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ABSTRACT

Penrose process is a mechanism by which energy may be extracted from the rotation of a Kerr black hole. The goal of this Perspective is to
describe the elements that combine to allow a tabletop nonlinear optics experiment involving laser propagation in a medium to provide a
versatile platform for elucidating the intimate details of the Penrose process. Key elements include propagation in a thermo-optic medium
viewed as a photon fluid, rotating black hole geometries in a photon superfluid, and the Zel’dovich effect, and we highlight connections to
the work of Roger Penrose throughout. In addition, we point out how the Penrose process has led to the notion of geometry-induced phase-
matching in nonlinear optics, thereby highlighting the synergy between the fields of nonlinear optics and analog black holes.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1116/5.0073218

I. INTRODUCTION

It is a great pleasure for us all to participate in this celebration of
the magnificent career of Sir Roger Penrose culminating in him being
awarded the 2020 Nobel Prize in Physics. His seminal works in the
fields of general relativity, black hole physics, and quantum theory
have been a continuing source of inspiration for us.1,2 In particular,
several years ago we embarked on a research program to find an
analog-gravity system that would allow for the experimental explora-
tion of the physics involved in the Penrose process. Our research pro-
gram, both theory and experiment, has come to fruition during 2021
and it is the goal of this Perspective to describe the physics involved
that allows nonlinear optics to provide a versatile platform for the
exploration of the Penrose process.3–11

In a seminal paper published in 1969, Roger Penrose put forward
his marvelous discovery that a rotating black hole can store rotational
energy in the circulating spacetime surrounding its ergoregion.1 Since
the ergoregion is located outside of the event horizon, this rotational
energy can therefore in principle be extracted, with concomitant
decrease in the black hole’s rotation rate. In particular, a particle of a
given initial energy impinging on the ergoregion of the black hole may
subsequently split into two parts. Then, if one part becomes trapped
within the ergoregion and thereby acquires a negative energy, the
other part can attain an energy larger than the initial value if it escapes
from the black hole: This is the Penrose process. For the case of waves,

this is often referred to as Penrose superradiance, a term coined by
Misner, as an incident wave can be amplified upon reflection from the
black hole.12 The very first experimental demonstration of Penrose
superradiance was performed in a hydrodynamic setting using rotat-
ing vortices in a water tank.13

This work inserts itself in a broader field called analog gravity,
born in 1981 when Bill Unruh showed that analog Hawking radiation
was present near wave horizons in a hydrodynamical fluid flow.14

Since then, many different analogs of inaccessible gravitational phe-
nomena have been proposed through tabletop experiments: examples
include Hawking radiation, boson stars, and superradiance, which
have been studied in different physical systems as nonlinear optics and
Bose–Einstein condensates to hydrodynamics.8,10,15–23 Studies on
superradiance, in particular, have also been proposed in superfluids, as
in Refs. 5–7 and 24, though the first experimental proof of this
Penrose amplification in optical superfluids has been recently provided
by us.25 Superfluids have proved to be a versatile platform also for
other gravitational phenomena such as Hawking radiation, optical
analogs of the event horizon, and analog black holes.11,26–33

Our goal in this Perspective is to overview key physical ideas that
have allowed us to explore the fine details of the Penrose process using
a relatively modest nonlinear optics experiment involving the propaga-
tion of a laser beam in a thermo-optic medium. For this purpose, we
shall highlight the key physics from four of our works in the following
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sections, details being available in the original papers.4,5,11,25 To pro-
vide the reader a birds eye view of the paper, we first provide a road
map to the topics that will be addressed in the following sections.
Section II provides a description of the paraxial wave equation for
beam propagation in a nonlinear thermo-optic medium and the rela-
tion of this to the Schr€odinger–Newton equation. The thermo-optic
light–matter interaction is an example of a third-order optical nonline-
arity in which two photons from a strong pump beam can mix with
an incident signal photon to create a fourth distinct idler photon. This
four-wave mixing (FWM) process is the means by which an incident
particle can be induced to split into two parts as needed for the
Penrose process. We then describe how the thermo-optic system can
be viewed as a photon fluid, complete with the notion of Bogoliubov
excitations with respect to the strong pump beam. The power of this
approach is that it is these Bogoliubov excitations that best serve as the
quasi-particles that participate in the Penrose process. Building on the
photon fluid view, in Sec. III we describe how rotating two-
dimensional black hole geometries can be realized by considering vor-
tex pump beams that carry orbital angular momentum (OAM). These
photon superfluids have both ergospheres and horizons and can serve
as analog black holes for the Penrose process. Finally, in Sec. IV we
bring all these ideas together and describe a geometry in which the
Penrose process can be explored in detail in our analog system, includ-
ing amplified reflection, the generation of negative norm modes, and
the relation of this to the so-called Zel’dovich–Misner condition.12,34

We also highlight how our study of the Penrose process has in turn
led to the notion of geometry-induced phase-matching in nonlinear
optics.4 Our summary and outlook is given in Sec. V.

II. NONLINEAR OPTICS AND PHOTON FLUIDS

This section describes our analog system for realizing the
Penrose process, first from a nonlinear optics perspective, and then
from a photon fluid perspective. Both perspectives are important, non-
linear optics for understanding the experiment, and the photon fluid
view for interpreting the results.

A. Thermo-optic propagation

Our analog system involves the propagation of a monochromatic
laser beam of wavelength k in a thermo-optic medium. The evolution
of the complex field envelope E is then governed in the paraxial
approximation by the Nonlinear Schr€odinger Equation (NSE)35

i
@E
@z
þ 1
2k
r2
?E þ

k
n0

DnðjEj2ÞE ¼ 0: (1)

Here, the laser beam is taken to be propagating dominantly along the
z axis, n0 is the linear refractive index, k ¼ 2pn0=k ¼ n0k0 is the
wavenumber, andr2

? is the transverse Laplacian describing beam dif-
fraction. We note that the real vector electric field is related to the field
envelope via

Eðr; z; tÞ ¼ 1
2

eEðr; zÞeikðz�ct=n0Þ þ c:c:
h i

; (2)

where r ¼ ðx; yÞ is the transverse position vector and e the unit polari-
zation vector. When using the scalar field approximation, it is there-
fore understood that the rapidly varying carrier wave eikðz�ct=n0Þ has

been removed, and that all wavevectors derived from the field enve-
lope Emust be referenced with respect to the carrier value k.

In general, the nonlinear change in refractive index Dn in steady-
state may be expressed as

Dnðr; zÞ ¼ n2

ð
Rðr� r0ÞjEðr0; zÞj2dr0: (3)

Physically, the propagating laser beam in our experiments is weakly
absorbed by the medium leading to a temperature change, and in a
thermo-optic medium this leads to a change in the refractive index of
the medium that is proportional to the temperature change. The
response function Rðr� r0Þ in Eq. (3) accounts for the nonlocal ther-
mal diffusion arising from the heat equation plus boundary conditions
due to the finite size of the medium, the laser intensity jEðr0; zÞj2 being
the source for the heating.9,11 We remark that the NSE (1) in conjunc-
tion with the refractive-index change in Eq. (3) is related to the
Schr€odinger–Newton equation that is having wide application in the
fields of boson stars, dark matter, and dark energy.9,36 Penrose and
Diosi have both pioneered the Schr€odinger–Newton equation as a
model for the collapse of a wave function due to the effects of
gravity.37–39

For the experiments discussed here, the particular thermo-optic
medium is composed of a solution of methanol and a low concentra-
tion of graphene nanoflakes (23� 10�6 g/cm3), providing a weak
absorption of the pump input beam to enhance the thermo-optic effect
with nonlinear coefficient n2 < 0, that is a defocusing nonlinearity.
More specifically, the nonlocal response may be written as

RðrÞ ¼ 1
2pr2 K0

jrj
r

� �
, where K0ðsÞ is the zeroth-order modified Bessel

function of the second kind, with r being a measure of the transverse
diffusion in the system.9,11 Moreover, experiments with time gated
measurements, performed over short times (�0:2 s in our case),
have verified that a strong nonlinearity with a weak nonlocality
(r � 200 lm) can be realized before thermal diffusion has reached the
steady-state (around 20 s in our case).11 In this case, as long as the
beams involved have dimensions larger than r, the nonlinearity is to a
high-degree local with Dnðr; zÞ ¼ n2jEðr; zÞj2. A variety of experi-
ments have been performed in both the highly nonlocal and quasi-
local limits, and in the remainder of this paper we shall discuss both
limits, making sure to distinguish them.

B. Nonlinear four-wave mixing

A fundamental process in third-order nonlinear optics, of which
thermo-optics is an example, is four-wave mixing (FWM) in which
three fields combine to produce a fourth wave.35 To illustrate this, con-
sider a strong pump beam solution of Eq. (1) that propagates
unchanged along the z axis, Eðr; zÞ ¼ E 0ðx; yÞeibz , with b the nonlin-
ear change in the wavevector of the pump beam. Then, if a weak signal
beam Es is added to the pump beam a new weak beam Ei, termed the
idler beam, will be generated by the nonlinearity, giving the total field

Eðr; zÞ ¼ E0ðr; zÞ þ Esðr; zÞ þ Eiðr; zÞ
¼ E 0ðr; zÞ þ E sðr; zÞ þ E iðr; zÞ½ �eibz; (4)

where it is assumed that the pump, signal, and idler can be distin-
guished, e.g., they are propagating at slightly different angles or have
different optical angular momentum (OAM). By substituting the
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expansion in Eq. (4) into the NSE (1) for a local nonlinearity, and line-
arizing in the weak signal and idler fields, we obtain4

@E s

@z
¼ i

2k
r2

TE s þ ik0n2 2jE 0j2E s þ E 2
0E
�
i

h i
� ibE s;

@E i

@z
¼ i

2k
r2

TE i þ ik0n2 2jE 0j2E i þ E 2
0E
�
s

h i
� ibE i:

(5)

Here, the first term on the right-hand side of each equation describes
beam diffraction, the second describes cross-phase modulation (XPM)
from the pump, and the third term describes the FWM process in
which the complex conjugate of the idler field acts as a source for the
signal field and vice versa. Thus, if a strong pump and weak signal are
injected together, then FWMwill generate a weak idler, the basic phys-
ical process at work being that two pump photons combine with one
signal photon to create an idler photon. Furthermore, the FWM pro-
cess can produce amplification of the signal and idler fields, the
required power coming from the pump, if phase-matching is satisfied,
which requires that the interaction between the signal and idler is
phase synchronized. The phase-matching conditions depend sensi-
tively on both the XPM term in Eq. (5), the third term, and also the
fourth term.4

C. Photon fluid picture

The formal similarity of the NSE (1) to the Gross–Pitaevskii
equation that governs superfluid systems such as ultracold atomic
gases has been recognized for some time.26,29,30,40 This similarity is
enhanced by introducing the time variable s ¼ n0z=c, and it becomes
clear that thermo-optic propagation provides an analog of a two-
dimensional superfluid, a photon fluid. Then, writing the complex
field in terms of its amplitude and phase, i.e., Eðr; zÞ ¼ Ebgðr; zÞ
�exp ði/ðr; zÞÞ, the NSE (1) can be expressed for a local nonlinearity
as the following two equations:

@q
@s
þrðqvÞ ¼ 0;

@w
@s
þ 1
2
v2 þ c2n2

n30
q� c2

2k2n20

r2 ffiffiffi
q
p
ffiffiffi
q
p ¼ 0;

(6)

which are formally identical to the density and phase equations for a
two-dimensional superfluid, or photon fluid in the present case. Here,
the optical background intensity jEbg j2 is identified as the photon fluid
density q and the phase / defines the fluid velocity via the relation
v ¼ ðc=kn0Þr/ ¼ rw. The last term in the velocity equation in (6)
corresponds to the quantum pressure and is absent in a classical fluid
description. In the context of optics, the quantum pressure is inti-
mately related to beam diffraction.

To proceed, we next consider small amplitude perturbations
E ¼ ðEbg þ eÞ on the background field Ebg, which can be described
within the Bogoliubov theory as sound waves on top of the photon
fluid. In the case of a spatially homogeneous photon fluid, where Ebg is
independent of r, a sound mode of wavevector K and amplitude aK
takes the plane-wave form

e ¼ aKuK exp ð�iXsþ iK � rÞ þ a�K vK exp ðiXs� iK � rÞ; (7)

where the angular frequency X satisfies the dispersion relation

ðX� v � KÞ2 ¼ c2n2jEbg j2

n30
K2 þ c2

4k2n20
K4; (8)

with v the background flow velocity. Since this dispersion relation is
quadratic, it yields two frequencies for each K, and for each of these
there is an associated Bogoliubov mode representing a sound wave.
Using the terminology of hydrodynamics, we note that for low fre-
quencies the dispersion of the sound modes has a phononic character
X / K , whereas for higher frequencies the second term dominates
and the sound modes acquire a quadratic dispersion X / K2 charac-
teristic of particles. The separation between these two regimes defines

a characteristic length n ¼ k
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0jn2j jEbg j2

q
, usually called the healing

length in the Bose–Einstein condensate (BEC) literature.6,7,21,22 As a
result, only long-wavelength sound modes with K� n follow a sonic

dispersion with a constant sound speed cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2jn2j jEbg j2=n30

q
. This

is of particular relevance, since only a linear dispersion guarantees
superfluid behavior.

It remains to translate these results back into the language of

optics: First, K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2
x þ K2

y

q
is the magnitude of the transverse wave-

vector of the light field in the transverse plane, which plays the role of
a phonon wavevector in the superfluid. Second, X ¼ �ðc=n0ÞDKz for
the photon fluid is related to the change DKz in the wavevector along
the propagation axis: This is consistent with the fact that in the para-
xial approximation all wavevectors are referred to the optical value k.
In this way, we can have the analog of temporal dynamics in a two-
dimensional superfluid system using time-independent propagation in
a thermo-optic medium.

Finally, within the nonlinear optics view we consider signal and
idler fields and their cross interaction via the pump field. In contrast,
in the photon fluid picture we consider the Bogoliubov modes that
arise as sound waves on top of the pump wave. However, physics can-
not depend on the choice of perspective and we can always consider
the signal and idler as superpositions of the Bogoliubov modes.
Indeed, for our experiment on the Penrose process we consider an
incident signal mode comprised of Bogoliubov modes, and it is break-
ing apart of the two Bogoliubov mode components that allows us to
realize the required splitting.

D. Experiments

The Bogoliubov dispersion has been successfully measured in
experiments in nonlocal media.11,32 In particular, We have previously
performed experiments to characterize the Bogoliubov mode frequen-
cies versus wavevector K for a photon fluid using our thermal
medium. First, using a technique traditionally used in oceanography,
we performed direct measurements of the single-particle part of the
dispersion relation of the elementary excitations on top of the photon
fluid to detect its global flow.11 This clearly revealed the quadratic
particle-like part of the spectrum, but lacked the resolution to see the
all-important linear phonon-like part characteristic of the superfluid
regime. Second, using a pump-and-probe setup, we investigated the
collective nature of low-wavevector sound modes of the fluid.32 For
this, we employed a straightforward extension of the previous
Bogoliubov theory to nonlocal media leading to a modified
Bogoliubov dispersion of the form

AVS Quantum Science PERSPECTIVE scitation.org/journal/aqs

AVS Quantum Sci. 4, 010501 (2022); doi: 10.1116/5.0073218 4, 010501-3

VC Author(s) 2022

https://scitation.org/journal/aqs


ðX� vKÞ2 ¼ c2n2jEbg j2

n30
R̂ðK; n0X=cÞK2 þ c2

4k2n20
K4; (9)

where R̂ ¼ 1=ð1þ K2r2Þ is the Fourier transform of the response
function R. Using this, we were able to examine how the nonlocal
nature of optical nonlinearity significantly alters the Bogoliubov dis-
persion even for relatively small wavevectors, and verify that superfluid
behavior can arise in our system. Related works, Refs. 33, 41, and 42,
report the observation of Bogoliubov dispersion for a photon fluid
formed using an atomic vapor with a local nonlinearity. The approach
used in these experiments is more robust than the one previously
described and allows for a more precise characterization of the
Bogoliubov dispersion curve relying on a measurement of the group
velocity instead of directly accessing the phase velocity of the phonon
modes.32

In this section, we have shown how the Bogoliubov modes
behave in a homogeneous flow. Next in Sec. III, we turn to how an
inhomogeneous flow gives rise to an effective curved metric and show
how our analog system can be used to realize black hole geometries by
using pump beams that carry orbital angular momentum (OAM).
Later, in Sec. IV we further build upon this to show how we have an
analog system to study the Penrose process.

III. ROTATING SPACETIME GEOMETRIES

We now discuss the more general case of Bogoliubov mode prop-
agation on top of an inhomogeneous photon fluid.

Generally speaking, any inhomogeneous, neutrally stable state of
a spatially extended nonlinear system provides an effective curved
spacetime on which its (linear) elementary excitations can propagate
(see, e.g., Ref. 15 and references therein). A particularly relevant exam-
ple for our discussion is that of sound waves in a flowing fluid. Their
velocity relative to the laboratory frame becomes in general a local
function of space and time coordinates (although the wave still travels
at the speed of sound relative to the flowing fluid). The acoustic trajec-
tories or, using the language of relativity, the “sound cones” delimiting
the region of causally connected events are implicitly defined by the
quadratic equation

�c2s dt2 þ ðdx � vdtÞ2 ¼ 0; (10)

where cs ¼ csðx; tÞ and v ¼ vðx; tÞ. In the simple case of a constant cs
and v ¼ vðxÞ, one can readily see that the spatially dependent flow
will tip the sound cone of a given event. In any closed region of super-
sonic flow, the cones tip past the vertical, forming a trapped surface
and an event horizon for sound.

This class of metrics, i.e., as in Eq. (10), can be uniquely deter-
mined by linearizing the fluid equations around the background state.
The result is an equation of motion formally equivalent to the
Klein–Gordon equation for a massless scalar field in a curved space-
time.14,43 The geometry is specified by a Lorentzian metric tensor, the
acoustic metric, the null geodesics of which are the trajectories defined
by (10). As such, the phonon dynamics exhibits an effective Lorentz
invariance with the local speed of sound playing the role of the speed
of light. The coefficients of the acoustic metric only depend on the
fluid density, which determines also the sound speed, and the flow
velocity. Hence, by tailoring the properties of the flow it is possible to
simulate gravitational spacetimes and related phenomena, such as, e.g.,

Hawking radiation, superradiance, and cosmological particle
production.10,15

A. From Bogoliubov quasi-particles to Klein–Gordon
fields

We now derive the evolution equations of Bogoliubov modes in an
inhomogeneous photon fluid and establish a connection with massless
scalar fields propagating in a (2þ 1) curved spacetime. To this aim, we
perturb the NSE (here, we consider a local Kerr nonlinearity
Dn ¼ n2jEj2) around a background solution Ebg ¼ q1=2

0 ei/0 , using a
different ansatz from the one in Sec. II, i.e., E ¼ E0ð1þ eþ � � �Þ. After
some algebra, we obtain the bosonic Bogoliubov–de Gennes equations44

@T � i
c

2kn0
@S

� �
e ¼ �i x

n0
n2q0ðeþ e�Þ; (11)

@T þ i
c

2kn0
@S

� �
e� ¼ i

x
n0

n2q0ðeþ e�Þ; (12)

where we introduced the usual comoving derivative @T ¼ @s þ v0 � r,
with the time coordinate s ¼ n0z=c and v0 ¼ ðc=kn0Þr/0, and
the (second-order) spatial differential operator @S ¼ 1

q0
r � ðq0r Þ.

The coefficients of the linearized equations so obtained depend on the
background field Ebg only through its density or the optical phase. In
particular, the information on the flow velocity is encoded in the
curved coordinate T (the time in the free-falling frame) and separated
by that on the density. Such a separation will greatly simplify the deri-
vation of a sound-wave equation in the appropriate conditions.

In the spatially homogeneous case, where both the background
density q0 and velocity v0 do not depend on the transverse coordi-
nates, the plane-wave solutions of Eqs. (11) and (12) satisfy the
Bogoliubov dispersion relation (8), which, in terms of the local speed
of sound and the healing length, can be rewritten as

ðXB � v0 � KÞ2 ¼ c2s K
2 1þ K2

Kc

� �
: (13)

Equation (13) has now the form of a superluminally modified disper-
sion relation, appearing in some phenomenological approaches to
quantum gravity.45 In this context, the length n is the critical wave-
number Kc ¼ 2p=n associated with the high-energy breakdown of
Lorentz invariance, generally expected to occur at the Planck scale.
Low-energy modes with K 	 Kc instead obey the relativistic disper-
sion relation for a massless particle propagating at the “invariant uni-
versal speed” cs. This is the so-called hydrodynamic limit or sonic
approximation, also related to the onset of superfluid behavior, as
remarked in Sec. II.

If the flow is inhomogeneous, a formal equivalence between such
modes and massless scalar fields in curved spacetime can be estab-
lished by linearizing Eqs. (6) around a background state: q ¼ q0
þ q1; w ¼ w0 þ w1, with q1;w1 	 q0;w0.

7 In the limit K 	 Kc, the
terms arising from linearization of the quantum pressure are negligible
and the dynamics is fully described by a single second-order equation
for the linearized velocity-potential. This is identical to the
Klein–Gordon equation for a massless scalar field

�w1 

1ffiffiffiffiffiffi�gp @l

ffiffiffiffiffiffi�gp
gl� @� w1

� �
; (14)
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propagating in a (2þ 1)-dimensional curved spacetime the geometry
described by the acoustic metric gl� , with inverse gl� and determinant
g as follows:

gl� ¼
q0

cs

� �2 �ðc2s � v20Þ �vT0
�v0 I

� �
; (15)

where I is the two-dimensional identity matrix. This is also the stan-
dard approach in analog-gravity models based on Bose–Einstein con-
densates (BECs).16

Equivalently, we can derive the acoustic metric from the
Bogoliubov–de Gennes equations (11) and (12), which allows us to
directly relate the complex Bogoliubov excitations to massless Klein–
Gordon fields. To this end, we apply the operator @T þ i c

2kn0
@S

� � 1
q0

� �
to Eq. (11) and after some algebra we obtain

@T þ i
c

2kn0
@S

� �
1
q0

@T � i
c

2kn0
@S

� �
e ¼ c2s

q0
@Se: (16)

We observe that Eq. (16) has the form of a wave equation except for
the second term inside each bracket. These extra factors make indeed
the equation be fourth order in space derivatives. On the other hand,
the gravitational analogy holds for wavenumbers K 	 Kc, for which
the dispersion relation takes the relativistic form gl�KlK� ¼ 0 where
Kl ¼ ðXB=cs;KÞ and the higher-order spatial derivatives in Eq. (16)
can be neglected. We remark that this approximation is mathemati-
cally equivalent to take the diffractionless limit k!1.5 In the photon
fluid picture, the wavevector k appears only in the coefficient of the
quantum pressure; therefore, taking the diffractionless limit corre-
sponds to neglecting this term.7 The superfluid Eq. (6) thus reduces to
the Navier–Stokes equations for a barotropic, irrotational, and inviscid
fluid, in which the Lorentz symmetry associated with the phonon
dynamics is not explicitly broken.43

Under this approximation, and using the fact that the back-
ground density q0 satisfies the continuity equation [the first of Eq. (6)]
with v ¼ v0, Eq. (16) can be rewritten as

�e 
 �ð@T þr � v0Þ@Teþr � ðc2sreÞ ¼ 0; (17)

where � is the d’Alambertian operator associated with the (2þ 1)-
dimensional acoustic metric gl� .

The complex fluctuations e can be easily linked to the real density
and phase perturbations through the relations q1 ¼ q0ðeþ e�Þ and
/1 ¼ ði=2Þðe� � eÞ. By means of these expressions and using the rela-
tion between the optical phase and velocity-potential of the flow,
w1 ¼ ðc=kn0Þ/1, one can split Eq. (17) into two decoupled wave equa-
tions given by

� w1 ¼ 0; (18)

�
q1

q0
¼ 0: (19)

Equation (18) is the usual massless Klein–Gordon equation (14) for
the velocity-potential perturbations w1 describing a sound wave

14,43 in
inhomogeneous fluids. An equation of the same form (19) is satisfied
also by the relative density fluctuations q1=q0.

B. Optical vortices and rotating spacetimes

In the following, we focus on stationary and axisymmetric rotat-
ing spacetimes suitable for the observation of Penrose superradiance.

The line element ds2 
 gl�dxldx� of a generic acoustic metric (15) in
polar coordinates is (up to the conformal factor q2

0=c
2
s )

ds2 � �ðc2s � v20Þds2 � 2vrdrds� 2vhrdhdsþ dr2 þ ðrdhÞ2;

where v20 ¼ v2r þ v2h; vr ¼ @rw0 and vh ¼ ð1=rÞ@hw0. Metrics of this
form allow for the realization of a variety of spacetime geometries of
interest in general relativity. In any region, where the total fluid veloc-
ity exceeds the speed of sound, none of the observers can remain at
rest relative to an inertial observer at infinity: they are forced to co-
rotate with the flow due to the supersonic dragging of inertial frames.
An analog phenomenology is found within the ergosphere surround-
ing any spinning black hole. If c2s is everywhere positive (no regions of
evanescent sound waves), an event horizon requires a nonzero radial
velocity. An outer-trapped surface, and thus an acoustic black hole,
forms where the normal component of the fluid velocity is supersonic
and everywhere inward pointing. In (2þ 1)-dimensions, this translates
into the simple condition �vr > cs. In such a region, a sound wave
will be swept inward by the flow and be trapped inside the horizon,
formed where �vr ¼ cs. This acts as a boundary in spacetime, which
causally disconnects the interior from the exterior. The sign of vr
is crucial: a closed curve on which vr ¼ cs corresponds indeed to a
white-hole horizon.

An acoustic spacetime with an ergoregion and horizon can be
realized by a draining vortex flow15 that mimics the main features of a
rotating black hole spacetime. Recently, experimental evidence of an
ergoregion and horizon (either black or white hole) in a (2þ 1)-
dimensional spacetime has been provided in a photon fluid with
thermo-optical nonlinearities using a background beam with phase
w0 ¼ nh� 2p

ffiffiffiffiffiffiffiffi
r=r0

p
, where r0 is an experimental parameter control-

ling the radial phase dependence of the beam.11 Outside the vortex
core, the profile q0ðrÞ asymptotes to a constant density and the flow is
well approximated by vh ¼ cn=ðkn0rÞ and by vr ¼ �cp= kn0

ffiffiffiffiffiffi
r0r
p� �

.
An ergoregion can then be created by controlling the beam intensity
such that the speed of sound cs passes from faster to slower than the
total flow. Moreover, an horizon forms where jvr j ¼ cs.

The similarity of the associated metric with the Kerr geometry
becomes clearer through the following transformation of the time and
the azimuthal coordinates:46

ds! dsþ jvr j
ðc2s � v2r Þ

dr; dh! dhþ jvr jvh

rðc2s � v2r Þ
dr;

defined in the exterior region ðrh < r <1Þ, where rh ¼ n2=r0 given
by the condition jvrj ¼ cs is the event horizon. Defining XH ¼ nn

pr2h
cs,

the metric takes the form

ds2 �� 1� rh
r
� r4hX

2
H

r2

� �
c2s ds

2 þ 1� rh
r

� ��1
dr2

�2r2hXHdhdsþ ðrdhÞ2: (20)

We now compare (20) with the with the equatorial slice of the
Kerr geometry in Boyer–Lindquist coordinates.47 The latter has two
coordinate singularities, corresponding to an inner and an outer hori-
zon, given by the positive roots of the quadratic equation 1=grr ¼ 0,

viz., rin;out ¼ 16
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p

, where a is the angular momentum of the
black hole in natural units. The two horizons are separated for any
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finite value of the rotation speed, except for the extremal one, a¼ 1.
On the other hand, the component grr in (20) does not contain any
dependence on the azimuthal flow and the quadratic equation 1=grr
¼ 0 yields only one positive root (i.e., a single horizon), as in the non-
rotational case. The radius of the ergosphere is given by the vanishing

of the temporal component gss, i.e., re ¼ rh
2 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4r2hX

2
H

q� �
,

where XH is the angular velocity at the horizon. The mixed term
gsh ¼ 2r2hXH is responsible of the frame dragging due to the rotating
spacetime and disappears when there is no rotation (XH ¼ 0). In this
case, re ¼ rh and the metric (20) corresponds to the Schwarzschild’s
solution (on the plane identified by a zero polar angle).

Among the various properties of the above metric, the most rele-
vant for the present discussion is the existence of an ergoregion. As we
shall see in the remainder of this section, sound-like quasi-particles in
this region can have negative energies, which allows either to extract
energy from the vacuum or to amplify waves in a classical scattering
process.6 This is the key ingredient for Penrose superradiance2 (see
Ref. 48 for a review). The role of a horizon in this context is more sub-
tle and is essentially to act as a one-way membrane that separates posi-
tive and negative energy modes from recombining at infinity. An
event horizon thus provides vacuum with an intrinsic dissipative
mechanism49 and acts as an absorbing boundary for in-going modes.50

For rotating black holes, the horizon prevents the onset of instabilities,
as the negative energy modes are rapidly dissipated and removed from
the system.

In hydrodynamic systems, though, an event horizon is generally
not required to observe superradiant amplification. This has been clar-
ified for example in Ref. 5 and supported by the deep connection
between the phenomenon of superradiance and so-called “over-
reflection” in fluids (reflection with amplification at the interface
between subsonic and supersonic flows), which does not need any
horizon or absorbing boundary to occur.51–54 The only necessary con-
dition is the existence of a region supporting negative energy modes.
In fluids, this is provided by the ergoregion surrounding vortex cores.

While in the framework of general relativity, asymptotically flat
spacetimes having an ergosphere but no horizon are linearly unstable
(ergosphere instability55,56) this is generally not the case in quantum
fluids. In particular, our vortices are quasi-solitonic structures with a
quantized circulation, the intensity (i.e., the fluid density and thus the
sound speed) goes to zero at the vortex core and, moreover, the scat-
tering modes are Bogoliubov excitations with a supersonic dispersion
relation. All these features substantially change the stability properties
of the system. In particular, single-charge vortices are stable (except in
the presence of very particular background beams). Higher-charge
vortices can exhibit a kind of ergoregion instability, although mitigated
or even quenched by dispersive effects inherent to Bogoliubov waves
and by the density depletion around the vortex core (see Ref. 57 for an
exhaustive discussion on this topic). This is not the case of our system,
which operates far from the instability regime. We will thus consider
vortex flows with a purely azimuthal velocity profile that are typically
more easily achievable in quantum fluid platforms.

In photon fluids, an appropriate background indeed naturally
arises from the self-trapping of a phase singularity embedded in a
broad optical beam with orbital angular momentum (OAM), due to
the counterbalanced effects of self-defocusing and diffraction.58 The
resulting pattern is characterized by a dark core and a helical wave

front, E0 ¼ q1=2
0 ðrÞeiw0 , where q0ð0Þ ¼ 0 and w0 ¼ nh with the inte-

ger n being the topological charge of the vortex. The associated azi-
muthal fluid flow is thus vh ¼ cn=ðkn0rÞ. An analytical expression for
the corresponding metric does not exist. However, well outside the
vortex core the background asymptotes to a homogeneous density and
thus an homogeneous sound speed. The condition vh ¼ cs thus gives
the radius of the ergoregion, i.e., re ¼ nn=p and the line element can
be written as

ds2 � � 1� r2e
r2

� �
c2s ds

2 þ dr2 � 2r2eXdhdsþ ðrdhÞ2; (21)

where we define X 
 vhðreÞ=re ¼ cs=re as the rotational frequency at
the ergo-radius relative to the laboratory frame. This is essentially the
background geometry used to demonstrate Penrose superradiance in
our system. The role of the event horizon in the proposed photon fluid
system is provided by a trapping potential generated by the phase sin-
gularity at the center of the pump vortex. As seen from the outside,
this potential acts as a horizon as any energy that is trapped is effec-
tively lost. Furthermore, at the center of the pump core, the intensity
goes to zero, providing an effective dissipation for the phonon modes
that cease to exist [this is not encoded in the metric of Eq. (21), which
holds for the outer region].

IV. THE PENROSE PROCESS

In this section, we describe a geometry to explore the Penrose
process in a photon fluid. Let us start by summarizing how the
Penrose process occurs with an eye to what is needed to test it in a
nonlinear optics experiment.

As previously outlined, the Penrose process was introduced by
Roger Penrose in 1969 for the scattering of particles from a rotating
black hole.1 He noted that a particle, co-rotating with the black hole
and remaining trapped inside, can be seen by an observer at infinity,
i.e., in a reference frame compatible with that of a Minkowskian
observer far from the black hole, as having negative energy. This
observation led him to the possibility of extracting energy from the
black hole, by exploiting its rotational energy, and to the formulation
of the so-called Penrose process: If a lump of matter splits into two
sub-parts inside the ergoregion and one of them remains trapped
inside, the other component can gain energy at the expense of the
black hole rotational energy and momentum, hence escaping from the
black hole with an energy higher than its initial one.

Shortly after in 1971, Zel’dovich proposed similar ideas in the
context of wave amplification from a rotating metallic cylinder.34 He
showed that low frequency electromagnetic waves impinging radially
on a rotating conducting cylinder can gain energy in the scattering
process if the cylinder spins fast enough such that the Doppler fre-
quency becomes negative. Linking the original Zel’dovich proposal
with Penrose’s previous works, it is possible to define the
Zel’dovich–Misner condition for the “superradiance” process, i.e., the
anomalous reflection from rotating black holes, as defined by
Misner.12 The Zel’dovich–Misner condition for amplification is

x�mX < 0; (22)

where x is the wave’s angular frequency, m its angular momentum,
and X is the magnitude of the angular velocity of the rotating object.
This suggests the role of negative frequencies in this kind of amplifica-
tion phenomena.
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In the remainder of this section, we focus our attention on
Penrose superradiance for waves in a photon fluid, i.e., the amplifica-
tion of positive energy modes in the interaction with a rotating
medium and the trapping of negative energy modes within the ergore-
gion. We will see how the Zel’dovich–Misner condition naturally
arises in nonlinear optics as the phase-matching condition for the sig-
nal and idler waves.4 Three features are essential for this description:
(i) the distinction of positive and negative energy modes and (ii) the
definition of the interaction, i.e., of the reflection and transmission
coefficients of the modes in the scattering with the ergoregion; and
(iii) the definition of the phase-matching condition.

A. Linearized theory: Positive and negative energy
modes

Let us start by defining the geometry needed for the interaction
between the perturbation (signal and idler waves) and the nonlinear
pump background that allows to observe Penrose superradiance. The
underling FWM parametric interaction between the pump beam with
the signal and idler field suggests that the idler will be proportional to
the complex conjugate of the signal wave, so that the signal and idler
should be Laguerre–Gauss (LG) beams with comparable intensity pro-
files and OAM n and q, respectively. The two beams are chosen to be
coaxial and co-propagating. The signal beam is referred as the positive
frequency mode while the idler wave acts as the negative energy one.
In the Penrose process, however, the negative energy mode gets
trapped in the ergosphere. Let us consider a nonlinear vortex pump
solution of the form

Eðr; h; zÞ ¼ E 0ðrÞeiðbzþ‘hÞ

¼
ffiffiffiffi
I‘
p

u‘ðrÞeiðbzþ‘hÞ; (23)

where I‘ is the background intensity of the vortex of OAM ‘ and u‘ðrÞ
is the corresponding vortex profile whose core size is denoted by r‘.
The vortex profile, which we take as real without loss of generality,
obeys the equation

bu‘ ¼
1
2k
r2
‘u‘ þ k0n2I‘u

3
‘ ; (24)

where u‘ðrÞ ! 1 for r � r‘, and we have defined
r2

p ¼ ð@2=@r2Þ þ ð1=rÞð@=@rÞ � ðp2=r2Þ. The signal and the idler
are chosen to be co-propagating with the pump mode while being
loosely focused onto the pump ergoregion. To proceed, we first look at
the propagation of the signal wave, corresponding to the positive
energy Bogoliubov mode.

1. Signal propagation

For this analysis, we assume that the signal is negligibly depleted
by the nonlinear interaction. In this limit, we may neglect the effect of
the idler on the signal propagation to lowest order. Equation (5) for
the signal propagation becomes

@E s

@z
� i

2k
r2

nE s þ 2ibu2‘ðrÞE s � ibE s|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl} : (25)

If we initially neglect the under-braced term, this equation has LG
beam solutions, and in our case the input signal is a focused LG beam
with radial mode index p¼ 0, winding number n, and focused spot

size w0: We write the normalized solution for this in the form
Vnðr; zÞe�ið1þjnjÞ/GðzÞ, where Vnðr; zÞ is the normalized z-dependent
LG mode profile and we have explicitly separated out the Gouy phase
shift that occurs through the beam focus, with /GðzÞ ¼ tan�1ðz=z0Þ,
the Rayleigh range being z0 ¼ kw2

0=2. The underbraced terms describe
extra phase-shifting terms, and assuming that the LG beam is not too
tightly focused (this assumption is justified by the fact that we are deal-
ing with a photon fluid and hence we want low K to be in the pho-
nonic regime) the solution including these terms may be
approximated as

E sðr; zÞ � csVnðr; zÞe�ið1þjnjÞ/GðzÞe2ibCnðzÞz�ibz; (26)

where

Cn zð Þ ¼
ð1
0
2prdr jVn r; zð Þj2u2‘ rð Þ (27)

describes the variation of the signal phase due to penetration of the LG
mode into the pump vortex core. The key result is that the signal phase
varies as follows:

/sðzÞ ¼ ð2bCnðzÞ � bÞz � ð1þ jnjÞ/GðzÞ
¼ DKsðzÞz � ð1þ jnjÞ/GðzÞ: (28)

We can approximate

DKsðzÞ � DKsð0Þ ¼ 2bCnð0Þ � b; (29)

since most of the nonlinear interaction occurs within a Rayleigh range
around the beam focus at z¼ 0. The overlap factor Cnð0Þ is such that
0 � Cnð0Þ � 1 and can be computed numerically.

From the signal wavevector, it is possible to calculate the signal
frequency shift, showing that the signal corresponds to the positive fre-
quency mode. To evaluate the frequency shift Dxs ¼ �ðc=n0ÞDKs of
the incident signal field, we should consider it as the beginning of the
signal propagation, when the mode is far from the beam focus, which
is at z¼ 0. Well before the focus, CnðzÞ ’ 1, and DKs ’ b is negative,
being the medium nonlinearity defocusing (n2 < 0). Hence, far from
the ergoregion, the corresponding incident signal frequency is positive
(Dxs > 0), as required by the Penrose process.

2. Idler propagation: Role of negative frequencies

The idler propagation equation in Eq. (5) can be rewritten as4

@E i

@z
¼ i

2k
r2

qE i þ i 2b u2‘ðrÞ � 1

 �

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
waveguide

E i þ ibE i þ ibu2‘ðrÞE �s|fflfflfflfflfflffl{zfflfflfflfflfflffl}
source

: (30)

The underbraced source term in the above equation describes how the
idler wave, which is absent at the input, is driven by the signal beam
via the parametric interaction. Since the nonlinear parameter b is neg-
ative, the underbraced term 2jbj½1� u2‘ðrÞ� ¼ k0DnðrÞ defines a two-
dimensional guiding refractive-index profile. That is, u2‘ðrÞ zero being
at the pump vortex center r¼ 0 and unity for r � r‘ away from the
vortex core, DnðrÞ ¼ 2jbj is maximum at r¼ 0 and goes to zero away
from the core. The pump vortex therefore creates a cross-phase-mod-
ulation (XPM)-induced waveguide that is experienced by the idler
wave [this also underpins the XPM-induced nonlinear phase shift
2bCnðzÞ experienced by the signal in Eq. (26)].
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The idler wave can be guided inside the wave-guiding potential
created by the pump. The spectrum of guided idler waves with OAM
q can be found by solving the wave equation combining beam diffrac-
tion and the XPM-induced refractive-index profile. Neglecting the
source term for the time being, and for idler fields of the form

E iðr; zÞ ¼ ciUpqðrÞeiðb‘þKpqÞz; (31)

with radial mode-index p and wavevector DKi ¼ bþ Kq, this leads to
the equation for the modes ðp ¼ 0; 1; 2;…Þ

1
2k
r2

q þ 2b u2‘ðrÞ � 1

 �� �

UpqðrÞ ¼ KpqUpqðrÞ: (32)

This eigenproblem can be solved for the guided idler modes for a given
pump vortex profile u‘ðrÞ and value of the nonlinear parameter b‘:
Note that it is possible that no guided idler modes exist in which case
the Penrose process cannot occur. The eigenvalues Kpq are positive
and decrease with increasing p, so, for the present purposes, the lowest
radial mode p¼ 0 is the relevant one: We hereafter drop the radial
mode index for simplicity in notation, and assume UqðrÞ and Kq exist
and are known, at least numerically.

The modal solution UqðrÞ allows us to evaluate the ergosphere
radius in a more systematic way: This mode has a single-ringed inten-
sity profile and one can find the radius rq of the peak intensity.
Physically, any idler energy excited by this guided mode will effectively
be confined or trapped within the radius rq, so we identify rq with a
viable measure of the radius of the ergosphere. The approach re ¼ rq
agrees quite well with the previous approximation, particularly for
larger q.

In order for the idler mode to be guided, the wavevector has to be
positive. Therefore, the frequency shift Dxi ¼ �ðc=n0ÞDKi of the
excited idler field is negative (Dxi < 0). The idler mode plays the role
of the negative frequency mode in the Penrose picture.

B. Phase-matching and the Zel’dovich–Misner
condition

We next turn to the phase-matching condition from a nonlinear
optics perspective, and how this is related to the Zel’dovich–Meisner
condition.

1. Phase-matching

We return to the idler propagation Eq. (30) and use the approxi-
mation to the signal field in Eq. (26). To deduce the condition for the
incident signal field to be able to excite a guided idler mode, we substi-
tute a guided idler field of the form

E iðr; zÞ ¼ ciðzÞeiDKizUqðrÞ; (33)

into Eq. (30) and project onto the idler guided wave to obtain

dci
dz
¼ ic�s bFðzÞe

�ið2DKz � ð1þ jnjÞ/GðzÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}; (34)

where

DK ¼ DKs þ DKi

2

� �
(35)

and

FðzÞ ¼
ð1
0
2prdr V�nðr; zÞu2‘ðrÞU�q ðrÞ: (36)

The underbraced phase factor contains the phase-matching condition,
i.e., the condition in nonlinear optics such that the different waves par-
ticipating in the parametric process are in phase and their interaction
is guaranteed. Due to the presence of the Gouy phase-shift term and
in the vicinity of the focus at z¼ 0, the phase factor is approximately
ð2DKz � ð1þ jnjÞz=z0Þ, so that DK > 0 is required to have the possi-
bility of phase-matching. More generally, similar phase factors as in
Eq. (34) appear in the theory of harmonic generation using focused
beams, and there it is found that for tight focusing a requirement for
harmonic generation to be possible is DK > 0.35

To recap, the condition for idler guided wave excitation to be
possible is

DK ¼ DKs þ DKi

2

� �
¼ ð2bCnð0Þ � bÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

signal

þðbþ KqÞ|fflfflfflfflffl{zfflfflfflfflffl}
idler

> 0: (37)

This condition can be used to determine whether the guided idler
waves can be excited, with possible accompanying observation of the
Penrose process. A stronger statement is that if DK < 0 the Penrose
process cannot arise.

2. Zel’dovich–Misner condition

If we convert the requirement DK > 0 to a frequency shift, we
get Dx ¼ �ðc=n0ÞDK < 0, where Dx ¼ ðDxs þ Dxi=2Þ is the aver-
age of the frequency shifts of the signal and idler fields, with Dxs;i

¼ �ðc=n0ÞDKs;i. Then, writing the frequency shift as Dx
¼ ðx� xpÞ ¼ ðx�mXÞ, with m ¼ n� ‘, the condition to see the
Penrose process becomes

ðx�mXÞ < 0; (38)

which has the same form as the Zel’dovich–Misner condition. Here, x
is the average of the (unshifted) frequencies of the signal and idler
fields xs;i ¼ ðDxs;i þ xpÞ, and is explicitly given by

x ¼ � c
n0
ð2bCnð0Þ þ Kq þ b‘Þ: (39)

It is worth noting that a condition for Penrose superradiance to
occur is that m> 0, i.e., n > ‘, so the signal OAM n has to be larger
than the pump OAM ‘. This illustrates that the condition for the
Penrose process coincides with the Zel’dovich–Misner condition,
which in turn coincides with the phase-matching condition. The
fact that these conditions coincide highlights that the phase-
matching condition has its origin in the induced black hole geome-
try that arises from using pump and signal beams that are vortices
carrying OAM. For this reason, we call this type of phase-matching
geometrically induced as it is dependent on the presence of an
ergosphere.

Summarizing, in the usual picture of the Penrose process a posi-
tive frequency incident signal field is amplified upon reflection and
excites a negative frequency idler field that is trapped within the ergo-
region. The chosen geometry of the interaction guarantees the signs of
the frequency shifts of the modes involved in the process, i.e., Dxs > 0
far from the ergoregion and Dxi < 0 inside it.
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C. The Noether currents: reflection and transmission
coefficients

In order to pinpoint and quantify the superradiance amplifica-
tion, we need to define the reflection R and transmission T coefficients
of the scattering of the perturbation composed signal and idler, i.e.,
positive and negative frequency modes, from the rotating body. If
superradiance occurs, the reflection coefficient R will be larger than 1
such that the incoming positive mode has gained energy in the scatter-
ing process. It has been shown5,29 that the coupled equations of propa-
gation (5) for the signal and idler fields are invariant under the global
U(1) phase-shift transformation, i.e., ðEs;EiÞ ! ðEs;EiÞeik, with k
being any real number. The U(1) symmetry can also be found in the
action (see Ref. 5). Following the Noether theorem, to every symmetry
in the action corresponds a conserved quantity. The U(1) symmetry is
associated with the conservation of the Noether charge, such that for
the current Jl it holds that @lJl ¼ 0.

It is possible to show that integrating this conservation relation
(@lJl ¼ 0) over the finite radius of the interaction, corresponding to
the ergoregion in our system, one obtains a measure of the reflection
and transmission coefficients. The time component J0 of the current Jl

associated with the symmetry is J0 ¼ jEsj2 � jEij2, and the conserved
charge is

NðzÞ ¼
ð1
0
ðjESj2 � jEI j2Þrdr ¼ const: (40)

This quantity in BECs is usually proportional to the energy of the
eigenstate of the coupled equations by the relation E ¼ �hxNðzÞ,
where x is the mode frequency. It is worth noticing that this quantity
is not positive-definite, hence the energy of the eigenstate can be nega-
tive. As shown before, the negative norm modes in our system corre-
spond to the idler wave. From this definition (40), it is possible to also
define the reflection R and transmission T coefficients for the scatter-
ing of the perturbation from the flow edge, that is

RðzÞ ¼
ð1
re

jESj2 � jEI j2
� �

rdr;

TðzÞ ¼
ðre
0
jESj2 � jEI j2
� �

rdr:

(41)

For normalized fields Rþ T ¼ 1, hence, a gain in the amplitude of the
reflected mode causes a decrease in the transmission coefficient T,
which becomes negative (T< 0), and an increase in the reflection coef-
ficient such that R> 1. The value of the R and T coefficients is strongly
related to the current J0 distribution in the (x, y) plane. Hence, J0 plays
a central role for establishing the presence of superradiance: a negative
current ðJ0 < 0Þ is present inside the scattering region re (causing a
negative T and hence R> 1), and a positive current ðJ0 > 0Þ outside
re.

5 This reflects Penrose’s physics based on the presence of negative
energy modes (idler beam) inside re. In order to have a negative cur-
rent inside re along the propagation distance z, the idler wave has to be
trapped inside the scattering region, while the signal is scattered out-
side. If there is no trapping of the idler, then the positive and negative
modes can interfere and change the resulting energy outcome. In real
black holes, the mechanism that governs the disappearance of the neg-
ative energy mode is given by the event horizon, while in our system it
is regulated by the presence of the trapping potential due to the

intensity modulation in the pump core and the presence of quantum
pressure in the superfluid.

D. Numerical simulations of the Penrose Process

In Ref. 4, the authors reported numerical simulations testing the
theoretical model just illustrated in order to verify the presence of
Penrose effect in a photon fluid. They simulated the system of coupled
Eq. (5) in a defocusing nonlinear medium. To simplify the basic physi-
cal concepts involved, the pump beam is assumed to not evolve, i.e., to
be constant along z, not undergoing absorption and having local non-
linearity. This last assumption is ensured by a proper choice of the
nonlocal length, r < 200 m with a gating of 0.2 s.11 By choosing the
dimensions of the beams involved to be larger than r, the nonlinearity
is to a high degree local. In both the numerical and experimental
results reported below, the pump beam dimensions are of the order
�1 cm. The pump and signal core sizes are larger than 0.1 cm and,
hence, the system can be considered to be quasi-local.

The vortex pump background chosen for the simulations is

E0ðrÞ ¼ N0tanhðrÞjljeilh; (42)

where ‘ is the vortex charge we fix as ‘ ¼ 1 and N0 is the normaliza-
tion constant. Furthermore, the signal field is a Laguerre–Gauss beam
with OAM n, which we write at the focus at z¼ 0 as

Esðr; z ¼ 0Þ ¼ Ns
r
w

� �jnj
e�

r2

w2einh; (43)

where Ns is the normalization constant. The idler beam is chosen to be
initially zero, as it will be created by the nonlinear interaction between
the pump E0 and the signal ES along the evolution.

Figure 1 shows the difference in the signal and idler intensity
propagation when superradiance does not occur [Figs. 1(a)–1(d)], due
to the fact that one of the conditions above is not satisfied, and when
superradiance conditions are met and hence there is amplification
[Figs. 1(e)–1(h)]. The dashed lines in Fig. 1 mark the location of the
ergoregion.

In panels (a)–(d) of Fig. 1 the signal OAM is n ¼ �1 and idler
OAM q ¼ 2l � n ¼ 3 and hence superradiance conditions are not
met, with ðn� ‘Þ > 0 not satisfied. Panels (a)–(b) of Fig. 1 show the
signal and idler field propagation along z, respectively. We see that the
idler field is initially absent (the input beams are the pump and signal
only, no idler) and it is created along the propagation direction [panel
(b)], hence the ergoregion is empty at the beginning. Since superra-
diance conditions are not met, the ergoregion is asymptotically empty,
i.e., along the propagation the idler does not get trapped inside the
ergoregion and the current J0 in panel (c) is always positive. As a con-
sequence, also the reflection coefficient is R< 1 [see panel (d) of
Fig. 1]. We note that at the focal point, the signal in panel (a) of Fig. 1
interacts with the ergoregion and penetrates into it. However, asymp-
totically it comes out and does not remain trapped inside. In Fig. 1
[panels (e)–(h)], it is shown where superradiance conditions are met.
The signal and idler OAM are n¼ 2 and q¼ 0, respectively. After the
signal has scattered with the ergoregion, the idler beam [panel (f) of
Fig. 1] is trapped inside it and stays there for the duration of the prop-
agation. This means that negative frequencies are trapped during the
interaction, while positive frequencies are reflected (no signal inside
the ergoregion) and amplified. It is meaningful to report the plot of
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the current at z¼ 4 [see panel (g) of Fig. 1], which shows that J0 is neg-
ative as expected when having superradiance. The reflection and trans-
mission coefficients are also plotted [panel (h) of Fig. 1] and show an
amplification of 20% at the end of the propagation.

More results are reported in Ref. 4 showing that if the full system
is simulated, the evolution of the pump not only does not impede the
process from happening, but rather favors it by allowing for less strin-
gent phase-matching condition.

Summarizing, these simulations show consistently that to have
superradiance one needs to satisfy the phase-matching condition, have

trapping of the negative frequency modes, and have a negative flux
(i.e., negative current) whenever ðn� ‘Þ > 0. The effect disappears as
soon as one of these conditions is not satisfied.

Recent experimental measurements have confirmed these
numerical results,25 demonstrating the feasibility of this effect in the
laboratory. These results show an amplification of positive frequency
modes and the trapping of the idler in the analog black hole ergore-
gion. Figure 2 reports the experimental currents in the same cases
simulated above: the non-superradiant case with n ¼ �1 and q¼ 3
[Fig. 2(a)] and the superradiance case with n¼ 2 and q¼ 0 [Fig. 2(a)].

FIG. 1. The pump field E0 has OAM ‘ ¼ 1. (a) and (b) Section at y¼ 0 of the simulated signal (a) and idler (b) intensity profiles along the propagation distance z=ZR , com-
puted using Eqs. (5). The input signal is a LG beam with OAM n ¼ �1. The idler has OAM q¼ 3 and is not present at the input. No Penrose effect occurs in this case
(DK < 0). The dashed line marks the location of the ergoregion re. (c) Current J0ðr=wÞ as a function of the normalized radius r/w. Red line shows the null current axis. (d)
Reflection R � 1 and transmission T coefficients along the beams’ evolution. (e)–(h) as in panel (a)–(d) for signal with OAM n¼ 2 and idler with OAM q¼ 0, such that
Penrose effect is present (DK > 0). Panel (g) shows the presence of negative current J0 near the pump core, i.e., when r=w ! 0. The pump field has OAM ‘ ¼ 1 in all
cases.

FIG. 2. Experimental results. Current J0ðrÞ as a function of the radius r. The pump OAM is ‘ ¼ 1. (a) The signal has OAM n ¼ �1 and idler OAM q¼ 3. Superradiance condi-
tions are not met and the current is always positive. (b) n¼ 2 and q¼ 0. Superradiance occurs and the current J0 is negative near the ergoregion indicated by the dashed red
line (re ¼ 118lm). Insets show the signal and idler intensity profiles jEs;iðrÞj at the output of the nonlinear propagation in a solution of methanol and graphene. The idler is
trapped in the pump vortex core in the superradiant cases (b). The different colors of the lines show the difference between linear and nonlinear propagation. When nonlinearity
is excited, the superradiance effect can occur.
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The pump vortex has OAM ‘ ¼ 1. The insets show the signal and
idler transverse intensity profiles at the end of the nonlinear propaga-
tion and reports the trapping of the idler inside the ergoregion (dashed
red line) when superradiance occurs. A maximum amplification of 5%
is found.

E. Transient growth

In this section, we describe an approximate coupled-mode theory
(CMT) that elucidates the gain mechanism that underpins the Penrose
process in our nonlinear optical system. The approximation is moti-
vated by the results shown in Figs. 1(a) and 1(e) where we see that the
input signal undergoes what looks close to linear propagation with a
focus around z¼ 0. To lowest order, we therefore approximate the sig-
nal beam transverse profile as proportional to the linearly evolving
input Laguerre–Gaussian beam. Moreover, since the FWM process
generates an idler field with a source that is proportional to the com-
plex conjugate of the signal beam, we assume that the idler beam
transverse profile is proportional to the complex conjugate of the same
Laguerre–Gaussian beam.

To proceed, as above we write the signal beam as

E sðr; h; zÞ ¼ csðzÞUnðr; zÞeinheibz; (44)

where the normalized radial mode function Unðr; zÞ obeys the free-
space paraxial wave equation

@Un

@z
¼ i

2k
r2

nUn: (45)

This is a valid approximation if the signal beam is much narrower
than the pump beam and does not overlap the pump core signifi-
cantly: The pump beam then appears to have a homogeneous intensity
profile as experienced by the signal beam. Upon propagation, the
nonlinear interaction generates an idler with winding number
q ¼ ð2‘� nÞ, and we approximate the propagating idler field as

E iðr; h; zÞ ¼ ciðzÞU�n ðr; zÞeiqheibz: (46)

Then, substituting this form for the signal and idler fields into Eq. (5),
using Eq. (45) for the radial mode function, and projecting separately
with U�nðr; zÞe�inh and Unðr; zÞe�iqh, yields the equations for the sig-
nal and idler amplitudes as follows:

dcs
dz
¼ ið2Cn � 1Þbcs þ iCnbc

�
i ;

dci
dz
¼ i

2k
�2K2

n þ dK2
n


 �
ci þ ið2Cn � 1Þbci þ iCnbc

�
s ;

(47)

with the z-dependent projection factors

CnðzÞ ¼
ð1
0
dr ru2‘ðrÞjUnðr; zÞj2; (48)

�K2
nðzÞ ¼

ð1
0
dr rU�nðr; zÞr2

nUnðr; zÞ; (49)

dK2
nðzÞ ¼ ðn2 � q2Þ

ð1
0
dr rjUnðr; zÞj2=r2: (50)

The above equations define the CMT and are solved along with the
boundary conditions csðziÞ ¼ 1 and ciðziÞ ¼ 0, with zi the coordinate

of the medium input. The last terms in both equations in Eq. (47)
account for the nonlinear FWM interactions, and the other terms
describe terms related to phase-matching of the process such as XPM
and beam diffraction. The reflection and transmission coefficients may
be calculated along the propagation direction using Eq. (41) as follows:

RðzÞ ¼ ðjcsðzÞj2 � jciðzÞj2Þ
ð1
re

jUnðr; zÞj2rdr|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
OðzÞ

; (51)

and TðzÞ ¼ 1� RðzÞ. The overlap factor O(z) involves a radial inte-
gral extending from the ergoradius re to infinity as this captures that
portion of the propagating beam intensity profile that is reflected radi-
ally outside the ergosphere.

We have solved the CMT equations numerically for the parame-
ters in Fig. 1 and the results for ðR� 1Þ and T invariably look like
those in plot (d) of Fig. 1, meaning that the CMT can only capture the
case when the Zel’dovich–Meisner condition is not satisfied, and the
Penrose process is absent, but not if it is satisfied. In particular, in
Fig. 1(d) the reflectivity remains less than or equal to unity. This is
readily understood from the CMT: First, one can prove that ðjcsðzÞj2
�jciðzÞj2Þ ¼ 1 is a conserved quantity, so that the RðzÞ ¼ OðzÞ. For a
beam far removed on either side from the focus, we find OðzÞ ! 1,
whereas O(z)< 1 around the focus as the Laguerre–Gaussian beam
protrudes into the ergosphere. Thus, the shape of R(z) versus z in
Fig. 1(d) is essentially a measure of how much the incident signal LG
beam protrudes into the ergoregion.

To elaborate further, if the phase-matching terms are neglected
in Eq. (47) leaving only the FWM terms, the resulting two-state system
comprised of the signal and idler can exhibit both amplification or
loss: This is the limit of two-mode parametric amplification, which
can lead to nonlinear instabilities.59 In contrast, for the parameters
appropriate to our proposed experiments the phase-matching terms
detune the system so that the two-mode parametric amplification is
inoperative, and what arises instead is an oscillatory exchange of
power between the signal and idler: This is the so-called phase-conju-
gate coupling regime where the system dynamics is akin to a lossless
system of two coupled oscillators described by a Hermitian
Hamiltonian.59

As it is, the CMT does not describe the superadiant regime. The
missing ingredient from the CMT is that it does not account for the
energy that is transferred to the trapped idler wave alluded to in Sec.
IIA, and this can be accounted for by including a loss term�aðzÞci=2
on the right-hand side of the idler equation in (47): We treat the loss
coefficient aðzÞ as a fit parameter that is applied only after the FWM
interaction initiates in the vicinity of the signal beam focus. Physically,
the introduction of the loss term in the idler Eq. (47) allows the trans-
fer of idler energy into the trapped potential generated by the pump
beam. This guiding/trapping potential stops the oscillatory exchange
of energy between the signal and idler, favoring the signal amplifica-
tion. Results from the CMT including idler absorption are shown in
Fig. 3 corresponding to the full simulation in Fig. 1(h) with good quali-
tative agreement, both showing the Penrose process at the output with
ðR� 1Þ > 0. The qualitative picture given by the CMT was found to
be quite robust against variation in the fit parameters employed, giving
confidence in the physics underlying extending the CMT to include
idler absorption.
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These CMT results are relevant for a few reasons: First, they
again highlight that excitation of the trapped idler mode is key to
observing the Penrose process. Second, in order to see amplified reflec-
tion it is necessary to add idler absorption to the Hermitian two-state
system (in the phase-conjugate regime) represented by the signal and
idler.60 The Penrose process may then be viewed as an example of
the counter-intuitive phenomenon of transient growth in which
non-Hermitian systems with non-normal modes can exhibit gain or
amplification, at least transiently: Our two-mode system is rendered
non-Hermitian by the addition of the absorption only to the idler
mode. Finally, another view is that the addition of the losses changes
the FWM interaction from the phase-conjugate to the two-mode para-
metric amplification regime, a manifestation of parity-time symmetry
breaking that accompanies the Zel’dovich effect in nonlinear optics.60

In this sense the CMT, although approximate, serves to deepen our
understanding of the physics underlying the Penrose process.2,61–66

V. SUMMARY

Our goal in this Perspective has been to describe how a relatively
modest nonlinear optics experimental setting can be used to elucidate
the physics involved in the Penrose process. To this end, we have
threaded together developments from four of our previous works that
have culminated in our recent experiment. In the first step, we dis-
cussed how thermo-optic beam propagation may be viewed as a pho-
ton superfluid complete with a spectrum of Bogoliubov excitations,
this perspective being key as it is these quasi-particles that participate
in the Penrose process. Second, we discussed how rotating spacetime
geometries can be realized by extending the photon superfluid picture
and associated Bogoliubov analysis to allow for vortex fields that carry
orbital angular momentum, thus providing a view that includes the
notion of an ergoregion and Bogoliubov quasi-particles that can split
apart. In the third step, we discussed an experimentally feasible geome-
try in which the Penrose process can be measured in more detail than
before: Not only can the amplified reflection be measured, but the
component that becomes trapped in the ergoregion can be measured,
along with the generation of negative norm idler modes alluded to in
our fourth work. In the final section, we provided a discussion of how
the Penrose process may be viewed as arising from transient gain and
parity-time-symmetry breaking, new views that arose from our studies.

Roger Penroses’s work has motivated us to reach for tabletop
experiments to explore gravitational phenomena that cannot be
observed astrophysically at present. Indeed, recent reports have shown
that these experiments are indeed possible and allow for example to
observe for the first time the dynamics of both positive and negative
norm modes.25 We hope that this Perspective illustrates the utility of
nonlinear optics as an analog-gravity system and motivates further
exploration of the Penrose process and beyond.
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