

McGill, M., Brewster, S., De Sa Medeiros, D. P., Bovet, S., Gutierrez,

M. and Kehoe, A. (2022) Creating and augmenting keyboards for extended reality

with the Keyboard Augmentation Toolkit. ACM Transactions on Computer-Human

Interaction, 29(2), 15.

There may be differences between this version and the published version. You are

advised to consult the publisher’s version if you wish to cite from it.

© 2022 Copyright held by the owner/author(s). This is the author's version of the

work. It is posted here for your personal use. Not for redistribution. The definitive

Version of Record was published in ACM Transactions on Computer-Human

Interaction, 29(2), 15. http://dx.doi.org/10.1145/3490495

http://eprints.gla.ac.uk/264087/

Deposited on: 3 May 2022

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://dx.doi.org/10.1145/3490495
http://eprints.gla.ac.uk/264087/
http://eprints.gla.ac.uk/264087/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

15

Creating and Augmenting Keyboards for Extended Reality with the
Keyboard Augmentation Toolkit

MARK MCGILL, University of Glasgow, Scotland, UK
STEPHEN BREWSTER, University of Glasgow, Scotland, UK
DANIEL PIRES DE SA MEDEIROS, University of Glasgow, Scotland, UK
SIDNEY BOVET, Logitech S.A., Switzerland
MARIO GUTIERREZ, Logitech S.A., Switzerland
AIDAN KEHOE, Logitech Design Lab, Ireland

This paper discusses the Keyboard Augmentation Toolkit (KAT) which supports the creation of virtual keyboards that can be
used both for standalone input (e.g. for mid-air text entry) and to augment physically tracked keyboards/surfaces in mixed
reality. In a user study, we firstly examine the impact and pitfalls of visualising shortcuts on a tracked physical keyboard,
exploring the utility of virtual per-keycap displays. Supported by this and other recent developments in XR keyboard research,
we then describe the design, development and evaluation-by-demonstration of KAT. KAT simplifies the creation of virtual
keyboards (optionally bound to a tracked physical keyboard) that support enhanced display - 2D/3D per-key content that
conforms to the virtual key bounds; enhanced interactivity - supporting extensible per-key states such as tap, dwell, touch,
swipe; flexible keyboard mappings that can encapsulate groups of interaction and display elements e.g. enabling application-
dependent interactions; and flexible layouts - allowing the virtual keyboard to merge with and augment a physical keyboard,
or switch to an alternate layout (e.g. mid-air) based on need. Through these features, KAT will assist researchers in the
prototyping, creation and replication of XR keyboard experiences, fundamentally altering the keyboard’s form and function.

CCS Concepts: •Human-centered computing→Human computer interaction (HCI);Virtual reality;User interface
toolkits; Empirical studies in HCI; Keyboards.

Additional Key Words and Phrases: Mixed Reality; Virtual Reality; Augmented Reality; Augmented Keyboards; Keyboard
Input; Shortcuts;

ACM Reference Format:
Mark McGill, Stephen Brewster, Daniel Pires De Sa Medeiros, Sidney Bovet, Mario Gutierrez, and Aidan Kehoe. 2022. Creating
and Augmenting Keyboards for Extended Reality with the Keyboard Augmentation Toolkit. ACM Trans. Comput.-Hum.
Interact. 29, 2, Article 15 (April 2022), 38 pages. https://doi.org/10.1145/3490495

1 INTRODUCTION
The physical keyboard has been the de facto peripheral for interaction for decades due to the high performance in
both text entry and shortcut usage that can be achieved. Accordingly, the physical keyboard layout and controls
have been slow to change in the face of the emergent challenges users now face. Modern applications provide
many keyboard shortcuts, more than 100 in Microsoft Office, yet despite efforts to accommodate learning and
discovery [34, 61], these shortcuts remain largely unused. One reason is that they can be hard to remember and
the keyboard cannot display a congruent visual indication to help. Moreover, keyboards are still predominantly

Authors’ addresses: Mark McGill, University of Glasgow, Scotland, UK, mark.mcgill@glasgow.ac.uk; Stephen Brewster, University of Glasgow,
Scotland, UK, stephen.brewster@glasgow.ac.uk; Daniel Pires De SaMedeiros, University of Glasgow, Scotland, UK, Daniel.PiresdeSaMedeiros@
glasgow.ac.uk; Sidney Bovet, Logitech S.A., Cork, Switzerland, sbovet@logitech.com; Mario Gutierrez, Logitech S.A., Lausanne, Switzerland,
mgutierrez1@logitech.com; Aidan Kehoe, Logitech Design Lab, Cork, Ireland, akehoe@logitech.com.

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was
published in ACM Transactions on Computer-Human Interaction, https://doi.org/10.1145/3490495.

ACM Trans. Comput.-Hum. Interact., Vol. 29, No. 2, Article 15. Publication date: April 2022.

https://doi.org/10.1145/3490495
https://doi.org/10.1145/3490495

15:2 • McGill et al.

limited to binary keypress input, lagging behind On Screen Keyboards (OSKs) on touch surfaces. For example,
the touchscreen user can switch from alphanumeric input to direct GUI interaction without necessitating a costly
change in input modality [66], in a way that the physical keyboard user cannot. The physical keyboard also lags
behind in capability for expression for the same reason - despite efforts from the likes of Microsoft [107], adding
an emoji [82] into a message can still prove problematic compared to using OSKs. For productivity outside the
home or office (e.g. in a coffee shop or train), the form factor and expectations regarding keyboard functionality
are such that we have not yet been able to move toward a “minimal” portable keyboard design, minimising the
number of keys by appropriating keys on demand to support transient functions such as volume control.

However, the constraints regarding physical keyboard form and function can be overcome through the use of
Mixed Reality (MR) headsets. These headsets are improving in terms of fidelity, cost, sensing and form factor.
Their adoption will inevitably drive a transition from physical to virtual displays [23] and more spatial computing.
MR headsets can augment tracked objects [9], peripherals and surfaces [8, 42], meaning a physical keyboards
form and function could be altered/augmented by such headsets [12]. This is of increasing relevance given the
potential for MR to enhance productivity environments in particular, demonstrated both in research [28, 65, 78]
and by industry, for example through the Oculus “infinite office” concept [76].
Augmented Keyboards are physical keyboards that can be positionally tracked by a MR headset, such that

aligned virtual augmentations can be rendered on or around them. This concept allows for re-mapping of both
input and output. Research has explored many concepts in this space, such as supporting secure typing in AR
[60] or using the keyboard as a haptic proxy [90] for a variety of interfaces. However, such implementations are
typically highly bespoke and closed source. This hinders extension of, and comparison to, prior research.
This paper describes the steps we have taken toward resolving this issue through the development of the

novel, open source Keyboard Augmentation Toolkit (KAT) for Unity, which facilitates prototyping of virtual
and augmented keyboards for XR/MR. Using an early version of KAT, we first examine the usability of a basic
augmented keyboard experience, looking at the impact and pitfalls of visualizing shortcuts. We also reflect
on advances in consumer-oriented augmented keyboards, discussing the progress made with the Logitech MR

Fig. 1. A live screenshot of the Logitech MR keyboard using our Keyboard Augmentation Toolkit, rendered in VR with Mixed
Reality video-passthrough hand segmentation and rendering.

ACM Trans. Comput.-Hum. Interact., Vol. 29, No. 2, Article 15. Publication date: April 2022.

Creating and Augmenting Keyboards for Extended Reality with the Keyboard Augmentation Toolkit • 15:3

Keyboard, building on previous developments such as the Logitech Bridge SDK [11, 103] in supporting a VR-
trackable keyboard, and the Oculus infinite office integration of optical tracking of the Logitech k830 keyboard
[77] - both significant steps toward a consumer-oriented MR keyboard. We then discuss the current iteration of
KAT, whose capabilities have been influenced both by the preceding research in this paper, as well as seminal
research from the likes of Block et al. [10], Gellersen et al. [32] and Schneider et al. [90].

KAT supports two key features: the creation of virtual keyboard augmentations, and the separate definition of
virtual keyboard layouts. For augmentations, KAT effectively allows for every key to be treated as an interactive
display, supporting generic hand-tracked interactions (e.g. tap, swipe, hover), flexible display options per-key
(e.g. 2D/3D icons, unicode text), importing existing Windows/Linux keyboard mappings, hierarchical mappings
(enabling multiple applications to share usage of the augmented keyboard overlay) and an event infrastructure
which allows for easy extensibility to support novel interactions in the future. For layouts, KAT supports both
imported 2D layouts from Keyboard Layout Editor [85], and modelled/3D layouts, with layouts able to be changed
on-the-fly, for example allowing a virtual keyboard to dock with a tracked physical keyboard when the user sits at
their desk, conforming to the physical keyboard layout; and then subsequently change to an appropriate mid-air
interaction layout when the user moves away from the desk once more. Importantly, KAT supports the binding
of the virtual keyboard augmentations to the current layout dynamically, meaning that any augmentations
designed for KAT will work on the majority of envisioned 2/3D layouts. In this way, we provide an architecture
for prototyping varied interactions for both virtual augmentations of physical keyboards, and other mid-air
or surface-aligned virtual keyboards, supporting exploration of the relationship between physical and mid-air
keyboards in MR. In an evaluation-by-demonstration [53] of our toolkit, we outline how practitioners can create
novel layouts, mappings and interactions by reproducing and extending prior research.

Our intention with KAT is to empower the HCI community to better guide the requisite standards, interaction
designs, and architecture of future XR / MR keyboards, and facilitate comparisons between novel and past
keyboard layouts and interactions through encouraging their development and replication on a common platform.
In particular, where previous research has been closed source and bespoke, KAT democratises our ability to
explore new augmented keyboard interactions and virtual keyboard layouts, in a way that will better support
rapid prototyping, and open-source collaboration and sharing of implementations.

1.1 Contribution Statement
This paper contributes to our understanding of mixed reality keyboard interactions in three key ways:

(1) A user study evaluating the most immediate and widely recognised potential use case of augmented
keyboards, shortcut visualization. We provide novel insights into the efficacy, benefits and pitfalls of this
capability. We also reflect on the implications such a capability has for how we can support augmentations
specific to applications and their current context.

(2) Informed by this study, we contribute the Keyboard Augmentation Toolkit (KAT) for prototyping keyboards
for MR. KAT supports a breadth of augmentations (both 2D and 3D); extensible support for a variety
of on/around key interactions; and an architecture that separates the keyboard layout from the applied
augmentations, consequently enabling the creation of augmentations and mappings that can be utilized
with both mid-air and surface/physical keyboard aligned layouts. This toolkit will enable practitioners to
more rapidly prototype novel MR keyboard layouts and augmented keyboard interactions, and more easily
share their implementations, aiding direct comparisons in subsequent research.

(3) To evaluate our toolkit, we follow an evaluation-by-demonstration approach (similarly to [53]) by exempli-
fying its capacity to support both new interactions, as well as simplifying replication of prior research such
as existing keyboard mappings (e.g. the new AZERTY [25–27]); layouts for both 3D mid-air [111] and 2D

ACM Trans. Comput.-Hum. Interact., Vol. 29, No. 2, Article 15. Publication date: April 2022.

15:4 • McGill et al.

surface-aligned [22] virtual keyboards; and per-key interactions (e.g. GestAKey swipes [93], Metamorphe
[6] tilting keys).

2 RELATED WORK

2.1 Physical Augmentations of Keyboards
2.1.1 Visual Augmentations. Visual feedback incorporated into physical keyboards has been repeatedly explored.
Consumer products have incorporated additional displays co-located with buttons (e.g. Logitech G19 [58]),
sometimes with touch input (e.g. Razer DeathStalker [86] or Apple Touch Bar [2]). Per-key RGB lighting has
become increasingly common in gaming keyboards, being used both to delineate shortcuts and provide visual
feedback on in-game events. Keycap displays have been repeatedly explored, from the OLED-driven Optimus
concept from Art. Lebedev of a decade ago [98] to more recent e-ink efforts such as Nemeio [72], but have not
been commercially successful. In research, DisplayCover [35] was a precursor of the Apple Touchbar, where
a visual touch surface was used to replace the function key bar on laptops). In this case, Windows Live tiles
were displayed on a touch surface above the keyboard to allow for quick touch and gesture interactions when
using a laptop. Ephemeral interactions [106] appropriated existing physical surfaces for touch input, for example
overlaying a physical slider interface on the unused surface of a keyboard. Magic desk [8] augmented the surfaces
around the keyboard and mouse, offloading functionality and visualizing shortcuts on surfaces that were quick to
transition to from keyboard/mouse usage, a theme that has frequently occurred [42, 104, 110, 116]. ControllAR
[7] augmented control surfaces with visual feedback overlaid on top of both the surface and the fingers/hands
using a transparent display positioned between the surface and the user, with the visual feedback comprising of
user-selected portions of existing applications for GUI “remixing”. Notably, whilst the space around the keyboard
has been repeatedly visually augmented, the space above the keyboard (i.e. within reach of fingertips without
moving hands off the keyboard and onto the desk surface) has not. Augmented keyboards can utilize this space
thanks to head-tracked rendering.

2.1.2 Training and the Case for Visual Feedback of Keyboard Shortcuts. The benefits of keyboard shortcuts have
been a source of significant debate, with various studies showing both performance benefits over GUIs [79]
and detriments [101], differences in terms of the perception of efficiency [52, 99], and even a lack of difference
regarding performance/perceived usability [91]. However, keyboard shortcuts appear beneficial to power users,
particularly where costly transitions between keyboard and mouse are required [66], with caveats when keyboard
shortcut actions are hierarchical (i.e. requiring shortcut sequences) [66]. For “heavily-used interfaces, keyboard
shortcuts can be as efficient as toolbars and have the advantage of providing fast access to all commands” [79].
The problem has been in ensuring uptake of shortcuts over less efficient but more immediately accessible

methods such as menus. Ni et al. [73] noted that shortcuts are difficult to learn, lack consistency (e.g. different
actions might have different shortcuts across applications) and lack visibility. Demonstrating this, a previous
study (n=38) [39] looking at shortcut knowledge in Microsoft Word found that of the 16 most common actions,
experts correctly identified 81% of the associated keyboard shortcuts, with novices approaching 63%. Lane et
al. noted that keyboard shortcuts are more efficient than equivalent GUI shortcuts, however experienced users
rarely use efficient keyboard shortcuts, instead favouring GUI equivalents [52]. They concluded that users needed
support in transitioning from menus and toolbars to keyboard shortcuts, for example through the use of training:
“people do not always use the optimal method, the method they use is probably ‘good enough’ for them... [bad]
habits caused by this satisficing behavior quickly form and are hard to change”. They also demonstrated that
prompting regarding keyboard shortcuts greatly increased their uptake.
Commonly, training is employed to build the user’s knowledge of salient controls. The Hotkey Palette [1]

visualized shortcuts and document actions for an OSK. ExposeHK [62] (feedforward, presented prior to action)
showed keyboard shortcuts in GUI menus and ribbons when the modifier key was pressed, a feature that has

ACM Trans. Comput.-Hum. Interact., Vol. 29, No. 2, Article 15. Publication date: April 2022.

Creating and Augmenting Keyboards for Extended Reality with the Keyboard Augmentation Toolkit • 15:5

seen some adoption in applications, whilst [91] employed early notifications to increase awareness of shortcuts.
Projects such as Hotkey-Eve [96] and HotkeySkillometer [63] used feedback to convey shortcuts that could have
been used. IconHK (Giannisakis et al.) [34] blended visual cues regarding keyboard shortcut information into
toolbar GUI elements that adapted based on prior usage and system intention to provoke reminders of shortcuts.
However, fundamentally, there are advantages to facilitating visual search, with Scarr et al. [89] noting that

“novices benefit from using visual search for salient controls, rather than retrieving command names frommemory
or manuals” (based on [94]). Scarr et al. defined a framework of necessary features for expertise development
in shortcut usage [18, 89] - of note here were the “visibility and ready-to-hand” and “low display demands”
factors, both of which are satisfied by an augmented keyboard. Giannisakis et al. [34] identified similar key design
challenges in conveying keyboard shortcuts: maximizing shortcut exposure duration, minimizing the visual space
used to convey the shortcuts, conveying the meaning of the commands through iconography, and maintaining
the aesthetic appeal of the icons. It has been shown that keyboard shortcut usage in-part exhibits elements of
satisficing behaviour [99]. Pertinently, it was suggested that to break this behaviour “the optimal methods might
better be learned as soon as possible, by, for example, making (shortcuts) more salient”.

2.1.3 Supporting Interactions On and Around the Keyboard. Various projects have expanded the capabilities of
keyboard input. Finger-aware shortcuts exploited finger tracking to allow a single keypress to have multiple
command mappings, whilst FingerArc and FingerChord provided visual guidance on-screen regarding the
available commands [114, 115]. GestAKey allowed for multiple actions being associated to a keystroke through
touch sensitive keycaps [93], an approach that has repeatedly been explored [92, 116]. Other gesture approaches
for extending keyboard shortcuts [14] such as gesturing on/above the surface of the keyboard have also been
examined [100, 113]. More recently, touch sensitivity has been explored for keyboards in AR/MR [80], suggesting
new possibilities for per-key states driven by hand tracking technology in particular.
Whilst these interaction techniques may have been validated for performance, the discoverability of the

functionality could be problematic; users are entirely reliant on off-device visual feedback [30] to guide them
regarding the interaction. Moreover, these techniques have typically been implemented using bespoke sensing
solutions. However, the advent of augmented keyboards could resolve these issues, allowing for on/around key
rendering of functionality and potentially improving the discoverability of these interactions. For example, resting
a finger on a GestAKey or Metamorphe [6] key could reveal mid-air tooltips indicating the available actions. The
possibility of augmented keyboards suggests prior interactions that were not feasible for mass deployment could
be re-appraised and deployed on a real-world scale, driven by XR headset sensing.

2.1.4 Touch-Display Keyboards. An augmented keyboard of particular note, Touch-Display Keyboards (TDKs)
[10, 32] used capacitive touch sensing and overhead projection to prototype novel interactions and visual
augmentations of a keyboard. Block et al. discussed the design space of their keyboard display in terms of a
number of potential interactions/features made possible. For example, they offered up designs for rendering
content on keys to visualize hidden functionality, switching between keyboard mappings (e.g. based on different
languages), and toggling keyboard maps based on dedicated hotkeys. They also discussed multi-key buttons,
temporary menus/widgets and scalar controls of variables (e.g. volume). Possible key states were expanded upon,
with touch events being exposed as events that could for example preview shortcut tooltips or provide new
overloaded actions. However, no formal user evaluations were reported, aside from limited user comments. Thus,
the potential impact of key features such as shortcut visualization currently lacks evidence/practical insights
regarding usage. The TDK system was also closed source and thus not replicable/extendable, but formed the
foundation of our thinking for KAT.
Incorporating physical displays into keyboards can also be problematic: cost and power requirements alone

were enough to ensure that the Optimus concept was not successful, with recent efforts using e-ink technology
[72] still far from the capabilities imagined. Keyboards with integrated displays are inherently limited: fidelity is

ACM Trans. Comput.-Hum. Interact., Vol. 29, No. 2, Article 15. Publication date: April 2022.

15:6 • McGill et al.

bounded by the specifications of the integrated keyboard display (rather than the changing HMD if rendered in
MR), nor can they render with depth around/above the keyboard. Such integration is also problematic from an
environmental perspective, as the keyboard becomes yet another component to be periodically upgraded and
discarded.

2.2 Using Physical Keyboards In MR
A variety of interaction techniques have been devised for text entry specifically in VR (e.g. [97, 109]). However,
the physical keyboard, when rendered in some fashion in VR along with the user’s fingertips, remains the best
performing technique. McGill et al. [64] first discussed bringing the physical keyboard into VR, using a video-pass
through technique to selectively render both the keyboard and hands based on user engagement. Subsequently,
this work has been extended both in research [36–38, 44, 48, 56, 105] and commercially, for example with the
Logitech Bridge SDK [11, 103]. These typically incorporate both positional tracking of the physical keyboard
to allow for congruent rendering of a virtual model in VR, and some form of finger/hand tracking to allow
for different representations of fingertips and hands in VR. With respect to positionally tracked keyboards,
whilst Bovet et al. showed that a video pass-through approach for hand rendering gave the best performance,
[11, 37, 38, 48] found that fingertip tracking was sufficient for good text entry in VR, whilst [48] found similar
efficacy for fingertip visualization in experienced typists. Hoppe et al. [44] showed that with a Leap Motion
tracking performance could reach 71% of baseline.
Keyboard augmentations and the use of physical keyboards in VR [12] has also previously been explored,

building upon the work of Block et al.’s TDKs. Simeone et al. [95] discussed rendering different skins on the
keyboard to preserve presence in immersive virtual environments. Maita et al. [60] examined secure text entry in
AR by augmenting physical keyboards with a randomized layout. McGill et al. utilized a Logitech MR keyboard
in a virtual workspace environment, augmenting individual keys to denote functions for controlling the position
of surrounding virtual displays [65]. And ReconViguRation [90] broadly explored a range of potential use cases of
an augmented keyboard, specifically how the physical keyboard could be reconfigured in VR to support emoji
entry, special characters, secure password entry, foreign languages, browser shortcuts, text macros and passive
haptics. They captured ratings of ease of use, utility and enjoyment of the discussed concepts, finding ease of use
in particular to be high across the envisioned use cases. However, as with the TDK paper, the implementation
was closed source, and focused on the design space, rather than the mechanics of supporting/defining/managing
per-key augmentations. They concluded that “our work raises questions about how to best design for perceived
affordance [and] how to best dynamically reconfigure a keyboard”. We suggest this in particular is a key motivating
point - whilst there is likely to be a near-limitless variety of use cases where a keyboard could beneficially be
augmented, we currently lack the practical knowledge regarding how to logistically facilitate this. Satisfying
such questions is particularly difficult without re-usable tools to better support practitioners in the creation
and exploration of dynamic, reconfigurable keyboards. This is a point that we address through KAT. Finally,
ControllAR examined rendering augmentations on MIDI controller buttons, finding that “they are often preferred
to touchscreens because of the variety of gestures that the sensors allow and because of the haptic feedback that
they provide, and to tabletops with tangibles because of their compactness” [7].

2.3 The Possibilities of Augmented Keyboards
By augmenting an existing positionally tracked peripheral such as a physical keyboard using an MR headset, we
can avoid tightly coupling the peripheral to integrated display(s), such as in the case of Optimus or Nemeio. If we
assume MR headsets will eventually form the basis of mobile spatial computing (e.g. AR headsets rendering virtual
displays in mid-air, VR immersive gaming, etc.) then we can begin to design interactions that take advantage of
the sensing capabilities of these headsets. We might utilize the ability to render with depth on/around/above the

ACM Trans. Comput.-Hum. Interact., Vol. 29, No. 2, Article 15. Publication date: April 2022.

Creating and Augmenting Keyboards for Extended Reality with the Keyboard Augmentation Toolkit • 15:7

keyboard combined with hand/finger tracking to support keyboard-initiated mid-air interactions e.g. creating
blended reality UIs for VR/AR 3D modelling. More generally, such a vision would also facilitate better transfer
of HCI-led advancements into consumer contexts. For example, GestAKey [93] could in-part be implemented
virtually, by tracking finger position around/on specific keys, without requiring bespoke hardware. FingerArc
and FingerChord [114, 115] could also be enacted entirely using MR headset sensing, with visual guidance
now rendered in situ rather than on a separate display off-device [30]. Other gesture approaches for extending
keyboard shortcuts [14] and gesturing on/above the surface of the keyboard [100, 113] could equally be supported
with congruent visuals, effectively democratising access to a variety of previously envisaged novel keyboard
interactions.

3 STUDY: ASSESSING SHORTCUT DISCOVERABILITY
Motivated by our literature review, we built an initial prototype of KAT, targeting the generic definition and
rendering of 2D augmented keyboard overlays. KAT initially evolved from efforts within Logitech regarding their
Bridge SDK [103] for the HTC Vive, a proof of concept (influenced by our prior work [64]) demonstrating how
a physical keyboard could be tracked and integrated into VR using a Vive Tracker. Importantly, Logitech also
utilized the front-mounted camera of the HTC Vive alongside this positional tracking to render video pass-through
hand tracking. This development indicated that a tracked, high-throughput mixed reality augmented keyboard
was now technologically feasible, prompting our research.

The most commonly envisioned use case for keyboards with per-key displays (both physical and virtual) is
that of per-keycap shortcut visualization. However, little is known regarding the impact, efficacy and pitfalls of
visualizing shortcuts for an existing, known application, outside of anecdotal findings. TDKs [10] first suggested
the visualization of shortcuts on the keyboard surface, and others have followed suit [90], but the efficacy of
the approach has never been evaluated. Our intention was to use this prototype to assess per-key shortcut
discoverability, addressing the following research question: RQ1: Does visualizing unknown shortcuts on an
augmented keyboard make them more discoverable?

Fig. 2. Left: Experimental setup, with 3 Optitrack 13W cameras tracking markers attached to the participant’s fingers, as
well as rigidbodies attached to the keyboard/VR headset. Right: View in VR, with a virtual display showing the Windows
desktop and an aligned virtual representation of the physical keyboard.

ACM Trans. Comput.-Hum. Interact., Vol. 29, No. 2, Article 15. Publication date: April 2022.

15:8 • McGill et al.

3.1 Tracked Keyboard Implementation
Our implementation utilized VR Desktop Mirror [17] for rendering the Windows desktop in Unity3D, alongside
three Optitrack 13W cameras for keyboard and fingertip tracking. An i7 PC with a nVidia GTX970 was used for
rendering all conditions, with a Samsung Odyssey Microsoft Mixed Reality VR headset [88] used throughout
(1440x1600 pixels per eye). To align the Optitrack and headset coordinate systems, a rigid body attached to the
headset was tracked for one frame on application startup and used to transform the Optitrack coordinate space.
Optical markers (6.4mm, M3) were attached to the participant’s fingernails to visualize fingertip locations (see
Figure 2), with fixed offsets used to correct marker positions to appear as fingertip positions in VR. For the
physical keyboard, we used a Logitech G810 with the 3D model taken from the Logitech Bridge SDK [103], with
optical markers attached in a known rigid body configuration for positional tracking. It should be noted that we
did not rely on the Logitech Bridge SDK directly for this implementation as calibration issues/tracker drift were
such that the digital twin of the keyboard could become mis-aligned with reality (an issue subsequently solved
by the Logitech MR keyboard discussed later in the paper). See the video figure for footage in action.

3.2 Design and Demographics
We conducted our evaluation in two parts - an initial assessment of baseline and VR typing performance to provide
context regarding our tracked keyboard implementation (for example, to what extent errors in keyboard usage
might contribute to apparent errors in shortcut selection), followed by the shortcut discoverability evaluation.
For all results, a repeated measures ANOVA was performed. Where data were non-parametric, an Aligned-Rank
Transform [108] was used to allow parametric methods. For effect size, Generalized Eta Squared ([2𝑔) is reported
(see [20] for interpretation), as well as the BayesFactor (𝐵𝐹 10, calculated using the BayesFactor R package, see
[46] for interpretation). For post hoc contrasts, the lsmeans [55] R package was used with Tukey adjustment. The
box plots feature notches denoting the 95% confidence level [49]. 18 participants were recruited from University
mailing lists (mean age=28.1±5, 9 male, 9 female) to take part, and were paid £10 for their time. Participants
experienced all tasks (with counter-balanced condition ordering throughout).

3.3 Part 1: Baseline Performance
To contextualise the typing performance of our Optitrack-based VR keyboard and fingertip tracking, we used
a text entry task - 8 phrases per condition after training (typing until the user felt as comfortable as they felt
possible) using the Mackenzie 500 phrase set [59], enacted using WebTEM [4]. The aim was to get a baseline of
typing performance with an augmented keyboard, and in particular the accuracy of selection for individual key
presses, to validate that our prototype implementation was sufficient for examining visualized shortcut usage.

Fig. 3. Baseline performance keyboard layouts in VR. Left: standard QWERTY. Right: randomized.

There were three conditions: a Reality baseline where users typed on the keyboard in reality using a monitor
to display the text; VR where users performed the same task in our VR workspace; and Random where users
performed the same task in VR but using a randomized keyboard layout (see Figure 3), intended to test their

ACM Trans. Comput.-Hum. Interact., Vol. 29, No. 2, Article 15. Publication date: April 2022.

Creating and Augmenting Keyboards for Extended Reality with the Keyboard Augmentation Toolkit • 15:9

accuracy in selecting the desired key whilst discounting touch typist muscle memory. Performance metrics
(WPM, Total Error Rate) were recorded for the text entry task, and a smartphone-based questionnaire after each
condition recorded select NASA TLX [41] subscales (Performance, Effort and Frustration).

There were significant effects (see Table 1 and Figure 4) on task metrics (WPM, total error rate - the character
error rate) and subjective measures (TLX Performance, Effort, Frustration).

TLX Performance

0 10 20
Reality

VR
Random

Score (Higher is better)

TLX Effort

0 10 20
Reality

VR
Random

Score (Higher is worse)

TLX Frustration

0 10 20
Reality

VR
Random

Score (Higher is worse)

WPM

0 20 40 60
Reality

VR
Random

WPM (Higher is better)

Total Error Rate

0 2 4 6
Reality

VR
Random

Errors (Higher is worse)

Fig. 4. Plots of measures for baseline typing performance.

Typing on the real keyboard with a monitor in Reality featured the lowest frustration and effort and highest
Performance/WPM. However, the VR condition featured a comparable level of performance to previous studies,
with an average WPM of 43.1, decreasing from 56.1 for Reality, with significant but small increase in error rate.
This is inline with other tracked keyboard and fingertip implementations (e.g. [105] had a mean WPM of 41.2,
[11] 53 WPM with training using the Logitech Bridge SDK, [48] and [37] in the mid-to-high 30s, [90] at 21 WPM),

RM ANOVA Post hocs

Measure F(2,34) 𝑝 [2𝑔 𝐵𝐹 10 Reality-VR Reality-
Random

VR-Random

WPM 136.42 <0.01 0.62 >150 t=5.5, p<0.01 t=16.2,
p<0.01

t=10.7,
p<0.01

Error Rate 7.1 <0.01 0.19 27.9 t=-2.9,
p=0.02

t=0.5, p=0.9 t=3.5, p<0.01

TLX Performance 21.1 <0.01 0.43 >150 t=-2.7,
p=0.02

t=6.5, p<0.01 t=3.8, p<0.01

TLX Effort 24.5 <0.01 0.48 >150 t=-2.4,
p=0.05

t=-6.7,
p<0.01

t=-4.2,
p<0.01

TLX Frustration 27.3 <0.01 0.5 >150 t=-2.6,
p=0.04

t=-7.0,
p<0.01

t=-4.4,
p<0.01

Table 1. Quantitative results for baseline typing performance.

ACM Trans. Comput.-Hum. Interact., Vol. 29, No. 2, Article 15. Publication date: April 2022.

15:10 • McGill et al.

albeit such comparisons should be treated tentatively as a ballpark guide, given the influence of parameters
such as the physical keyboard design or inter-subject performance differences. These results suggest that our
VR keyboard implementation was at least broadly comparable with the state-of-the-art in research with respect
to tracked keyboard and fingertip typing performance, and assessed alone was performant enough to use for
the subsequent evaluations. Examining performance in the Random condition, we find a mean WPM of 9.3,
well in excess of the 3.8 WPM in [60] as previously discussed for secure keyboard implementations, and in
excess of the mean entry rate found by Schneider et al. [90] of 6.57 WPM for their localized RegionShuffle
condition, and 6.03 WPM for their RowShuffle condition. Indeed, the discrepancies emphasise the importance
of the underlying keyboard and finger tracking when contextualising performance in different use cases - for
which even our implementation is still some way off baseline performance, a point to be considered as a caveat
for all our subsequent findings. Finally, the error rate was lowest in Random - this suggests that a high degree of
accuracy could be achieved in singular key presses.

3.4 Part 2: Shortcut Discoverability
To assess shortcut discoverability, we created keyboard mappings for Microsoft Word (Office 365 2018), where
icons were rendered on their associated keys based on the current state (e.g. if CTRL was pressed, then keys would
show an icon reflecting their modified action, such as S showing the save icon for CTRL+S) For ecological validity,
we used icons taken directly from Microsoft Word for these visualizations, extracted using ImageMSO [51] with
icons selected based on keywords matching the shortcut action. Our participants reported using computers for
47±19 hours a week on average, of which approximately 5±5 hours was usage of Microsoft Word. Participants
rated their level of expertise (1 being novice, 10 being expert) as 5.6±1.1 on average.

Fig. 5. VR Keyboard layouts for the Icon condition with (top) non-modified F-key shortcuts being visualised and (bottom)
CTRL-modified shortcuts being visualised when the CTRL key was pressed.

Our intention was to compare shortcut recall both with and without the presence of a visual Icon, defining two
conditions: No Icon and Icon. For both conditions, participants were prompted with a given action (e.g. “Save”)
and asked to enact the equivalent keyboard shortcut (e.g. CTRL-S), if known. If it was not known, participants
could hit a “don’t know” button on the keyboard, at which point the task would skip to the next action. This skip
would also happen automatically after 8 seconds. Responses were recorded for analysis. We chose to evaluate
32 actions in a randomized order, covering a small subset of keyboard shortcuts available in Microsoft Word,
selecting ones for which there was an image counterpart found in ImageMSO.

Performance metrics (identification accuracy (%), questionnaires (TLX workload, System Usability Scale [13])
and preferences both between conditions, and the preferred means of enacting a given action (either no icon
meaning keyboard shortcuts without visual assistance, Icon meaning keyboard shortcuts with visual assistance,
GUI meaning mouse/touch interactions with GUI elements, or no preference) were recorded. We deliberately did
not compare directly to use of the Office ribbon GUI toolbar: given users had familiarity and exposure to this,
we did not want them to judge the GUI on the basis of the VR view (lower fidelity due to headset) which might

ACM Trans. Comput.-Hum. Interact., Vol. 29, No. 2, Article 15. Publication date: April 2022.

Creating and Augmenting Keyboards for Extended Reality with the Keyboard Augmentation Toolkit • 15:11

unduly lead users to select the MR keyboard conditions, but rather judge based on their existing preferences. In
addition, three questions were asked regarding shortcuts being error prone, easy to learn and efficient to use,
based on questions from [89].

3.5 Results

Accuracy (%) User Preferences (%)

Action No
Icon

Icon Δ No
Icon

Icon GUI None

Save 89 83 -6 89 11 0 0
Cut 56 94 +38 78 17 0 6
Copy 89 100 +11 94 6 0 0
Paste 83 100 +17 94 6 0 0
Select All 72 67 -5 78 17 6 0
Bold 83 83 0 61 17 17 6
Italic 78 89 +11 61 17 17 6
Underline 83 89 +6 61 17 17 6
Decrease font 0 61 +61 6 67 22 6
Increase font 0 72 +72 11 56 28 6
Cancel 11 61 +50 44 44 11 6
Undo 78 83 +5 56 39 6 0
Redo 39 78 +39 33 61 6 0
Print 78 100 +22 61 11 22 6
Search 61 61 0 50 33 17 0
Replace 0 28 +28 22 28 22 28
Go to page 6 11 +5 6 44 39 11
Font dialog 0 39 +39 11 22 56 11
Align center 6 33 +27 17 33 44 6
Align left 11 50 +39 17 39 39 6
Indent left 0 33 +33 11 56 28 6
End of doc. 11 28 +17 22 50 22 6
Beginning 11 28 +17 22 50 22 0
1 word left 22 33 +11 28 39 28 6
1 word right 22 39 +17 28 39 28 6
Help 6 94 +88 11 61 17 11
Repeat 0 61 +61 22 61 17 0
Spelling 11 100 +89 17 44 33 6
Update fields 0 39 +39 0 39 44 17
Keytips 0 39 +39 11 61 6 22
Save as 0 56 +56 28 50 22 0

Table 2. Shortcut statistics broken down by action, showing the identification rate and the user preferences. Green highlighting
refers to an improved identification rate, whilst grey highlighting noted that modality was preferred by the majority (over
50%) of participants.

As can be seen in Table 2 and Figure 6, visual assistance helped in discovering shortcuts, with some shortcut
discovery rates improving by as much as 89%. On average, shortcut identification improved from 33% in No Icon
to 63% in Icon (see Table 3) over the 32 tested shortcut actions. There were no significant effects on workload, nor

ACM Trans. Comput.-Hum. Interact., Vol. 29, No. 2, Article 15. Publication date: April 2022.

15:12 • McGill et al.

the duration taken to select the shortcut for the correct responses. In our questionaire deployed at the end of the
study, in a choice between Icon or No Icon, the Icon condition was preferred by the majority of users, seen as less
error prone and easier to learn.

Accuracy

0 20 40 60 80 100

No Icon

Icon

% (Higher is better)

TLX Workload

0 20 40 60 80 100

No Icon

Icon

Score (Higher is worse)

SUS Score

0 20 40 60 80 100

No Icon

Icon

Score (Higher is better)

Error prone

Strongly
Disagree

Strongly
Agree

No Icon
Icon

(Higher is worse)

Learning

Strongly
Disagree

Strongly
Agree

No Icon
Icon

(Higher is better)

Efficient

Strongly
Disagree

Strongly
Agree

No Icon
Icon

(Higher is better)

Preference

0 9 18

No Icon

Icon

of Ranks (Lower is better)

2

1

Fig. 6. Plots of measures for shortcut discoverability.

RM ANOVA 95% CI

Measure F(1, 17) 𝑝 [2𝑔 𝐵𝐹 10 No Icon Icon

Accuracy 87.3 <0.01 0.48 >150 [25.7, 41.3] [55.4, 71.0]
Duration 1.46 0.24 .02 0.6 [2.2, 3.1] [2.5, 3.3]
Workload 0.01 0.91 - 0.33 [31.5, 45.1] [31.9, 45.5]
SUS 27.6 0.01 0.4 >150 [49.9, 63.0] [71.5, 84.6]
Preference 128 <0.01 0.79 >150 [1.8, 2.0] [0.9, 1.2]
Error prone 12.4 <0.01 0.23 34.0 [2.1, 3.3] [0.8, 2.0]
Learning 29.2 <0.01 0.47 >150 [2.1, 3.2] [4.2, 5.3]
Efficient 4.2 0.06 - 1.8 [3.7, 4.8] [4.4, 5.5]

Table 3. Quantitative results for shortcut discoverability. Duration refers to mean time to shortcut selection for all correct
responses. Error prone: “These shortcuts were error prone”; Learning: “These shortcuts are easy to learn”; Efficient: “These
shortcuts are efficient to use”.

However, shortcut visualization was not universally useful. Examining preferences per-shortcut, we note a
pattern: for well-known shortcuts the preference was for No Icon. For two particularly well-known shortcuts

ACM Trans. Comput.-Hum. Interact., Vol. 29, No. 2, Article 15. Publication date: April 2022.

Creating and Augmenting Keyboards for Extended Reality with the Keyboard Augmentation Toolkit • 15:13

(Save and Select All), having an icon actually fractionally decreased correct identification. There was one shortcut
action,“Font Dialog”, that was preferred as being enacted via the GUI. In a subsequent interview regarding these
preferences, five participants noted the confusion that having icons for known shortcuts could cause, for example
“for the ones I knew I didn’t need the visual aids and I think the visual aids were sometimes confusing” (P1). Ambiguity
between the Icon and the action led to some conflict: “So F5 I know is refresh, but when I saw undo I just saw the
arrow and I hit that (instead)” (P10), and “I found that when it showed a visual aid they actually slowed me down
because I was looking for the icon even though I actually knew the shortcut” (P15). One participant noted that the
meaning of some icons was particularly difficult to interpret.

In contrast, the use of icons for unknown/new shortcuts was noted as helpful: “I wasn’t able to figure out all of
the icons, but it definitely improved my performance just in understanding some of them... I think the visual aid
for shortcuts was very useful” (P15). Where a preference for GUI interaction was indicated for a given action,
it was noted by ten participants that this was because a transition to GUI interaction (e.g. from keyboard to
mouse/touch) was likely necessary after executing the shortcut action. For example, if the keyboard shortcut for
font options is used, the user would likely prefer to interact with the font dialog with a mouse to manipulate the
font style, or if the file open dialogue was instantiated, the mouse would likely be preferred for navigating the
file system.

3.6 Discussion
3.6.1 Impact of Shortcut Visualization. Addressing RQ1, exposing shortcuts visually allowed users to find them
within approximately 2.9s (compared to a mean of 2.7s without assistance). However, on average accuracy
was only 63%. Thus, for the first time, we can properly place the effectiveness of envisaged keyboard shortcut
visualisation into context. Despite using a common, well known application, iconographic shortcut visualization
alone is not sufficient to make the breadth of shortcuts discoverable. Better icon design might however bridge
this gap. Previously discussed techniques [1, 34, 62] could also be combined with visual keyboard icons with
the aim of increasing recognition and discoverability. Interestingly, we also exposed a tension between offering
visual assistance, versus potentially confusing users or slowing them down due to relying on visual search rather
than muscle memory. Based on our findings, we suggest that when a shortcut is already known, a visual icon
should not be provided. However, we can imagine edge cases where this rule might be relaxed. If the user is new,
or has not used the application recently, then the gamut of shortcuts should be exposed, either all at once, or
staggered in such a way as to not overload the user. In such a case, shortcuts might adaptively fade over time or
usage. More broadly, our results emphasize that per-keycap visualization of shortcut icons is a powerful feature
that can (if mis-used) decrease the usability of visualised actions.

3.6.2 Implications for Engineering Augmented Keyboards. Our findings emphasised both the utility of visualisation
and the potential for visualisations to mislead or distract the user when seeking a particular keyboard shortcut.
Both points have significant implications for how we might design an architecture that can enable per-application
keyboard augmentation.
Firstly, our example looked at only one set of common Word shortcuts. However, application shortcuts will

frequently change depending on the context/state of the application. Moreover, despite an application and
its associated shortcuts being active, there will still exist other keyboard shortcuts and actions that may be
active. For example, the operating system will have global actions bound to keys, whilst other applications
may also contribute to the active keyboard shortcuts despite not being in focus. On reflection, this emphasised
that hierarchical mappings and inheritance would be a necessary key feature to support augmented keyboard
interactions that take into account how applications and the underlying operating system bind to keyboard
inputs.

ACM Trans. Comput.-Hum. Interact., Vol. 29, No. 2, Article 15. Publication date: April 2022.

15:14 • McGill et al.

Secondly, the errors our users made suggest that a range of interventions could potentially better support the
discoverability of shortcuts. We might, for example, control the visibility of a shortcut based on some parameter
(e.g. demonstrated prior usage/knowledge). Alternatively, we might select different 2D or 3D visualisations to
support users, for example, rendering additional text on or around the key when a query gesture such as a
fingertip dwell above the key is performed. This emphasised that the display space above the keyboard was
not static. To better support comprehension, keycap augmentations are needed to encapsulate logic regarding
dynamic visualisation of a variety of 2D/3D elements.

The requirement to support these capabilities re-affirmed, in our view, the need for a toolkit that could support
users in creating such behaviours and managing the display space on/above the keyboard.

4 DESIGNING THE KEYBOARD AUGMENTATION TOOLKIT

4.1 Motivation
Our initial study underlined the impact that keyboard augmentations could have on the usability of existing
keyboard shortcuts, significantly improving discovery rates in existing infrequently used shortcuts. More broadly,
our literature review demonstrated the breadth of interactions envisaged for physical, augmented and virtual
keyboards. Problematically however, we also noted that a significant proportion of this research into keyboard
interaction was closed source - hindering replication and consequently making it difficult to compare past
interactions to new interactions (without requiring a ground-up re-implementation) or extend past interactions.
This is despite there being a number of commonalities across keyboard research, in terms of:
Key Interactions Appropriating sensed inputs on/around the key to provide additional states beyond binary

keypress. For example, [10, 32] suggested touch interactions on keycap surfaces; [100, 113] explored the
mid-air / above-keyboard space; [80] explored touch-sensitive keyboard states.

Key Display How the space on/around keys is visually augmented e.g. to indicate the presence of a shortcut
through text, emojis, icons etc., or support feedback regarding on/around key interactions. Past research has
predominantly focused on 2D per-key displays, however recently [90] demonstrated the potential utility
of displays spanning multi-key elements, and 3D element above keys as part of the extended augmented
keyboard space.

Context-Dependent Interactions (Keyboard Mappings) Activating groups of key interactions and display
elements based on the user’s current context e.g. based on the current application being used. For example,
[10, 32] referred to context-dependent mappings and managing multiple mappings; [90] demonstrated
multiple mappings.

Keyboard Layout Manipulating the spatial arrangement and dimensions of the physical or virtual keyboard
and it’s keys e.g. to better support mid-air text entry. For example Yanagihara [111] explored spherical/3D
keyboard configurations; more typically 2D representations are standard, such as those explored by [21] in
examining the impact of key shape and dimensions.

Whilst prior research has explored individual aspects of these features, there is a research bottleneck in terms of
building novel combinations and permutations of these features that are integrative of prior research. For example,
how might a multi-key interaction work with a 3D virtual keyboard? Or how might GestAKey inputs be bound
to 3D above-key display elements? With every keyboard interaction, layout and mapping being implemented
from the ground up by researchers, such integrative extensions of research become ever more difficult to achieve.
Running parallel to our research was the development of the Logitech Mixed Reality Keyboard, a prototype

consumer-oriented keyboard based on the Logitech k780 whose position could be tracked by Microsoft Mixed
Reality headsets.
This was the descendant of the Logitech Bridge SDK, in turn influenced by our work in bringing physical

keyboards into VR using pass-through cameras [64]. The internal development of the Bridge SDK and this

ACM Trans. Comput.-Hum. Interact., Vol. 29, No. 2, Article 15. Publication date: April 2022.

Creating and Augmenting Keyboards for Extended Reality with the Keyboard Augmentation Toolkit • 15:15

Fig. 7. Left: The Logitech MR Keyboard for Microsoft Mixed Reality, in reality. See Figure 1 for an equivalent image rendered
in VR. Right: Logitech test lab with a user interacting with the Logitech MR Keyboard.

peripheral kickstarted, and emphasized the need for, the concurrent development of KAT to support per-key
augmentations. The Logitech MR keyboard utilizes the inside-out tracking on Microsoft MR headsets to both track
a known active IR constellation (to allow for positional tracking), and capture/render a thresholded and segmented
video pass-through of the user’s hands within the boundaries of the keyboard, at low latency. This latter feature is
crucial in particular for supporting performant text entry in VR, as it removes the additional latency and potential
inaccuracy of current hand tracking implementations. In internal benchmarks, this prototype has demonstrated
performance at approximately 85% of real world WPM (baseline mean of 50.6 WPM ±10.16 versus a VR mean
of 43.4 WPM ±17.37). Considered in combination with advances in headset sensing such as the Oculus Quest
hand tracking1, we could see that our capacity to track our keyboards, and detect interactions on/around said
keyboard, would increase greatly in the coming years. For example, hand tracking suggested that flexible per-key
states/events were a necessity, such that keys might support pressed/touched/hover states, or react differently
based on the finger interacting with the key. This was backed up by recent research into touch-sensitive MR
keyboards in particular [80]. Prior novel hardware, such as GestAKey [93] could, for example, implement per-key
pressure states in such a way. These developments provided further motivation for KAT, and influenced the
identified requirements.

4.2 Requirements
Our proposed solution to the challenge of facilitating the replication, sharing and prototyping of phyiscal,
augmented, and virtual keyboard interactions is the Keyboard Augmentation Toolkit (KAT), currently at a “beta”
standard2. Based on the identified commonalities in prior research, and heavily influenced by the featured and
requirements of leading augmented keyboard visions such as TDKs [10, 32] and ReconViguRation [90] and our
evolving capability to track physical keyboards and hands, we have built KAT to provide a single Unity-based
toolkit for creating novel virtual, augmented and physical keyboard interactions. The aims of KAT were to:

• Support notable, key features from prior literature in generic, re-usable ways
• Support extension of these features, facilitating future research
• Demonstrate an architecture that could inform future platform implementations.
• Where possible, re-use existing established external tools (e.g. for specifying mappings and layouts) better
facilitating prototyping.

1oculus.com/blog/oculus-connect-6-introducing-hand-tracking-on-oculus-quest-facebook-horizon-and-more/?locale=en_GB
2See github.com/mark-mcg/keyboard_augmentation_toolkit for the latest release of KAT.

ACM Trans. Comput.-Hum. Interact., Vol. 29, No. 2, Article 15. Publication date: April 2022.

oculus.com/blog/oculus-connect-6-introducing-hand-tracking-on-oculus-quest-facebook-horizon-and-more/?locale=en_GB
github.com/mark-mcg/keyboard_augmentation_toolkit

15:16 • McGill et al.

• Unify research into virtual/mid-air and augmented/physical keyboard interactions into a common shared
platform.

With particular reference to the key features identified across physical and virtual keyboard research, KAT’s
requirements were to support:
Extensible Key Interactions From capacitive sensing, to raycast controllers, to hand tracking, the space

on/around a (physical or virtual) key is now able to be appropriated for interaction in a variety of ways,
with research continually exploring novel sensing and input modalities. Consequently, the events that
could emanate from a key (or collection of keys) need to be extensible, enabling practitioners to define new
interactions that can be replicated and shared.

Key Event Interception, Suppression, Simulation Where possible, support the interception, suppression
and simulation of key events, allowing practitioners to re-write existing physical keyboard functionality
based on proposed mappings and simulate physical keyboard outputs with virtual keyboards.

2/3D and Multi-Key Displays The space on/above/around a keycap could be appropriated for interaction and
display, and this space may vary based on the keyboard layout and the current dimensions of a given key,
or indeed span multiple keys.

Hierarchical Keyboard Mappings Applications could expose multiple keyboard mappings depending on their
current focus, whilst users might have their own preferences (e.g. binding shortcuts to the number pad).
Consequently, we need to be able to support the definition and usage of different keyboard mappings,
inheritance in keyboard mappings, and different behaviours in conflict management where multiple
mappings attempt to utilize the same key location.

Changeable Keyboard Layouts We need to be able to support the import or definition of 2/3D virtual layouts
such that novel layouts are shareable. The virtual keyboard layout might vary over time, adapting to
mobility (e.g. mid-air input), context (e.g. sitting down at desk, aligning to existing surfaces), or available
input modalities (e.g. adapting to an existing physical keyboard to create an augmented keyboard). Where
possible, interactions and per/multi-key display elements should be able to handle this plasticity in keyboard
layout.

Our aim for KAT was to support generic extensible events, existing keyboard mappings, and importing/defining
2/3D layouts that could be changed in real-time, providing a powerful platform for prototyping of novel augmented
and mid-air keyboard interactions. In this section, we describe the structure of the toolkit at the time of writing,
and elaborate on the supported features and current notable limitations. It should however be noted that the
version described in this paper is a snapshot, and consequently is liable to change/improve in the coming
months/years. In particular, limitations described may not be present at the time of reading.

4.3 Architecture
A high level overview of the architecture of KAT can be seen in Figure 8. KAT’s architecture is unique in that it
facilitates the separate definition of:
Virtual Keyboard Layout The 2/3D design of the virtual keyboard (assumed to be one mesh per key), which

can optionally match an underlying tracked physical keyboard to facilitate augmented physical keyboards.
Keyboard Mapping The interactive augmentations to be applied to the current keyboard layout. Each mapping

comprises of one or more 𝐾𝑒𝑦𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 .
For reference in the following discussion, we also refer to the following throughout:

Key Element Defines a unique interaction in a keyboard mapping, associated with one or more 𝐾𝑒𝑦𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 .
These Elements can react to extensible sensed events (e.g. key depression, touch, hover) and can display
UI elements that are sized to fit the 3D bounds of the associated physical-virtual keys. For example, an

ACM Trans. Comput.-Hum. Interact., Vol. 29, No. 2, Article 15. Publication date: April 2022.

Creating and Augmenting Keyboards for Extended Reality with the Keyboard Augmentation Toolkit • 15:17

KAT manages active mappings and merges these
mappings with the current layout

Keyboard Layout Editor (2D)Any formats supported by Keyboard Layout Files
Creator (XKB, PKL, Microsoft KLC, keylayout, TMK and

AHK) - basic keypress interactions only

Unity Prefab or Model (2D/3D)Prefab, Pre-De�ned in Unity Editor, or Generated
Programatically (C#)

Ex
te

rn
al

 T
oo

ls
U

ni
ty

 E
di

to
r

Keyboard Mappings
can be created from...

Keyboard Layouts
can be created from...

Ex
te

rn
al

 T
oo

ls
U

ni
ty

 E
di

to
r

Active Mappings Selection {0..many}
KAT tracks what mappings are currently active (based on

application logic e.g. MS Word shortcuts when application is
in focus)

Active Layout Selection {0..1} from many
KAT tracks single current layout active, manages changes in

layout (based on application logic e.g. docking)

Match/Bind Mapping Elements to Layout Location(s)
E�ectively assigning all potentially active mapping UI elements to their layout locations, if they exist.

Currently uses a naïve solution based on matching location tag metadata, this can be trivially extended. Can include
elements that span multiple locations (e.g. multi-key actions).

Select Active Mapping Elements at Each Single or Multi-Key Location
Location sorts elements by priority/hierarchy order, and activates all that do not con�ict or potentially overlap (e.g. two

elements attempting to use the same trigger action at the same location)

Augmented Keyboard
using Current Layout and

Active Mapping(s)

Ke
yb

oa
rd

 A
ug

m
en

ta
tio

n
To

ol
ki

t

Fig. 8. An overview of the architecture of KAT.

ACM Trans. Comput.-Hum. Interact., Vol. 29, No. 2, Article 15. Publication date: April 2022.

15:18 • McGill et al.

Emoji mapping could have an element bound to the ‘A’ 𝐾𝑒𝑦𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 which renders a 3D smile model in
the space above the key, and outputs a :smile: emoji when the ‘A’ key depression event is enacted.

Key Location A layout-independent definition of a key (described by keycode metadata such as the primary
key(s) and modifier(s)) that provides 𝐾𝑒𝑦𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 with access to the current underlying mesh/colliders
based on the applied layout, and manages what assigned 𝐾𝑒𝑦𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 are currently considered active
(in the case of conflicts or multiple interactions being bound to a key). This acts as a bridge between our
mapping and our layout.

Both the layout and current mapping can be dynamically changed, with KAT using 𝐾𝑒𝑦𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 to act as a
bridge between the mapping and layout. The layout of a KAT keyboard can be changed on-the-fly. For example,
consider that the layout might change to one preferable for mid-air direct touch input when the user is standing
[22] and then change to an aligned digital twin of a physical tracked keyboard when seated to enable more
performant input with a physical keyboard [64] - effectively enabling adaptation to the user’s physical context.
In the same way, we can also change the current mappings being applied to the KAT keyboard e.g. applying a
unique keyboard mapping based on the current application in focus.
KAT manages how the layout and mapping(s) are merged to create virtual (or virtual-physical) keyboards

with significantly expanded capability for interaction and display. It does so through decoupling the virtual key
definition (i.e. the 3D mesh of the ‘A’ key for the given layout) from the persistent definition of that key based
on metadata (i.e. the 𝐾𝑒𝑦𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 for the ‘A’ key) which in turn keeps a track of the current mapping elements
suggested to be bound/active on that key (i.e. our emoji rendered on the ‘A’ key that is to be output when the key
is pressed). In this way, we can change the mapping and layout separately, and the 𝐾𝑒𝑦𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 remains the same
throughout. This flexibility enables practitioners to explore a variety of keyboard concepts, such as physically
augmented and mid-air/surface-based keyboards, in terms of both their layout, and how we appropriate keys to
enable new interaction capabilities.

4.4 Supported Usage
KAT provides a set of tools (predominantly Unity components with some software APIs) for creating novel
interactive mappings combining different kinds of display (e.g. on or above key) and extensible triggers based
not just on key depression events, but on any arbitrary event we can sense on or around a key e.g. triggering
events when touching, tapping or hovering on a given key. Keyboard mappings and layouts can be created in the
Unity editor using the provided C# components, or can be imported from supported third party tools. We do
however note that KAT is not yet sufficiently mature for XR novices, and is currently best regarded as a toolkit
for facilitating the prototyping of XR keyboards by practitioners and experts - some knowledge of how to use
the Unity inspector is required, and there are notable caveats regarding usage (see subsection 4.7) e.g. it is not
yet possible to import sophisticated mappings (e.g. using hierarchies, with multiple per-key interactions) from
external sources.

4.5 Key Features
4.5.1 Key Capture & Representation (see Table 4). At an OS level, key inputs are captured as scan codes and
then translated to platform-specific keycodes based on the keyboard driver. In turn, these key codes are typically
interpreted by the platform’s current active layout (a mapping in the parlance of this paper) which in turn may
deliver Unicode key outputs for different languages, as well as key code events, to applications.
Problematically, these key codes are not entirely cross-platform compatible, and the underlying key code

definitions are typically anglo-centric (e.g. Windows Virtual Keycodes), with other languages mapped onto
the underlying keycodes. Whilst this issues persists with KAT, we do employ a platform-independent keycode
representation, an extension of the representation used in Keyboard Layout Files Creator [40], with bindings

ACM Trans. Comput.-Hum. Interact., Vol. 29, No. 2, Article 15. Publication date: April 2022.

Creating and Augmenting Keyboards for Extended Reality with the Keyboard Augmentation Toolkit • 15:19

to translate between Windows, Mac, Linux and Unity key code representations. However, key interception,
suppression and simulation is implemented for Windows only currently, a limitation we believe is acceptable
for the time being as Windows is the only platform capable of driving the majority of tethered PC VR headsets
currently. Consequently, KAT can support the mirroring of Windows applications in VR (using any appropriate
screen mirroring library such as VR Desktop Mirror [17], with interception/suppression/simulation of key inputs
to those applications.

Feature KAT Support Notes & Limitations

Key Capture & Representation

Platform-Independent Key Event
Representation

Adopted modified version of [40] platform independent key
position with conversions for Windows, Mac, Linux, and Unity
KeyCode.

Key Interception / Suppression Using the LowLevelKeyboardProc hook Windows API, nec-
essary to create Unity apps that can act as a proxy between
the MR view and existing OS applications brought into Mixed
Reality. Supports interception and suppression of key events
(e.g. overriding a key press).

Table 4. Key Capture & Representation features and support.

4.5.2 Virtual Layout (see Table 5). Keyboard layouts are effectively comprised of a collection of meshes, where
each mesh indicates a unique key position based on the representation above. These meshes can be built from
2D specifications, with basic support for importing from Keyboard Layout Editor [85]. However the primary
means of defining these layouts is either through an imported 3D model that features appropriately named key
submeshes (so Unity-specific key location meta data can be mapped to these submeshes), or has already been
manually modified to incorporate key location meta data within Unity. Examples of all of these approaches can
be seen in the associated video with this paper, notably:
From external 3D model We automatically extract the keycap surfaces from the Logitech MR Keyboard 3D

model, creating a 2D keyboard overlay that perfectly fits the 3D model but can be dissociated from it.
From external 2D KLE definition We import (JSON) and instantiate the standard ISO 105 layout from KLE

[85], constructing 2D keycap meshes.
2D from within Unity We recreate the Dudley keyboard layout from their 2019 ISMAR paper [22] on perfor-

mance envelopes of virtual keyboards.
3D from within Unity We approximately recreated the Yanagihara 3D keyboard from VRST 2019 [111] using

Unity cube primitives, applying key location metadata to each cube as appropriate.
Of particular note is our ability to dynamically instantiate and apply a new layout, and retain our binding of

active keyboard mappings to layout element locations. As demonstrated in the associated video, this gives us
the unique ability to modify on-the-fly which layout is utilized by the user for keyboard-type interactions. Our
existing implementation demonstrates the utility of this within the context of mobility in typing. We envision
that the user may transition from seated, desk-based interactions with a physical keyboard, toward mid-air
interactions when standing/mobile (e.g. an architect leaving their desk to walk around a roomscale presentation
of a building). In the video, we illustrate that the virtual keyboard can effectively “dock” with any available
physical keyboard, at which point the virtual keyboard changes to a layout appropriate for the underlying tracked
physical keyboard. Conversely, if we undock the keyboard, we are not constrained to the layout of the physical

ACM Trans. Comput.-Hum. Interact., Vol. 29, No. 2, Article 15. Publication date: April 2022.

15:20 • McGill et al.

Feature Illustration KAT Support Notes & Limitations

Keyboard Layout

Keyboard
Layouts

For 2D, basic support for importing Keyboard Layout Editor
(KLE) JSON definitions [features like rotation of keycaps not
currently supported]. For 3D, and 2D keycap surfaces from
3D, either imported 3D models or Unity Editor Prefabs can
be used (given correct naming of sub-meshes or presence of
location metadata), with 2D layouts able to be extracted from
3D keycap surfaces.

Dynamic
Layout
Switching
(Docking)

Support for switching layout dynamically e.g. supporting dock-
ing/undocking a mid-air keyboard with a physical keyboard
based on requirements or mobility of user.

Table 5. Keyboard layout features and support.

keyboard (which may not be appropriate for mid-air interactions), instead for example triggering a change to the
Yanagihara keyboard for mid-air direct touch typing.

4.5.3 Keyboard Mappings (see Table 6). Keyboard mappings are collections of Key Elements, effectively describing
a UI overlay that should be applied to the current layout.

Feature Illustration KAT Support Notes & Limitations

Keyboard Mappings

Keyboard
Mappings

For basic single-level mappings, can import from any
mapping compatible with Keyboard Layout Files Cre-
ator (top, e.g. Microsoft KLC) [No support for dead
keys/chained dead keys and other advanced features cur-
rently]. Hierarchical mappings, and mappings with
custom trigger actions beyond default selection, can be
created (or composed from imported mappings) in Unity
Editor (bottom).

Application
Context
Switches

By polling the ForegroundWindow process name and win-
dow text, we can selectively activate context mappings
based on what process is currently foregrounded (e.g.
Microsoft Word, pictured), and what website is being
browsed;

Table 6. Keyboard mappings features and support.

Basic single-level mappings can be imported from KLFC [40], a tool that supports the import and generic
export of mappings from a variety of common platforms, giving us the ability to effectively import (JSON) from a

ACM Trans. Comput.-Hum. Interact., Vol. 29, No. 2, Article 15. Publication date: April 2022.

Creating and Augmenting Keyboards for Extended Reality with the Keyboard Augmentation Toolkit • 15:21

host of tools and existing mappings currently utilized by operating systems, for example from Microsoft Keyboard
Layout Creator [70] or Linux XKB definitions, an example of which can be seen in subsubsection 4.6.1. This
opens the door toward quickly importing or defining alternate languages, bespoke secure keyboard layouts etc.

Based on our examination of prior research, we identified that single-level keyboardmappings do not sufficiently
allow us to share or manage the existence of shortcuts and actions from multiple applications simultaneously,
nor do they allow for an application to adapt to it’s own context e.g. taking over a selection of keys temporarily
for an interactive widget during a transient interaction. Consequently, we also support hierarchical mappings.
Hierarchical mappings allow for multiple mappings to be considered active at the same time. For example,
consider a ‘Photoshop’ keyboard mapping that visualizes the default shortcuts of this application. Now consider
custom shortcuts that might only be visible when the colour picker is active, and that override only a subset of
the existing shortcuts. In KAT, we could create a colour picker mapping which extends the parent ‘Photoshop’
mapping, and then select (based on depth order within the hierarchy) which elements of the active mapping(s)
should be active at each key location.

Our current implementation of this is naïve, effectively assigning all elements to their preferred key locations
based on the target keycode metadata, and then letting each key location select the set of active elements based
on hierarchy order and any possible conflicts (e.g. if two elements want to display their content on the center
of the keycap surface) - but this approach is trivially extensible to support different assignment and activation
behaviours. This approach allows an application to for example ask for a temporary widget mapping to become
active, and because this widget is at the deepest point of the hierarchy, it gets priority over existing active
mappings, such as the default language/text input mapping used by the user, or an extended parent mapping
as in our example. We envisage this design is the first step toward a feasible OS/platform implementation of
augmented keyboards that could operate correctly across multiple client applications, allowing for key inputs to
be selectively and temporarily appropriated.

4.5.4 Interactive Key Elements. Each 𝐾𝑒𝑦𝐸𝑙𝑒𝑚𝑒𝑛𝑡 in a mapping denotes a set of interactions to be bound to a set
of one or more keys, handling both display (e.g. 2/3D icons, text) to support interaction discovery and feedback,
and associated actions to be triggered based on received events.

Display (see Table 7. Each element can utilize the 3D volume and surfaces of the associated key(s), with
exemplars (see Table 7) demonstrating 2D keycap and 3D above-key feedback. KAT provides helpers for querying
the 3D bounds and surfaces of the associated key(s), through our definition of an 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑅𝑒𝑔𝑖𝑜𝑛 associated
with a Key Location, which automatically adapts interaction colliders and layout bounds (and informs display
elements) based on changes to the keyboard layout. Key elements, and their associated interaction regions, can
also span multiple specified key locations, with KAT automatically creating a merged mesh and appropriate
colliders for the combined multi-key location - however this support is currently basic, handling multiple keys
correctly only when they are adjoining keys.

Interaction and Events (see Table 8). KAT supports extensible event generation and handling, crucially enabling
the creation of novel key interactions that go beyond reacting to basic key depression events. As can be seen in
Figure 9, events can be generated and relayed globally (e.g. on layout/mapping change) or routed to specific key
locations based on applicability (e.g. relaying sensed data per-key such as pressure or touch).

Each key location can have a set of default interaction event providers, with KAT 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑅𝑒𝑔𝑖𝑜𝑛𝑠 by default
attaching𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐸𝑣𝑒𝑛𝑡𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑠 for 3D colliders denoting the key mesh volume, the key surface, and the space
above a key, triggered when a tracked fingertip enters these colliders. This forms the foundation of support for a
variety of 3D interactions on/around physical-virtual keys. Each mapping key element can also attach additional
interaction providers that will function whilst the parent mapping is active. For example, an element might attach

ACM Trans. Comput.-Hum. Interact., Vol. 29, No. 2, Article 15. Publication date: April 2022.

15:22 • McGill et al.

Feature Illustration KAT Support Notes & Limitations

Key Elements / UI

Key Location
2D Display

𝐾𝑒𝑦𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 display divided into regions
(top/middle/bottom, left/center/right) with each
region displaying Text or Sprites (using Unity TextMesh-
Pro, with Unicode support), or optionally containing
Unity native UI elements (e.g. sliders, buttons).

Key Location
3D Display

𝐾𝑒𝑦𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 have a 3D position and above-keycap
bounding box. Consequently, we can use this space for
feedback e.g. meshes/3DModels can be positionedwithin
the bounding box above the keycap surface (here shown
with animated windmill); and feedforward tooltips [102]
can be drawn that call out from the center of the keycap.

Multi-Key
Display

Multiple co-located 𝐾𝑒𝑦𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 can be combined to
form a composite location, complete with merged mesh,
with all the same UI / interaction options available as per
our 2D/3D display options, optionally to be triggered by
pressing one or all of the keys included. These multi-key
elements can also be scaled to fit the above-key space,
enabling basic mid-air widgets above the key location
(e.g. a mid-air slider, pictured bottom).

Table 7. Keyboard Elements / UI features and support.

a𝑇𝑎𝑝𝐸𝑣𝑒𝑛𝑡𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟 , which listens for collision events from the virtual key surface collider and raises Tap events
based on short repeated collisions.
Regardless, all raised interaction events for a given 𝐾𝑒𝑦𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 will eventually be relayed to all active

𝐾𝑒𝑦𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 contained at that 𝐾𝑒𝑦𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛. 𝐾𝑒𝑦𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 can then specify how they react to incoming events
using 𝐸𝑣𝑒𝑛𝑡𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝑠 , for example enacting actions based on a user depressing the key, touching the key surface,
dwelling above the key surface, or repeatedly tapping the key - all supported by default3 with KAT (see Table 8).

3Fingertip interactions are currently only implemented for the Oculus Quest/2, but support for other hand tracking solutions such as from
Ultraleap could be easily added through adding fingertip colliders with the associated KAT components to tracked fingertips

ACM Trans. Comput.-Hum. Interact., Vol. 29, No. 2, Article 15. Publication date: April 2022.

Creating and Augmenting Keyboards for Extended Reality with the Keyboard Augmentation Toolkit • 15:23

Key Location
Bound to key mesh in current active

layout using key metadata

Key Element in Mapping
Spans one or more keys, bound based

on key metadata, modifying key
presentation based on trigger events

Keyboard / Layout /
Mapping Managers

Interaction Event
Triggers

Reacts to provider
events (e.g. tap, dwell,

depression)

Display Elements
Surface image/text,

above-key mesh,
Unity UI scaled to
surface etc. using

Interaction Region.

Interaction Event Provider(s)
Can be attached to Key Element

(providers speci�c to mapping e.g.
tap events) or Key Location
(providers that are always

available e.g. depression events)

Global Events
Layout changed / Mapping changed /
Keyboard Docked etc. Events likely to

impact multiple key locations.

External Key-Speci�c Events
Key depression or other hardware

sensed values (e.g. pressure, capacitive
touch). These can be routed to Key

Locations based on key metadata (i.e. the
X key location doesn't need to receive

events for the Y key location)

Interaction Region
Denotes the available 3D

volume for
interaction/display for a
given key, based on the

mesh of the current
layout.

Resizes colliders to

provide basic support for
detecting collisions under

the key surface
(depression), on the key

surface (touch), and
above key surface (dwell)

Global + External Events

Global,
External

and
Interaction

Events

Fig. 9. Flow of generated events in KAT.

This functionality is trivially extensible, for example becoming feasible to support new interactions and sensing
capabilities (e.g. pressure or tilt-sensitive keys) as we will demonstrate in subsubsection 4.6.4.

4.5.5 Dynamically Combining Mappings and Layouts. As discussed in the hierarchical mappings point, KAT
provides the binding logic for connecting mappings with the current layout (illustrated in Figure 8), both of
which can change over time. The assignment of mapping 𝐾𝑒𝑦𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 to 𝐾𝑒𝑦𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 is handled by the
𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝑇𝑜𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐵𝑖𝑛𝑑𝑒𝑟 which effectively matches the 𝐾𝑒𝑦𝐸𝑙𝑒𝑚𝑒𝑛𝑡 location metadata with the available

ACM Trans. Comput.-Hum. Interact., Vol. 29, No. 2, Article 15. Publication date: April 2022.

15:24 • McGill et al.

Feature Illustration KAT Support Notes & Limitations

Key Elements / UI

Element/Keycap
Events &
Interactions /
Per-Key
Touch-Sensing

• React to interactions (Hover, Select, Surface Swipe/Tap,
Dwell) driven by fingertip collisions (pictured).

• React to platform events (e.g. key press)
• Fake platform events when not docked with physical
keyboard (e.g. enact key press on depression of virtual
key)

• Simulate platform key events (using InputSimulator,
Windows only currently).

• Extensible events and matching triggers, effectively
accommodating a limitless range of key interactions.

• N.B. Triggers cannot currently be defined/added to
JSON mappings outside Unity Editor.

Table 8. Keyboard Elements / UI features and support.

𝐾𝑒𝑦𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 based on the current layout. This is necessary as a number of keys are typically optional (e.g.
number-pad keys) and may not be present in the current active layout.
Each 𝐾𝑒𝑦𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 manages which elements are active based on the behaviour of it’s 𝐴𝑐𝑡𝑖𝑣𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑆𝑒𝑙𝑒𝑐𝑡𝑜𝑟 .

The default behaviour for this is currently to use depth in hierarchy, depth first, whilst avoiding obvious
conflicts (e.g. two elements listening to the same key depression trigger). Locations are also responsible for
relaying events to their active/contained elements e.g. a fingertip colliding with the location’s key surface
collider to indicate a tap interaction. For both assignment of 𝐾𝑒𝑦𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 to 𝐾𝑒𝑦𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 , and the selection of
currently active 𝐾𝑒𝑦𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 , this logic can be modified through extensions to the𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝑇𝑜𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐵𝑖𝑛𝑑𝑒𝑟
and 𝐴𝑐𝑡𝑖𝑣𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑆𝑒𝑙𝑒𝑐𝑡𝑜𝑟 classes.

4.6 Evaluation by Demonstration
To illustrate the capacity of KAT for facilitating novel virtual keyboard interactions, we discuss four evaluations
by demonstration [53] of this toolkit, demonstrating how we re-create existing research mappings, layouts, and
interactions, and create novel hierarchical mappings that expand the capability of virtual and augmented physical
keyboards.

4.6.1 Existing Research Mappings. For keyboard mappings, we have provided some basic support for code-based
generation of mappings, in particular generating randomized alphanumeric keyboard mappings, mimicking the
secure keyboards presented by [90]. An example of keyboard mapping import functionality is shown in Figure 10,
where new AZERTY layout (from [25–27], using the “afnor” XKB definition [29]) is used to generate a mapping.
Note also this mapping does have some errors, particularly with missing unicode characters (indicated by the
empty square symbol, font asset glyphs must be created in Unity for the target character ranges in TextMeshPro),
and a lack of support for dead keys (keys which modify the next subsequent key press), and compose/keysym
options currently. Nonetheless, this does illustrate that broadly functional mappings can rapidly be imported
from existing sources, and we expect this support to be improved over time.

4.6.2 Hierarchical Mappings. An example of a hierarchical mapping can be seen in Figure 11. We define a parent
mapping (either in the Unity inspector or programatically) which contains 𝐾𝑒𝑦𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 that when activated load

ACM Trans. Comput.-Hum. Interact., Vol. 29, No. 2, Article 15. Publication date: April 2022.

Creating and Augmenting Keyboards for Extended Reality with the Keyboard Augmentation Toolkit • 15:25

Fig. 10. Example of the new AZERTY [25–27], imported as JSON generated by KLFC using the XKB definition [29], with
alternate/shift keys also visualized.

a specified child mapping - here based on the emoji category selected, one of Animals, Faces, Food, or Vehicles. We
then create child mappings of this parent set of controls, one each for the emoji categories. Each of these mappings
in turn contains 𝐾𝑒𝑦𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 that describe the emoji to be visualized (using a 𝑇𝑒𝑥𝑡𝑀𝑒𝑠ℎ𝑃𝑟𝑜-driven 2D display),
and the action that should be executed on key press (outputting the emoji as text using a 𝑆𝑡𝑟𝑖𝑛𝑔𝑂𝑢𝑡𝑝𝑢𝑡𝐴𝑐𝑡𝑖𝑜𝑛
which initiates a 𝑃𝑜𝑠𝑡𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑊 call on Windows to output unicode text to the current foreground application).

Fig. 11. Left: Unity component describing a child mapping with emoji 𝐾𝑒𝑦𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 bound to each key. Right: “Animals”
mapping has been activated, rendering available emoji shortcuts.

In the example figure, we have activated the “Animals” category of emojis by selecting the Animals key, and
the numberpad controls for activating different emoji categories are still visible. This is because the Animals
mapping is a child of the controls mapping, and thus inherits any (non-overloaded) augmentations for display.
The KAT API supports combining or exclusively activating a given mapping, and KAT will attempt to activate
and bind all elements in the child mapping to key locations, before doing the same for parent mappings. With
this design, we can support nested hierarchies of mappings, for example enabling temporary widgets that are
bound to a subset of keys but do not override other currently active shortcuts, or the intermixing of multiple
active mappings simultaneously (e.g. base OS shortcuts, and specific shortcuts for the foreground application).

ACM Trans. Comput.-Hum. Interact., Vol. 29, No. 2, Article 15. Publication date: April 2022.

15:26 • McGill et al.

4.6.3 Existing Research Layouts. As part of our docking example illustrated in the accompanying video, we
re-implemented recent VR keyboards from Dudley et al. [22] (2D) and Yanagihara et al. [111] (3D), pictured in
Figure 12. These layouts both supported the full gamut of our toolkit interactions, and consequently are fully
interactive after spending a matter of a few hours on their creation. In this way, we demonstrate in particular
how novel layouts can quickly be prototyped and assessed by programatically or manually placing key location
meshes into a Unity prefab, and make comparisons across virtual keyboard implementations easier.

Fig. 12. Approximations of the Yanagihara et al. [111] (left) and Dudley et al. [22] (right) VR keyboard layouts, both using
the previous new AZERTY mapping, with alt/shift key visualizations on keycaps.

4.6.4 Existing Research Interactions. Finally, to demonstrate how KAT can be extended to support novel key
interactions, we implemented simplified simulated versions of GestAKey [93] - a key that could detect touch
gestures on it’s surface - and Metamorphe [6] - a key that, amongst other features, could be physically tilted
left/right/up/down. To recap, for each interactive event type, we define an 𝐸𝑣𝑒𝑛𝑡𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟 responsible for raising
the events as they occur, and an 𝐸𝑣𝑒𝑛𝑡𝑇𝑟𝑖𝑔𝑔𝑒𝑟 to enable key UI elements to listen and react to raised events.
Due to the achitecture of KAT, the implementation of these key interactions was trivial, as both could be

implemented using existing fingertip-based collision events with our defined 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑅𝑒𝑔𝑖𝑜𝑛 colliders for
each key mesh. In both cases, we defined a new 𝐸𝑣𝑒𝑛𝑡𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟 extending our base𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐵𝑎𝑠𝑒𝑑𝐸𝑣𝑒𝑛𝑡𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟
- a class that simplifies receiving collision events from a specific key collider (e.g. above key, on surface, or key
body). This class drives a variety of our fingertip interaction event providers (e.g. for tap, touch and depression
events). For our simulated Metamorphe key, we simply determined whether the fingertip collision was occurring
to the right or left of the key. Based on this, we would modify the key mesh transform, rotating the key on
the y-axis to simulate a left/right physical tilt on the virtual keyboard representation, and raise an associated
𝑀𝑒𝑡𝑎𝑚𝑜𝑟𝑝ℎ𝑒 event indicating the direction of tilt. A corresponding 𝑀𝑒𝑡𝑎𝑚𝑜𝑟𝑝ℎ𝑒𝐸𝑣𝑒𝑛𝑡𝑇𝑟𝑖𝑔𝑔𝑒𝑟 (extending our
base 𝐸𝑣𝑒𝑛𝑡𝑇𝑟𝑖𝑔𝑔𝑒𝑟 type) could then receive this event and execute arbitrary𝑈𝑛𝑖𝑡𝑦𝐸𝑣𝑒𝑛𝑡𝑠 (effectively invoking any
function in Unity) based on this - in Figure 13 invoking 𝑆𝑒𝑡𝑇𝑒𝑥𝑡 on the key element 𝑇𝑒𝑥𝑡𝐷𝑖𝑠𝑝𝑙𝑎𝑦 component to
change the keycap text based on the tilt. Similarly, for the GestAKey implementation, when the fingertip collides
with the keycap surface collider, this triggers continuous collision events that can be treated as coordinates on
the 2D keycap surface - effectively turning the virtual keycap into a tracked touch input much as GestAKey
functioned. Here, we use a basic swipe detection algorithm [50] to trigger swipe events (8 directions) on the
surface, emulating a key function of GestAKey.

Both implementations took approximately 100 lines of code (excluding repetitive case statements) across three
extension classes (the 𝐸𝑣𝑒𝑛𝑡𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟 , 𝐸𝑣𝑒𝑛𝑡𝑇𝑟𝑖𝑔𝑔𝑒𝑟 , and 𝐸𝑣𝑒𝑛𝑡), with KAT providing the necessary scaffolding
to quickly and easily integrate support for these additional keyboard interactions. In both cases, real hardware
implementations would simply need a Unity class that could raise appropriate events scoped to the specific key
they applied to (e.g. touch or gesture of the ‘A’ key). As detailed in Figure 9, these events could then be relayed

ACM Trans. Comput.-Hum. Interact., Vol. 29, No. 2, Article 15. Publication date: April 2022.

Creating and Augmenting Keyboards for Extended Reality with the Keyboard Augmentation Toolkit • 15:27

Fig. 13. Simulated GestAKey [93] (top) and Metamorphe [6] (bottom) in use. For GestAKey, we detect movements of the
fingertip (here in blue) on the keycap surface and trigger associated swipe events. For Metamorphe, based on the fingertip
colliding with the key mesh collider, the key is tilted left or right, with corresponding events generated that key elements can
act upon.

to all relevant 𝐾𝑒𝑦𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 to enact state changes (e.g. modifying the key transform to retain virtual-physical
alignment) and trigger actions as appropriate. In this way, novel keyboard interactions based on sensed actions
(e.g. hand tracking and collisions) or inputs (e.g. per-key pressure, tilt, capacitive touch etc.) become trivial to
integrate into KAT, and consequently into mixed reality augmented keyboard usage.

4.7 Limitations, Omissions and Implications for Future Research for KAT
KAT features some notable limitations to be considered. Firstly, it is tightly coupled to Unity, with no cross-
engine compatibility (e.g. for Unreal engine) designed for. Our intention is not that KAT will provide the basis for
production-ready augmented keyboard implementations, or one platform that all XR experiences could currently
utilise. Instead, KAT is intended to serve as a means of collaboratively scoping out the future of augmented
keyboards in a way that is more compatible with open science/open source initiatives, allowing the sharing and
re-implementation of different augmented keyboard presentations and interactions.

As a consequence, we have also prioritized a simplified design and choice of naïve implementations (that
are not production ready) where possible, providing the most capacity for modification and extensibility at
the cost of performance. For example, the number of draw calls required in the rendering of the keycap displays
would be unthinkable for a production ready application, where KAT would end up using an unreasonable
proportion of the rendering time. It should be noted however that for HCI-type evaluations, KAT is performant
enough (i.e. VR frame rates will be maintained in any normal applications with no issue).

Regarding the creation of mappings and layouts, whilst we have some preliminary support on both counts, we
do emphasize this support is nascent and developer focussed, with a lack of mapping and layout designer
tools. Ideally we would see new tools developed that would make the design of mappings and layouts outside
Unity easier, tools with in-built knowledge of the additional metadata required for augmented keyboards e.g.
specifying new trigger types and events without having to implement them in Unity and add them using the

ACM Trans. Comput.-Hum. Interact., Vol. 29, No. 2, Article 15. Publication date: April 2022.

15:28 • McGill et al.

Unity Editor. We do intend to follow this path, and would encourage others interested in this to contact the
authors directly for support.

Whilst we have implemented a host of interaction possibilities, many of these are untested from a usability
/ user performance perspective e.g. the hand-tracked tap/dwell/swipe of virtual keys. Whilst we intend to
conduct evaluations of these features in time (post-Covid19), we emphasise that these implementations are
provided as demonstrators of how we can implement events and triggers that extend the interaction capability of
keys, be they purely virtual or physically aligned to a real key or surface. Implementations will need to be fine
tuned depending on the use case and available sensing e.g. re-creating the specifics of mid-air touch handling for
a complete recreation of the Yanagihara keyboard.
Indeed, the available sensing is a significant bottleneck in the creation and evaluation of these kinds of

interactions. Variations in the robustness and accuracy of hand, surface, and keyboard tracking could significantly
impact the usability of different designs. Our interaction implementations are demonstrated with the Oculus
Quest hand tracking, but we readily admit that for some keycap finger interactions (e.g. swipes, taps) the accuracy
of the tracking is likely insufficient to support these interactions entirely, given the fingertip can be multiple
millimetres misaligned with reality, and actions have a significant latency (in the 10s of milliseconds by our
estimation). The capability of the available sensing could introduce a significant confounding variable in assessing
augmented keyboard interactions. Moreover, there is (as-yet) no one platform that supports both native hand
tracking and a positionally tracked or located keyboard in a way that is accessible to developers. The closest
that currently exists to this is the recently released Oculus Quest 2 support for optically tracking a Logitech
K830 keyboard [77] as part of their push toward the “infinite office” [76] - however, developer access to this
functionality is not yet available. Regardless, any research into augmented physical keyboards needs to carefully
consider how best to unify accurate hand tracking with a locatable or trackable physical keyboard e.g. using
Ultraleap with the Logitech MR keyboard, or using dedicated optical tracking such as Optitrack to enable both
hand and keyboard tracking, as we used previously in this paper.

Reflecting on prior literature and existing UI frameworks, there are some notable current feature omissions
to potentially be addressed in future versions:

Mouse interactions with keyboard Demonstrated in TDKs [10, 32], this feature does not make as much sense
presently when considered against hand-tracked interactions

Spatial mapping strategies Also discussed in TDKs, this refers to the potential for placing keyboard shortcuts
based on different priorities e.g. visual saliency, spatial constancy or recall. More recently, computational
HCI approaches that optimize UIs could see significant utility if applied to the management of interactive
key element assignment.

Keyboard widgets There is the potential for providing 1D interaction primitives for basic common interactions
such as scalar controls that span multiple keys. Our toolkit makes creating these comparatively straight-
forward using the in-build Unity UI support, however we have not yet implemented concrete classes for
primitives like this, and would suggest further development is necessary here.

Support for UI toolkits/frameworks Building on the widgets point, our platform provides a means of manag-
ing how UI elements are assigned and sized/positioned to virtual key locations, with generic UI display and
event handling solutions, as well as support for using Unity UI elements as display elements. Support for
other toolkits or frameworks, such as the Microsoft MRTK [71] is not yet present. However such support
would be advantageous, opening the door to more sophisticated per-key interactions being supported
by default. In time, if a defacto standard emerges regarding spatial UI definition and layouts for XR de-
vices, we anticipate the approaches used in a mature version of KAT would guide how to design layout
managers/constraints for UIs grounded on physical keyboards in particular.

And finally, we note that there is a wealth of research and extensions that will be better supported by KAT:

ACM Trans. Comput.-Hum. Interact., Vol. 29, No. 2, Article 15. Publication date: April 2022.

Creating and Augmenting Keyboards for Extended Reality with the Keyboard Augmentation Toolkit • 15:29

Keycap Icon Design: Static 2D icons could be expanded upon, for example using animation, 3D models, and off-
key rendering such as floating tooltips, whilst previous research such as IconHK [34] could be applied directly
to the keyboard. This is of particular importance given our findings regarding shortcut discoverability;

On/Around/Above Keyboard Widgets: New widgets that do not require a transition to an off-keyboard
mouse/touch interaction could be explored. We could imagine hitting a colour picker key shortcut in
Photoshop, which instantiates a mid-air picker within reach of the user’s rested hand/finger, or spreads a
colour picker over a multi-key area for recently used colors for example;

Different Contextual Modifiers: An understanding of efficient ways of allowing users to manage overloaded
keyboard functionality, without undermining their mental model regarding what state the keyboard is in,
will be crucial in encouraging adoption of new keyboard interactions, particularly taking into account the
influence of mobility on layout, a feature we now support;

Keyboard Mapping Design: Whilst this has been extensively explored [10, 60, 90], we do not yet have concrete
examples of successful mappings in-the-wild. Whilst we can envisage simple mappings with clear benefits
(e.g. virtually enacting “the newAZERTY” [25, 27] aswe demonstrate in subsubsection 4.6.1), our preliminary
study into visualizing Microsoft Word shortcuts demonstrated that what may appear obviously beneficial
might introduce unexpected pitfalls. Indeed, it is not yet clear precisely what should be visualized for
different application contexts. Research has examined with considerable breadth the possibilities, without
necessarily examining with sufficient depth the underlying effectiveness and utility in ecologically valid
ways. What mappings might be envisaged for a browser or IDE, or an immersive gaming experience, and
how best might we assess these in more ecologically and externally valid ways? Whilst we can support
infinite hierarchies of mappings, to what extent can user’s mental models actually navigate them? At what
point do we go from effectively visualizing the chunking of multiple key presses [66], to overloading the
keyboard and causing a breakdown in user comprehension? Moreover, support and tools will be required
to define and visually or otherwise design hierarchical keyboard mappings and interactions agnostic of
platform, in extensible, redistributable formats;

Augmented Keyboards in AR or Pass-through VR In principle, KAT would operate the same in Augmented
Reality or Video See-Through (VST) / Pass-Through VR as demonstrated in VR-grounded MR throughout
this paper. However, the requirements for keyboard/hand tracking in a pure AR experience would be far
stricter - if off by even a few millimeters, the virtual key icons could appear misaligned with the key caps
in reality, something not perceivable in VR. In addition, hand tracking would need to be accurate enough
to handle occlusion of keycap renderings by hands/fingers. Such constraints need to be considered in the
near-term, however they represent relatively minor impediments in our view.

The Relationship Between Physical-Virtual and Purely Virtual Keyboards With KATs ability to support
dynamic, changing layouts, we do also open up something of a Pandora’s box regarding how a user’s
mental model of a keyboard may need to adapt as we map interactions and UIs to physical keyboards,
and then enable transitions toward mid-air or surface-aligned interactions as well. At what point should a
mid-air interface abandon any pretences of being based on a keyboard layout, and does it make sense for a
mid-air keyboard to mimic or provide augmentations designed for physical, tracked keyboards? We suggest
there is a multitude of research to be conducted in exploring the differences between user expectations for
augmentations when applied to tracked keyboards versus surface-aligned and mid-air keyboards, and the
relationship between existing spatial / mid-air UIs and augmented keyboards.

5 GENERAL DISCUSSION
Previous research has expanded our capability to interact with keyboards [10, 60, 90] and learn available shortcuts
[34, 61] through custom applications and hardware designs. Now, however, consumer MR headsets are improving

ACM Trans. Comput.-Hum. Interact., Vol. 29, No. 2, Article 15. Publication date: April 2022.

15:30 • McGill et al.

in both capability (resolution, sensing, etc.) and adoption, with further consumer-oriented headsets rumoured,
particularly for AR [84]. Consequently, the relationship between these mixed reality headsets and the peripherals
we interact with [64] should be re-assessed. Given the ability to render on, or around, any given peripheral in
mixed reality, their form and function could be altered in ways that were previously impossible without expensive
custom hardware solutions.

In support of this endeavour, we contribute KAT, a toolkit for prototyping novel augmented keyboard interac-
tions and XR keyboard layouts. As we have discussed, KAT provides a framework within which new sensing,
events, and per-key displays can be prototyped and applied to the current keyboard layout, which itself could be
mapped to an underlying physical keyboard or surface, or presented mid-air. In this way, we provide practitioners
with open source tools for creating, and sharing, augmented and mid-air keyboard designs, prototyping
augmentations of keyboards, and exploring new interactions on/around keys. Through a combination of
iteration and literature review, we have arrived at a core set of features needed to create a functional, re-usable
augmented keyboard that can effectively support the visions of recent research. We have also demonstrated
that the base capabilities of MR headsets (e.g. hand/finger tracking, head orientation tracking) can be exploited
to introduce new possibilities in having the keyboard augmentations react to gaze (albeit further research is
required here) and above/on-key events.

5.1 The Advantages of Augmented & Mixed Reality Keyboards
As this paper, as well as prior work on keyboard augmentations [10, 32, 60, 72, 90, 95], has reinforced, there are
significant potential benefits to being able to visually augment a physical peripheral such as a keyboard e.g. in
terms of:

Visibility of Shortcuts: Visualizing application shortcuts in situ, based on the current context;
Parity Between On-Screen Leyboards (OSKs) and physical keyboards: Dynamically altering keyboardmap-

pings, mimicking OSKs in form and function;
Usable Security: Obfuscating the mapping between physical keypress and virtual action, preventing shoulder

surfing;
Form Factors for Mobility: Actions could be dynamically allocated to keys, minimizing the number of physical

keys necessary;
Above Device Interactions: The space above the keyboard could provide access to interactive widgets within

reach of the hand, without a transition to other input device such as the mouse;
Expanded Key States: New key states can be defined and reacted to, based on which finger interacts with the

key, whether the finger is hovering above or resting on the key, etc.
Common Sensing Platform: Interactions that were previously shown to be effective in research could be

ported to a general purpose platform for the first time, without requiring bespoke hardware configurations.

It should be noted that not all of these points require the combination of a tracked or located keyboard and
an MR headset. For example, visualizing shortcuts alone is possible with per-keycap displays such as on the
Nemeio [72] or Optimus [98], and accordingly the benefits we demonstrated in our study would likely transpose
to per-keycap displays. However, this combination does provide unique affordances: hand/finger tracking for
enhanced key states; the ability to perform direct-touch mid-air inputs grounded/positioned based on the
keyboard; rendering elements on/around the keycap with full 3D depth; offering the ability to transition between
standing/roomscale interactions and seated interactions, mapping interfaces onto the physical keyboard to benefit
from the haptics/proprioception it supports. In short, there are compelling arguments that this combination could
see adoption in the future, particularly if virtual workspaces, driven by MR headsets, such as recently envisioned
both in industry (e.g. the Oculus “infinite office” concept [76]) and in research [28, 65, 78] come to fruition.

ACM Trans. Comput.-Hum. Interact., Vol. 29, No. 2, Article 15. Publication date: April 2022.

Creating and Augmenting Keyboards for Extended Reality with the Keyboard Augmentation Toolkit • 15:31

However, there are alternate routes toward further enhancing our ability to interact using physical keyboards,
of which augmented keyboards is just one such instance. Consider launchers such as Blur [18, 89], Alfred [87],
Spotlight [3], LaunchBar [75], Wox [68] and Hain [54]. These allow users to type actions, commands and search
phrases, whilst tools such as LaunchBar and the Windows Emoji shortcut [107] allow for special characters
such as emojis to be inserted into a document with visual assistance (e.g. typing ‘:beer:’). Launchers provide
a counterpoint to overloaded key actions [67] and the augmented keyboard vision of productivity. Instead of
relying on spatial/contextual memory or visual search to recall a shortcut location and action, the user can
state the intended action or outcome and find a best match. Our inclination is that these approaches could be
complimentary: better launchers could be created, with frequently used actions mapped to keys and infrequently
used actions found in a keyboard map or retrieved through launcher interaction. Augmented keyboards might
even provide a pathway toward launcher adoption. However, research will be required to explore the tensions
and overlaps between these two approaches.

5.2 Support for Physical and Virtual Keyboards on MR Platforms
There is, however, a significant roadblock to supporting augmented keyboards in MR more generally: the lack
of support for physical keyboard text entry in MR platforms. As of today, the major consumer PC-based MR
platforms have varying support for physical keyboards, often understandably focusing on controller-based text
input using virtual keyboards or voice interaction. For example, on SteamVR, physical keyboard input is not even
processed by the SteamVR platform web browser, chat or store applications. On SteamVR, it is up to the individual
app developer to add keyboard support e.g. the popular Virtual Desktop app4 does process physical keyboard text
input, and in addition has powerful shortcuts to re-centre, change display for different types of content, etc. In
contrast, the Microsoft Mixed Reality has more physical keyboard support. Most of the platform VR apps already
process keyboard input, and there is a dedicated Windows hotkey for switching keyboard input focus between
the traditional desktop and VR environments. Similarly, the Oculus platform supports bluetooth keyboards for
text input. And the Khronos OpenXR standard provides methods to access peripheral state, including input and
action bindings, but no support for keyboards [45].

Consequently, further support will be required for physical keyboard input in VR / MR platforms. Research can
lead the way not just in imaginative interaction design possibilities, but also in specification and requirements,
as well as providing evidence regarding utility and usability, and in answering core questions such as when to
show/hide the keyboard; how to facilitate the specification and use of application/region keyboard layouts; how
mappings should function across locales; what guidelines should govern the use of augmentation (which our
paper in particular begins to address); and how best to support transitions between OSK/mid-air and physical
keyboard use. If questions such as these can be addressed, then we can make a more informed case for tools and
platforms to support such peripherals, particularly geared toward MR productivity use cases [65], in the future.

5.3 Mixed Reality Augmentations of Other Peripherals
The underlying assumption that we can track the users hands and gaze, and are wearing sensing capable of
tracking peripherals and objects (either actively or passively) within our reach, lends itself to considering how
we might best utilize MR to appropriate and augment these objects, of which the keyboard is just one example.
There has been a multitude of research in this space, particularly in envisioning how appropriated objects and
surfaces might be utilized to further productivity, for example:
Augmenting Peripherals Enhancing control surfaces [7] or enabling direct inputs on touchpads [31], or

around-device interactions e.g. on mice [8];

4vrdesktop.net

ACM Trans. Comput.-Hum. Interact., Vol. 29, No. 2, Article 15. Publication date: April 2022.

vrdesktop.net

15:32 • McGill et al.

Appropriating and Augmenting Objects Re-purposing existing objects for interaction [19, 33, 83, 106] and
“annexing reality” [43] both generally and specifically in MR [5, 15, 112], with even the appearance of
real-world objects being modified to convey feedback [57];

Appropriating Surfaces From existing tabletops and surfaces around keyboards [8, 42, 47, 74] to providing
sparse haptic proxy surfaces [16], the space around peripherals has repeatedly been exploited.

This idea has been revisited time and again because there is a general sense that given sophisticated sensing
and display technologies, we might better utilize available inputs and surfaces, and extract more performance
from existing inputs and devices. The affordances of mixed reality do, however, place an additional emphasis on
the use of depth and 3D rendering, and the exploitation of hand/object tracking, compared to much previous
work which has been predominantly oriented on projecting AR interfaces onto physical surfaces. Indeed, with
MR, every pressure sensor, capacitive surface, or button could optionally offer a greater capacity for interaction.
Conversely, MR interfaces could benefit from being mapped to physical inputs such as the keyboard. Just as with
augmented keyboards, we could imagine a standard mouse where we render multiple MR virtual buttons on
the one physical button (e.g. clicking at the tip of the mouse versus the centre); or where the user could swipe
a finger in any direction on the button to enact a mode switch; or even provide an additional floating mid-air
button, exocentrically placed at an offset of the pose of the physical mouse button within reach of the user’s
finger, if they lift their finger off the button and reach forward. In such scenarios, the MR headset sensing is
dictating the majority of the UI interaction, and the mouse button “click” event is effectively providing a certainty
of input for a subtle haptic interaction, making up for limitations in headset-based hand and finger tracking.
However, it is one challenge to imagine such interfaces, as HCI has done repeatedly over the past decades - it
is another to practically support the creation of such UIs. KAT is a modest step in this direction, attempting to
formalise how augmented and virtual keyboards might practically be designed for.
The broader challenge, however, is in supporting distributed, mixed reality spatial UIs and interactions that

work across a multitude of peripherals, objects and surfaces. In the short term, the SteamVR Input Mappings [69]
represent a scaffold upon which basic distributed interactions might be built, with all inputs having a prescribed
pose (i.e. their position in real-world/virtual space) and exposing a variety of events that can be generated from
inputs (eg. pressure mapping to a 1D variable or a boolean response). If more peripherals supported such a
scheme, we might imagine that mice, touchpads, and other interactive peripherals or surfaces might be tracked
and augmented dynamically in 3D space. In which case, a more generalisable toolkit might allow for attaching
additional interface elements to the control surface, or the space around said surface, based on the capability
exposed by the input modality. In the longer term, we might imagine that optimisation approaches could be
employed to automatically distribute UI elements as appropriate [81], e.g. based on the available control surfaces,
objects and peripherals at the user’s desk. These are significant challenges not just in the design of interactive
systems, but also in how they are engineered. Moreover, the benefits of such interactions, and evidence that they
do not negatively impact workload and performance, will be required to justify potential adoption by application
designers operating systems. This transition from 2D planar to distributed 2.5/3D UIs (i.e. flat UI elements placed
in 3D space, or fully 3D UI elements with depth) offers the possibility of designing innovative new interactions,
transposing research such as Magic desk [8] to MR media in the future.

5.4 KAT: A Toolkit Supporting MR Keyboard Research
Our aim is for KAT to provide the foundations for implementing and evaluating both new, and previously
envisaged, augmented and mid-air keyboard interactions. KAT will assist in re-evaluating previous visions and
research and defining a common baseline of functionality that might comprise the physical keyboard of the (near)
future. For example, many of the features made possible on bespoke hardware and software implementations
(shown in TDKs [10], ReconViguRation [90], and other systems based on gesturing or using additional key states

ACM Trans. Comput.-Hum. Interact., Vol. 29, No. 2, Article 15. Publication date: April 2022.

Creating and Augmenting Keyboards for Extended Reality with the Keyboard Augmentation Toolkit • 15:33

[14, 92, 93, 100, 113, 116]) could be built and deployed on such a platform. In making KAT available, we hope to
provide the foundation for a variety of new research on augmented and virtual keyboards. We also encourage
researchers and developers to contribute to KAT, along the numerous potential avenues we have detailed for
improvement, enabling more and broader prototyping, sharing and collaboration of novel virtual / virtual-physical
keyboard designs.
In time, we might expect that the features of KAT would be rolled into operating systems, with existing

Keyboard input APIs modified to allow for querying physical key positions/dimensions/states, modifying the
icon or model associated with a key, and displaying custom keyboard mappings per application. Such capabilities
could equally apply to future keyboards with integrated per-key displays, if they end up as the evolutionary
end-point of physical keyboards. Methods for managing what keyboard mappings are given priority, and how
key-assignment conflicts are dealt with (e.g. balancing visual saliency and spatial congruence [24]) will need
to be studied further. Usage and refinement of KAT by researchers and practitioners will help to scope out the
requirements of such integration, and the HCI community can play a significant role in further establishing the
utility of augmented keyboards, guiding research and practice regarding how best to utilise these new peripherals
and capabilities.

6 CONCLUSIONS
This paper has discussed the development of the Keyboard Augmentation Toolkit (KAT), intended to support
the creation of virtual and augmented keyboards for extended and mixed reality headsets. Using an initial
prototype of KAT, we examined the impact and pitfalls of visualizing shortcuts on an augmented physical
keyboard. Supported by this and other recent developments in augmented keyboard research, we then described
the design, development and evaluation-by-demonstration of KAT. As an open source toolkit, KAT will better
enable practitioners to prototype, create and replicate XR keyboard experiences, supporting the creation of
enhanced per-key displays; flexible hierarchical keyboard mappings; enhanced interactivity and per-key states;
and both 2D and 3D layouts that can be changed in real-time. KAT will enable practitioners to further push the
boundaries of keyboard form and function using XR headsets, supporting research into virtual and augmented
keyboard performance and usability. This will be crucial if peripherals such as the keyboard are to take advantage
of future productivity environments that rely on spatial computing.

ACKNOWLEDGMENTS
Thanks to all at Logitech Design Lab in Cork, Ireland, and Logitech Lausanne, Switzerland, that helped in the
formation of this paper and the ideas contained therein. This research was funded in-part by an EPSRC IAA
project (EP/R511705/1, Novel Interactions for Mixed Reality). This research was also funded by the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant
agreement #835197: ViAjeRo).

REFERENCES
[1] Jonathan Aceituno and Nicolas Roussel. 2014. The Hotkey Palette: Flexible Contextual Retrieval of Chosen Documents and Windows.

Proceedings of the 26th Conference on l’Interaction Homme-Machine - IHM ’14, 55–59. https://doi.org/10.1145/2670444.2670452
[2] Apple. 2018. Apple Touch Bar. https://developer.apple.com/macos/touch-bar/
[3] Apple. 2018. Use Spotlight on your Mac. https://support.apple.com/en-gb/HT204014
[4] Ahmed Sabbir Arif and Ali Mazalek. 2016. WebTEM: a Web application to record text entry metrics. Proceedings of the 2016 ACM on

Interactive Surfaces and Spaces - ISS ’16. https://doi.org/10.1145/2992154.2996791
[5] Mahdi Azmandian, Mark Hancock, Hrvoje Benko, Eyal Ofek, and Andrew D. Wilson. 2016. Haptic Retargeting. In Proceedings

of the 2016 CHI Conference on Human Factors in Computing Systems - CHI ’16. ACM Press, New York, New York, USA, 1968–1979.
https://doi.org/10.1145/2858036.2858226

ACM Trans. Comput.-Hum. Interact., Vol. 29, No. 2, Article 15. Publication date: April 2022.

https://doi.org/10.1145/2670444.2670452
https://developer.apple.com/macos/touch-bar/
https://support.apple.com/en-gb/HT204014
https://doi.org/10.1145/2992154.2996791
https://doi.org/10.1145/2858036.2858226

15:34 • McGill et al.

[6] Gilles Bailly, Thomas Pietrzak, Jonathan Deber, and Daniel J. Wigdor. 2013. Métamorphe: Augmenting Hotkey Usage with Actuated
Keys. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 563–572. https://doi.org/10.1145/2470654.2470734

[7] Florent Berthaut and Alex Jones. 2016. ControllAR: Appropriation of Visual Feedback on Control Surfaces. In ISS ’16 Proceedings of the
2016 ACM International Conference on Interactive Surfaces and Spaces. https://doi.org/10.1145/2992154.2998580

[8] Xiaojun Bi, Tovi Grossman, Justin Matejka, and George Fitzmaurice. 2011. Magic desk: bringing multi-touch surfaces into desktop
work. In Proceedings of the 2011 annual conference on Human factors in computing systems - CHI ’11. 2511. https://doi.org/10.1145/
1978942.1979309

[9] Mark Billinghurst, Adrian Clark, and Gun Lee. 2015. A Survey of Augmented Reality. Foundations and Trends in Human-Computer
Interaction 8, 2-3 (2015), 73–272. https://doi.org/10.1561/1100000049

[10] Florian Block, Hans Gellersen, and Nicolas Villar. 2010. Touch-display keyboards: Transforming Keyboards into Interactive Surfaces.
Proceedings of the 28th international conference on Human factors in computing systems - CHI ’10, 1145. https://doi.org/10.1145/1753326.
1753498

[11] Sidney Bovet, Noirin Curran, Aidan Kehoe, Mario Gutierrez, Thomas Rouvinez, and Katie Crowley. 2018. Using traditional keyboards
in VR: SteamVR developer kit and pilot game user study. The 2018 IEEE Games, Entertainment, Media Conference - GEM ’18 August,
131–134.

[12] D. A. Bowman. 2020. Embracing Physical Keyboards for Virtual Reality. Computer 53, 09 (sep 2020), 9–10. https://doi.org/10.1109/MC.
2020.3004605

[13] J Brooke. 1996. SUS-A quick and dirty usability scale. Usability evaluation in industry (1996).
[14] Daniel Buschek, Bianka Roppelt, and Florian Alt. 2018. Extending Keyboard Shortcuts with Arm and Wrist Rotation Gestures.

Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems - CHI ’18, 1–12. https://doi.org/10.1145/3173574.3173595
[15] Lung-Pan Cheng, Li Chang, Sebastian Marwecki, and Patrick Baudisch. 2018. iTurk: Turning Passive Haptics into Active Haptics by

Making Users Reconfigure Props in Virtual Reality. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems -
CHI ’18. ACM Press, New York, New York, USA, 1–10. https://doi.org/10.1145/3173574.3173663

[16] Lung Pan Cheng, Eyal Ofek, Christian Holz, Hrvoje Benko, and Andrew D. Wilson. 2017. Sparse haptic proxy: Touch feedback in
virtual environments using a general passive prop. In Conference on Human Factors in Computing Systems - Proceedings, Vol. 2017-May.
3718–3728. https://doi.org/10.1145/3025453.3025753

[17] Clodo76. 2018. VR Desktop Mirror. https://github.com/Clodo76/vr-desktop-mirror
[18] Andy Cockburn, Carl Gutwin, Joey Scarr, and Sylvain Malacria. 2014. Supporting Novice to Expert Transitions in User Interfaces.

ACM Computing Surveys (CSUR) 47, 2, Article 31, 36 pages. https://doi.org/10.1145/2659796
[19] Christian Corsten, Ignacio Avellino, Max Möllers, and Jan Borchers. 2013. Instant user interfaces: Repurposing everyday objects

as input devices. In ITS 2013 - Proceedings of the 2013 ACM International Conference on Interactive Tabletops and Surfaces. 71–80.
https://doi.org/10.1145/2512349.2512799

[20] Steve Draper. 2018. Effect size. (2018). http://www.psy.gla.ac.uk/~steve/best/effect.html
[21] Tafadzwa Joseph Dube and Ahmed Sabbir Arif. 2020. Impact of Key Shape and Dimension on Text Entry in Virtual Reality. In Extended

Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems (Honolulu, HI, USA) (CHI EA ’20). Association for
Computing Machinery, New York, NY, USA, 1–10. https://doi.org/10.1145/3334480.3382882

[22] J. Dudley, H. Benko, D. Wigdor, and P. O. Kristensson. 2019. Performance Envelopes of Virtual Keyboard Text Input Strategies in
Virtual Reality. In 2019 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). 289–300. https://doi.org/10.1109/
ISMAR.2019.00027

[23] Barrett Ens, Juan David Hincapié-Ramos, and Pourang Irani. 2014. Ethereal Planes: A Design Framework for 2D Information Space in
3D Mixed Reality Environments. Proceedings of the 2Nd ACM Symposium on Spatial User Interaction, 2–12. https://doi.org/10.1145/
2659766.2659769

[24] Barrett Ens, Eyal Ofek, Neil Bruce, and Pourang Irani. 2015. Spatial Constancy of Surface-Embedded Layouts Across Multiple
Environments. In Proceedings of the 3rd ACM Symposium on Spatial User Interaction (Los Angeles, California, USA) (SUI ’15). ACM, New
York, NY, USA, 65–68. https://doi.org/10.1145/2788940.2788954

[25] Anna Maria Feit. 2018. Assignment Problems for Optimizing Text Input. G5 Artikkeliväitöskirja. http://urn.fi/URN:ISBN:978-952-60-
8016-1

[26] Anna Maria Feit, Mathieu Nancel, Maximilian John, Andreas Karrenbauer, Daryl Weir, and Antti Oulasvirta. 2021. AZERTY AméLioré:
Computational Design on a National Scale. Commun. ACM 64, 2 (Jan. 2021), 48–58. https://doi.org/10.1145/3382035

[27] Anna Maria Feit, Mathieu Nancel, Daryl Weir, Gilles Bailly, Maximilian John, Andreas Karrenbauer, and Antti Oulasvirta. 2018.
Élaboration de la disposition AZERTY modernisée. (June 2018). https://hal.inria.fr/hal-01826476 working paper or preprint.

[28] Nadia Fereydooni and Bruce N. Walker. 2020. Virtual Reality as a Remote Workspace Platform: Opportunities and Challenges. (August
2020). https://www.microsoft.com/en-us/research/publication/virtual-reality-as-a-remote-workspace-platform-opportunities-and-
challenges/

[29] Djyp Forest Fortin and Maxime Labelle. 2021. Implémentation de la norme AFNOR. https://github.com/Djyp/azerty_afnor

ACM Trans. Comput.-Hum. Interact., Vol. 29, No. 2, Article 15. Publication date: April 2022.

https://doi.org/10.1145/2470654.2470734
https://doi.org/10.1145/2992154.2998580
https://doi.org/10.1145/1978942.1979309
https://doi.org/10.1145/1978942.1979309
https://doi.org/10.1561/1100000049
https://doi.org/10.1145/1753326.1753498
https://doi.org/10.1145/1753326.1753498
https://doi.org/10.1109/MC.2020.3004605
https://doi.org/10.1109/MC.2020.3004605
https://doi.org/10.1145/3173574.3173595
https://doi.org/10.1145/3173574.3173663
https://doi.org/10.1145/3025453.3025753
https://github.com/Clodo76/vr-desktop-mirror
https://doi.org/10.1145/2659796
https://doi.org/10.1145/2512349.2512799
http://www.psy.gla.ac.uk/~steve/best/effect.html
https://doi.org/10.1145/3334480.3382882
https://doi.org/10.1109/ISMAR.2019.00027
https://doi.org/10.1109/ISMAR.2019.00027
https://doi.org/10.1145/2659766.2659769
https://doi.org/10.1145/2659766.2659769
https://doi.org/10.1145/2788940.2788954
http://urn.fi/URN:ISBN:978-952-60-8016-1
http://urn.fi/URN:ISBN:978-952-60-8016-1
https://doi.org/10.1145/3382035
https://hal.inria.fr/hal-01826476
https://www.microsoft.com/en-us/research/publication/virtual-reality-as-a-remote-workspace-platform-opportunities-and-challenges/
https://www.microsoft.com/en-us/research/publication/virtual-reality-as-a-remote-workspace-platform-opportunities-and-challenges/
https://github.com/Djyp/azerty_afnor

Creating and Augmenting Keyboards for Extended Reality with the Keyboard Augmentation Toolkit • 15:35

[30] Euan Freeman, Stephen Brewster, and Vuokko Lantz. 2016. Do That, There: An Interaction Technique for Addressing In-Air Gesture
Systems. Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems - CHI ’16. https://doi.org/10.1145/2858036.
2858308

[31] Bruno Fruchard, Eric Lecolinet, and Olivier Chapuis. 2017. MarkPad: Augmenting touchpads for command selection. In Conference on
Human Factors in Computing Systems - Proceedings, Vol. 2017-May. 5630–5642. https://doi.org/10.1145/3025453.3025486

[32] H. Gellersen and F. Block. 2012. Novel Interactions on the Keyboard. Computer 45, 4, 36–40. https://doi.org/10.1109/MC.2012.112
[33] Renaud Gervais, Joan Sol Roo, and Martin Hachet. 2016. Tangible viewports: Getting out of flatland in desktop environments.

In TEI 2016 - Proceedings of the 10th Anniversary Conference on Tangible Embedded and Embodied Interaction. 176–184. https:
//doi.org/10.1145/2839462.2839468

[34] Emmanouil Giannisakis, Gilles Bailly, SylvainMalacria, and Fanny Chevalier. 2017. IconHK: Using Toolbar Button Icons to Communicate
Keyboard Shortcuts. 12. https://doi.org/10.1145/3025453.3025595>

[35] Antonio Gomes, Tristan Trutna, and Roel Vertegaal. 2015. Display cover: A tablet keyboard with an embedded thin-film touchscreen
display. In 17th International Conference on Human-Computer Interaction with Mobile Devices and Services, MobileHCI 2015. 531–535.
https://doi.org/10.1145/2785830.2785843

[36] Keenan R Gray. 2018. Facilitating Keyboard Use While Wearing a Head-Mounted Display. Master’s thesis. https://digitalcommons.wpi.
edu/etd-theses/357

[37] Jens Grubert, Lukas Witzani, Eyal Ofek, Michel Pahud, Matthias Kranz, and Per Ola Kristensson. 2018. Effects of Hand Representations
for Typing in Virtual Reality. IEEE Virtual Reality (VR) 2018. arXiv:1802.00613 http://arxiv.org/abs/1802.00613

[38] Jens Grubert, Lukas Witzani, Eyal Ofek, Michel Pahud, Matthias Kranz, and Per Ola Kristensson. 2018. Text Entry in Immersive
Head-Mounted Display-based Virtual Reality using Standard Keyboards. In IEEE Virtual Reality (VR) 2018. arXiv:1802.00626 http:
//arxiv.org/abs/1802.00626

[39] Pelin Gul. [n.d.]. Knowledge of the Microsoft Word Keyboard Shortcuts Expert vs. Novice Users. Technical Report.
[40] Aldo Gunsing et al. 2021. KLFC: Keyboard Layout Files Creator. https://github.com/39aldo39/klfc
[41] SG Hart and LE Staveland. 1988. Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In

Human mental workload. http://humanfactors.arc.nasa.gov/groups/TLX/downloads/NASA-TLXChapter.pdf
[42] Doris Hausen, Sebastian Boring, and Saul Greenberg. 2013. The unadorned desk: Exploiting the physical space around a display as

an input canvas. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), Vol. 8117 LNCS. 140–158. https://doi.org/10.1007/978-3-642-40483-2_10

[43] Anuruddha Hettiarachchi and Daniel Wigdor. 2016. Annexing Reality. In Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems - CHI ’16. ACM Press, New York, New York, USA, 1957–1967. https://doi.org/10.1145/2858036.2858134

[44] Adrian H. Hoppe, Leonard Otto, Florian van de Camp, Rainer Stiefelhagen, and Gabriel Unmüßig. 2018. qVRty: Virtual Keyboard with
a Haptic, Real-World Representation. Springer, Cham, 266–272. https://doi.org/10.1007/978-3-319-92279-9_36

[45] Brent E. Insko. 2019. OpenXR State of the Union. (2019). https://www.khronos.org/assets/uploads/developers/library/2019-gdc/OpenXR-
Overview-GDC_Mar19.pdf

[46] Andrew F. Jarosz and Jennifer Wiley. 2014. What Are the Odds? A Practical Guide to Computing and Reporting Bayes Factors. The
Journal of Problem Solving (2014). https://doi.org/10.7771/1932-6246.1167

[47] Shaun K. Kane, Daniel Avrahami, Jacob O. Wobbrock, Beverly Harrison, Adam D. Rea, Matthai Philipose, and Anthony LaMarca.
2009. Bonfire: A Nomadic System for Hybrid Laptop-Tabletop Interaction. In Proceedings of the 22nd Annual ACM Symposium on
User Interface Software and Technology (Victoria, BC, Canada) (UIST ’09). Association for Computing Machinery, New York, NY, USA,
129–138. https://doi.org/10.1145/1622176.1622202

[48] Pascal Knierim, Valentin Schwind, Anna Maria Feit, Florian Nieuwenhuizen, and Niels Henze. 2018. Physical Keyboards in Virtual
Reality: Analysis of Typing Performance and Effects of Avatar Hands. https://doi.org/10.1145/3173574.3173919

[49] Martin Krzywinski and Naomi Altman. 2014. Points of Significance: Visualizing samples with box plots. Nature Methods 11, 2 (jan
2014), 119–120. https://doi.org/10.1038/nmeth.2813

[50] Neeraj Kumar. 2015. Finger swipe gesture detection in C. https://github.com/neervfx/swipe
[51] Alton X Lam. 2018. ImageMSO Microsoft Office Icons (ImageMSO) Gallery & Extraction. https://archive.codeplex.com/?p=imagemso
[52] David M. Lane, H. Albert Napier, S. Camille Peres, and Aniko Sandor. 2005. Hidden Costs of Graphical User Interfaces: Failure to Make

the Transition from Menus and Icon Toolbars to Keyboard Shortcuts. International Journal of Human-Computer Interaction 18, 2 (may
2005), 133–144. https://doi.org/10.1207/s15327590ijhc1802_1

[53] David Ledo, Steven Houben, Jo Vermeulen, Nicolai Marquardt, Lora Oehlberg, and Saul Greenberg. 2018. Evaluation Strategies for HCI
Toolkit Research. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (Montreal QC, Canada) (CHI ’18).
ACM, New York, NY, USA, Article 36, 17 pages. https://doi.org/10.1145/3173574.3173610

[54] Heejin Lee. 2018. Hain launcher. http://hainproject.github.io/hain/
[55] RV Lenth. 2018. Least-squares means: the R package lsmeans. jstatsoft.org (2018). https://www.jstatsoft.org/article/view/v069i01/

v69i01.pdf

ACM Trans. Comput.-Hum. Interact., Vol. 29, No. 2, Article 15. Publication date: April 2022.

https://doi.org/10.1145/2858036.2858308
https://doi.org/10.1145/2858036.2858308
https://doi.org/10.1145/3025453.3025486
https://doi.org/10.1109/MC.2012.112
https://doi.org/10.1145/2839462.2839468
https://doi.org/10.1145/2839462.2839468
https://doi.org/10.1145/3025453.3025595>
https://doi.org/10.1145/2785830.2785843
https://digitalcommons.wpi.edu/etd-theses/357
https://digitalcommons.wpi.edu/etd-theses/357
https://arxiv.org/abs/1802.00613
http://arxiv.org/abs/1802.00613
https://arxiv.org/abs/1802.00626
http://arxiv.org/abs/1802.00626
http://arxiv.org/abs/1802.00626
https://github.com/39aldo39/klfc
http://humanfactors.arc.nasa.gov/groups/TLX/downloads/NASA-TLXChapter.pdf
https://doi.org/10.1007/978-3-642-40483-2_10
https://doi.org/10.1145/2858036.2858134
https://doi.org/10.1007/978-3-319-92279-9_36
https://www.khronos.org/assets/uploads/developers/library/2019-gdc/OpenXR-Overview-GDC_Mar19.pdf
https://www.khronos.org/assets/uploads/developers/library/2019-gdc/OpenXR-Overview-GDC_Mar19.pdf
https://doi.org/10.7771/1932-6246.1167
https://doi.org/10.1145/1622176.1622202
https://doi.org/10.1145/3173574.3173919
https://doi.org/10.1038/nmeth.2813
https://github.com/neervfx/swipe
https://archive.codeplex.com/?p=imagemso
https://doi.org/10.1207/s15327590ijhc1802_1
https://doi.org/10.1145/3173574.3173610
http://hainproject.github.io/hain/
https://www.jstatsoft.org/article/view/v069i01/v69i01.pdf
https://www.jstatsoft.org/article/view/v069i01/v69i01.pdf

15:36 • McGill et al.

[56] Jia-Wei Lin, Ping-Hsuan Han, Jiun-Yu Lee, Yang-Sheng Chen, Ting-Wei Chang, Kuan-Wen Chen, and Yi-Ping Hung. 2017. Visualizing
the Keyboard in Virtual Reality for Enhancing Immersive Experience. In ACM SIGGRAPH 2017 Posters (Los Angeles, California)
(SIGGRAPH ’17). ACM, New York, NY, USA, Article 35, 2 pages. https://doi.org/10.1145/3102163.3102175

[57] David Lindlbauer, Jörg Müller, and Marc Alexa. 2017. Changing the Appearance of Real-World Objects by Modifying Their Surroundings.
(2017). https://doi.org/10.1145/3025453.3025795

[58] Logitech, Inc. 2011. G19 Keyboard for Gaming - Logitech Support. https://support.logitech.com/en%5C_us/product/g19-keyboard-for-
gaming/specs

[59] I. Scott MacKenzie and R. William Soukoreff. 2003. Phrase sets for evaluating text entry techniques. In CHI ’03 extended abstracts on
Human factors in computing systems - CHI ’03. https://doi.org/10.1145/765891.765971

[60] Anindya Maiti, Murtuza Jadliwala, and Chase Weber. 2017. Preventing shoulder surfing using randomized augmented reality keyboards.
In 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). IEEE, 630–635.
https://doi.org/10.1109/PERCOMW.2017.7917636

[61] Sylvain Malacria, Gilles Bailly, Joel Harrison, Andy Cockburn, and Carl Gutwin. 2013. Promoting Hotkey Use Through Rehearsal with
ExposeHK. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Paris, France) (CHI ’13). ACM, New York,
NY, USA, 573–582. https://doi.org/10.1145/2470654.2470735

[62] S.a Malacria, G.b Bailly, J.a Harrison, A.a Cockburn, and C.c Gutwin. 2013. Promoting hotkey use through rehearsal with ExposeHK.
Conference on Human Factors in Computing Systems - Proceedings, 573–582. https://doi.org/10.1145/2470654.2470735

[63] Sylvain Malacria, Joey Scarr, Andy Cockburn, Carl Gutwin, and Tovi Grossman. 2013. Skillometers: Reflective widgets that motivate
and help users to improve performance. In Proceedings of the 26th annual ACM symposium on User interface software and technology -
UIST ’13. ACM Press, New York, New York, USA, 321–330. https://doi.org/10.1145/2501988.2501996

[64] Mark McGill, Daniel Boland, Roderick Murray-Smith, and Stephen Brewster. 2015. A Dose of Reality: Overcoming Usability Challenges
in VR Head-Mounted Displays. In Proc. of CHI ’15. ACM Press, New York, New York, USA. https://doi.org/10.1145/2702123.2702382

[65] Mark Mcgill, Aidan Kehoe, Euan Freeman, and Stephen Brewster. 2020. Expanding the Bounds of Seated Virtual Workspaces. ACM
Trans. Comput.-Hum. Interact. 27, 3, Article 13 (May 2020), 40 pages. https://doi.org/10.1145/3380959

[66] Craig S Miller, Svetlin Denkov, and Richard C Omanson. 2011. Categorization Costs for Hierarchical Keyboard Commands. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 2765–2768. https://doi.org/10.1145/1978942.1979351

[67] Miscellaneous. 2018. AutoHotkey. https://www.autohotkey.com/
[68] Miscellaneous. 2018. Wox launcher for Windows. http://www.wox.one/
[69] Miscellaneous. 2019. Input System. https://valvesoftware.github.io/steamvr_unity_plugin/articles/SteamVR-Input.html
[70] Miscellaneous. 2021. Microsoft Keyboard Layout Creator. https://www.microsoft.com/en-us/download/details.aspx?id=102134
[71] Miscellaneous. 2021. Microsoft Mixed Reality Toolkit (MRTK). https://microsoft.github.io/MixedRealityToolkit-Unity/Documentation/

WelcomeToMRTK.html
[72] Nemeio. 2019. The customisable, connected keyboard that uses electronic ink. https://www.nemeio.com/
[73] Jiamu Ni. 2017. A Hotkey Interaction Technique that Promotes Hotkeys. Master’s thesis. https://aaltodoc.aalto.fi/bitstream/handle/

123456789/28456/master_Ni_Jiamu_2017.pdf
[74] Benjamin Nuernberger, Eyal Ofek, Hrvoje Benko, and Andrew D. Wilson. 2016. SnapToReality: Aligning Augmented Reality to the Real

World. Association for Computing Machinery, New York, NY, USA, 1233–1244. https://doi.org/10.1145/2858036.2858250
[75] ’Objective development Software’. 2018. LaunchBar. https://www.obdev.at/products/launchbar/index.html
[76] Oculus. 2020. Infinite Office. https://www.youtube.com/watch?v=5_bVkbG1ZCo
[77] Oculus. 2021. Infinite Office support for tracked K830 keyboard. https://www.oculus.com/blog/introducing-oculus-air-link-a-wireless-

way-to-play-pc-vr-games-on-oculus-quest-2-plus-infinite-office-updates-support-for-120-hz-on-quest-2-and-more/
[78] Eyal Ofek, Jens Grubert, Michel Pahud, Mark Phillips, and Per Ola Kristensson. 2020. Towards a Practical Virtual Office for Mobile

Knowledge Workers. arXiv:2009.02947 [cs.HC]
[79] Richard C Omanson, Craig S Miller, Elizabeth Young, and David Schwantes. 2010. Comparison of mouse and keyboard efficiency.

In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Vol. 54. Sage Publications Sage CA: Los Angeles, CA,
600–604.

[80] A. Otte, D. Schneider, T. Menzner, T. Gesslein, P. Gagel, and J. Grubert. 2019. Evaluating Text Entry in Virtual Reality using a
Touch-sensitive Physical Keyboard. In 2019 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct).
387–392. https://doi.org/10.1109/ISMAR-Adjunct.2019.000-4

[81] Antti Oulasvirta and Andreas Karrenbauer. 2018. Combinatorial optimization for user interface design. In Computational Interaction.
97–119. https://doi.org/10.1093/oso/9780198799603.003.0005

[82] Henning Pohl, Christian Domin, and Michael Rohs. 2017. Beyond Just Text. ACM Transactions on Computer-Human Interaction 24, 1
(mar 2017), 1–42. https://doi.org/10.1145/3039685

[83] Henning Pohl and Michael Rohs. 2014. Around-device devices: My coffee mug is a volume dial. In MobileHCI 2014 - Proceedings of the
16th ACM International Conference on Human-Computer Interaction with Mobile Devices and Services. 81–90. https://doi.org/10.1145/

ACM Trans. Comput.-Hum. Interact., Vol. 29, No. 2, Article 15. Publication date: April 2022.

https://doi.org/10.1145/3102163.3102175
https://doi.org/10.1145/3025453.3025795
https://support.logitech.com/en%5C_us/product/g19-keyboard-for-gaming/specs
https://support.logitech.com/en%5C_us/product/g19-keyboard-for-gaming/specs
https://doi.org/10.1145/765891.765971
https://doi.org/10.1109/PERCOMW.2017.7917636
https://doi.org/10.1145/2470654.2470735
https://doi.org/10.1145/2470654.2470735
https://doi.org/10.1145/2501988.2501996
https://doi.org/10.1145/2702123.2702382
https://doi.org/10.1145/3380959
https://doi.org/10.1145/1978942.1979351
https://www.autohotkey.com/
http://www.wox.one/
https://valvesoftware.github.io/steamvr_unity_plugin/articles/SteamVR-Input.html
https://www.microsoft.com/en-us/download/details.aspx?id=102134
https://microsoft.github.io/MixedRealityToolkit-Unity/Documentation/WelcomeToMRTK.html
https://microsoft.github.io/MixedRealityToolkit-Unity/Documentation/WelcomeToMRTK.html
https://www.nemeio.com/
https://aaltodoc.aalto.fi/bitstream/handle/123456789/28456/master_Ni_Jiamu_2017.pdf
https://aaltodoc.aalto.fi/bitstream/handle/123456789/28456/master_Ni_Jiamu_2017.pdf
https://doi.org/10.1145/2858036.2858250
https://www.obdev.at/products/launchbar/index.html
https://www.youtube.com/watch?v=5_bVkbG1ZCo
https://www.oculus.com/blog/introducing-oculus-air-link-a-wireless-way-to-play-pc-vr-games-on-oculus-quest-2-plus-infinite-office-updates-support-for-120-hz-on-quest-2-and-more/
https://www.oculus.com/blog/introducing-oculus-air-link-a-wireless-way-to-play-pc-vr-games-on-oculus-quest-2-plus-infinite-office-updates-support-for-120-hz-on-quest-2-and-more/
https://arxiv.org/abs/2009.02947
https://doi.org/10.1109/ISMAR-Adjunct.2019.000-4
https://doi.org/10.1093/oso/9780198799603.003.0005
https://doi.org/10.1145/3039685
https://doi.org/10.1145/2628363.2628401
https://doi.org/10.1145/2628363.2628401

Creating and Augmenting Keyboards for Extended Reality with the Keyboard Augmentation Toolkit • 15:37

2628363.2628401
[84] Jon Porter. 2019. Report claims that Apple could begin production of iPhone-powered AR glasses this year. https://www.theverge.

com/2019/3/8/18256256/apple-ar-glasses-2019-ming-chi-kuo-augmented-reality
[85] Ian Prest et al. 2021. KLE: Keyboard Layout Editor. http://www.keyboard-layout-editor.com/
[86] Razer. 2012. Razer DeathStalker Ultimate. https://support.razer.com/gaming-keyboards/razer-deathstalker-ultimate
[87] ’Running with Crayons’. 2018. Alfred - Productivity App for Mac OS X. https://www.alfredapp.com/
[88] Samsung.com. 2018. Samsung Odyssey Mixed Reality HMD. https://www.samsung.com/us/computing/hmd/windows-mixed-

reality/xe800zaa-hc1us-xe800zaa-hc1us/
[89] Joey Scarr, Andy Cockburn, Carl Gutwin, and Philip Quinn. 2011. Dips and ceilings: Understanding and Supporting Transitions

to Expertise in User Interfaces. Proceedings of the 2011 annual conference on Human factors in computing systems - CHI ’11, 2741.
https://doi.org/10.1145/1978942.1979348

[90] Daniel Schneider, Alexander Otte, Travis Gesslein, Philipp Gagel, Bastian Kuth, Mohamad Shahm Damlakhi, Oliver Dietz, Eyal Ofek,
Michel Pahud, Per Ola Kristensson, Jorg Muller, and Jens Grubert. 2019. ReconViguRation: Reconfiguring Physical Keyboards in Virtual
Reality. IEEE Transactions on Visualization and Computer Graphics (2019), 1–1. https://doi.org/10.1109/TVCG.2019.2932239

[91] Dominik Seger. 2013. Not a Question of If, but When? Choosing the Right Trigger to Encourage Keyboard Shortcut Use. Master’s thesis.
https://doi.org/10.1017/CBO9781107415324.004 arXiv:arXiv:1011.1669v3

[92] Kodai Sekimori, Yusuke Yamasaki, Yuki Takagi, Kazuma Murata, Buntarou Shizuki, and Shin Takahashi. 2018. Ex-Space: Expanded
Space Key by Sliding Thumb on Home Position. In International Conference on Human-Computer Interaction. Springer, Cham, 68–78.
https://doi.org/10.1007/978-3-319-91250-9_6

[93] Yilei Shi, Tomás Vega Gálvez, Haimo Zhang, and Suranga Nanayakkara. 2017. GestAKey: Get More Done with Just-a-Key on a
Keyboard. In Adjunct Publication of the 30th Annual ACM Symposium on User Interface Software and Technology - UIST ’17. 73–75.
https://doi.org/10.1145/3131785.3131786

[94] Ben Shneiderman. 1983. Direct Manipulation: A Step Beyond Programming Languages. Computer 16, 8 (aug 1983), 57–69. https:
//doi.org/10.1109/MC.1983.1654471

[95] Adalberto L Simeone, Eduardo Velloso, and Hans Gellersen. 2015. Substitutional Reality: Using the Physical Environment to Design
Virtual Reality Experiences. Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems - CHI ’15.
https://doi.org/10.1145/2702123.2702389

[96] Tobias Sommer. 2018. Hotkey EVE. http://www.hotkey-eve.com/
[97] Marco Speicher, Anna Maria Feit, Pascal Ziegler, and Antonio Krüger. 2018. Selection-based Text Entry in Virtual Reality. In Proceedings

of the 2018 CHI Conference on Human Factors in Computing Systems - CHI ’18. https://doi.org/10.1145/3173574.3174221
[98] Art. Lebedev Studio. 2007. Optimus Maximus. https://www.artlebedev.com/optimus/maximus/
[99] Sussane Tak. 2007. The Use of Keyboard Shortcuts Optimizing versus satisficing in the use of complex technology. Master’s thesis.

http://www.efficiencysoftware.co.uk/uploads/nieuws/-1412774825.pdf
[100] Stuart Taylor, Cem Keskin, Otmar Hilliges, Shahram Izadi, and John Helmes. 2014. Type-hover-swipe in 96 bytes: a motion sensing

mechanical keyboard. CHI ’14: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1695–1704. https:
//doi.org/10.1145/2556288.2557030

[101] Bruce Tognazzini. 1989. Keyboard vs. The Mouse, pt1. https://www.asktog.com/TOI/toi06KeyboardVMouse1.html
[102] Jo Vermeulen, Kris Luyten, Elise van den Hoven, and Karin Coninx. 2013. Crossing the Bridge over Norman’s Gulf of Execution:

Revealing Feedforward’s True Identity. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Paris, France)
(CHI ’13). ACM, New York, NY, USA, 1931–1940. https://doi.org/10.1145/2470654.2466255

[103] VIVE Blog. 2018. Introducing the Logitech BRIDGE SDK. https://blog.vive.com/us/2017/11/02/introducing-the-logitech-bridge-sdk/
[104] J. A. Wagner Filho, C.M.D.S. Freitas, and L. Nedel. 2018. VirtualDesk: A Comfortable and Efficient Immersive Information Visualization

Approach. Computer Graphics Forum 37, 3, 415–426. https://doi.org/10.1111/cgf.13430
[105] JamesWalker, Bochao Li, Keith Vertanen, and Scott Kuhl. 2017. Efficient Typing on a Visually Occluded Physical Keyboard. In Proceedings

of the 2017 CHI Conference on Human Factors in Computing Systems - CHI ’17. 5457–5461. https://doi.org/10.1145/3025453.3025783
[106] James A. Walsh, Stewart von Itzstein, and Bruce H. Thomas. 2014. Ephemeral Interaction Using Everyday Objects. In Proceedings of the

Fifteenth Australasian User Interface Conference - Volume 150 (Auckland, New Zealand) (AUIC ’14). Australian Computer Society, Inc.,
AUS, 29–37.

[107] Windows Experience Blog. 2018. Windows 10 Tip: Get started with the emoji keyboard shortcut. https://blogs.windows.com/
windowsexperience/2018/02/05/windows-10-tip-get-started-emoji-keyboard-shortcut/

[108] Jacob O. Wobbrock, Leah Findlater, Darren Gergle, and James J. Higgins. 2011. The aligned rank transform for nonparametric factorial
analyses using only anova procedures. In Proceedings of the 2011 annual conference on Human factors in computing systems - CHI ’11.
ACM Press, New York, New York, USA, 143. https://doi.org/10.1145/1978942.1978963

[109] Chien-Min Wu, Chih-Wen Hsu, Tzu-Kuei Lee, and Shana Smith. 2017. A virtual reality keyboard with realistic haptic feedback in a
fully immersive virtual environment. Virtual Reality 21, 1 (mar 2017), 19–29. https://doi.org/10.1007/s10055-016-0296-6

ACM Trans. Comput.-Hum. Interact., Vol. 29, No. 2, Article 15. Publication date: April 2022.

https://doi.org/10.1145/2628363.2628401
https://doi.org/10.1145/2628363.2628401
https://www.theverge.com/2019/3/8/18256256/apple-ar-glasses-2019-ming-chi-kuo-augmented-reality
https://www.theverge.com/2019/3/8/18256256/apple-ar-glasses-2019-ming-chi-kuo-augmented-reality
http://www.keyboard-layout-editor.com/
https://support.razer.com/gaming-keyboards/razer-deathstalker-ultimate
https://www.alfredapp.com/
https://www.samsung.com/us/computing/hmd/windows-mixed-reality/xe800zaa-hc1us-xe800zaa-hc1us/
https://www.samsung.com/us/computing/hmd/windows-mixed-reality/xe800zaa-hc1us-xe800zaa-hc1us/
https://doi.org/10.1145/1978942.1979348
https://doi.org/10.1109/TVCG.2019.2932239
https://doi.org/10.1017/CBO9781107415324.004
https://arxiv.org/abs/arXiv:1011.1669v3
https://doi.org/10.1007/978-3-319-91250-9_6
https://doi.org/10.1145/3131785.3131786
https://doi.org/10.1109/MC.1983.1654471
https://doi.org/10.1109/MC.1983.1654471
https://doi.org/10.1145/2702123.2702389
http://www.hotkey-eve.com/
https://doi.org/10.1145/3173574.3174221
https://www.artlebedev.com/optimus/maximus/
http://www.efficiencysoftware.co.uk/uploads/nieuws/-1412774825.pdf
https://doi.org/10.1145/2556288.2557030
https://doi.org/10.1145/2556288.2557030
https://www.asktog.com/TOI/toi06KeyboardVMouse1.html
https://doi.org/10.1145/2470654.2466255
https://blog.vive.com/us/2017/11/02/introducing-the-logitech-bridge-sdk/
https://doi.org/10.1111/cgf.13430
https://doi.org/10.1145/3025453.3025783
https://blogs.windows.com/windowsexperience/2018/02/05/windows-10-tip-get-started-emoji-keyboard-shortcut/
https://blogs.windows.com/windowsexperience/2018/02/05/windows-10-tip-get-started-emoji-keyboard-shortcut/
https://doi.org/10.1145/1978942.1978963
https://doi.org/10.1007/s10055-016-0296-6

15:38 • McGill et al.

[110] Robert Xiao, Julia Schwarz, Nick Throm, Andrew D Wilson, and Hrvoje Benko. 2018. MRTouch: Adding Touch Input to Head-Mounted
Mixed Reality. IEEE transactions on visualization and computer graphics (2018). https://doi.org/10.1109/TVCG.2018.2794222

[111] Naoki Yanagihara, Buntarou Shizuki, and Shin Takahashi. 2019. A Comparative Study of Planar Surface and Spherical Surface for 3D
Pointing Using Direct Touch. In 25th ACM Symposium on Virtual Reality Software and Technology (Parramatta, NSW, Australia) (VRST
’19). Association for Computing Machinery, New York, NY, USA, Article 42, 2 pages. https://doi.org/10.1145/3359996.3364814

[112] Zhizhuo Yang, Dongdong Weng, Zhengliang Zhang, Yufeng Li, and Yue Liu. 2016. Perceptual Issues of a Passive Haptics Feedback
Based MR System. In 2016 IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct). IEEE, 310–317. https:
//doi.org/10.1109/ISMAR-Adjunct.2016.0103

[113] Haimo Zhang and Yang Li. 2014. GestKeyboard: Enabling Gesture-Based Interaction on Ordinary Physical Keyboard. Proceedings of
CHI 2014, 1675–1684. https://doi.org/10.1145/2556288.2557362

[114] Jingjie Zheng. 2017. Enabling Expressive Keyboard Interaction with Finger, Hand, and Hand Posture Identification. Master’s thesis.
University of Waterloo. https://doi.org/10.1145/2858036.2858355

[115] Jingjie Zheng and Daniel Vogel. 2016. Finger-Aware Shortcuts. In Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems - CHI ’16. 4274–4285. https://doi.org/10.1145/2858036.2858355

[116] Ryder Ziola, Melanie Kellar, and Kori Inkpen. 2007. DeskJockey: Exploiting Passive Surfaces to Display Peripheral Information. In
Human-Computer Interaction - INTERACT 2007, Vol. 4662. 447–460. https://doi.org/10.1007/978-3-540-74796-3_43

ACM Trans. Comput.-Hum. Interact., Vol. 29, No. 2, Article 15. Publication date: April 2022.

https://doi.org/10.1109/TVCG.2018.2794222
https://doi.org/10.1145/3359996.3364814
https://doi.org/10.1109/ISMAR-Adjunct.2016.0103
https://doi.org/10.1109/ISMAR-Adjunct.2016.0103
https://doi.org/10.1145/2556288.2557362
https://doi.org/10.1145/2858036.2858355
https://doi.org/10.1145/2858036.2858355
https://doi.org/10.1007/978-3-540-74796-3_43

	Abstract
	1 Introduction
	1.1 Contribution Statement

	2 Related Work
	2.1 Physical Augmentations of Keyboards
	2.2 Using Physical Keyboards In MR
	2.3 The Possibilities of Augmented Keyboards

	3 Study: Assessing Shortcut Discoverability
	3.1 Tracked Keyboard Implementation
	3.2 Design and Demographics
	3.3 Part 1: Baseline Performance
	3.4 Part 2: Shortcut Discoverability
	3.5 Results
	3.6 Discussion

	4 Designing the Keyboard Augmentation Toolkit
	4.1 Motivation
	4.2 Requirements
	4.3 Architecture
	4.4 Supported Usage
	4.5 Key Features
	4.6 Evaluation by Demonstration
	4.7 Limitations, Omissions and Implications for Future Research for KAT

	5 General Discussion
	5.1 The Advantages of Augmented & Mixed Reality Keyboards
	5.2 Support for Physical and Virtual Keyboards on MR Platforms
	5.3 Mixed Reality Augmentations of Other Peripherals
	5.4 KAT: A Toolkit Supporting MR Keyboard Research

	6 Conclusions
	Acknowledgments
	References

