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ABSTRACT
Unsupervised anomaly detection in medical imaging is an

exciting prospect due to the option of training only on healthy
data, without the need for expensive segmentation annotations
of many possible variations of outliers. Most current methods
rely on image reconstruction error to produce anomaly scores,
which favors detection of intensity outliers. We instead pro-
pose a discriminative method based on a deep learning self-
supervised pixel-level classification task. We model context
and local image feature information separately and set up a
pixel-level classification task to discriminate between positive
(matching) and negative (mismatching) context and local fea-
ture pairs. Negative matches are created using data transfor-
mations and context/local shuffling. At test-time, the model
then perceives local regions containing anomalies to be nega-
tive matches. We evaluate our method on a surrogate task of
tumor segmentation in brain MRI data and show significant
performance improvements over baselines.

Index Terms— Anomaly detection, Unsupervised learn-
ing, Self-supervised learning, MRI, Deep learning.

1. INTRODUCTION

In this paper we consider the problem of anomaly detection,
specifically the detection and localization of focal patholo-
gies. Automated pathology detection could play a valuable
role in computer aided diagnosis (CAD) e.g. for scan triage,
as a second read, and for identifying incidental findings.
However, it is challenging to acquire a comprehensive train-
ing dataset containing examples of every possible appearance
of every possible pathology. Unsupervised anomaly detection
(UAD) methods learn only from healthy subject data, with
the goal of detecting anomalies (outliers) at test time.

Existing UAD methods in medical imaging include meth-
ods based on classification [1], restoration [2], [3], generative
adversarial networks (GANs) [4]–[7], and reconstruction er-
ror based autoencoders (AEs) [8]–[16]. Most existing meth-
ods make use of image reconstruction error to produce pixel-
level anomaly scores at test time, relying on the assumption
that anomalous regions are going to be reconstructed more

Fig. 1. Context and local feature matching. The method is
trained to discriminate positive and negative pairs of context
and local features. Training negative pairs are generated using
intensity/spatial transformations and shuffling.

poorly than healthy regions. Such methods might be lim-
ited to anomalies presenting significant pixel intensity devi-
ations [17]. Additionally, it has been found that, in practice,
reconstruction error based models can generalize and some-
times reconstruct even unseen anomalous regions with little
error. Thus, non-reconstruction approaches might be needed
to tackle the detection of harder anomalies. Discriminative
models for anomaly detection have already shown some suc-
cess both in computer vision [18] and medical imaging [1].

In this paper, we propose an anomaly detection method
based on a novel self-supervised pixel-level task, context to
local feature matching (CLFM), of learning to match pairs
of context and local image feature information using healthy
data (see Fig. 1). Our contributions are as follows:

• We propose the novel self-supervised CLFM task of pre-
dicting matches of context and local information in med-
ical images, which enables a discriminative modeling ap-
proach to anomaly detection and localization.

• We compare our proposed method to state-of-the-art
anomaly detection methods on MRI brain tumor data
and achieve superior unsupervised generalization.



Fig. 2. Hierarchical method configuration of the CLFM approach. Convolutional feature extractors and classification heads
operate at three scales. Scores from each stage are bilinearly upsampled and combined via a weighted mean.

2. METHOD

Our approach to UAD is based on separation of local (i.e.
local neighborhood) and context (i.e. surrounding image) in-
formation. We enforce exclusivity of information between lo-
cal and context features by leaving a buffer between the two
regions that ensures contiguous and non-overlapping recep-
tive fields between their convolutional representations. This
exclusivity is required to prevent trivial solutions to the self-
supervised context and local information matching. We then
train on the self-supervised CLFM classification task, requir-
ing the model to learn the matched (i.e. healthy) pairings of
local and context information. In the absence of real anomaly
training examples, we synthesize mismatched (i.e. anoma-
lous) pairs. Finally, to present the appropriate balance of lo-
cal and context information for a wide range of anomalies,
we use a hierarchical approach where we adjust the receptive
field of local information associated with each pixel. We de-
scribe each part of the system below.

2.1. Local and context feature extraction

We apply a shallow CNN to learn the local features corre-
sponding to each pixel in the image. The context features
are constructed by aggregating the local information across
the context region i.e. the whole image excluding the local
region, with a buffer that prevents receptive field overlap. We
perform the aggregation by linearly projecting the local fea-
tures and averaging over the context region.

The requirement for exclusivity between local and context
information prevents us from using standard neural network
normalization methods such as batch or layer normalization,
which normalize across the whole image. Instead, we use a
combination of weight standardization and L2 normalization
across the channel dimension.

2.2. Negative pair generation

For generating negative pairs, we employ a few strategies:
1. Shuffle the patches (i.e. extracted features) across each

training image batch to give out-of-context matches.
2. Extract mismatched patches from an image augmented

with intensity transformations. We use additive intensity
transformations in the range of -0.15–0.15 and multiplica-
tive transformations in the range of -1.3–1.3.

3. Extract mismatched patches from a combination of heav-
ily augmented images randomly selected from the training
data. We use intensity transformations, rotations, flips, re-
sizing, cropping and blurring to generate negatives.

2.3. Pair classification

A classification head is trained to output the match probabil-
ity of the context and local information pair at every pixel.
The classification head has 3 concatenated pixelwise inputs:
context features, local features, and the x, y, z volume coor-
dinates. The output probabilities p are used for binary cross-
entropy loss (BCE) for training and as anomaly scores during
inference. The pixelwise loss is calculated using the binary
pair labels t (1 for natural pairs in healthy slices, 0 for syn-
thesized negative pairs), averaged over the stage i brain fore-
ground pixels (i.e. non-zero in any modality) Fi and summed
over the stages:

Loss =
3∑

i=1

Wi
1

|Fi|

Fi∑
BCE(p, t)

We use a positive to negative pair ratio of 1 : 2 during training.

2.4. Hierarchical configuration

Shallow CNNs with limited receptive fields may struggle to
identify larger or more complex anomalies. Thus, we apply
our method in a hierarchical configuration using three stages



(see Fig. 2). Each stage bilinearly downsamples the local
information learned by the CNN of the previous stage and
applies a new CNN to learn from an effectively expanded re-
ceptive field with respect to the original resolution. At all
scales, context features are then computed and the patch is
classified. We then combine the classification results from
the three stages by bilinearly upsampling all of the results to
the original resolution and using a weighted mean where the
weight wi for each stage i is Wi = 2−i.

3. EXPERIMENT SETUP

3.1. Dataset

There is a lack of public datasets for evaluating anomaly de-
tection approaches. Therefore, we evaluate on the surrogate
task of brain tumor segmentation using data from the BraTS
2021 challenge [19]–[21]. This data comprises native (T1),
post-contrast T1-weighted (T1Gd), T2-weighted (T2), and
T2 Fluid Attenuated Inversion Recovery (FLAIR) volumes
for each patient from a variety of institutions and scanners,
which has already been co-registered, skull-stripped and in-
terpolated to the same resolution. Labels are provided for
tumor sub-regions: the GD-enhancing tumor, the peritumoral
edema, and the necrotic and non-enhancing tumor.

We split the dataset into 938 training, 62 validation, and
251 test patients. We consider the union of the tumor labels
to be the anomalous regions. During training, we only use
slices that do not contain any tumor pixels, under the assump-
tion that they represent healthy tissue. For the data input to
the models, we concatenate all four modalities at the chan-
nel dimension for each patient. We scale the pixel intensity
values in each modality of each scan by dividing by the 99th
percentile brain pixel intensity. All slices are downsampled to
a resolution of 128×128 (1.62mm/pixel).

3.2. Baselines

We chose three of the best performing UAD methods as eval-
uated by Baur et al. [22]. Namely, we use f-AnoGAN [4],
a GAN-based approach as well as a variational autoencoder
(VAE) method evaluated using the standard reconstruction
error [9], [11] and restoration [2] methods for producing
anomaly scores.

3.3. Implementation details

CLFM model: As described in Section 2, our model com-
prises three stages, each made up of a CNN, local-to-context
projection head, and a classification head. The multi-scale
(multi-stage) architecture for learning local information is
similar to a standard encoder configuration, with blocks of
2 convolutional layers (the CNNs) connected by bilinear
downsampling layers.

More precisely, the feature extractor CNNs comprise two
weight standardized [23] convolutional layers with 128 out-
put channels, a kernel size of 3×3, Swish activations and
L2 normalization across the channel dimension. The local-
to-context projection heads are convolutional layers of kernel
size 1 that project CNN outputs into context averaging space
with 32 dimensions. Finally, the classification head uses the
same architecture as the previously described CNNs but with
kernel sizes of 1 and a final convolutional classification layer
of kernel size 1 that projects into a single dimension repre-
senting the context and local information match probability.
The model is trained using the binary cross entropy loss (see
Section 2.3). We train the model using the Adam optimizer
with a cosine annealed maximum learning rate of 0.001 and
batch size of 16 for 160,000 iterations. We use stochastic
weight averaging [24] with a linear annealing schedule con-
verging to a learning rate of 0.0001 in the last 38,400 itera-
tions to produce the final model.

f-AnoGAN: We adapt the original public implementation 1

for the brain MR data task as follows. We use an additional
generator, discriminator and encoder block to account for the
higher resolution. Strided convolutions and transposed con-
volutions are used for downsampling and upsampling respec-
tively. We use a batch size of 32 and learning rates of 0.001,
0.001, 0.00001 for the generator, discriminator and encoder
respectively. The encoder was trained using κ = 1× 10−8.

VAE: We implement an encoder-decoder architecture with
three downsampling/upsampling stages and a bottleneck with
dimensionality of 128. Each encoder stage consists of two
weight-standardized convolutions [23] with kernel size of
3 and 64, 128, 256 output channels for the three stages re-
spectively followed by Swish activations followed by group
normalization layers with groups of 8, 16, 32 respectively.
Average 2× pooling is used for downsampling. The decoder
architecture mirrors the encoder in reverse, using transposed
convolutional layers for upsampling. We use the sum of
L2 reconstruction error and KL-divergence with a weight of
β = 0.001 as the loss. Training is done using the Adam
optimizer with a cosine annealed maximum learning rate of
0.0001, batch size of 16 and train for 160,000 iterations. We
use stochastic weight averaging [24] with a linear annealing
schedule converging to a learning rate of 0.00001 in the last
38,400 iterations to produce the final model.

VAE restoration: Using the VAE model described above, we
implement a restoration method [2] to produce the anomaly
scores. We perform the restoration procedure using 100 it-
erations on individual slices basing our implementation on
public source code 2. Note that due to the iterative nature of
the restoration procedure it takes significantly longer (approx.
×100) to produce predictions compared to other methods.

1https://github.com/tSchlegl/f-AnoGAN
2https://github.com/yousuhang/Unsupervised-Lesion-Detection-via-

Image-Restoration-with-a-Normative-Prior



Fig. 3. Sample CLFM model results, (left to right) from easy
(obvious) to difficult (indistinct) anomalies.

For all methods, we use median filtering with a kernel size
of 5 as a postprocessing step to reduce high frequency noise
in the predicted anomaly scores. Slight rotation, brightness,
flip and stretch data augmentation during training was found
to slightly improve performance of VAE and CLFM methods.

4. RESULTS

We evaluate the anomaly segmentation accuracy of our
method against the baselines using the area under the precision-
recall curve (AUPRC) at the pixel level which allows eval-
uation without setting an operating point for the produced
anomaly scores. We also calculate dDicee, a Dice score
which measures the segmentation quality using the optimal
operating point found using the validation set ground truth.
We include an ablation study investigating the effects of con-
text information, coordinate inputs and multiple stages in
Table 1. Table 1 shows that CLFM outperforms the baselines,
with the contextual information and multi-scale components
playing an important role in its success. Fig. 3 shows visual-
izations of the predictions for a range of anomalies.

We further evaluate anomaly localization accuracy at
the scan level in order to reflect the more realistic scenario
where anomalies need to be localized but not necessarily pre-
cisely segmented. We use the optimal operating point found

Method AUPRC dDicee
f-AnoGAN [4] 0.365±0.024 0.449±0.014

VAE (recon.) [8], [11] 0.554±0.006 0.538±0.004

VAE (restoration) [2] 0.767±0.002 0.703±0.002

CLFM (ours) 0.811±0.002 0.742±0.001

CLFM−Ctx. 0.613±0.019 0.613±0.012

CLFM−Coord. 0.731±0.003 0.681±0.001

CLFM−S3 − S2 0.748±0.003 0.689±0.002

CLFM−S3 0.800±0.001 0.731±0.001

Table 1. Voxelwise tumor segmentation results as mea-
sured by area under the precision-recall curve and optimal
Dice score. ± indicates standard deviation across three runs.
−Ctx.,−Coord.,−S3−S2 refer to the model without context
aggregation, coordinate inputs, and excluding contributions
from stage 2 and 3 classification heads respectively.

Recall
Method @0.5dDicee @0.75dDicee
f-AnoGAN [4] 0.36±0.03 0.01±0.00

VAE (recon.) [8], [11] 0.57±0.00 0.08±0.01

VAE (restoration) [2] 0.91±0.01 0.38±0.01

CLFM (ours) 0.90±0.00 0.61±0.01

Table 2. Scan-level results as measured by recall at 0.5dDicee
and 0.75dDicee thresholds for successful localization. ± in-
dicates standard deviation across three runs.

using the validation set to binarize the test predictions for each
model. We then calculate the Dice scores for each test patient
and consider the segmentations above the thresholds of 0.5
or 0.75 as positive localizations. Test scans where tumor seg-
mentations are worse are considered to be false negatives. We
thus report the test recall at the patient level in Table 2.

5. CONCLUSION

This work presented a novel self-supervised system for de-
tecting and localizing anomalies in brain MR images based
on discriminative modeling of context and local information
pairs. We showed that by generating the appropriate negative
(mismatched) pairs during training we can obtain a model that
is effective at detecting anomalous lesions in the brain. Our
method uses no manual dense annotations and only needs
healthy data to be trained. Discriminative anomaly detec-
tion methods like ours are more aligned with the fields of im-
age segmentation and classifications than more traditional and
restrictive autoencoder and reconstruction error based meth-
ods. Thus, discriminative methods are easier to integrate with
the rapid advances in large-scale self-supervision, pretrain-
ing, fine-tuning, and semi-supervision that will lead to more
practical anomaly detection applications in the future.



6. COMPLIANCE WITH ETHICAL STANDARDS

This research study was conducted retrospectively using
human subject data made available in open access by the
BraTS’21 challenge. Ethical approval was not required as
confirmed by the license attached with the open access data.
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