xi ′Xi

−1F′PFGbi,

exploiting the decomposition G = PFG+MFG, where PF :=
IT −MF . Hence, the bias will only be nonzero due to the portion
of G correlated with F. The same consideration applies to the
FWLS estimator. In Appendix F of the supplementary materials,
we explore more in detail the implications of having different,
yet correlated, factor structures for regressors and innovations.

We now present the main result of the article.

9Although the vector S−1
i ιT is T × 1, and hence, growing with T , its norm

‖ S−1
i ιT ‖ is O(T−1/2), fastly decaying toward zero.

10In particular, (bivi + γiεi)
′ιT /(1 + T) has mean zero and variance O(T−1),

and v′
i S−1

i εi = v′
iεi − (v′

i ιT )(ε′
iιT )/(1+T) = v′

iεi +Op(1) because the two
terms (ε′

i ιT ) and (v′
i ιT ) have mean zero and variance O(T).

Theorem 4.2. When Assumptions 3.1, 3.2, 3.3, 3.4, 3.5, and 3.6
hold:
(i) As 1/T + T/N → 0,

β̂
FWLS
i

p−→ βi; (4.6)

(ii) As 1/T + T2/N → 0, then(
V ′

iCN
−1XiCN

−1V i
)−1/2 (

V ′
iCN

−1V i
)

(β̂
FWLS
i − βi)

d−→ N (0, IK) , (4.7)

where

CN := D′⊥CND⊥, CN := 1
N

N∑
i=1

(�i + �i) (4.8)

with

�i := E
[
ViXi ′Xi

−1�iF ′Fbib′
iF ′F�i

′Xi ′Xi
−1V′

i
]

.
(4.9)

(iii) For any integer τ < T satisfying 1/τ + τ/T
1
4 + T2/N → 0(

Xi
′ŜN

−1Xi/T
)−1 − (

V ′
iCN

−1V i/T
)−1 →p 0K×K and

(4.10)(
L̂i0 +

τ∑
h=1

�(h, τ)
(
L̂ih + L̂′

ih

))

− (
V ′

iCN
−1XiCN

−1V i/T
) →p 0K×K , (4.11)

setting �(j, τ) := 1 − [h/ (τ + 1)], and L̂ih :=
T−1 ∑T

t=h+1 âitâi,t−hŵitŵ
′
i,t−h, h = 0, 1, . . . , τ , where

âit denotes tth element of (T × 1) vector âi := ŜN
−1/2

û
FWLS
i ,

with û
FWLS
i := yi − Xiβ̂

FWLS
i and ŵ

′
it denotes the denotes tth

row of the (T × K) matrix ̂Wi := ŜN
−1/2Xi.

Remark 4.4. To simplify the exposition and the proofs, we
have not differentiated the conditions required for consistency
and asymptotic normality of the FWLS estimator, such as the
moment conditions on the regressors and the error term. How-
ever, different rates for N and T are required for consistency and
asymptotic normality of the FWLS estimator.

Remark 4.5. A mechanism, similar to the one described in
Remark 4.2 for the WLS estimator, applies to the FWLS in terms
of bias-reduction, in turn granted by annihilating the F , as
long as S−1

i is replaced by any matrix of the form (FAF ′ +
C)−1, where A and C are, as minimum conditions, nonsingular
matrices (in general, functions of N and T) with uniformly
bounded eigenvalues. The most challenging aspect of the proof
to Theorem 4.2 is to establish that ŜN

−1
represents (asymptot-

ically) one of those matrices, where in particular its C matrix is
approximately (in a precise sense defined below) behaving like
N−1 ∑N

i=1 �i, as a byproduct of the averaging implicit in the
construction of ŜN (by (2.12)). Thus, such C matrix can never
be equal to �i, except (generically speaking) when �i = �,
an homogenity case across units of the εi. Therefore, the FWLS
estimator is not efficient in general, as evinced by the form of the
asymptotic covariance matrix in Theorem 4.2.
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Remark 4.6. A multistep procedure can be envisaged that
improves the precision of the FWLS and, under homogeneity of
the covariance matrix of the error, achieves an estimator with
an asymptotic distribution arbitrarily close to the asymptotic
distribution of the WLS estimator. We shall call this proce-
dure the iterated-FWLS estimator. The first step starts from
the FWLS estimator, which we now denominate as β̂

(1)

i for
simplicity. We then construct the associated residuals ûi

(1) :=
yi − Xiβ̂

(1)

i . Recall that β̂
(1)

i = β̂
FWLS
i is a consistent esti-

mator for β i, and thus, the residuals ûi
(1) are close to the

error ui, asymptotically. The second step entails constructing
ŜN

(1)
:= N−1 ∑N

i=1 ûi
(1)

ûi
(1)′ and using it to obtain β̂

(2)

i :=(
Xi

′
(
ŜN

(1)
)−1

Xi

)−1
Xi

′
(
ŜN

(1)
)−1

yi.

In general the hth step entails constructing β̂
(h)

i :=(
Xi

′
(
ŜN

(h−1)
)−1

Xi

)−1
Xi

′
(
ŜN

(h−1)
)−1

yi, where ŜN
(h−1)

is obtained based on ûi
(h−1) := yi − Xiβ̂

(h−1)

i .11

5. Numerical Results

5.1. Monte Carlo Analysis

We conduct a set of Monte Carlo experiments to evaluate the
performance of our asymptotic results for the (iterated) FWLS
estimator in finite samples, and compare it with the WLS and
OLS estimators, and CCE estimator of Pesaran (2006), the latter
being the most commonly used estimator for model (2.1).12

We construct various data-generating processes (DGPs) that
provide an exhaustive range of situations of interest.

Design. We generate the data according to
yit = αi0 + βi0xit + b′

i0ft + εit , (5.1)
where K = 1, and the single heterogeneous regressor satisfies
xit = 0.5 + γ ′

i0ft + vit , implying the single observed common
factor dt equal to 1 for all observations. The parameters are
generated according to βi0 ∼ NID(1, 1.04), and thus, heteroge-
neous across units, where NID means iid normally distributed,
αi0 = −0.5 for i = 1, . . . , N/2 and αi0 = 0.5 for i =
N/2 + 1, . . . , N, the M latent common factors according to
ft = 0.5ft−1 +√

0.5ηf ,t , with ηf ,t ∼ NID(0M , IM), and the error
terms to the yit and xit according to εit = ρiεεit−1 + ηiε,t , with
ηiε,t ∼ NID(0, σ 2

iε(1 − ρ2
iε)), and to vit = ρivvit−1 + ηiv,t , with

ηiv,t ∼ NID(0, (1 − ρ2
iv)), with ρiε ∼ UID(0.05, 0.95), ρiv ∼

UID(0.05, 0.95), and σ 2
iε ∼ UID(0.5, 1.5), where UID means iid

uniformly distributed.13

11The Monte Carlo experiments, presented in the subsequent Section 5.1,

suggest how, as h increases, the asymptotic distribution of the FWLS β̂
(h)

i
gets close to the one of the WLS.

12The CCE estimator builds on the intuition, mathematically formalised by
Pesaran (2006), that cross-section averages of the observables unit-specific
regressors Xi and the yi span the space of the unobserved common factors
F. Thus, augmenting regression (2.1) with these averages mitigates the
differential effects of F, so long the so-called rank condition holds, namely
that the M × (K + 1) matrix E(bi , �i) has full row-rank M.

13These cases imply that the εit are independent across units but results are
available for when the εit are cross-sectionally dependent through a (weak)
factor structure.

Finally, regarding the loadings, we consider four cases:

DGP1. M = 2, bi0 ∼ NID(

(
1
1
)

, 0.2I2),

γ i0 ∼ NID(

(
0.5
0

)
, 0.5I2),

and mutually independent.

DGP2. M = 2, bi0 ∼ NID(

(
1
1
)

, 0.2I2), γ i0 = bi0.

DGP3. M = 4, bi0 ∼ NID(

(
1

111
)

, 0.2I4),

γ i0 ∼ NID(

(
0.5

00.50
)

, 0.5I4),

and mutually independent.

DGP4. M = 2, bi0 ∼ NID(

(
0
0
)

, 0.2I2),

γ i0 ∼ NID(

(
0.5
0

)
, 0.5I2),

and mutually independent.

The meaning of the above DGPs is as follows: DGP1 is the
benchmark case; DGP2 represents the case of (perfect) cross-
correlation between the loadings in the regressor and in the
error term; DGP3 represents the case when M = 4 > K = 1,
that is when the number of latent factors exceeds (substantially)
the number of regressors; DGP4 represents the case when the
factors affecting the error term are not pervasive.14 The DGPs
here follow the Monte Carlo design of Pesaran (2006). We have
considered alternative Monte Carlo designs, such as the one
in Karabiyik, Urbain, and Westerlund (2019), with extremely
similar results. (Details are available upon request.)

Results. We consider 1000 Monte Carlo replications with sample
sizes (N, T) ∈ {60, 200, 600} × {30, 100, 300}, where N > T.15

Under DGP1 of Table 1, all estimators work, in terms of absolute
bias (expressed as the percentage change, in absolute value, of
the estimate from the true value) and root-mean-squared-error,
except for OLS. As predicted by our theory, the FLWS works
particularly well when N large, especially when N and T are
of comparable magnitude, and is commensurate to the CCE.
The performance of the WLS and GLS remains similar to one
another throughout all the DGPs. Tables 2, 3, and 4 show the
performance of the estimators in the realistic scenarios of inter-
est indicated by DGP2, DGP3, and DGP4. When the loadings
to the latent factors, bi0 and γ i0, are (perfectly) cross-correlated
(Table 2), the FLWS continue to perform well, whereas the CCE

14The so-called rank condition, required by the CCE estimator, is satisfied for
DGP1 but fails for DGP2, DGP3, and DGP4. Juodis, Karabiyik, and Wester-
lund (2021) show that in certain situations the pooled CCE estimator, that
is, the generalization of the fixed effects OLS estimator (see (65) in Pesaran
2006), for the average slope is still consistent (despite the rank condition
fails) although with a non-Normal asymptotic distribution.

15In the interest of space, we will only illustrate the results for the estimation
of the regression coefficients βi0. Overall, little difference arises between
the simple and iterated FWLS estimators, especially in terms of root-mean-
square error, when N is large (although they can differ when N is small), and
therefore, we omit the results for the simple FWLS. Likewise, we omit the
results for the estimation of the coefficients αi0. Details are available upon
request.
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Table 1. DGP1 with heterogeneous AR(1) idiosyncratic error εit

absolute bias (per cent) rmse (per cent) 10% 5% 1%

(N, T) FWLS WLS GLS OLS CCE FWLS WLS GLS OLS CCE FWLS

(60 ,30) 18.17 11.13 11.23 47.71 14.73 21.86 13.35 13.49 50.54 17.71 0.103 0.056 0.015
(200,30) 12.77 11.16 11.27 44.75 14.15 15.62 13.68 13.82 48.00 17.29 0.112 0.062 0.018
(200,100) 9.14 5.82 5.84 42.18 8.01 11.13 7.08 7.10 42.67 9.65 0.103 0.054 0.012
(600,30) 11.71 11.11 11.24 45.30 14.04 14.23 13.53 13.69 49.16 17.25 0.116 0.065 0.019
(600,100) 6.76 5.80 5.82 43.13 7.86 8.16 7.00 7.02 44.24 9.56 0.106 0.055 0.013
(600,300) 5.18 3.30 3.30 42.48 4.63 6.25 3.98 3.98 42.36 5.61 0.103 0.053 0.011

NOTE: Columns 2–6 report the absolute bias (in percentage: 100 × abs(β̃i0/βi0 − 1)) of the FWLS (iterated), WLS, GLS, OLS, and CCE estimators of βi0 of model (5.1),
columns 7–11 report the root mean square error (in percentage) for the same estimators, and columns 12–14 report the size of the t-ratios for the FWLS (iterated)
estimator, corresponding to a nominal size of 10%, 5%, and 1%, respectively. We report averages, across 1000 Monte Carlo iterations and across the N units, for all the
above quantities, that is N−11000−1 ∑N

i=1
∑1000

m=1 �m,i where �m,i refers to any of the above quantities (absolute bias, rmse, and t-ratios sizes) for the ith unit and mth
Monte Carlo iteration for a given (N, T) and a given estimator. The true βi0 are generated as NID(1, 0.04).

Table 2. DGP2 with heterogeneous AR(1) idiosyncratic error εit

absolute bias (per cent) rmse (per cent) 10% 5% 1%

(N, T) FWLS WLS GLS OLS CCE FWLS WLS GLS OLS CCE FWLS

(60,30) 19.28 11.93 11.93 68.88 21.74 22.03 13.50 13.49 65.70 24.13 0.102 0.055 0.015
(200,30) 13.59 11.66 11.54 66.54 20.97 16.26 13.93 13.82 65.07 24.06 0.124 0.07 0.021
(200,100) 9.34 5.99 5.97 67.53 17.17 11.13 7.12 7.09 64.64 18.50 0.103 0.053 0.012
(600,30) 12.35 11.33 11.23 65.31 20.81 14.99 13.79 13.70 65.20 24.11 0.133 0.078 0.024
(600,100) 6.85 5.83 5.81 66.74 17.18 8.28 7.05 7.02 65.26 18.56 0.11 0.057 0.014
(600,300) 5.17 3.30 3.30 66.87 15.82 6.25 3.99 3.98 64.95 16.23 0.103 0.053 0.011

NOTE: See the note to Table 1.

Table 3. DGP3 with heterogeneous AR(1) idiosyncratic error εit .

absolute bias (per cent) rmse (per cent) 10% 5% 1%

(N, T) FWLS WLS GLS OLS CCE FWLS WLS GLS OLS CCE FWLS

(60,30) 17.41 11.11 11.56 46.44 21.85 21.20 13.49 14.06 50.56 24.80 0.113 0.063 0.018
(200,30) 12.50 11.31 11.65 47.90 20.11 15.29 13.92 14.38 52.39 23.23 0.131 0.074 0.022
(200,100) 9.03 5.83 5.87 44.02 17.00 11.05 7.13 7.18 45.22 18.32 0.106 0.055 0.013
(600,30) 11.53 11.44 11.74 49.86 20.65 13.95 13.87 14.27 53.81 23.73 0.128 0.073 0.022
(600,100) 6.74 5.86 5.89 47.14 17.79 8.11 7.05 7.09 47.97 19.02 0.109 0.058 0.014
(600,300) 5.18 3.32 3.32 46.08 16.88 6.23 3.99 3.99 45.49 17.13 0.104 0.053 0.011

NOTE: See the note to Table 1.

Table 4. DGP4 with heterogeneous AR(1) idiosyncratic error εit .

absolute bias (per cent) rmse (per cent) 10% 5% 1%

(N, T) FWLS WLS GLS OLS CCE FWLS WLS GLS OLS CCE FWLS

(60,30) 17.77 10.52 11.23 21.94 17.04 21.32 12.59 13.49 24.33 20.01 0.107 0.058 0.016
(200,30) 12.42 10.53 11.27 21.05 20.05 15.16 12.82 13.82 23.80 23.01 0.118 0.066 0.019
(200,100) 9.08 5.70 5.84 18.36 16.42 11.04 6.92 7.10 19.39 17.60 0.104 0.054 0.013
(600,30) 11.46 10.49 11.24 20.92 18.35 13.87 12.70 13.69 23.74 21.52 0.128 0.074 0.023
(600,100) 6.72 5.69 5.82 18.19 14.45 8.11 6.86 7.02 19.32 15.89 0.111 0.059 0.014
(600,300) 5.17 3.28 3.30 17.26 13.06 6.24 3.95 3.98 17.45 13.56 0.104 0.054 0.012

NOTE: See the note to Table 1.

becomes severely biased. The same pattern is observed (Table 3)
when the number of latent factors M is much larger than the
number of observed regressors (K), and even when the factor
structure in the error term of (5.1) is weak (Table 4). The last
three columns of each table report the empirical sizes of the
t-ratios, defined as

√
T(β̃i0 − βi0)/SEβi for the FWLS estimator

(SEβi denotes the standard error of β̃i0 as from Theorem 4.2-
(iii)), which appear close to the nominal sizes of 1%, 5%, and
10%, across all tables in most cases, with some deterioration
occurring when T remains small.

5.2. Empirical Application: Capital Accumulation and GDP
Growth

We investigate the empirical relationship between investment
in physical capital and long-run economic growth across coun-
tries, a topic of paramount importance for quantifying the
effectiveness of development policy, and also representing a
way to evaluate economic growth theories. Endogenous growth
models, the so-called AK models (see, Romer 1986, among
others), predict that that an increase in investment results in
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a permanently higher growth rate, implying a reduced form
equation for per capita GDP growth equal, in its simplest form,
to

�yit = θ1 + θ2xit + β1�xit + uit , (5.2)

indicating by xit the logarithm of investment as a share of gross
domestic product (GDP) for country i in year t, and by yit the
logarithm of output per worker for country i in year t, with �yit
denoting the annual per capita GDP growth. Model (5.2) implies
a steady-state GDP growth equal to �yi = θ1 + θ2xi.

In contrast, exogenous growth theories, variation of the cele-
brated Solow model (see Mankiw, Romer, and Weil 1992, among
others), postulates that the long-run growth rate of output per
worker is only determined by the exogenous technical progress
but predict a positive correlation between investment and the
level of per capita GDP, ruling out any association between
investment and steady-state growth rates. These theories can be
expressed by the reduced form equation

yit = θ0 + θ1t + β1xit + uit , (5.3)

implying the constant steady-state GDP growth �yi = θ1. Now,
a permanent increase in the investment-GDP ratio xit predicts
a higher level of output per worker yit along the steady state
growth path, but affects growth only during the transition to the
new steady state.

The existing empirical evidence is mainly focused on the
OECD countries and is mixed at best, with many studies con-
cluding that there is a weak association between investment rates
and long-run growth rates, casting doubt on the effectiveness of
physical capital accumulation as a source of long-run economic
growth (see Jones 1995; Bond, Leblebicioglu, and Schiantarelli
2010, among others). Most of the empirical studies consider the
case of constant slopes in the estimated regression, implying
that one can only learn about average effects, leaving out the
substantial heterogeneity existing among countries. This is a
consequence of these studies using cross-sectional and panel
regressions, that unavoidably do not allow identification the
heterogenous trend slopes. Moreover, capital accumulation and
GDP growth are no doubt jointly determined, implying that
standard techniques such as OLS are affected by simultaneous
equation bias. Our estimation procedure, based on the FWLS
approach, tackles both problem, offering a substantial improve-
ment over the existing econometric techniques used so far in the
empirical growth literature.

We adapt Bond, Leblebicioglu, and Schiantarelli (2010) (see
their eq. (7)) and postulate the following linear relationship
between the logarithm of GDP per capita yit , and the logarithm
of the investment share to GDP xit, which nests both the endoge-
nous and the exogenous growth model specifications (5.2) and
(5.3):

�yit = θ1i + θ2ixit + β1i�xit + β2i�xit−1 + uit , (5.4)

or, equivalently, �yit = αidt + x′
itβ i + uit setting dt = 1, xit =

(xit , �xit , �xit−1)
′. Importantly, (5.4) allows for heterogeneity

across countries of the regression coefficients, a crucial feature
given that we are using data of both OECD and Non-OECD
countries, for which the assumption of constant growth rate
across countries is untenable. Model (5.4) implies that the GDP

per worker, for country i, grows at the country-specific rate of
�yi = θ1i + θ2ixi in steady state, nesting both the endogenous
(when θ2i = 0) and the exogenous (when θ2i 
= 0) cases.
Therefore, the long-run effect of an increase in the investment
share on the growth rate of output per worker, defined as the
growth effect, is ∂�yi/∂xi = θ2i, and the the long-run effect of an
increase in the investment (log) share on the (log) level of output
per worker, defined as the level effect, is given by ∂�yi/∂�xi =
(β1i + β2i).16

We use the data extracted from both the Penn World Table
6.3 (PWT 6.3) regarding real GDP per worker and the share of
total gross investment in GDP, both measured in constant-price
international dollars, for N = 151 countries (OECD and Non-
OECD countries), yearly observations from 1970 to 2007.17

Estimation of model (5.4) is challenging due to the strong degree
of persistence, both time series and cross-sectional. Taking first-
difference of the (log) GDP per capita, as in (5.4), mitigates
the first concern, whereas this is less concerning for the (log)
investment share xit as it represents a fraction. Figure 1, left
panel, reports the p-values of the Augmented Dickey–Fuller
test, across countries, for the log GDP (black line) and its firs-
difference (red line), together the 5% level (blue line), show-
ing the effectiveness of the taking the first-difference. We did
not take the first-difference of the investment share xit as the
assumption of stationarity is plausible given that xit represents a
ratio bounded between zero and one.18

Regarding the degree of cross-sectional dependence, Fig-
ure 1, right panel, reports the largest 32 eigenvalues in descend-
ing order (normalized by setting the largest equal to 1) of yit
(black line) and xit (red line), with both exhibiting a promi-
nent factors structure. Moreover, the two sets of estimated
factors, corresponding to the eigenvalues of Figure 1 (right
panel), appear strongly cross-correlated, as indicated by their
canonical correlations, the first five of which are equal to
0.976, 0.905, 0.875, 0.799, and 0.701 in descending order, denot-
ing substantial cross-sectional dependence.19

Therefore, it is very likely that estimation by OLS of (5.4)
is affected by (first-order) bias, making this an ideal setup for
our FWLS estimator, as it allows the presence of a factor struc-
ture (with an arbitrary number of latent factors), both in the
dependent and independent variates, together with arbitrary
heterogeneity of the regression coefficients.

16Bond, Leblebicioglu, and Schiantarelli (2010) augment (5.4) with lagged
�yis, to enrich the short term dynamics of the model, but the magnitude
of the corresponding estimated parameters turns out to be negligible in
terms of growth and level effects, and thus, we consider the more parsimo-
nious model (5.4). The presence of the lagged �xit in (5.4) accounts for the
dominant part of this dynamic effect.

17We excluded all countries with gaps over the chosen data period, countries
for which oil production is dominant, and countries with reported negative
gross investment over some years.

18Use of the Augmented Dickey–Fuller test shows that for the investment
share the p-value is below 0.2 for about half of the countries whereas for
log GDP frequency of countries with a p-value below 0.2 is only about 15%.

19Canonical correlations, introduced by Hotelling (1936), permit to
quantify the degree of dependence between two sets of variates,
and are defined as the min[Ka, Kb] eigenvalues of the matrix

(A′A)
− 1

2 A′B(B′B)−1B′A(A′A)
− 1

2 , denoting by A, B the samples of
data for the two sets of variates, respectively, of dimension T × Ka and
T × Kb, assuming zero mean for simplicity.
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Figure 1. The left panel presents the cross-section across N = 151 countries of the p-values for the Augmented Dickey–Fuller test for log GDP, in level (black line) and
in first-difference (red line). The blue line indicate the 5% level. The right panel presents the largest eigenvalues of the sample covariance matrix for the panel of log GDP
(black line) and for the panel of log investment (red line), normalized by setting the maximum eigenvalue equal to unity.

Figure 2. The top three panels present the estimated cross-sectional density, based on the nonparameteric Kernel estimator, of the growth effect (θi1) corresponding to
all countries (N = 151—left panel), OECD countries (N = 31—middle panel), and Non-OECD countries (N = 120—right panel), and the bottom three panels present
the estimated cross-sectional density, based on the nonparameteric Kernel estimator, of the level effect (βi1 + βi2) corresponding to all countries (N = 151—left panel),
OECD countries (N = 31—middle panel), and Non-OECD countries (N = 120—right panel).

Table 5 and Figure 2 report our empirical results. Generally
speaking, we find robust evidence of a positive, often signif-
icant, relationship between investment and GDP growth, on
average across countries. Figure 2 shows that there is a substan-
tial degree of heterogeneity, and asymmetry, across countries,
with the estimated cross-sectional densities appearing all shifted

toward positive values (positive skewness) of the growth and
level effects, except for the level effect of the OECD countries
which appears to have negative skewness. The FWLS estimates
reported in the top panel of Table 5 show clearly that some differ-
ences arise from comparing OECD and Non-OECD countries,
with the growth effect being stronger with the former group
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Table 5. Capital accumulation and GDP growth.

ALL OECD Non-OECD

25% perc
(t-ratio)

50% perc
(t-ratio)

75% perc
(t-ratio)

25% perc
(t-ratio)

50% perc
(t-ratio)

75% perc
(t-ratio)

25% perc
(t-ratio)

50% perc
(t-ratio)

75% perc
(t-ratio)

FWLS

θ̃1i
(growth effect)

−0.036
(−4.293)

0.024
(2.485)

0.079
(13.267)

0.083
(3.416)

0.185
(3.073)

0.271
(12.220)

−0.042
(−6.783)

0.009
(0.893)

0.068
(11.061)

(β̃1i+β̃2i)
(level effect)

−0.071
(−7.844)

0.022
(1.618)

0.105
(11.221)

−0.186
(−7.216)

−0.049
(−1.240)

0.008
(0.373)

−0.065
(−5.936)

0.033
(1.998)

0.127
(11.282)

OLS

θ̃1i
(growth effect)

−0.023
(−4.373)

0.029
(3.584)

0.075
(14.415)

−0.038
(−1.779)

0.029
(0.743)

0.215
(5.166)

−0.025
(−4.227)

0.028
(3.316)

0.067
(14.125)

(β̃1i+β̃2i)
(level effect)

−0.086
(−7.065)

0.029
(1.276)

0.194
(12.708)

−0.017
(−0.445)

0.147
(2.643)

0.261
(8.394)

−0.097
(−7.602)

0.011
(0.477)

0.151
(9.824

CCE

θ̃1i
(growth effect)

−0.031
(−6.950)

0.006
(0.840)

0.055
(9.563)

−0.036
(−2.375)

0.036
(1.693)

0.078
(6.171)

−0.025
(−5.414)

0.011
(1.439)

0.050
(9.254)

(β̃1i+β̃2i)
(level effect)

−0.085
(−6.706)

0.041
(1.950)

0.173
(12.318)

0.124
(5.611)

0.228
(6.053)

0.325
(13.142)

−0.112
(−8.565)

−0.011
(−0.487)

0.131
(8.112)

NOTE: This table is made by three panels, corresponding to the FWLS estimates (top panel), the OLS estimates (middle panel), and the CCE estimate (bottom panel).
Each panel presents the empirical quantiles (25%, median, and 75%) of the cross-sectional empirical distribution of the estimated parameters (corresponding t-ratio
in brackets) of model (5.4), for the full sample (N = 151, columns two-four), for the OECD countries (N = 31, columns five–seven), and for the Non-OECD countries
(N = 120, columns eight–ten). The growth effect parameter is defined as θ2i and the level effect parameter is defined as (β1i + β2i).

and the level effect being stronger with the latter group, possibly
because GDP growth for OECD countries is already at its steady-
state level and can only be affected for shorter economic cycles.
On average across countries, the median growth and level effects
are positive and statistically significant, except for the level effect
of OCED countries and the growth effect of Non-OECD coun-
tries, discussed above.20 Our results indicate that, as predicted
by growth theories, capital investment is an important, although
not the only, ingredient of economic growth, with the results
being widely heterogeneous across countries. The middle and
bottom panels report the corresponding estimates obtained by
OLS and CCE, respectively. What clearly emerges is that the
results, both in terms of magnitude of the estimates and their
t-ratios, for OECD countries based on the FWLS estimator
appear to differ from the OLS and CCE results, which instead
are more aligned with one another, suggesting that the latter are
both affected by biases of similar magnitude and sign.21

6. Concluding Remarks

This article proposes weighted least square estimation for linear
panels with a common factor structure in both the regressors
and the regression error. The FWLS estimator is consistent and
asymptotically normal when both the cross-section N and time
series T dimensions diverge to infinity where under the same
circumstances, the OLS is first-order biased. In summary, the
FWLS estimator exhibits five main properties: first, it permits
carrying out standard inference on the regression coefficients
because based on conventional limiting distributions; second, it

20The t-ratios for the empirical quantiles of the parameters’ estimates are
computed using the traditional nonparameteric standard errors for empir-
ical quantiles (see, Cramer 1946).

21A factor structure better captures the dependence, especially across the
more integrated OECD countries, making this a particularly suitable case
for using our FWLS estimator.

does not require any knowledge of the exact number of latent
factors, or even an upper bound of such number; third, it is
computationally easy to handle without invoking any nonlinear
numerical optimizations; fourth, it works regardless of whether
the regressors and the error are correlated; fifth, it can deliver
efficient estimation under suitable conditions on the covariance
matrix of the idiosyncratic error. Our results are corroborated by
a set of Monte Carlo experiments and illustrated by an empirical
application that investigates the effect of investment on GDP
growth. Several generalizations, such as dynamic panels, cross-
section regressions with time-varying coefficients, and different
factor structures for regressors and error, are described in the
supplementary materials.

Supplementary Materials

Supplementary material contains additional materials, such as notation,
extended literature review, the intuition behind the estimator and general-
izations of the method, and the proofs of main theorems with the required
lemmas.
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