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NONUNITAL OPERATOR SYSTEMS AND
NONCOMMUTATIVE CONVEXITY

MATTHEW KENNEDY, SE-JIN KIM, AND NICHOLAS MANOR

Abstract. We establish the dual equivalence of the category of
(potentially non-unital) operator systems and the category of pointed
compact nc (noncommutative) convex sets, extending a result of
Davidson and the first author. We then apply this dual equivalence
to establish a number of results about operator systems, some of
which are new even in the unital setting.

For example, we show that the maximal and minimal C*-covers
of an operator system can be realized in terms of the C*-algebra
of continuous nc functions on its nc quasistate space, clarifying
recent results of Connes and van Suijlekom. We also characterize
“C*-simple” operator systems, i.e. operator systems with simple
minimal C*-cover, in terms of their nc quasistate spaces.

We develop a theory of quotients of operator systems that ex-
tends the theory of quotients of unital operator algebras. In addi-
tion, we extend results of the first author and Shamovich relating
to nc Choquet simplices. We show that an operator system is a
C*-algebra if and only if its nc quasistate space is an nc Bauer
simplex with zero as an extreme point, and we show that a sec-
ond countable locally compact group has Kazhdan’s property (T)
if and only if for every action of the group on a C*-algebra, the set
of invariant quasistates is the quasistate space of a C*-algebra.
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1. Introduction

Werner’s notion of a (generalized, i.e. potentially nonunital) operator
system is an axiomatic, representation-independent characterization of
concrete operator systems, which are self-adjoint subspaces of bounded
operators acting on a Hilbert space. Werner [24] showed that every
concrete operator system satisfies the axioms of an abstract operator
system, and conversely that every abstract operator system is isomor-
phic to a concrete operator system, thereby generalizing an important
result of Choi and Effros [3] for unital operator systems.

Recently, Davidson and the first author [6] introduced a theory of
noncommutative convex sets and noncommutative functions. A key
starting point for the theory is the dual equivalence between the cat-
egory of compact noncommutative convex sets and the category of
closed unital operator systems. On the one hand, this equivalence al-
lows the rich theory of operator systems and C*-algebras to be applied
to problems in noncommutative convexity. On the other hand, recent
results suggest that that the perspective of noncommutative convexity
can also provide new insight on operator systems and C*-algebras (see
e.g. [5, 7, 15]).

In this paper we will establish a similar dual equivalence between the
category of operator systems in the sense of Werner and a category of
objects that we call pointed noncommutative convex sets. These are
certain pairs consisting of a compact noncommutative convex set along
with a distinguished point in the set. We will then consider a number
of applications of this equivalence.

Before stating our results, we will first briefly review some of the
basic ideas from the theory of noncommutative convexity.

A compact nc (noncommutative) convex set is a graded set K =
⊔Kn, where each graded component Kn is an ordinary compact convex
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subset of the set Mn(E) of n×nmatrices over an operator space E, and
the graded components are related by requiring that K is closed under
direct sums and compressions. The union is taken over all n ≤ κ for
some sufficiently large infinite cardinal number κ depending on K. The
fact that κ is infinite is an essential part of the theory, being necessary
for e.g. the existence of extreme points. In the separable setting, it
typically suffices to take κ = ℵ0.

The conditions on K are equivalent to requiring that K is closed
under nc convex combinations, meaning that

∑

α∗
ixiαi ∈ Kn for every

bounded family of points {xi ∈ Kni
} and every family of scalar matrices

{αi ∈ Mni,n}.
The prototypical example of a compact nc convex set is the nc state

space of a unital operator system S defined by K = ⊔Kn, where Kn =
UCP(S,Mn) is the set of unital completely positive maps from S into
the space Mn of n × n matrices. The dual equivalence in [6] implies
that S is isomorphic to the operator system A(K) of continuous affine
nc functions on K, and that, on the other hand, if K is a compact nc
convex set, then K is affinely homeomorphic to the nc state space of
the operator system A(K). In particular, every compact nc convex set
arises as the nc state space of an operator system.

For a (generalized) operator system S, it is necessary to instead
consider the nc quasistate space of S. This is the pair (K, z) consisting
of the compact nc convex set K = ⊔Kn, where Kn = CCP(S,Mn) is
the set of completely contractive and completely positive maps from S
into Mn, and z ∈ K1 is the zero map.

We are therefore led to consider pairs (K, z) consisting of a compact
nc convex set K and a distinguished point z ∈ K1. However, it turns
out that not every pair (K, z) arises as the nc quasistate space of an
operator system. This is an important point that explains many of the
difficulties that arise in the non-unital setting. In order to obtain the
desired dual equivalence between operator systems and pointed com-
pact nc convex sets, it is necessary to impose an additional constraint.

Specifically, we say that the pair (K, z) is a pointed compact nc
convex set if the operator system A(K, z) ⊆ A(K) of continuous affine
nc functions on K that vanish at z has nc quasistate space (K, z). Our
results will imply that this property is equivalent to (K, z) arising as
the state space of a compact nc convex set.

We consider pointed compact nc convex sets and functions on pointed
compact nc convex sets in Section 3 and Section 5 respectively. The
following two results establishing the above-mentioned dual equivalence
are the main results in Section 4.
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Theorem A. An operator system S with nc quasistate space (K, z)
is isomorphic to the operator system A(K, z) ⊆ A(K) of continuous
affine nc functions on K that vanish at z. Hence (K, z) is a pointed
compact nc convex set if and only if it arises as the nc quasistate space
of an operator system.

Theorem A is the key ingredient in the dual equivalence between the
category of generalized operator systems and the category of pointed
compact nc convex sets.

Theorem B. The category OpSys of generalized operator systems is
dually equivalent to the category PoNCConv of pointed compact nc
convex sets.

An important consequence of Theorem A is that essentially all of the
results from [6] about unital operator systems apply to (generalized)
operator systems. For example, in Section 6, we establish characteriza-
tions of the maximal and minimal C*-covers of an operator system in
terms of the C*-algebra of continuous nc functions on its nc quasistate
space. As a corollary, we recover results about the minimal C*-cover
(i.e. the C*-envelope) recently obtained by Connes and van Suijlekom
[4].

Theorem C. Let (K, z) be a pointed compact nc convex set.

(1) The C*-algebra C(K, z) of pointed continuous nc functions on
(K, z) is the maximal C*-cover of A(K, z).

(2) Let I∂K denote the boundary ideal in the C*-algebra C(K) of
continuous nc functions on K relative to the unital operator
system A(K), so that the C*-algebra C(K)/I∂K

∼= C(∂K) is
the minimal unital C*-cover of A(K), and let I(∂K,z) = I∂K ∩
C(K, z). Then the C*-algebra C(K, z)/I(∂K,z) is the minimal

C*-cover of A(K, z).

In Section 8, as another application of the dual equivalence between
operator systems and pointed compact nc convex sets, we develop a
theory of quotients of generalized operator systems that extends the
theory of quotients of unital operator systems developed by Kavruk,
Paulsen, Todorov and Tomforde [14].

Theorem D. Let S be an operator system and let J ⊆ S be the
kernel of a completely contractive and completely positive map on S.
There is a unique pair (S/J, ϕ) consisting of an operator system S/J
and a morphism ϕ : S → S/J with the property that whenever T is
an operator system and ψ : S → T is a completely contractive and
completely positive map with J ⊆ kerψ, then ψ factors through ϕ. In
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other words, there is a completely contractive and completely positive
map ω : S/J → T such that ψ = ω ◦ ϕ.

We also obtain some results that are new even for unital operator sys-
tems. In Section 9, we establish a characterization of operator systems
that are C*-simple, meaning that their minimal C*-cover is simple. We
refer to Section 6 for the definition of the spectral topology.

Theorem E. An operator system S with nc quasistate space (K, z) is
C*-simple if and only if the closed nc convex hull of any nonzero point
in the spectral closure of ∂K contains ∂K \ {z}.

In Section 10, we establish a characterization of operator systems
that are isomorphic to C*-algebras in terms of their nc quasistate
spaces, extending a result for unital operator systems from [15].

Theorem F. Let S be an operator system with nc quasistate space
(K, z). Then S is a C*-algebra if and only if K is an nc Bauer simplex
and z is an extreme point. The result also holds for unital operator
systems with nc quasistate spaces replaced by nc state spaces.

In Section 11, we make another connection to the recent work of
Connes and van Suijlekom [4]. They consider operator systems S and T
that are stably equivalent in the sense that the minimal tensor product
S⊗min K is isomorphic to the minimal tensor product T ⊗min K, where
K denotes the C*-algebra of compact operators. The next result is a
characterization of stable equivalence of operator systems in terms of
their nc quasistate spaces.

Theorem G. Let S and T be operator systems with nc quasistate
spaces (K, z) and (L,w) respectively. Let 0K and idK denote the zero
map and the identity representation respectively of K. Then S and T
are stably isomorphic if the closed nc convex hulls of ∂K ⊗ {0K, idK}
and ∂L ⊗ {0K, idK} are pointedly affinely homeomorphic with respect
to the points z ⊗ 0K and w ⊗ 0K (see Section 11).

Finally, in Section 12 we establish the following characterization of
second countable locally compact groups with property (T), extending
a result from [15] for discrete groups acting on unital C*-algebras, as
well as a result of Glasner and Weiss from [9] for second countable
locally compact groups acting on unital commutative C*-algebras.

Theorem H. A second countable locally compact group G has Kazh-
dan’s property (T) if and only if for every action of the group on a
C*-algebra, the set of invariant quasistates is the quasistate space of a
C*-algebra. The result also holds for unital C*-algebras with quasistate
spaces replaced by state spaces.
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2. Preliminaries on operator systems

In this section we will recall the notion of a matrix ordered oper-
ator space and introduce the notion of a generalized (i.e. potentially
nonunital) operator system. For a reference on operator spaces and
unital operator systems, we refer the reader to the books of Paulsen
[18] and Pisier [20].

Let E be a self-adjoint operator space, i.e. such that E = E∗. We
let Eh = {x ∈ E : x = x∗} denote the set of self-adjoint elements in
E. For n ∈ N, we will write Mn(E) for the operator space of n × n
matrices over E, and we will write Mn for Mn(C). A matrix cone over
E is a disjoint union P = (Pn)n∈N of closed subsets Pn ⊆Mn(E)h such
that

(1) Pn ∩ −Pn = 0 for all n ∈ N and
(2) APnA

∗ ⊆ Pm for all A ∈Mm,n and m,n ∈ N.

Definition 2.1. A matrix ordered operator space is a pair (E, P ) con-
sisting of a self-adjoint *-vector space E and a matrix cone P over E.
For n ∈ N, an element in Mn(E) is positive if it belongs to Pn.

Remark 2.2. When referring to a matrix ordered operator space, we
will typically omit the positive cone unless we need to refer to it explic-
itly. Note that if E is a matrix ordered operator space then for m ∈ N,
the space Mm(E) is a matrix ordered operator space in a canonical
way. Specifically, letting P denote the matrix cone for E, (Mm(E), Q)
is a matrix ordered operator space, where Q = (Qn)n∈N is the matrix
cone defined by identifying Mm(Mn(E)) with Mmn(E) in the obvious
way and setting Qn = Pmn.

Let E be a matrix ordered operator space. An element e ∈ E is
an archimedean order unit for E if for every x ∈ Eh, there is a scalar
α > 0 such that −αe ≤ x ≤ αe, and if x + αe ≥ 0 for all α > 0, then
x ≥ 0. It is an archimedean matrix order unit for E if for every n ∈ N,
1n ⊗ e is an archimedean order unit for Mn(E).

If E is a matrix ordered operator space, then an archimedean matrix
order unit e ∈ E induces a norm ‖ · ‖e on Mn(E) for each n ∈ N,
defined by

‖x‖e = inf

{

α > 0 :

(

α1n ⊗ e x
x∗ α1n ⊗ e

)

≥ 0

}

for x ∈ Mn(E).

The next definition is equivalent to the definition of an operator
system given by Choi and Effros [3].

Definition 2.3. A unital operator system S is a complete matrix or-
dered operator space with an archimedean matrix order unit 1S that is
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distinguished in the sense that for each n, the norm on Mn(S) coincides
with the norm ‖ · ‖1S from above.

Remark 2.4. Although not strictly necessary, it will be convenient
for the purposes of this paper to assume that operator systems are
complete. If S is a unital operator system, then the distinguished
archimedean order unit 1S is uniquely determined by the property that
for s ∈ S with s ≥ 0, ‖s‖ ≤ 1 if and only if s ≤ 1S.

Let (E, P ) and (F,Q) be matrix ordered operator spaces and let
ϕ : E → F be a bounded map. We will write ϕn : Mn(E) → Mn(F )
for the linear map defined by ϕn = idn⊗ϕ.

Definition 2.5. Let (E, P ) and (F,Q) be matrix ordered operator
spaces. A linear map ϕ : E → F is contractive if ‖ϕ‖ ≤ 1, and
completely contractive if ϕn is contractive for all n ∈ N. It is isometric if
‖ϕ(x)‖ = ‖x‖ for all x ∈ E, and completely isometric if ‖ϕn(x)‖ = ‖x‖
for all n ∈ N and all x ∈ Mn(E). Similarly, it is positive if ϕ(P1) ⊆ Q1,
and completely positive if ϕn is positive for each n ∈ N. The map ϕ is
a complete order isomorphism if it is completely positive and invertible
with a completely positive inverse. It is a complete order embedding if
it is completely positive and invertible on its range with a completely
positive inverse.

Remark 2.6. For unital operator systems, these definitions agree with
the usual definitions. Furthermore, because the norm on a unital op-
erator system is completely determined by the matrix order, a unital
map between unital operator systems is completely isometric if and
only if it is a complete order embedding. However, this is not true for
arbitrary matrix ordered operator spaces (see [24]).

We will write UnOpSys for the category of unital operator systems
with unital completely positive maps (equivalently, unital complete or-
der homomorphisms) as morphisms. We will refer to unital complete
order isomorphisms as isomorphisms, and to unital complete order em-
beddings as embeddings.

Choi and Effros [3, Theorem 4.4] showed that every unital operator
system is isomorphic to a concrete unital operator system, meaning
that there is a unital completely isometric map into some B(H), where
B(H) denotes the C*-algebra of bounded linear operators acting on
a Hilbert space H . We will be interested in matrix ordered operator
spaces satisfying an appropriate analogue of this property.

Specifically, we are interested in matrix ordered operator spaces with
a completely isometric complete order embedding into some B(H). It
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turns out that not every matrix ordered operator space has this prop-
erty. Following Connes and van Suijlekom [4], we will make use of
Werner’s [24] characterization of matrix ordered operator spaces with
this property in terms of partial unitizations (see below), although
other characterizations are also known (see e.g. [21]).

The next definition is [24, Definition 4.1] (see also [4, Definition
2.11]).

Definition 2.7. Let E be a matrix ordered operator space. The partial
unitization of E is the matrix ordered operator space (E♯, P ), where
E♯ = E ⊕ C and the matrix cone P = (Pn) is defined by specifying
that for each n ∈ N, Pn ⊆ Mn(E

♯)h = Mn(E)h ⊕ (Mn)h consists of
all pairs (x, α) ∈ Mn(E)h ⊕ (Mn)h satisfying

α ≥ 0 and ϕ(α−1/2
ǫ xα−1/2

ǫ ) ≥ −1 for all ǫ > 0 and ϕ ∈ CCP(E,Mn),

where αǫ = α+ ǫ1n and CCP(E,Mn) denotes the space of completely
contractive and completely positive maps from E to Mn. We will refer
to the map E → E♯ : x → (x, 0) as the canonical inclusion map, and
we will refer to the map E♯ → C : (x, α) → α as the projection onto
the scalar summand.

The next result is contained in [24, Section 4] (see also [4, Proposition
2.12] and [4, Lemma 2.13]).

Theorem 2.8. Let E be a matrix ordered operator space.

(1) The partial unitization E♯ is a unital operator system.
(2) Let ι : E → E♯ denote the canonical inclusion map and let

τ : E♯ → C denote the projection onto the scalar summand.
Then ι is completely contractive and completely positive and τ
is unital and positive, and the following sequence is split exact:

0 E E♯ C 0 .ι τ

(3) Let F be a matrix ordered operator space and let ϕ : E → F be
a completely contractive and completely positive map. Then the
unitization ϕ♯ : E♯ → F ♯ defined by ϕ♯((x, α)) = (ϕ(x), α) for
(x, α) ∈ E♯ is unital and completely positive. Furthermore, if ϕ
is a completely isometric complete order isomorphism then ϕ♯

is a unital complete order isomorphism.

Remark 2.9. Note that E 6= E♯, even if E is already unital. For a
C*-algebra A, the partial unitization A♯ coincides with the usual C*-
algebraic unitization of A, and hence is a unital C*-algebra.

It follows from the representation theorem of Choi and Effros [3] for
unital operator systems that if E is a matrix ordered operator space
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with partial unitization E♯ and the canonical inclusion map E → E♯

is completely isometric, then there is a completely isometric complete
order isomorphism of E onto a self-adjoint subspace of bounded op-
erators acting on a Hilbert space. Following [4], this motivates the
following definition.

Definition 2.10. We will say that a complete matrix ordered operator
space S is an operator system if the canonical inclusion map S → S♯ is
completely isometric, in which case we will refer to S♯ as the unitization
of S.

Remark 2.11. As in the unital case, it is not strictly necessary to
assume that operator systems are complete. For an operator system
S, we will identify S with its image in S♯ under the canonical inclusion
map. In particular, if T is an operator system and ϕ : S → T is
completely contractive and completely positive, then we will view the
unitization ϕ♯ : S♯ → T ♯ as an extension of ϕ.

Remark 2.12. If S is a unital operator system, then it follows from
[24, Lemma 4.9] that the identity map on S factors through the canon-
ical inclusion map S♯. In particular, this implies that the canonical
inclusion map is completely isometric, so S is an operator system in
the sense of Definition 2.10.

Remark 2.13. Let S and T be operator systems and let ϕ : S → T be
a completely contractive completely positive map. If ϕ is a completely
isometric complete order isomorphism, then Theorem 2.8 implies that
the unitization ϕ♯ : S♯ → T ♯ is a complete order isomorphism. However,
if ϕ is merely a completely isometric complete order embedding, then
it is not necessarily true that the unitization ϕ♯ is a complete order
embedding (see Example 2.14). We will need to take this into account
when we define embeddings between operator systems below.

In the following example, we construct operator systems S and T
and a completely isometric complete order embedding ϕ : S → T such
that the unitization S♯ → T ♯ is not a complete order embedding. The
fundamental issue is that completely contractive completely positive
maps on the image of S in T do not necessarily extend to completely
contractive completely positive maps on T (see [21, Section 6]).

Example 2.14. Define a, b ∈ M2 by

a =

[

1 0
0 −1

]

, b =

[

1 0
0 −1/2

]

.

Let S = span{a} and B = span{12, b} ∼= C2. Then S is a non-unital
operator system and B is a unital C*-algebra. Define ϕ : S → B by
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ϕ(αa) = αb for α ∈ C. We claim that ϕ is a completely isometric
complete order embedding, but that the unitization ϕ♯ : S♯ → B♯ is
not completely isometric.

Note that Mn(S) = span{α⊗ a : α ∈ Mn}. Since

‖ϕ(α⊗ a)‖ = ‖α⊗ b‖ = ‖α‖ = ‖α⊗ a‖,

ϕ is completely isometric. Also, α ⊗ a ≥ 0 if and only if α ⊗ b ≥ 0 if
and only if α = 0, so α is a complete order embedding.

It is not difficult to see that for λ ∈ [−1, 1] the map ϕλ : S → C

defined by ϕλ(αa) = λα for α ∈ C is a quasistate, i.e. is completely
contractive and completely positive. Furthermore, if ψ : S → C is
a quasistate, then ψ = ϕλ for some λ ∈ [−1, 1]. Hence the set of
quasistates on S can be identified with [−1, 1].

We will see in Section 4.4 that this implies that the state space of
the unitization S♯ is [−1, 1]. Since [−1, 1] is a simplex, it follows from
a classical result of Bauer that S♯ = span{12, a} ∼= C2 (see e.g. [15]).

Note that B♯ ∼= C
3. We can identify B = C

2 with the first two
coordinates of C3. Then ϕ♯(α12 + βa) = α13 + βb. In particular,
ϕ♯(1

2
12 + a) = 1

2
13 + b. Since 1

2
12 + a 6≥ 0 but 1

2
13 + b ≥ 0, it follows

that ϕ♯ is not a complete order embedding.

We will write OpSys for the category of operator systems with com-
pletely contractive and completely positive maps as morphisms. We
will refer to completely isometric complete order isomorphisms as iso-
morphisms. Motivated by Remark 2.13, for operator systems S and
T , we will refer to a completely isometric complete order embedding
ϕ : S → T as an embedding if the unitization ϕ♯ : S♯ → T ♯ is an
embedding in the category of unital operator systems.

Werner was able to isolate the precise obstruction to a matrix ordered
operator space being an operator system in the sense of Definition 2.10.
The next result is [24, Lemma 4.8].

Theorem 2.15. Let E be a matrix ordered operator space with partial
unitization E♯. For each n, let νn : Mn(E) → R≥0 denote the map
defined by

νn(x) = sup
ϕ

∣

∣

∣

∣

ϕ

(

0 x
x∗ 0

)
∣

∣

∣

∣

, for x ∈ Mn(E),

where the supremum is taken over all maps ϕ ∈ CCP(M2n(E),C).
Then νn is a norm on Mn(E). The inclusion E → E♯ is completely
isometric if and only if for each n, the norm on Mn(E) coincides with
νn.
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3. Pointed noncommutative convex sets

A key result from [6] is the dual equivalence between the category
of unital operator systems and the category of compact nc convex sets.
In this section we will review the definition of a compact nc convex set
and introduce the definition of a pointed compact nc convex set. In
Section 4, we will show that the category of operator systems is dual
to the category of pointed compact nc convex sets.

3.1. Noncommutative convex sets. Let E be an operator space.
For nonzero (potentially infinite) cardinals m and n, let Mm,n(E) de-
note the operator space of m × n matrices over X with the property
that the set of finite submatrices are uniformly bounded. For brevity,
we will write Mn(E) for Mn,n(E), Mm,n for Mm,n(C) and Mn for
Mn(C). Restricting to matrices with uniformly bounded finite subma-
trices ensures that matrices over E can be multiplied on the left and
right by scalar matrices of the appropriate size. We identify Mn with
the C*-algebra of bounded operators acting on a Hilbert space Hn of
dimension n.

If E is a dual operator space with distinguished predual E∗, then
there is a natural operator space isomorphism Mn(E) ∼= CB(E∗,Mn),
where CB(E∗,Mn) denotes the space of completely bounded maps from
E∗ to Mn. We equip Mn(E) with the corresponding point-weak*
topology.

Let M(E) = ⊔nMn(E), where the union is taken over all nonzero
cardinal numbers n. Once again, for brevity, we will write M for
M(C). Although M(E) is a proper class and not a set, we will only
be interested in subsets, so this will not present any set-theoretic dif-
ficulties. More generally, we will consider disjoint unions over nonzero
cardinal numbers n of subsets of Mn(E). For a subset X ⊆ M(E)
and a cardinal number n, we will write Xn for the graded component
Xn = X ∩Mn(E).

Definition 3.1. Let E be an operator space. An nc convex set over E
is a graded subset K = ⊔nKn with Kn ⊆ Mn(E) that is closed under
direct sums and compressions, meaning that

(1)
∑

αixiα
∗
i ∈ Kn for every bounded family of points xi ∈ Kni

and
every family of isometries αi ∈ Mn,ni

satisfying
∑

αiα
∗
i = 1n.
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(2) β∗xβ ∈ Kn for every x ∈ Kn and every isometry β ∈ Mm,n.

If E is a dual operator space, so that each Mn(E) is equipped with
the weak* topology discussed above, then we will say that K is closed
if each Kn is closed. Similarly, we will say that K is compact if each
Kn is compact.

The most important examples of compact nc convex sets are non-
commutative state spaces of operator systems. The next definition is
[6, Example 2.2.6].

Definition 3.2. Let S be a unital operator system. The nc state
space of S is the set K = ⊔nKn defined by Kn = UCP(S,Mn). Here,
UCP(S,Mn) denotes the space of unital completely positive maps from
S to Mn. Elements in K are referred to as nc states on S.

Remark 3.3. Note that the set K is nc convex and compact since
each UCP(S,Mn) is compact.

The following characterization of compact nc convex sets as sets that
are closed under nc convex combinations is often useful. In particular,
it makes the analogy between nc convex sets and ordinary convex sets
more explicit. The next result is [6, Proposition 2.2.8].

Proposition 3.4. Let E be a dual operator space and letK = ⊔nKn for
closed subsets Kn ⊆ Mn(E). Then K is nc convex if and only if it is
closed under nc convex combinations, meaning that

∑

α∗
ixiαi ∈ Kn for

every bounded family of points xi ∈ Kni
and every family αi ∈ Mni,n

satisfying
∑

α∗
iαi = 1n.

One of the most important justifications for the utility of noncom-
mutative convexity is the fact that there is a robust notion of extreme
point for which a noncommutative analogue of the Krein-Milman the-
orem [6, Theorem 6.4.2] holds, meaning that every compact nc convex
set is generated by its extreme points.

Definition 3.5. Let K be a compact nc convex set. A point x ∈ Kn

is extreme if whenever x is written as a finite nc convex combination
x =

∑

α∗
ixiαi for {xi ∈ Kni

} and nonzero {αi ∈ Mni,n} satisfying
∑

α∗
iαi = 1n, then each αi is a positive scalar multiple of an isometry

βi ∈ Mni,n satisfying β∗
i xiβi = x and each xi decomposes with respect

to the range of αi as a direct sum xi = yi ⊕ zi for yi, zi ∈ K with
yi unitarily equivalent to x. The set of all extreme points is ∂K =
⊔(∂K)n.

The morphism between nc convex sets are the continuous affine non-
commutative maps. The next definition is [6, Definition 2.5.1].
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Definition 3.6. Let K and L be compact nc convex sets. A map
θ : K → L is an nc map if it is graded, respects direct sums and is
unitarily equivariant, meaning that

(1) θ(Kn) ⊆ Ln for all n,
(2) θ(

∑

αixiα
∗
i ) =

∑

αiθ(xi)α
∗
i for every bounded family {xi ∈

Kni
} and every family of isometries {αi ∈ Mni,n} satisfying

∑

α∗
iαi = 1n,

(3) θ(α∗xα) = α∗θ(x)α for every x ∈ Km and every unitary α ∈
Mn.

An nc map θ is affine if, in addition, it is equivariant with respect to
isometries, meaning that

(3’) θ(α∗xα) = α∗θ(x)α for every x ∈ Km and every isometry α ∈
Mm,n.

An affine nc map θ is continuous if the restriction f |Kn
is continuous

with respect to the point-strong topology on Kn and Ln for each n.
It is bounded if ‖θ‖∞ < ∞, where ‖θ‖∞ denotes the uniform norm
‖θ‖∞ = supx∈K ‖θ(x)‖. Finally, θ is an (affine) homeomorphism and
K and L are (affinely) homeomorphic if θ is continuous and has a
continuous (affine) nc inverse.

Remark 3.7. We will consider an appropriate notion of continuity for
more general nc maps in Section 5.

We will write NCConv for the category of compact nc convex sets
with continuous affine nc maps as morphisms. We will refer to affine nc
homeomorphisms as isomorphisms, and to injective continuous affine
nc maps as embeddings.

The next definition is [6, Definition 3.2.1].

Definition 3.8. LetK be a compact nc convex set. We will write A(K)
for the unital operator system of all continuous affine nc functions from
K to M.

Remark 3.9. The fact that A(K) is a unital operator system is dis-
cussed in [6, Section 3.2].

For a point x ∈ Kn, the corresponding evaluation map A(K) →
Mn : a → a(x) is an nc state on A(K). Moreover, by [6, Theorem
3.2.2], every nc state on A(K) is given by evaluation at some point in
K (we will say more about this in Section 4). It will be convenient to
identify points in K with the corresponding nc state on A(K).

Following [6, Section 3.2], for each n we will identify the unital op-
erator system Mn(A(K)) with the space of continuous affine nc maps
from K to Mn(M) in the obvious way.
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3.2. Pointed noncommutative convex sets. In this section we in-
troduce the notion of a pointed compact nc convex set, of which the
most important examples will be nc quasistate spaces of operator sys-
tems. Before introducing the definition of a pointed compact nc convex
set, we require the definition of a pointed continuous affine nc function.

Definition 3.10. Let (K, z) be a pair consisting of a compact nc con-
vex set K and a point z ∈ K1. We will say that a continuous affine
nc function a ∈ A(K) is pointed if f(z) = 0. We let A(K, z) ⊆ A(K)
denote the space of pointed continuous affine nc functions on K.

Remark 3.11. The space A(K, z) is a matrix ordered operator space
with matrix cone P = ⊔Pn inherited from A(K). Specifically, for
n ∈ N, the positive cone on Pn consists of the positive functions in
Mn(A(K, z)). Since A(K, z) is a closed self-adjoint subspace of the
unital operator system A(K), it follows that A(K, z) is an operator
system.

The most important examples of pointed compact nc convex sets
will be nc quasistate spaces of operator systems. The idea to utilize nc
quasistate spaces in this setting was inspired by the importance of the
quasistate space of a non-unital C*-algebra.

Definition 3.12. Let S be an operator system. The nc quasistate
space of S is the pair (K, z), where K = ⊔nKn is defined by Kn =
CCP(S,Mn) and z ∈ K1 is the zero map. Here, CCP(S,Mn) denotes
the space of completely contractive and completely positive maps from
S to Mn. We will refer to elements of K as nc quasistates on S.

Remark 3.13. Note that the set K is nc convex and compact since
each CCP(S,Mn) is compact.

We are now ready to introduce the definition of a pointed compact
nc convex set.

Definition 3.14. Let (K, z) be a pair consisting of a compact nc con-
vex set K and a point z ∈ K1. We will say that (K, z) is a pointed
compact nc convex set if every nc quasistate on the operator system
A(K, z) belongs to K, i.e. is evaluation at a point in K.

Remark 3.15. Since K is the nc state space of the unital operator
system A(K), (K, z) is a pointed compact nc convex set if and only if
every nc quasistate on A(K, z) extends to an nc state on A(K).

By definition, a pointed compact nc convex set is the nc quasistate
space of an operator system. In Section 4, we will show that the nc
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quasistate space of every operator system is a pointed compact nc con-
vex set. The proof of this fact is non-trivial. However, we are now able
to give some examples.

Example 3.16. Define K = ⊔Kn by

Kn = {α ∈ (Mn)h : −1n ≤ α ≤ 1n}, for n ∈ N.

Then K is a compact nc convex set (see [6, Example 2.2.4]). Let z = 0.
We will show that the pair (K, z) is a pointed compact nc convex set.

The unital operator system A(K) is given by A(K) = span{1A(K), a},
where a ∈ A(K, z) is the coordinate function a(α) = α for α ∈ K.
Hence A(K, z) = span{a}. In fact, A(K, z) and A(K) are isomorphic
to the operator systems S and S♯ from Example 2.14.

If θ : A(K, z) → Mn is an nc quasistate, then there is a self-adjoint
β ∈ Mn with −1n ≤ β ≤ 1n such that θ(αa) = αβ for α ∈ C.
Conversely, it is easy to check that every self-adjoint β ∈ Mn with
−1n ≤ β ≤ 1n gives rise to an nc quasistate on A(K, z) of this form.
Hence the nc quasistate space of A(K, z) is K. Therefore, (K, z) is a
pointed compact nc convex set.

Note that A(K, z)♯ = A(K). In Corollary 4.7, we will show that this
property characterizes pointed compact nc convex sets.

The next example shows that not every pair (K, z) consisting of a
compact nc convex set and a point z ∈ K1 is a pointed compact nc
convex set.

Example 3.17. Define K = ⊔Kn by

Kn = {α ∈ (Mn)h : −
1
2
1n ≤ α ≤ 1n}, for n ∈ N.

Then as in Example 3.16, K is a compact nc convex set. Let z = 0.
We will show that the pair (K, z) is not a pointed compact nc convex
set.

The unital operator system A(K) is given by A(K) = span{1A(K), b},
where b ∈ A(K, z) is the coordinate function b(α) = α for α ∈ K.
Hence A(K, z) = span{b}. In fact, A(K) is isomorphic to the C*-
algebra B from Example 2.14.

Define θ : A(K, z) → C by θ(αb) = −α. Since A(K, z) does not
contain any positive elements, the matrix cone of A(K, z) is zero, so it
is easy to check that θ is an nc quasistate. However, θ does not extend
to an nc state on A(K) since 1

2
1A(K) + b ≥ 0, while 1

2
+ θ(b) = −1

2
6≥ 0.

Hence θ does not belong to K and (K, z) is not a pointed compact nc
convex set.

We will now establish a geometric characterization of pointed com-
pact nc convex sets.
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Proposition 3.18. Let (K, z) be a pair consisting of a compact nc
convex set K and a point z ∈ K1. Then (K, z) is pointed if and only if
whenever self-adjoint a ∈ Mm(A(K, z)) satisfies a(x) ≤ 1m⊗1n for all
x ∈ Kn, then θm(a) ≤ 1m⊗1p for all nc quasistates θ : A(K, z) → Mp.

Proof. If (K, z) is pointed, then every nc quasistate on A(K, z) belongs
to K, so the condition trivially holds. Conversely, suppose that (K, z)
is not pointed. Then there is an nc quasistate θ : A(K, z) → Mn such
that θ /∈ K. Identifying K with its image in M(A(K, z)∗) and viewing
θ as a point in Mn(A(K, z)

∗), the nc separation theorem [6, Theorem
2.4.1] implies there is a self-adjoint element a ∈ Mn(A(K, z)) such that
θ(a) 6≤ 1n ⊗ 1n but a(x) ≤ 1n ⊗ 1p for all x ∈ Kp. �

Example 3.17 is a single instance of a general class of examples.

Corollary 3.19. Let (K, z) be a pair consisting of a compact nc convex
set and a point z ∈ K1 such that the matrix cone for A(K, z) is zero.
Then (K, z) is pointed if and only if whenever x ∈ Kn satisfies αz(n) +
(1 − α)x ∈ Kn for 0 < α < 1, then αz(n) − (1 − α)x ∈ Kn. Here
z(n) ∈ Kn denotes the direct sum of n copies of z.

Proof. Suppose that (K, z) is pointed and x ∈ Kn satisfies αz(n)+(1−
α)x ∈ Kn for 0 < α < 1. Then since the positive cone of A(K, z) is zero,
the map θ : A(K, z) → Mn defined by θ(a) = αa(z(n))− (1−α)a(x) =
−(1 − α)a(x) for a ∈ A(K, z) is an nc quasistate. Hence θ is given
by evaluation at a point in K which must be αz(n) − (1− α)x. Hence
αz(n) − (1− α)x ∈ K.

Conversely, suppose that whenever x ∈ Kn satisfies αz(n) + (1 −
α)x ∈ Kn for 0 < α < 1, then αz(n) − (1 − α)x ∈ Kn. If self-adoint
a ∈ Mm(A(K, z)) satisfies a(x) ≤ 1m ⊗ 1n for all x ∈ Kn, then for
0 < α < 1,

(1− α)a(x) = a(αz(n) + (1− α)x) ≤ 1m ⊗ 1n

and

−(1− α)a(x) = a(αz(n) − (1− α)x) ≤ 1m ⊗ 1n.

Then taking α→ 0 implies

−1m ⊗ 1n ≤ a(x) ≤ 1m ⊗ 1n.

Hence ‖a‖∞ ≤ 1. It follows that if θ : A(K, z) → Mn is an nc quasis-
tate on A(K), then θ(a) ≤ 1m ⊗ 1n. Therefore, by Proposition 3.18,
(K, z) is pointed. �

Example 3.20. Let K denote the nc state space of M2 and let z = Tr,
where Tr ∈ K1 denotes the normalized trace. Then identifying M2
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with A(K),

A(K, z) =

{[

α β
γ −α

]

: α, β, γ ∈ C

}

.

The matrix cone of A(K, z) is clearly zero. Define θ : M2 → C by

θ

([

α β
γ δ

])

= α for

[

α β
γ δ

]

∈ M2.

Then 1
2
Tr+1

2
θ ∈ K1. But 1

2
Tr−1

2
θ /∈ K1. Hence by Corollary 3.19,

the pair (K, z) is not pointed.

We now define the category of pointed compact nc convex sets.

Definition 3.21. Let (K, z) and (L,w) be pointed nc convex sets. We
will say that an affine nc map θ : K → L is pointed if θ(z) = w. We
will say that (K, z) and (L,w) are pointedly affinely homeomorphic if
there is a pointed affine homeomorphism from (K, z) to (L,w).

We will write PoNCConv for the category of pointed compact nc
convex sets with pointed continuous affine nc maps as morphisms. We
will refer to pointed affine nc homeomorphisms as isomorphisms, and
to pointed injective continuous affine nc maps as embeddings.

4. Categorical duality

In this section we will prove the dual equivalence between the cate-
gory OpSys of operator systems and the category PoNCConv of pointed
compact nc convex sets. We begin by reviewing the details of the dual
equivalence between the category UnOpSys of unital operator systems
and the category NCConv of compact nc convex sets from [6].

4.1. Categorical duality for unital operator systems. The dual
equivalence between the category of unital operator systems and the
category of compact nc convex sets was developed in [6, Section 3]. It
is closely related to a similar dual equivalence established by Webster
and Winkler [23].

The next result combines [6, Theorem 3.2.2] and [6, Theorem 3.2.3].

Theorem 4.1. Let K be a compact nc convex set. The nc state space
of the unital operator system A(K) is isomorphic to K. For a unital
operator system S with nc state space K, the map S → A(K) : s → ŝ
defined by

ŝ(x) = x(s) for s ∈ S, x ∈ K

is an isomorphism.
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The dual equivalence between the category UnOpSys of unital opera-
tor systems and the category NCConv of compact nc convex sets follows
from Theorem 4.1. The contravariant functor UnOpSys → NCConv is
defined in the following way:

(1) A unital operator system S is mapped to its nc state space.
(2) For unital operator systems S and T with nc state spaces K

and L respectively, a morphism ϕ : S → T is mapped to the
morphism ϕd : L→ K defined by

ϕd(y)(a) = ϕ(a)(y), for y ∈ L and a ∈ A(K).

The inverse functor NCConv → UnOpSys is defined in the following
way:

(1) A compact nc convex set K is mapped to the unital operator
system A(K).

(2) If K and L are compact nc convex sets and ψ : L → K is
a morphism, then the corresponding morphism ψd : A(K) →
A(L) is defined by

ψd(a)(y) = a(ψ(y)), for a ∈ A(K) and y ∈ L.

The next result summarizes this discussion. It is [6, Theorem 3.2.5].

Theorem 4.2. The contravariant functors UnOpSys → NCConv and
NCConv → UnOpSys defined above are inverses. Hence the categories
UnOpSys and NCConv are dually equivalent.

We will make use of the following result in the next section.

Proposition 4.3. Let K and L be compact nc convex sets. Let ϕ :
A(K) → A(L) be a unital completely positive map and let ϕd : L→ K
denote the continuous affine map obtained by applying Theorem 4.2 to
ϕ. Then ϕ is completely isometric if and only if ϕd is surjective.

Proof. If ϕd is surjective, then for a ∈ Mn(A(K)),

‖ϕ(a)‖∞ = sup
y∈L

‖ϕ(a)(y)‖∞ = sup
y∈L

‖a(ϕd(y))‖∞ = sup
x∈K

‖a(x)‖ = ‖a‖∞.

Hence ϕ is completely isometric.
Conversely, suppose that ϕ is completely isometric. Let S = ϕ(A(K)).

Then S is a unital operator system. Let M denote the nc state space
of S, so that S is isomorphic to A(K). It follows from Arveson’s ex-
tension theorem that the restriction map r : L → M is surjective. Let
ψ : M → K denote the continuous affine nc map obtained by restrict-
ing the range of ϕ to S and applying Theorem 4.2. Then ϕd = ψ ◦ r.
Theorem 4.2 implies that ψ is an affine homeomorphism. Since r is
surjective, it follows that ϕd is surjective. �
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4.2. Categorical duality for operator systems. Let (K, z) be a
pair consisting of a compact nc convex set K and a point z ∈ K1.
Observe that for a point x ∈ K, viewed as a unital completely positive
map on A(K), the restriction x|A(K,z) is an nc quasistate. For brevity,
it will be convenient to simultaneously view points in K as nc states
on A(K) and nc quasistates on A(K, z). We will take care to ensure
that this does not cause any confusion.

If (K, z) is the nc quasistate space of an operator system S, then it
follows as in [24, Lemma 4.9] that the extension x♯ : S♯ → Mn defined
by x♯(s, α) = x(s) + α1n is unital and completely positive, and hence
is an nc state on S♯. Moreover, it is the unique extension of x to an nc
state on S♯ with range in Mn. Here we have identified S♯ with S ⊕ C

as in Definition 2.7. Note that S = ker z♯.

Proposition 4.4. Let S be an operator system with nc quasistate space
(K, z) and let L denote the nc state space of the unitization S♯. For an
nc quasistate x ∈ K, let x♯ ∈ L be the nc state defined as above. Then
the map K → L : x → x♯ is an affine homeomorphism with inverse
given by the restriction map L→ K : y → y|S. Hence S♯ is isomorphic
to A(K).

Proof. For x ∈ K, we have already observed that x♯ ∈ L. On the
other hand, for y ∈ L, the restriction y|S is completely contractive and
completely positive, so y|S ∈ K. Then by uniqueness, (y|S)

♯ = y. It
follows that the map K → L : x→ x♯ is a bijection with inverse given
by the restriction map.

It is clear that the restriction map from L to K is continuous and
affine. From above, the restriction to each Ln is a continuous bijection
onto Kn. Since Ln is compact, it follows that this restriction is a
homeomorphism. Hence the restriction map is a homeomorphism.

The fact that S♯ is isomorphic to A(K) now follows from Theo-
rem 4.1. �

Theorem 4.5. Let S be an operator system with nc quasistate space
(K, z). Then S is isomorphic to A(K, z).

Proof. By Proposition 4.4, we can identify the nc state space of the
unitization S♯ with K. Let ϕ♯ : S♯ → A(K) denote the isomorphism
from Theorem 4.1. Then for s ∈ S♯, ϕ♯(s) = ŝ, where ŝ : K → M is
the affine nc function defined by ŝ(x) = x♯(s) for x ∈ K. In particular,
for s ∈ S, ϕ♯(s)(z) = ŝ(z) = z♯(s) = 0, so ϕ♯(S) ⊆ A(K, z). Hence
restricting ϕ♯ to S, we obtain a map ϕ : S → A(K, z). Since ϕ♯ is
an isomorphism, ϕ is completely positive and completely isometric. It
remains to show that ϕ is a surjective complete order isomorphism.
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To see that ϕ is surjective, choose a ∈ A(K, z). By the surjectivity of
ϕ♯, there is s ∈ S♯ such that ϕ♯(s) = a. Then 0 = a(z) = ŝ(z) = z♯(s).
Hence s ∈ S, and we conclude that ϕ is surjective.

To see that ϕ is a complete order isomorphism, let P = ⊔Pn and
Q = ⊔Qn denote the matrix cones of S and A(K, z) respectively. If
ϕ is not a complete order isomorphism, then there is s ∈ Mn(S) such
that s /∈ Pn but ϕ(s) ∈ Qn. Suppose that this is the case. We will
apply a separation argument to obtain a contradiction.

Identify S with its image under the canonical embedding into its
bidual S∗∗ and define M ⊆ M(S∗∗) by M = P = ⊔Pm, where the
closure is taken with respect to the weak* topology. Since P is nc
convex, M is nc convex. Hence M is a weak* closed nc convex set.
Furthermore, since Pn is convex and uniformly closed, it is weakly
closed, implying s /∈ M . Therefore, by the nc separation theorem
[6, Theorem 2.4.1] there is a self-adjoint normal completely bounded
linear map ψ : S∗∗ → Mn such that ψ(s) 6≥ −1n ⊗ 1n but ψ(t) ≥
−1n ⊗ 1p for all t ∈Mp.

Since ψ is normal, it can be identified with the unique normal ex-
tension of a map ψ : S → Mn satisfying ψ(s) 6≥ −1n ⊗ 1n but
ψ(t) ≥ −1n⊗ 1p for all t ∈ Pp. Then in particular, ψ(s) 6≥ 0. However,
since P is closed under multiplication by positive scalars, for t ∈ Pp and
α > 0, ψ(t) ≥ −α−11n ⊗ 1p. Taking α → ∞ implies ψ(t) ≥ 0. Hence
ψ ≥ 0. Multiplying ψ by a sufficiently small positive scalar, we obtain
a quasistate x ∈ K such that x(s) 6≥ 0. But then ŝ(x) = x(s) 6≥ 0, so
ϕ(s) = ŝ 6≥ 0, contradicting the assumption that ϕ(s) ∈ Qn. �

Corollary 4.6. Let S be an operator system with nc quasistate space
(K, z). Then (K, z) is a pointed compact nc convex set.

Proof. By Theorem 4.5, we can identify S with the operator system
A(K, z), and by definition, every nc quasistate on A(K, z) belongs to
K. �

Corollary 4.7. Let (K, z) be a pair consisting of a compact nc convex
set K and a point z ∈ K1. The following are equivalent:

(1) The pair (K, z) is a pointed compact nc convex set.
(2) The nc quasistate space of the operator system A(K, z) is (K, z).
(3) The operator system A(K, z) satisfies A(K, z)♯ = A(K).

Proof. (1) ⇒ (2) If (K, z) is a pointed compact nc convex set then
by definition every nc quasistate on A(K, z) belongs to K. Since ev-
ery point in K is an nc quasistate on A(K, z), it follows that the nc
quasistate space of A(K, z) is (K, z).
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(2) ⇒ (3) If the nc quasistate space of A(K, z) is (K, z), then Propo-
sition 4.4 implies that the nc state space of A(K, z)♯ is K. It follows
from Theorem 4.2 that A(K, z)♯ = A(K).

(3) ⇒ (1) If A(K, z)♯ = A(K), then since every nc quasistate on
A(K, z) extends to an nc state on A(K, z)♯, and since K is nc state
space of A(K), it follows that every nc quasistate of A(K, z) belongs
to K. Hence (K, z) is a pointed compact nc convex set. �

The next result follows immediately from Theorem 4.5 and Corollary
4.7. It is an analogue of the representation theorem [6, Theorem 3.2.3].

Theorem 4.8. Let S be an operator system with nc quasistate space
(K, z). The map S♯ → A(K) : s→ ŝ defined by

ŝ(x) = x♯(s) for x ∈ K,

is a unital complete order isomorphism that restricts to a completely
isometric complete order isomorphism from S to A(K, z). Hence S is
isomorphic to A(K, z).

Theorem 4.5 and Corollary 4.7 imply the dual equivalence of the
category OpSys of operator systems and the category PoNCConv of
pointed compact nc convex sets. The contravariant functor OpSys →
PoNCConv is defined in the following way:

(1) An operator system S is mapped to its nc quasistate space.
(2) For operator systems S and T with nc quasistate spaces (K, z)

and (L,w) respectively, a morphism ϕ : S → T is mapped to
the morphism ϕd : L→ K defined by

ϕd(y)(a) = ϕ(a)(y), for y ∈ L and a ∈ A(K, z).

The inverse functor PoNCConv → OpSys is defined in the following
way:

(1) A pointed compact nc convex set (K, z) is mapped to the op-
erator system A(K, z).

(2) If (K, z) and (L,w) are compact nc convex sets and ψ : L→ K
is a morphism, then the corresponding morphism ψd : A(K, z) →
A(L,w) is defined by

ψd(a)(y) = a(ψ(y)), for a ∈ A(K, z) and y ∈ L.

The next result summarizes this discussion.

Theorem 4.9. The contravariant functors OpSys → PoNCConv and
PoNCConv → OpSys defined above are inverses. Hence the categories
OpSys and PoNCConv are dually equivalent.
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The next result characterizing isomorphic operator systems is an
analogue of [6, Corollary 3.2.6]. It follows immediately from Theorem
4.9.

Corollary 4.10. Let (K, z) and (L,w) be compact pointed nc convex
sets. Then A(K, z) and A(L,w) are isomorphic if and only if (K, z)
and (L,w) are pointedly affinely homeomorphic. Hence two operator
systems are isomorphic if and only if their nc quasistate spaces are
pointedly affinely homeomorphic.

We saw in Example 2.14 that if S and T are operator systems and
ϕ : S → T is a completely contractive complete order embedding, then
it is not necessarily true that the unitization ϕ♯ : S♯ → T ♯ is completely
isometric. In other words, ϕ is not necessarily an embedding. However,
we can now state necessary and sufficient conditions for ϕ to be an
embedding.

The following result follows immediately from Theorem 4.2, Theorem
4.9 and the discussion preceding the statements of these results.

Lemma 4.11. Let (K, z) and (L,w) be pointed compact nc convex
sets and let ϕ : A(K, z) → A(L,w) be a completely contractive and
completely positive map. Let ϕd : L → K denote the corresponding
continuous affine map defined as in Theorem 4.9. Then ϕd coincides
with the continuous affine map obtained by applying Theorem 4.2 to
the unitization ϕ♯ : A(K) → A(L).

Corollary 4.12. Let (K, z) and (L,w) be pointed compact nc convex
sets. Let ϕ : A(K, z) → A(L,w) be a completely contractive and com-
pletely positive map and let ϕd : L→ K denote the pointed continuous
affine map given by applying Theorem 4.9 to ϕ. Then ϕ is an embed-
ding if and only if ϕd is surjective.

Proof. By Lemma 4.11, the map ϕd coincides with the map obtained
by applying Theorem 4.2 to the unitization ϕ♯ : A(K) → A(L). By
Proposition 4.3, ϕ♯ is completely isometric if and only if ϕd is surjective.

�

5. Pointed noncommutative functions

5.1. Noncommutative functions. In order to define a more general
notion of continuous nc function, it is necessary to introduce the point-
strong topology on a compact nc convex set K. This is the weakest
topology on each Kn making the maps Kn → C : x → ξ∗a(x)η and
Kn → C : x → a(x)∗ξ continuous for all a ∈ A(K) and all vectors
ξ, η ∈ Hn.

The following definition is essentially [6, Definition 4.2.1].
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Definition 5.1. Let K be a compact nc convex set. An nc function
on K is an nc map f : K → M in the sense of Definition 3.6. An nc
function f is continuous if it is continuous with respect to the point-
strong* topology on K from above. We will write B(K) and C(K) for
the unital C*-algebras of bounded and continuous nc functions on K
respectively.

Remark 5.2. It is clear that A(K) ⊆ C(K) ⊆ B(K). The product
on B(K) is the pointwise product, meaning that for f, g ∈ B(K) and
x ∈ K, (fg)(x) = f(x)g(x). The adjoint is defined by f ∗(x) = f(x)∗

for f ∈ B(K) and x ∈ K. By [6, Theorem 4.4.3], C(K) = C*(A(K)).
We will say more about the C*-algebra C(K) in Section 6.

For x ∈ Kn, we will write δx : B(K) → Mn for the point evaluation
*-homomorphism defined by δx(f) = f(x) for f ∈ B(K). This is a
noncommutative analogue of an evaluation functional, since for f ∈
C(K), δx(f) = f(x).

Elements in the enveloping von Neumann algebra C(K)∗∗ can nat-
urally be identified with bounded nc functions on K. Specifically,
for x ∈ Kn, it follows from the universal property of C(K)∗∗ as the
enveloping von Neumann algebra of C(K) that the *-homomorphism
δx : C(K) → Mn has a unique extension to a normal *-homomorphism

δ∗∗x : C(K)∗∗ → Mn. For f ∈ C(K)∗∗, the function f̃ : K → M defined

by f̃(x) = δ∗∗x (f) for x ∈ K is a bounded nc function and hence belongs
to B(K). In fact, much more can be said.

The following result is contained in [6, Theorem 4.4.3] and [6, Corol-
lary 4.4.4].

Theorem 5.3. Let K be a compact nc convex set. The map σ :
C(K)∗∗ → B(K) defined as above is a normal *-isomorphism that re-
stricts to a normal unital complete order isomorphism from A(K)∗∗

onto the unital operator system Ab(K) of bounded affine nc functions.

5.2. Pointed noncommutative functions.

Definition 5.4. Let (K, z) be a pointed compact nc convex set. We
will say that an nc function f : K → M is pointed if f(z) = 0. We
let B(K, z) denote the space of pointed bounded nc functions on K.
Similarly, we let C(K, z) = C(K)∩B(K, z) denote the space of pointed
continuous nc functions on K.

Remark 5.5. It is clear that B(K, z) is a closed two-sided ideal of B(K)
and that C(K, z) is a closed two-sided ideal of C(K). In particular,
B(K, z) and C(K, z) are C*-algebras. Furthermore, it follows from the
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identification C(K)∗∗ = B(K) that the representation δz is normal on
B(K). Hence B(K, z) is a weak*-closed ideal of B(K).

Proposition 5.6. Let (K, z) be a pointed compact nc convex set. Then
C(K, z)♯ = C(K) and C(K, z) = C*(A(K, z)).

Proof. By Corollary 4.7, A(K, z)♯ = A(K). Hence A(K) = A(K, z) +
C1A(K). Since C(K) = C*(A(K)), it follows that C(K) = C(K, z)+C.

Hence C(K, z) = C*(A(K, z)).
To see that C(K, z)♯ = C(K), it suffices to show that for any *-

homomorphism π : C(K, z) → Mn, there is a unital *-homomorphism
π̃ : C(K) → Mn extending π. The restriction π|A(K,z) is an nc qua-
sistate, so by the assumption that (K, z) is pointed, it is given by
evaluation at a point x ∈ Kn. Then the unital *-homomorphism
δx : C(K) → Mn extends π|A(K,z). Since A(K, z) generates C(K, z), it
follows that δx|C(K,z) = π. �

The next result follows from restricting the *-isomorphism in the
statement of Theorem 5.3.

Theorem 5.7. Let (K, z) be a compact pointed nc convex set. Then

the map C(K, z)∗∗ → B(K, z) : f → f̃ defined by

f̃(x) = δ∗∗x (f) for f ∈ C(K, z)∗∗ and x ∈ K,

is a normal *-isomorphism of von Neumann algebras that restricts
to a normal completely isometric complete order isomorphism from
A(K, z)∗∗ onto the operator system Ab(K, z) of pointed bounded affine
nc functions.

6. Minimal and maximal C*-covers

The deepest results in [6] arise from the interplay between unital op-
erator systems of continuous affine nc functions on compact nc convex
sets and unital C*-covers of nc functions on the sets. Connes and van
Suijlekom [4] introduced an analogous notion of C*-cover for operator
systems. In this section we will review the notion of a unital C*-cover
of a unital operator system before considering the more general notion
of a C*-cover of an operator system.

6.1. Minimal and maximal unital C*-covers. Let S be a unital
operator system.

(1) A pair (A, ι) consisting of a unital C*-algebra A and an embed-
ding ι : S → A is a unital C*-cover of S if A = C*(ι(S)).
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(2) If (A′, ι′) is another unital C*-cover of S, then we will say that
(A, ι) and (A, ι′) are equivalent if there is a unital *-isomorphism
π : A→ A′ such that π ◦ ι = ι′.

(3) We will say that a unital C*-cover (A, ι) of S is maximal if
for any unital C*-cover (B,ϕ) of S, there is a surjective unital
*-homomorphism σ : A→ B such that ϕ = σ ◦ ι.

S A = C∗(ι(S))

B = C∗(ϕ(S))

ι

ϕ σ

(4) We will say that a unital C*-cover (A, ι) of S is minimal if
for any unital C*-cover (B,ϕ) of S, there is a surjective unital
*-homomorphism π : B → A such that π ◦ ϕ = ι.

S A = C∗(ι(S))

B = C∗(ϕ(S))

ι

ϕ π

The existence and uniqueness of the maximal unital C*-cover of a
unital operator system was established by Kirchberg and Wassermann
[16]. The following result is non-trivial. It is implied by [6, Theorem
4.4.3].

Theorem 6.1. Let K be a compact nc convex set. The maximal unital
C*-cover for the unital operator system A(K) is the C*-algebra C(K)
of continuous nc functions on K.

The existence and uniqueness of the minimal unital C*-cover of a
unital operator system was established by Hamana [10]. The results in
[6] and [15] imply a description in terms of the nc state space of the
operator system, which we will now describe.

Let K be a compact nc convex set. It follows from Theorem 6.1 that
there is a surjective *-homomorphism π from C(K) onto the minimal
unital C*-cover of A(K). A result of Dritschel and McCullough [8]
implies that ker π is the boundary ideal in C(K) relative to A(K), i.e.
the unique largest ideal in C(K) with the property that the restriction
of the corresponding quotient *-homomorphism to A(K) is completely
isometric.

Let I∂K = ker π and let C(∂K) = C(K)/I∂K . We will refer to C(∂K)
as the minimal unital C*-cover of A(K). In order to explain this choice
of notation and give a description of C(∂K) in terms of K, we require
the spectral topology from [15, Section 9].
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Definition 6.2. Let K be a compact nc convex set. We will say that
a point x ∈ K is reducible if x is unitarily equivalent to a direct sum
x ≃ y ⊕ z for points y, z ∈ K. We will say that x is irreducible if it is
not reducible, and we will write Irr(K) for the set of irreducible points
in K.

Remark 6.3. Note that a point x ∈ K is irreducible if and only if the
corresponding *-homomorphism δx is. In particular, ∂K ⊆ Irr(K).

Let K be a compact nc convex set. Let Spec(C(K)) denote the C*-
algebraic spectrum of C(K), i.e. the set of unitary equivalence classes
of irreducible representations of C(K) equipped with the hull-kernel
topology. For a point x ∈ Irr(K), we have already observed that the
*-homomorphism δx is irreducible. Hence letting [δx] denote the uni-
tary equivalence class of δx, [δx] ∈ Spec(C(K)). Note that the map
Irr(K) → Spec(C(K)) : x→ [δx] is surjective.

Definition 6.4. The spectral topology on Irr(K) is the pullback of the
hull-kernel topology on Spec(C(K)). Specifically, the open subsets of
Irr(K) are the preimages of open subsets of Spec(C(K)) under the map
Irr(K) → Spec(C(K)) : x→ [δx].

The results in [15, Section 9] imply that

I∂K = {f ∈ C(K) : f(x) = 0 for all x ∈ ∂K},

where ∂K denotes the closure of ∂K with respect to the spectral topol-
ogy on Irr(K).

6.2. Minimal and maximal C*-covers. Connes and van Suijlekom
[4] introduced an analogue for operator systems of a unital C*-cover
of a unital operator system from Section 6, which they refer to as a
C♯-cover. We will instead refer to C*-covers.

Definition 6.5. Let S be an operator system.

(1) We will say that a pair (A, ι) consisting of a C*-algebra A and
an embedding ι : S → A is a C*-cover of S if A = C*(ι(S)).

(2) If (A′, ι′) is another C*-cover of S, then we will say that (A, ι)
and (A, ι′) are equivalent if there is a *-isomorphism π : A→ A′

such that π ◦ ι = ι′.
(3) We will say that a C*-cover (A, ι) of S is maximal if for any

C*-cover (B,ϕ) of S there is a surjective *-homomorphism σ :
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A→ B such that ϕ = σ ◦ ι.

S A = C∗(ι(S))

B = C∗(ϕ(S))

ι

ϕ σ

(4) We will say that a C*-cover (A, ι) of S is minimal if for any
C*-cover (B,ϕ) of S, there is a surjective *-homomorphism π :
B → A such that π ◦ ϕ = ι.

S A = C∗(ι(S))

B = C∗(ϕ(S))

ι

ϕ π

Remark 6.6. Let (K, z) be a pointed compact nc convex set. If (A, ι)
is a C*-cover for A(K, z), then since ϕ is an embedding, the unitization
ϕ♯ : A(K) → A♯ is an embedding. Hence (A♯, ι♯) is a unital C*-cover
of A(K).

The existence and uniqueness of the minimal C*-cover of an op-
erator system was established in [4, Theorem 2.2.5] under the name
C♯-envelope. In this section we will prove the existence and unique-
ness of the maximal C*-cover, and we will describe the maximal and
minimal C*-covers of an operator system in terms of the maximal and
minimal unital C*-covers of its unitization.

Proposition 6.7. Let S be an operator system. If the maximal and
minimal C*-covers of S exist, then they are unique up to equivalence.

Proof. Let (A, ι) and (A′, ι′) be maximal C*-covers for S. Then by
definition there are surjective homomorphisms σ : A → A′ and σ′ :
A′ → A such that ι′ = σ ◦ ι and ι = σ′ ◦ ι′. Hence σ−1 = σ′, so σ is a
*-isomorphism and hence (A, ι) and (A, ι′) are equivalent. The proof
for the minimal C*-cover is similar. �

Theorem 6.8. Let (K, z) be a compact pointed nc convex set.

(1) The C*-algebra C(K, z) is a maximal C*-cover for A(K, z) with
respect to the canonical inclusion.

(2) Let I∂K denote the boundary ideal in the C*-algebra C(K) of
continuous nc functions on K relative to A(K), so that the C*-
algebra C(K)/I∂K

∼= C(∂K) is the minimal unital C*-cover of
A(K), and let I(∂K,z) = I∂K ∩ C(K, z). Then the C*-algebra

C(K, z)/I(∂K,z) is the minimal C*-cover of A(K, z) with respect
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to the quotient *-homomorphism. In particular, the C*-algebra
generated by the image of A(K, z) under the canonical embed-
ding of A(K) into C(∂K) is isomorphic to C(∂K, z)

Proof. (1) Let (B,ϕ) be a C*-cover for A(K, z). We can assume that
B ⊆ Mn for some n, so that ϕ = x and B = δx(C(K, z)) for some
x ∈ Kn. It follows that C(K, z) is a maximal C*-cover for A(K, z)
with respect to the canonical inclusion.

(2) Since C(K)/I∂K is a unital C*-cover for A(K), C(K, z)/I(∂K,z)
is a C*-cover for A(K, z). To see that it is minimal, it suffices to show
that if (B,ϕ) is any C*-cover for A(K, z), then ker σ ⊆ I(∂K,z).

By (1), there is a surjective unital *-homomorphism σ : C(K, z) → B
such that σ|A(K,z) = ϕ. The unitization σ♯ : C(K) → B♯ is a unital
*-homomorphism satisfying σ♯|A(K) = ϕ♯. Since ϕ is an embedding, ϕ♯

is completely isometric, so ker σ♯ ⊆ I∂K . Hence ker σ ⊆ I(∂K,z). �

Definition 6.9. Let (K, z) be a pointed compact nc convex set. Let
I(∂K,z) denote the ideal in C(K, z) from Theorem 6.8 and let C(∂K, z) =

C(K, z)/I(∂K,z). We will refer to C(∂K, z) as the minimal C*-cover of

A(K, z), and we will refer to the corresponding quotient *-homomorphism
as the canonical embedding of A(K, z) into C(∂K, z).

Remark 6.10. The ideal I(∂K,z) = ker π is a pointed analogue of the

boundary ideal from Section 6.1. It is the largest ideal in C(K, z)
such that the corresponding quotient *-homomorphism restricts to an
embedding of A(K, z).

Example 6.11. Define a, b ∈ M2 by

a =

[

1 0
0 −1

]

, b =

[

1 0
0 −1/2

]

.

Let S = span{a} and T = span{b}. Then S and T are nonunital
operator systems, and it is not difficult to verify that S and T are
isomorphic to the operator systems considered in Example 3.16 and
Example 3.17 respectively.

Let (K, z) denote the nc quasistate space of S. Note that this is
the same (K, z) from Example 3.16. Since K1 = [−1, 1] is a simplex,
the results in [15] imply that ∂K = ∂K1 = {−1, 1}. Hence identifying
S with A(K, z), the minimal C*-cover of S♯ = A(K) is C(∂K) =
C({−1, 1}) ∼= C

2.
Let ι : A(K) → C(∂K) denote the canonical embedding. Then

ι(A(K, z)) ∼= {(−α, α) : α ∈ C} ∼= C. Hence C(∂K, z) ∼= C. Note that
C(∂K, z) is unital even though A(K, z) is nonunital.
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Define θ : S → T defined by θ(αa) = αb for α ∈ C. Then arguing as
in Example 3.17, θ is an isomorphism. Hence the minimal C*-cover of
T is also isomorphic to C

2.

Example 6.12. Let A be a C*-algebra with nc quasistate space (K, z).
Then A is clearly a C*-cover of itself with respect to the identity map.
By definition, there is a surjective *-homomorphism π : A→ C(∂K, z)
that is completely isometric on A. Therefore, π is a *-isomorphism,
implying A = C(∂K, z).

Let K be a compact nc convex set. A useful fact implied by [5,
Theorem 3.4] and [6, Proposition 5.2.4] is that the direct sum of the
points in ∂K extends to a faithful representation of the minimal unital
C*-cover C(∂K). Specifically, define y ∈ K by y = ⊕x∈∂kx. Then
the *-homomorphism δy satisfies ker δy = ker I∂K . Hence δy(C(K)) ∼=
C(∂K). The following result is an analogue of this fact for the minimal
C*-cover of an operator system.

Proposition 6.13. Let (K, z) be a pointed compact nc convex set. De-
fine y ∈ K by y = ⊕x∈∂K\{z}x. Then the *-homomorphism δy satisfies
ker δy = I(∂K,z), where I(∂K,z) is the ideal from Theorem 6.8. Hence

δy(C(K, z)) ∼= C(∂K, z).

Proof. From above, (δy ⊕ δz)(C(K)) ∼= C(∂K). So considered as a
*-representation of C(K), ker(δy⊕δz) = I∂K . By Theorem 6.8, ker(δy⊕
δz) ∩ C(K, z) = I(∂K,z). Since δy is zero on A(k, z) and so also on

C(K, z), it follows that ker δy ∩ C(K, z) = I(∂K,z). Hence by Theorem

6.8, δy(C(K, z)) ∼= C(∂K, z). �

We will say more about the minimal C*-cover in Section 7.

7. Characterization of unital operator systems

In this section we will apply the results from Section 6 to establish
a characterization of operator systems that are unital in terms of their
nc quasistate space. We note that a closely related problem, of char-
acterizing operator spaces that are unital operator systems, has been
considered by Blecher and Neal [2].

Theorem 7.1. Let (K, z) be a pointed compact nc convex set. The
following are equivalent for a pointed continuous affine nc function e ∈
A(K, z):

(1) The function e is a distinguished archimedean matrix order unit
for A(K, z).
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(2) The image of e under the canonical embedding of A(K, z) into
C(∂K, z) is the identity.

(3) For every n and every x ∈ (∂K \ {z})n, e(x) = 1n.

Proof. (1) ⇒ (2) Suppose that e is a distinguished archimedean matrix
order unit for A(K, z). Then A(K, z) is a unital operator system, so
it follows from [3, Theorem 4.4] that there is y ∈ Kn such that y is
a unital complete isometry on A(K, z) with e(y) = 1n. Then ker δy
is contained in the boundary ideal I∂K,z from Remark 6.10. It follows

that the canonical embedding of A(K, z) into C(∂K, z) factors through
y, and hence maps e to the identity.

(2) ⇒ (3) Suppose that the image of e under the canonical embedding
of A(K, z) into C(∂K, z) is the identity. Proposition 6.13 implies that
the restriction to A(K, z) of every nc quasistate in ∂K \ {z} factors
through C(∂K, z). It follows that for x ∈ (∂K \ {z})n, e(x) = 1.

(3) ⇒ (1) Suppose that for every n and every x ∈ (∂K \ {z})n,
e(x) = 1n. Then it follows from Proposition 6.13 that the image of e
under the canonical embedding of A(K, z) into C(∂K, z) is the identity.
It follows that e is a distinguished archimedean matrix order unit for
C(∂K, z), and hence also for A(K, z). �

Corollary 7.2. Let S be an operator system with nc quasistate space
(K, z). The following are equivalent:

(1) The operator system S is unital.
(2) There is e ∈ S such that for every n and every x ∈ (∂K \{z})n,

e(x) = 1n

The next result is [4, Theorem 2.25 (ii)].

Corollary 7.3. Let S be a unital operator system. Then the minimal
unital C*-cover of S and the minimal C*-cover of S coincide.

Proof. Let (A, ι) and (B, κ) denote the minimal unital C*-cover of S
and the minimal C*-cover of S respectively. It follows from Theorem
7.1 and Proposition 6.13 that B is unital. Hence by the universal
property of A, there is a surjective *-homomorphism π : A → B such
that π ◦ ι = κ. On the other hand, by the universal property of B,
there is a surjective *-homomorphism σ : B → A such that σ ◦ κ = ι.
Hence A and B are isomorphic. �

8. Quotients of operator systems

In this section we will utilize the dual equivalence between the cate-
gory of operator systems and the category of pointed compact nc con-
vex sets to develop a theory of quotients for operator systems. We will
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show that the theory developed here extends the theory of quotients for
unital operator systems developed by Kavruk, Paulsen, Todorov and
Tomforde [14]. We note that the theory of quotients for unital operator
systems can be developed in a similar way using the dual equivalence
between the category of unital operator systems and the category of
compact nc convex sets from [6, Section 3].

Definition 8.1. Let S be an operator system and let (K, z) denote the
nc quasistate space of S. We will say that a subset J ⊆ S is a kernel
if there is an nc quasistate x ∈ K such that J = ker x.

Remark 8.2. For x ∈ Kn, the closure of the image x(S) ⊆ Mn is an
operator system. Hence J is a kernel if and only if there is an operator
system T and a completely contractive and completely positive map
ϕ : S → T with kerϕ = J .

Let S be an operator system and let (K, z) denote the nc quasistate
space of S. For a subset Q ⊆ S, the annihilator of Q is Q⊥ = {x ∈
K : a(x) = 0 for all a ∈ Q}. Note that Q⊥ is a closed nc convex set.
Similarly, for a subset X ⊆ K, the annihilator of X is X⊥ = {a ∈ S :
a(x) = 0 for all x ∈ X}.

The next result is a noncommutative analogue of [1, II.5.3].

Lemma 8.3. Let K be a compact nc convex set and let X ⊆ K be
a subset. Then X⊥⊥ = Y ∩ K, where Y ⊆ M(A(K)∗) denotes the
closed nc convex hull generated by ⊔ spanXn, where spanXn is taken
in Mn(A(K)∗).

Proof. It is clear that Y ∩K ⊆ X⊥⊥. For the other inclusion, suppose
for the sake of contradiction there is z ∈ (X⊥⊥)n \ (Y ∩ K). Then
z /∈ Y . Hence by the nc separation theorem [6, 2.4.1], there is a self-
adjoint element a ∈ A(K) satisfying a(z) 6≤ 1n⊗ 1n but a(y) ≤ 1n⊗ 1p
for all y ∈ Yp. Since each Yp is a subspace, this forces a(y) = 0 for
all y ∈ Yp. Hence viewing a as an n × n matrix a = (aij) over A(K),
aij(y) = 0 for all y ∈ Y . In particular, aij(x) = 0 for all x ∈ X. Hence
aij ∈ X⊥ for all i, j. Since z ∈ X⊥⊥, it follows that aij(z) = 0 for all
i, j. Therefore, a(z) = 0, giving a contradiction. �

Proposition 8.4. Let (K, z) be a pointed compact nc convex set. A
subset J ⊆ A(K, z) is a kernel if and only if J = J⊥⊥. If J is a
kernel and M = J⊥, then the completely contractive completely positive
restriction map A(K, z) → A(M, z) has kernel J . Moreover, z ∈ M
and the pair (M, z) is a pointed compact nc convex set.

Proof. Suppose that J = J⊥⊥. Let M = J⊥. Then J = M⊥. Let r :
A(K, z) → A(M, z) denote the restriction map. Then r is completely
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contractive and completely positive and ker r = M⊥ = J . Hence J is
a kernel.

Conversely, suppose that J is a kernel. It is clear that J ⊆ J⊥⊥. For
the other inclusion, choose x ∈ K such that J = ker x. Let T denote
the closure of the image A(K, z)(x) ⊆ Mn. Then T is an operator
system. Letting (L,w) denote the nc quasistate space of T , we can
identify T with A(L,w). Let ψ : L → K denote the continuous affine
map obtained by applying Theorem 4.9 to x. Then for a ∈ J and
y ∈ L, 0 = a(x)(y) = a(ψ(y)). Hence ψ(L) ⊆ J⊥, so for a ∈ J⊥⊥

and y ∈ L, 0 = a(ψ(y)) = a(x)(y), i.e. a(x) = 0. Hence J⊥⊥ ⊆ J , so
J = J⊥⊥.

If J is a kernel and M = J⊥, then clearly z ∈M . To see that (M, z)
is a pointed compact nc convex set, let θ : A(M, z) → Mn be an nc
quasistate. Let r : A(K, z) → A(M, z) denote the restriction map from
above. Then the composition θ◦r is an nc quasistate on A(K, z). Since
(K, z) is a pointed compact nc convex set, by definition there is x ∈ K
such that θ ◦ r = x. Since x factors through r, x ∈ J⊥ =M . �

Definition 8.5. Let S be an operator system and let (K, z) denote
the nc quasistate space of S. For a kernel J ⊆ S, we let S/J denote
the operator system A(M, z), where M = J⊥. We will refer to S/J
as the quotient of S by J , and we will refer to the restriction map
S → A(M, z) obtained by identifying S with A(K, z) as the canonical
quotient map.

Remark 8.6. Note that we have applied Theorem 4.8 to identify S
with A(K, z). It is clear that the canonical quotient map A(K, z) →
A(M, z) is completely contractive and completely positive.

The next result characterizes operator system quotients in terms of
a natural universal property. It is an analogue of [14, Proposition 3.6].

Theorem 8.7. Let S be an operator system and let J ⊆ S be a ker-
nel. The quotient S/J is the unique operator system up to isomorphism
satisfying the following universal property: there is a completely con-
tractive and completely positive map ϕ : S → S/J , and whenever T
is an operator system and ψ : S → T is a completely contractive and
completely positive map with J ⊆ kerψ, then ψ factors through ϕ. In
other words, there is a completely contractive and completely positive
map ω : S/J → T such that ψ = ω ◦ ϕ.

J S S/J

T

ϕ

ω
ψ
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Proof. To see that S/J satisfies this universal property, first note that
the canonical quotient map ϕ : S → S/J is completely contractive and
completely positive. Let T be an operator system and let ψ : S → T be
a completely contractive and completely positive map with J ⊆ kerψ.
Letting (K, z) and (L,w) denote the nc quasistate spaces of S and T
respectively, we can assume that S = A(K, z) and T = A(L,w). Let
ψd : L→ K denote the continuous affine nc map obtained by applying
Theorem 4.8 to ψ.

Let M = J⊥. For a ∈ J and y ∈ L, the fact that J ⊆ kerψ implies
that 0 = ψ(a)(y) = a(ψd(y)). Hence ψd(L) ⊆ J⊥ = M . Restricting
the codomain of ψd to M and applying Theorem 4.8 to ψd, we obtain
a completely contractive and completely positive map ω : A(M, z) →
A(L,w) such that ω ◦ ϕ = ψ.

To see that S/J is the unique operator system with this universal
property, suppose that R is another operator system that satisfies the
property from the statement of the theorem, then there are surjective
completely contractive and completely positive maps S/J → R and
R → S/J such that the composition is the identity map on S/J . It
follows that each of the individual maps must be a completely isometric
complete order isomorphism. Hence R is isomorphic to S/J . �

In order to relate our theory of quotients of operator systems to the
theory of quotients of unital operator systems from [14], we require the
following result.

Lemma 8.8. Let (K, z) be a pointed compact nc convex set such that
A(K, z) is a unital operator system and let e ∈ A(K, z) denote the
distinguished archimedean matrix order unit. Let J ⊆ A(K, z) be a
kernel and let M = J⊥. Then for x ∈ ∂M \ {z}, e(x) = 1.

Proof. Let K0 and K1 denote the closed nc convex hulls of {z} and
∂K \ {z} respectively. By Theorem 7.1, e(x) = 1 for x ∈ ∂K \ {z}.
Hence by the continuity of e, e(x) = 1 for all x ∈ K1. Since e(z) = 0,
in particular this implies that K0 ∩K1 = ∅.

For x ∈ ∂K, either e(x) = 1 or e(x) = 0. It follows from [5, Theorem
3.4] and [6, Proposition 5.2.4] that the image of e under the canoni-
cal embedding of A(K) into its minimal unital C*-cover C(∂K) is a
projection in the center of C(∂K).

Choose x ∈ Km and let y ∈ Kn be a maximal dilation of x. Then
there is an isometry α ∈ Mn,m such that x = α∗yα. By [6, Proposition

5.2.4], the *-homomorphism δy factors through C(∂K). Hence from
above, y decomposes as a direct sum y = y0⊕ y1 for y0 ∈ K0

n0
and y1 ∈

K1
n1

. This implies that x can be written as an nc convex combination
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x = α∗
0y0α0 + α∗

1y1α1 for α0 ∈ Mn0,m and α1 ∈ Mn1,m satisfying
α∗
0α0 + α∗

1α1 = 1m.
Suppose x ∈ (∂M)m and write x can be written as an nc convex

combination x = α∗
0y0α0 + α∗

1y1α1 as above. Then for a ∈ J ,

0 = a(x) = α∗
0a(y0)α0 + α∗

1a(y1)α1.

Since y0 is a direct sum of copies of z, a(y0) = 0. Hence α∗
1a(y1)α1 = 0.

From above, we can decompose y1 with respect to the range of α as

y1 =

[

u1 ∗
∗ ∗

]

for u1 ∈ Mk, and there is β1 ∈ Mk,m such that β∗
1u1β1 = α∗

1y1α1 and
α∗
0α0 + β∗

1β1 = 1m.
Now since y0, u1 ∈ M and x ∈ (∂M)m, it follows that either α0 = 0

or β1 = 0. Hence either x ∈ K0 or x ∈ K1. In the former case, x = z,
while in the latter case, e(x) = 1. �

Proposition 8.9. Let S be a unital operator system. Then for every
kernel J ⊆ S, the quotient operator system S/J is unital.

Proof. Letting (K, z) denote the nc quasistate space of S, we can as-
sume that S = A(K, z). Let M = J⊥, so that S/J = A(M, z), and
let ϕ : A(K, z) → A(M, z) denote the canonical quotient map. Let
e ∈ A(K, z) denote the distinguished archimedean matrix order unit.
Then for x ∈ ∂M \ {z}, Corollary 8.8 implies that e(x) = 1. Hence by
Theorem 7.1, ϕ(e) is an archimedean matrix order unit. �

Remark 8.10. If S is a unital operator system and J is the kernel of
a unital completely positive map, then the quotient S/J from Defini-
tion 8.5 coincides with the definition of quotient in [14]. Indeed, the
quotient T of S by J that they consider in their paper is the unique
unital operator system satisfying a universal property analogous to the
property in Theorem 8.7 for unital completely positive maps into unital
operator systems. By Proposition 8.9, S/J is a unital operator system,
it follows from Theorem 8.7 that S/J = T .

Lemma 8.11. Let (K, z) be a pointed compact nc convex set and let
J ⊆ A(K, z) be a kernel. Let M = J⊥. Then the closed two-sided ideal
I of C(K, z) generated by J is I = {f ∈ C(K, z) : f |M = 0}. Hence
letting π : C(K, z) → C(M, z) denote the restriction *-homomorphism,
I = ker π.

Proof. Let I ′ = ker π. Then I ′ = {f ∈ C(K, z) : f |M = 0}. By
Proposition 8.4, the restriction π|A(K,z) satisfies ker π|A(K,z) = J , so it
is clear that I ⊆ I ′.
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For the other inclusion, first note that J = I ′ ∩ A(K, z). Hence by
the definition of I and the fact from above that I ⊆ I ′,

J ⊆ I ∩A(K, z) ⊆ I ′ ∩A(K, z) = J,

implying J = I ∩ A(K, z). Let ρ : C(K, z) → C(K, z)/I denote the
quotient *-homomorphism. Since the restriction ρ|A(K,z) has kernel J ,
Theorem 8.7 implies that ρ|A(K,z) factors through A(M, z). It follows
that there is a completely contractive and completely positive map
ω : A(M, z) → C(K, z)/I such that ω ◦ π|A(K,z) = ρ|A(K,z).

By the universal property of C(M, z), ω extends to a *-homomorphism
σ : C(M, z) → C(K, z)/I. Hence I ′ ⊆ I, and we conclude that
I ′ = I. �

Proposition 8.12. Let (K, z) be a pointed compact nc convex set.
Let J ⊆ A(K, z) be a subset and let I denote the closed two-sided
ideal of C(K, z) generated by J . Then J is a kernel if and only if
I ∩A(K, z) = J .

Proof. If J is a kernel, then letting M = J⊥, Proposition 8.4 and
Lemma 8.11 imply that I ∩ A(K, z) = {a ∈ A(K, z) : a|M = 0} =
M⊥ = J . Conversely, if I ∩ A(K, z) = J , then letting π : C(K, z) →
C(K, z)/I denote the quotient *-homomorphism, J = ker π|A(K,z). Hence
J is a kernel. �

9. C*-simplicity

In this section we will establish a characterization of operator systems
with the property that their minimal C*-cover (i.e. their C*-envelope)
is simple. The characterization will be in terms of the nc quasistate
space of an operator system.

Definition 9.1. We will say that an operator system S is C*-simple
if its minimal C*-cover C*

min(S) is simple.

We will require the spectral topology on the irreducible points in a
compact nc convex set from Section 6.1), which was introduced in [15,
Section 9]. Recall that for a compact nc convex set K, the spectral
toplogy on the set Irr(K) of irreducible points in K is defined in terms
of the hull-kernel topology on the spectrum of the C*-algebra C(K).

By Proposition 6.13, letting y = ⊕x∈∂K\{z}x, the kernel of the *-
homomorphism δy on C(K, z) is the boundary ideal I(∂K,z) from The-

orem 6.8. In particular, the quotient C(K, z)/I(∂K,z) is isomorphic to

the minimal C*-cover C(∂K, z) of A(K, z). The proof of the following
result now follows exactly as in the proof of [15, Proposition 9.4].
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Proposition 9.2. Let (K, z) be a pointed compact nc convex set. A
point x ∈ Irr(K) belongs to the closure of ∂K \ {z} with respect to
the spectral topology if and only if the corresponding representation
δx : C(K, z) → Mn factors through the minimal C*-cover C(∂K, z)
of A(K, z).

Theorem 9.3. Let (K, z) be a pointed compact nc convex set. The
operator system A(K, z) is C*-simple if and only if the closed nc convex
hull of any nonzero point in the spectral closure of ∂K contains ∂K \
{z}.

Proof. Suppose that A(K, z) is C*-simple, so that its minimal C*-cover
C(∂K, z) is simple. Choose nonzero x ∈ Km in the spectral closure of
∂K\{z} and let M ⊆ K denote the closed nc convex hull of x. Suppose
for the sake of contradiction there is y ∈ (∂K)n \ {z} such that y /∈ M .

By Proposition 9.2, the corresponding representation δx : C(K, z) →
Mn factors through the minimal C*-cover C(∂K, z) of A(K, z). Since
C(∂K, z) is simple, it follows that the kernel of δx is the boundary
ideal I(∂K,z) from Theorem 6.8, so the range of δx is isomorphic to the

minimal C*-cover C(K, z)/I(∂K,z)
∼= C(∂K, z). In particular, x is an

embedding. Similarly, y is an embedding.
By the nc separation theorem [6, Corollary 2.4.2], there is self-adjoint

a ∈ Mn(A(K, z)) and self-adjoint γ ∈ Mn such that a(y) 6≤ γ⊗1n but
a(u) ≤ γ⊗1p for u ∈Mp. In particular, a(x) ≤ γ⊗1m but a(y) 6≤ γ⊗1n.
However, from above x and y are embeddings, meaning that they are
complete order embeddings on A(K), giving a contradiction.

Conversely, suppose that the closed nc convex hull of any nonzero
point in the spectral closure of ∂K contains ∂K \ {z}. Let I be a
proper ideal in C(∂K, z) and choose nonzero irreducible y ∈ Kn such
that the *-homomorphism δy on C(K, z) factors through C(∂K, z)/I.
Then by Proposition 9.2, y is in the spectral closure of ∂K. Hence by
assumption the closed nc convex hull of y contains ∂K \ {z}.

By [6, Theorem 6.4.3], every point in ∂K is a limit of compressions of
y. Hence, replacing y with a sufficiently large amplification, there are
isometries αi ∈ Mp,n such that limα∗

i yαi = ⊕x∈∂K\{z}x. By passing to
a subnet we can assume that there is an nc state µ on C(K) such that
the *-homomorphism δy satisfies limα∗

i δyαi = µ in the nc state space of
C(K). Then since µ|A(K) = ⊕x∈∂K\{z}x, and since extreme points in K
have unique extensions to nc states on C(K), µ is the *-homomorphism
µ = ⊕x∈∂K\{z}δx (see [6, Theorem 6.1.9]).

By Proposition 6.13, the image of C(K, z) under this *-homomorphism
is isomorphic to C(∂K, z). It follows that the canonical *-homomorphism
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from C(K, z) onto C(∂K, z) factors through δy. Hence I = 0. Since I

was arbitrary, we conclude that C(∂K, z) is simple. �

The following corollary applies when the set ∂K of extreme points of
K is closed in the spectral topology. This is equivalent to the statement
that every nonzero irreducible representation of C(∂K, z) restricts to
an extreme point of K.

Corollary 9.4. Let (K, z) be a pointed nc convex set such that ∂K
is closed in the spectral topology. Then A(K, z) is C*-simple if and
only if for every nonzero compact nc convex subset M ⊆ K, either
M ∩ ∂K = ∅ or M ∩ ∂K = ∂K.

Proof. Suppose that A(K, z) is C*-simple. If M ∩ ∂K 6= ∅ then The-
orem 9.3 implies that ∂K ⊆ M . Conversely, suppose that for every
nonzero compact nc convex subset M ⊆ K, either M ∩ ∂K = ∅ or
M ∩ ∂K = ∂K. By assumption, ∂K is spectrally closed, and for any
point x ∈ ∂K, the closed nc convex hull M generated by x trivially
satisfies M ∩ ∂K 6= ∅. Hence by assumption ∂K ⊆M , so Theorem 9.3
implies that A(K, z) is C*-simple. �

10. Characterization of C*-algebras

A classical result of Bauer characterizes function systems that are
unital commutative C*-algebras in terms of their state space. Specif-
ically, he showed that if C is a compact convex set, then the unital
function system A(C) of continuous affine functions on C is a unital
commutative C*-algebra if and only if C is a Bauer simplex (see e.g.
[1, Theorem II.4.3]).

The first author and Shamovich [15, Theorem 10.5] introduced a def-
inition of noncommutative simplex that generalizes the classical defi-
nition and established a generalization of Bauer’s result for unital op-
erator systems. Specifically, they showed that if K is a compact nc
convex set, then the unital operator system A(K) of continuous affine
nc functions on K is a unital C*-algebra if and only if K is an nc Bauer
simplex.

In this section we will extend this result by showing that an operator
system is a C*-algebra if and only if its nc quasistate space is a Bauer
simplex with zero as an extreme point. Before introducing the notion
of a Bauer simplex, we need to recall some preliminary definitions.

Let K be a compact nc convex set. For a point x ∈ K, viewed as
an nc state on the unital operator system A(K), the *-homomorphism
δx is an extension of x. We will be interested in other nc states on
C(K) that extend x. Specifically, we will be interested in nc states
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that are maximal in a certain precise sense. The following definition is
[6, Definition 4.5.1].

Definition 10.1. Let K be a compact nc convex set and let µ :
C(K) → Mn be an nc state on C(K). The barycenter of µ is the
restriction µ|A(K) ∈ Kn. The nc state µ is said to be a representing
map for its barycenter. We will say that a point x ∈ K has a unique
representing map if the *-homomorphism δx is the unique nc state on
C(K) with barycenter x.

We will also require the notion of a convex nc function. The following
definition is [6, Definition 3.12].

Definition 10.2. Let K be a compact nc convex set. For a bounded
self-adjoint nc function f ∈ Mn(B(K))h, the epigraph of f is the set
Epi(f) ⊆ ⊔Km ×Mn(Mm) defined by

Epi(f)m = {(x, α) ∈ Km ×Mn(Mm) : x ∈ Km and α ≥ f(x)}.

The function f is convex if Epi(f) is an nc convex set.

Davidson and the first author introduced a notion of nc Choquet
order on the set of representing maps of a point in a compact nc convex
set that plays a key role in noncommutative Choquet theory. The
following definition is [6, Definition 8.2.1].

Definition 10.3. Let K be a compact nc convex set and let µ, ν :
C(K) → Mn be nc states. We say that µ is dominated by ν in the nc
Choquet order and write µ ≺c ν if µ(f) ≤ ν(f) for every n and every
continuous convex nc function f ∈ Mn(C(K)). We will say that µ is a
maximal representing map for its barycenter if it is maximal in the nc
Choquet order.

Remark 10.4. Several equivalent characterizations of the nc Choquet
order were established in [6]. These are among the deepest results in
that paper.

We are finally ready to state the definition of an nc simplex. The
following definitions are [15, Definition 4.1] and [15, Definition 10.1]
respectively.

Definition 10.5.

(1) A compact nc convex set K is an nc simplex if every point in
K has a unique maximal representing map on C(K).

(2) An nc simplex K is an nc Bauer simplex if the extreme bound-
ary ∂K is a closed subset of the set Irr(K) of irreducible points
in K with respect to the spectral topology.
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Remark 10.6. It was shown in [15] that these definitions generalize
the classical definitions. Specifically, if C is a classical simplex then
there is a unique nc simplex K with K1 = C. Furthermore, if C is a
Bauer simplex then K is an nc Bauer simplex.

It was shown in [15, Theorem 10.5] that if K is a compact nc convex
set, then the unital operator system A(K) is a C*-algebra if and only
if K is an nc Bauer simplex. The next example shows that the obvious
generalization of this statement for operator systems does not hold.

Example 10.7. Let (K, z) be the pointed compact nc convex set from
Example 3.16, so K = ⊔Kn is defined by

Kn = {α ∈ (Mn)h : −1n ≤ α ≤ 1n}, for n ∈ N,

and z = 0. Since K1 = [−1, 1] is a Bauer simplex, it follows from the
above discussion that K is the unique compact nc convex set with this
property and K is an nc Bauer simplex. However, A(K, z) is not a
C*-algebra. Note that z /∈ ∂K1 and hence z /∈ ∂K.

Lemma 10.8. Let S be an operator system with nc quasistate space
(K, z). Then S is a C*-algebra if and only if its unitization S♯ is a
C*-algebra and z ∈ ∂K.

Proof. If S is a C*-algebra, say A, then its unitization A♯ is the C*-
algebraic unitization A♯ of A, and hence is also a C*-algebra. Further-
more, A is an ideal in A♯ and z is an irreducible *-representation of A♯

satisfying ker z = A. Hence by [6, Example 6.1.8], z ∈ ∂K.
Conversely, suppose that S♯ is a C*-algebra, say B, and z ∈ ∂K.

Then by [6, Example 6.1.8], z is an irreducible representation of B.
Since A(K, z) = ker z, A(K, z) is an ideal in B, and in particular is a
C*-algebra. �

The next result extends [15, Theorem 10.5].

Theorem 10.9. Let S be an operator system with nc quasistate space
(K, z). Then S is a C*-algebra if and only if K is an nc Bauer simplex
and z ∈ ∂K. The result also holds for unital operator systems with nc
quasistate spaces replaced by nc state spaces.

Proof. By Lemma 10.8, S is isomorphic to a C*-algebra if and only if
S♯ is isomorphic to a C*-algebra and z ∈ ∂K. By [15, Theorem 10.5],
the former property is equivalent to K being a Bauer simplex. �

11. Stable equivalence

Connes and van Suijlekom [4, Section 2.6] considered stable equiva-
lence for operator systems. Operator systems S and T are said to be
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stably equivalent if the operator systems S⊗min K and T ⊗min K are iso-
morphic. Here, K = K(Hℵ0

) denotes the C*-algebra of compact opera-
tors onHℵ0

and the minimal tensor products S⊗minK and T ⊗min K are
defined as in [13], i.e. S⊗minK is the closed operator system generated
by the algebraic tensor product of S and K in C*

min(S)⊗minC
*
min(K) =

C*
min(S)⊗minK and similarly for T ⊗minK.
In this section we will describe the nc quasistate space of the sta-

bilization of an operator system. This will yield a characterization of
stable equivalence in terms of nc quasistate spaces.

Let S be an operator system and let (K, z) denote the nc quasis-
tate space of S. Let (L,w) denote the nc quasistate space of K. For
x ∈ K and u ∈ L, we obtain a completely contractive map x ⊗ u on
S⊗min K from the theory of tensor products of operator spaces (see
e.g. [20]). However, it is not immediately obvious that x⊗ u is an nc
quasistate. The next result implies that it is, and moreover, that every
nc quasistate on S⊗min K arises in this way.

Theorem 11.1. Let S be an operator system with nc quasistate space
(K, z) and let (L,w) denote the nc quasistate space of K. The nc
quasistate space of S⊗min T is (K ⊗ L, z ⊗ w), where K ⊗ L denotes
the closed nc convex hull of {x ⊗ u : x ∈ K and u ∈ L} and x ⊗ u is
defined as in the above discussion. Furthermore, letting (M, t) denote
the nc quasistate space of S⊗minK, ∂M ⊆ ∂K ⊗ ∂L.

Proof. We can identify S with A(K, z) and identify A(K, z) with its im-
age under the canonical embedding into its minimal C*-cover C(∂K, z).
By [4, Proposition 2.37], the minimal C*-cover of A(K, z)⊗K is C(∂M, t) =
C(∂K, z) ⊗ K. Every point x ∈ Km extends to an nc quasistate
x̃ : C(∂K, z) → Mm (see Section 6). Then for u ∈ Ln, we obtain
an nc quasistate x̃⊗ y : C(∂K, z)⊗ K → Mm ⊗Mn. The restriction
x̃⊗ y|A(K,z)⊗K = x⊗ y is therefore an nc quasistate on A(K, z)⊗min K.
Hence K ⊗ L ⊆ M . It is clear that z ⊗ w is the zero map.

For the reverse inclusion, let r ∈ ∂M be an extreme point. Then by
Proposition 6.13, the *-homomorphism δr on C(M, t) factors through
C(∂K, z)⊗K. Since r is extreme, [6, Theorem 6.1.9] implies that δr is ir-
reducible. Hence there is an irreducible representation π : C(∂K, z) →
Mm such that δr is unitarily equivalent to π⊗u, where u ∈ L is either
the identity representation of K or u = w. Letting x = π|A(K,z) ∈ Km,
r|A(K,z)⊗min K = x ⊗ u. In fact, it is easy to verify that since r ∈ ∂L,
x ∈ ∂K. It follows from the nc Krein-Milman theorem [6, Theorem
6.4.2] that M ⊆ K ⊗ L. �
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Corollary 11.2. Let S1 and S2 be operator systems with nc quasistate
spaces (K1, z1) and (K2, z2) respectively. Let 0K and idK denote the
zero map and the identity representation respectively of K. Then S
and T are stably isomorphic if and only if the closed nc convex hulls
of the sets ∂K ⊗ {0K, idK} and ∂L ⊗ {0K, idK} are pointedly affinely
homeomorphic with respect to the points z1 ⊗ 0K and z2 ⊗ 0K.

Proof. Let (L, 0K) denote the nc quasistate space of K. Then it follows
from Theorem 11.1 and Corollary 4.10 that S and T are stably isomor-
phic if and only if (K1⊗L, z1⊗0K) and (K2⊗L, z2⊗0K) are pointedly
affinely homeomorphic.

By Proposition 4.4, the unitization K♯ is a unital C*-algebra with nc
state space L. Since every irreducible *-representation of K♯ is unitarily
equivalent to 0K or idK, [6, Example 6.1.8] implies that L is the closed
nc convex hull of {0K, idK}. The result now follows from Theorem 11.1
and the nc Krein-Milman theorem [6, Theorem 6.4.2]. �

12. Dynamics and Kazhdan’s property (T)

The fact that simplices arise as fixed point sets of affine actions of
groups on spaces of probability measures has a number of important
applications in classical dynamics. Glasner and Weiss showed that a
second countable locally compact group has Kazhdan’s property (T) if
and only if the simplices that arise from this result are always Bauer
simplices [9].

The first author and Shamovich extended these results to actions of
discrete groups on nc state spaces of unital C*-algebras. Specifically, it
was shown that nc simplices arise as fixed point sets of affine actions of
discrete groups on nc state spaces of unital C*-algebras [15, Theorem
12.12]. It was further shown that a discrete group has property (T)
if and only if the nc simplices that arise from this result are always
nc Bauer simplices [15, Theorem 14.2]. Consequently, a discrete group
has property (T) if and only if whenever it acts on a unital C*-algebra,
the set of invariant states is the state space of a unital C*-algebra
[15, Corollary 14.3].

In this section we will extend these results to actions of locally com-
pact groups on (potentially nonunital) C*-algebras. In fact, we will
see that the hard work was already accomplished in earlier sections of
this paper. After introducing appropriate definitions and applying the
dual equivalence between the category of operator systems and the cat-
egory of pointed compact nc convex sets, the proofs in [15] will apply
essentially verbatim.
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The next definition is a slight generalization of [15, Definition 12.1]
and [15, Definition 12.2].

Definition 12.1.

(1) An nc dynamical system is a triple (S,G, σ) consisting of an
operator system S, a locally compact group G and a group
homomorphism σ : G → Aut(S) with the property that the
orbit map G→ S : g → σg(s) is continuous for all s ∈ S.

(2) A affine nc dynamical system is a triple (K,G, κ) consisting of
a compact nc convex set K, a locally compact group G and a
group homomorphism κ : G → Aut(K) with the property that
for each n, the orbit map G → Kn : g → κg(x) is continuous
for all x ∈ Kn.

Remark 12.2. Unless we need to refer to σ, we will write (S,G) for
(S,G, σ) and gs for σg(s). Similarly, unless we need to refer to κ, we
will write (K,G) for (K,G, κ) and gx for κg(x). If S is a C*-algebra,
say A, then we will refer to (A,G) as a C*-dynamical system.

We will utilize the fact that if (K, z) is a pointed compact nc convex
set and (A(K, z), G) is an nc dynamical system, then the dual equiv-
alence from Theorem 4.9 gives rise to an affine nc dynamical system
(K,G), determined by

a(κg(x)) = σg−1(a)(x), for a ∈ A(K), g ∈ G and x ∈ K.

It seems worth pointing out that an nc dynamical system over an
operator system lifts to an nc dynamical system on its unitization.

Lemma 12.3. Let (S,G, σ) be an nc dynamical system. Define σ♯ :
G → Aut(S) by (σ♯)g = (σg)

♯. Then (S♯, G, σ♯) is an nc dynamical
system.

Proof. For g ∈ G, (σg)
♯(s, α) = (σg(s), α) for s ∈ S♯. It follows imme-

diately that σ♯ : G→ Aut(S♯) is a group homomorphism and that the
corresponding orbit maps are continuous. �

Let G be a locally compact group. Recall that a continuous unitary
representation of G on a Hilbert space H is a group homomorphism
ρ : G → U(H) such that the orbit map G → H : g → ρ(g)ξ is
continuous for every ξ ∈ H . Here U(H) denotes the set of unitary
operators on H .

The next result follows immediately from [15, Theorem 12.12], since
we can view the action of a non-discrete locally compact group as an
action by its discretization.
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Theorem 12.4. Let (K,G) be an affine nc dynamical system such that
K is an nc simplex. Then the fixed point set

KG = {x ∈ K : gx = x for all g ∈ G}

is an nc simplex.

Corollary 12.5. Let (A,G) be a C*-algebra and let (K, z) denote the
nc quasistate space of A. Then the fixed point set KG is an nc simplex.

Proof. By Theorem 10.9,K is an nc Bauer simplex, so the result follows
immediately from Theorem 12.4. �

Definition 12.6. Let G be a second countable locally compact group.

(1) A continuous unitary representation ρ : G → U(H) is said to
have almost invariant vectors if there is a net of unit vectors
{ξi ∈ H} such that for every compact subset C ⊆ G,

lim
i
sup
g∈C

‖ρ(g)ξi − ξi‖ = 0.

(2) The group G is said to have Kazhdan’s property (T) if every
unitary representation of G with almost invariant vectors has a
nonzero invariant vector.

The next result is a generalization for (potentially nonunital) C*-
algebras and second countable locally compact groups of [15, Theorem
14.2].

Theorem 12.7. Let A be a C*-algebra with nc quasistate space (K, z)
and let G be a second countable locally compact group with Kazhdan’s
property (T) such that (A,G) is a C*-dynamical system. The set KG

of invariant nc quasistates on A is an nc Bauer simplex. If A is unital,
then the result also holds for the nc state space of A instead of its nc
quasistate space.

Proof. The proof of [15, Theorem 14.2] works essentially verbatim here.
If G is non-discrete, then it is necessary to verify that the unitary repre-
sentation constructed in the proof of the dilation theorem for invariant
nc states [15, Lemma 12.6] is continuous. However, this is an easy
consequence of the continuity of the orbit maps. �

The following corollary extends a result of Glasner and Weiss for
commutative C*-algebras (see [9, Theorem 1’] and [9, Theorem 2’]).

Corollary 12.8. Let G be a second countable locally compact group.
Then G has Kazhdan’s property (T) if and only if whenever A is a C*-
algebra with nc quasistate space (K, z) and (A,G) is a C*-dynamical
system, then the set KG

1 of invariant quasistates is pointedly affinely
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homeomorphic to the quasistate space of a C*-algebra. If A is unital,
then the result also holds with the quasistate space of A replaced by its
state space.

Proof. If G has Kazhdan’s property (T), then Theorem 12.7 implies
that KG is an nc Bauer simplex. By Lemma 10.8, z ∈ ∂K. Hence by
Theorem 10.9, (KG, z) is pointedly affinely homeomorphic to the nc
quasistate space of a C*-algebra. In particular, the set KG

1 of invariant
quasistates of A is pointedly affinely homeomorphic to the quasistate
space of a C*-algebra.

Conversely, if G does not have Kazhdan’s property (T), then it fol-
lows from [9, Theorem 2’] that there is a compact Hausdorff space
X and a commutative C*-dynamical system (C(X), G) such that the
space Prob(X)G of invariant probability measures on X is a Poulsen
simplex. Equivalently, the set ∂(Prob(X)G) of extreme points of Prob(X)G

is not closed.
We need to translate this to a statement about the quasistate space

Q of C(X). Since Q is a compact convex set, the set QG of invariant
quasistates is a simplex (see e.g. [15, Corollary 12.13]). Note that
Prob(X) ⊆ Q. In fact, Q is the closed convex hull of Prob(X) ∪ {z},
where z denotes the zero map on C(X). For nonzero µ ∈ ∂(QG), since
µ(X)−1µ ∈ QG, it follows that µ(X) = 1. Hence µ ∈ ∂(Prob(X)G).
On the other hand, it is clear that ∂(Prob(X)G) ⊆ ∂(QG). Hence
∂(QG) ⊆ ∂(Prob(X)G)∪{z}. Since ∂(Prob(X)G) is not closed and z is
isolated from Prob(X), it follows that ∂(QG) is not closed. Therefore,
QG is not a Bauer simplex.

The result now follows from the fact that if the quasistate space of a
C*-algebra (equivalently, the state space of its unitization) is a simplex,
then the C*-algebra is commutative and its quasistate space is a Bauer
simplex (see e.g. Theorem 10.9). �
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