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Abstract. The mass adoption of Internet of Things (IoT) devices, and
smartphones has given rise to the era of big data and opened up an
opportunity to derive data-driven insights. This data deluge drives the
need for privacy-aware data computations. In this paper, we highlight the
use of an emerging learning paradigm known as federated learning (FL)
for vision-aided applications, since it is a privacy preservation mechanism
by design. Furthermore, we outline the opportunities, challenges, and
future research direction for the FL enabled vision applications.
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1 Introduction

According to international data corporation, there will be more then 80 bil-
lion devices (IoT sensors, smartphones, wearable sensors) connected to wireless
networks by end of 2025. These devices will generate approximately 163 zeta
bytes of data globally, which is 10 times of data generated in year 2016 [1], [2].
The adoption of these devices are fueled by the advancements in wireless com-
munications especially 5G technology. This overwhelming availability of data,
advancement in deep learning, and unprecedented connectivity speeds offered
by 5G will enable near real-time response for artificial intelligence (AI) driven
applications.

The large-scale model training involves many stakeholders and entails many
risks, which includes user privacy, data sovereignty, and data protection laws.
The two common security attacks on a machine learning (ML) model are the
poisoning attack (training phase) [3], and the evasion attack (inference phase)
[4]. In the poisoning attack, the malicious user internally corrupts the training
data, whereas in the evasion attack, the model accuracy can be manipulated by
injecting adversarial samples. Therefore, different governments have introduced
data protection regulations to ensure user privacy. To overcome this challenge,
existing solutions are equipped with various privacy preserving techniques in-
cluding differential privacy and modern cryptography techniques [5].
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In recent times, differential privacy, coupled with powerful and advance wire-
less communications inspired many researchers to utilize the relevant data for
many emerging AI driven applications [6], [7]. However, the conventional cloud-
centric model training approach requires transferring a large amount of raw data
from the edge node to third-party servers. This, however, has several limitations
including:

– Data is privacy sensitive and highly protected under the legislation by Gen-
eral Data Protection Regulation (GDPR) [8].

– Latency issues incurred due to long propagation delays which are not accept-
able in time-sensitive applications like smart healthcare, and self-driving cars
[9].

– Inefficient bandwidth usage, higher communication and storage cost which
also results in substantial network footprints.

This leads to the emergence of a new learning paradigm, termed as federated
learning (FL) [10], which aims to bring computations to edge devices without
compromising their privacy. Google being the pioneer, makes extensive use of
FL algorithms to improvise their services like Gboard and next word prediction
[11].

Though, FL was initially introduced with special emphasis on edge device
and smartphone applications, but the combination of FL with IoT sensors and
powerful AI tools has numerous applications in industry 4.0, digital health cares,
smart cities, smart buildings, pharmaceutical drug discovered, video surveillance,
digital imaging, virtual or augmented reality (VR/AR), and self-driving cars [12].
For instance, vision processing is an emerging technology, especially for health-
care and smart city applications. The vision sensors generate a large amount
of data and it is challenging for the current wireless network architecture to
process this data for time-sensitive applications. The key bottleneck is the com-
munication cost and unprecedented propagation delays caused by the network
congestion [1]. The 5G connectivity coupled with FL, is enabling a plethora of
vision-aided applications, especially in smart healthcare, live traffic monitoring,
and incident management [13]. The majority of these applications are privacy
sensitive and latency intolerant. Therefore, the prospect of 5G connectivity and
privacy by design of FL is envisioned to be a promising solution for vision-aided
applications. Vision processing enabled by FL is an emerging field, therefore, it
is very difficult to cover all related aspects. To this effect, in this article, we will
discuss some of the possible verticals, system architecture, challenges, and future
research directions of vision-aided applications.

The rest of the paper is organized as follows. Section 2 provides a brief
overview of FL. Section 3 covers the possible vision-aided applications and review
some of the use cases, whereas in Section 4, the detail of challenges and future
research directions will be discussed. Finally, Section 5 will concludes the paper.
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2 Preliminaries and Overview

FL is an algorithmic solution for collaborative model training with the help
of many clients (smart phones, IoT sensors, and organizations) orchestrated
by the centralized server, which keeps the training data decentralized [10]. It
embodies the principle of relevant data collection and has the privacy by design.
The concept of FL was initially introduced with special focus on smartphone
and edge device applications, however, due to its decentralized nature of model
training, it is also gaining popularity in other fields [12]. Therefore, keeping the
common abstractions of different applications in mind, FL can be categorized
based on the scale of federation, data partitioning, and privacy mechanism as
shown in Fig. 1 [14].
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Fig. 1. Overview of different FL architectures.

2.1 Scale of Federation

The scale of federation is highly dependent on the number of edge nodes partic-
ipating in the training process. When the clients in the training process are big
organizations (hospitals, banks, and government institutions etc), the number
of participants will be small and this setting is called as cross-silo FL as shown
in Fig. 1 (a). Conversely, in cross-device FL settings, large number of users
(smartphones, wearable sensors, and IoT sensors) participate in the training of
a global model on a highly decentralized data-set [14]. The typical examples of
cross-device and cross-silo FL are google Gboard and Nvida Clara for brain tu-
mor segmentation respectively [10], [15]. In vision-aided applications, the scale
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of federation is highly dependent on the nature of data and user’s intent. For
instance, in brain tumor segmentation, the data was stored on central servers
placed in different geographical locations, and as a result, the cross-silo mecha-
nism is used for model training. In the smart cities video surveillance scenario,
anomaly detection to identify the unusual activity in the environment is one
of the of the examples. In this case, the cross-device mechanism may be used
because this setting involves a large number of vision sensors placed in different
locations.

2.2 Data Partitioning

FL is extremely useful in collaborative training where the data is distributed
among a large number of users. In the era of digitization and big data, every
click of user is captured to derive useful statistical information which may belong
to similar or different application domains. Therefore, data partitioning plays a
key role in FL where it is broadly divided in horizontal, vertical and transfer
learning [14]. In horizontal FL, participants have similar features at different in-
stances and vary in terms of data samples, whereas in vertical FL, common data
of unrelated domains is used for model training. In vertical FL, users can have
similar data but differ in terms of features. The classical example of horizontal
FL is Google Gboard with the assumption of honest consumers and secure cen-
tralized server for global model training [10]. On the other hand, a real-world
use case for vertical FL may be a scenario where the credit card sales team of
a bank train its ML model by using the information of online shopping. In this
case, only common users of the bank and e-commerce website will participate
in the training process. With this liaising of secure information exchange, banks
can improve their credit services and provide incentives to active customers [16].

In transfer FL approach, a pre-trained model is used on a similar datasets
to solve a completely new problem set. The real-time example of transfer FL
could be similar to vertical FL with small modifications. In this approach, the
condition of similar users with matching data for model training can be relaxed
to create a diverse system to serve individual customers [17]. It is a personalized
model training for individual users to exploit the better generalization proper-
ties of global model which can be achieved by either data interpolation, model
interpolation, and user clustering [18].

3 Vision-Aided Applications Enabled by FL

In recent times, vision processing has many practical applications in health-
care, smart transportation systems, video surveillance, and VR/AR. Conven-
tional model training relies on server-led training solutions, however, video data
is not only privacy sensitive but also incurs large communication cost as well
[1]. FL mechanisms, on the other hand, are privacy-aware by design and signif-
icantly reduce the communication cost by exploiting the edge processing capa-
bilities. Therefore, it is a very challenging task to build vision-aided solutions
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in a centralized server-led model. In recent times, FL is an exciting solution for
decentralized model training, which is gaining attention in both academia and
industry. As a result of that, many FL enabled applications have surfaced. An
overview of vision-aided applications enabled by FL for smart healthcare (cross-
silo), smart transportation system and smart homes is presented in Fig. 2. It
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Fig. 2. Overview of vision-aided applications enabled by FL.

is very difficult to cover the entire liaison of FL applications, therefore, in this
section we will focus on some of the vision-aided applications.

3.1 Smart Heath-Care System

In healthcare systems, data-driven ML is a promising approach to develop a ro-
bust model for learning features from large curated data for knowledge discovery.
Even in the age of big data and advanced AI, the existing medical data is not yet
fully exploited for model training due to privacy [19]. Most of the data is stored
in secured locations i.e. a data island with restricted access. Furthermore, col-
lecting, curating, and maintaining good quality data is both time consuming and
expensive. Therefore, to improve the quality of health-care, collaborative learn-
ing without data share is a need of the hour and this platform is provided by
FL. It is a promising solution to improve the healthcare data analytic, especially
bio-medical imagining. FL can be applied on various domains of health-care but
the key application areas involving vision data analytics are:

– Magnetic resonance imaging (MRI) to find neurological disease or disorders.
– Brain tumor segmentation.
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– Human emotion detection to identify the mental health of patients.
– Cancer cell detection.

In [20], a FL framework is proposed to analyze the brain images to investi-
gate neurological disorders. This framework used both synthetic as well as the
real dataset, showing the potential of medical imaging in future applications.
The authors in [21] presented a deep learning model for brain tumor segmen-
tation using FL. In this study, multi-institutional collaboration is used which
achieved the accuracy of 99% without sharing any data. Similarly, the authors
in [22] exploited the client-server architecture of FL to train a differential privacy
preserved deep neural network for brain tumor segmentation. In this study, the
results show that there is a trade-off between privacy protection and model per-
formance. In [23], a human emotion monitoring system is proposed using facial
expression and speech signals to create an emotion index, which is used to find
the mental health of individuals. Using FL, the proposed method showed promis-
ing results by detecting the depression of individuals without compromising the
users’ privacy.

3.2 Smart Homes

In smart homes, safety and security is highly dependent on vision processing
solutions. Unfortunately, it is very difficult to deploy these solutions due to the
privacy, latency, and high cost of video transmission. By addressing the privacy
concerns effectively, real-time video analytic has many applications in smart
homes. For instance, the combination of wearable sensors and real-time activity
inference on indoor vision sensor feeds can help in fall detection and trigger
corrective measures [24], [25]. Similarly, for smart home safety, an alert can be
triggered by visual instance detection which can identify the possible threat
i.e., fire hazard. In [26], a visual object detection model FedV ision is presented
which can be used to develop vision-aided solutions for safety monitoring in
smart homes, cities, or industries. In this work, horizontal FL architecture is
exploited to train the ML using the image data owned by a different organization
to develop a warning mechanism for safety hazards. The experimental results
showed improvement in operational efficiency, data privacy, and reduced cost.

3.3 Smart Cities

FL has a huge potential of effectively managing the assets, resources and services
of smart cities using vision data analytics collected by vision sensors (smart-
phone cameras, CCTV, and dash-cams) [27]. With the challenge of privacy and
high cost, cloud-centric approach also involves long propagation delay and incurs
unacceptable latency for time sensitive applications like traffic and emergency
management, self driving cars, disaster management [12]. For example, in smart
transportation systems, a fleet of autonomous cars may need an up-to-date in-
formation of traffic, pedestrian behavior, or unusual incident (accident) to safely
operate. Similarly, the video captured from individual smartphones or dash-cam
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can provide the live street view, which can be used for delivering the information
of hospitals, popular restaurants, or providing insights on real-time behaviour of
pedestrians and fellow drivers. However, building accurate models in these sce-
narios will be very difficult due to the privacy and limited connectivity of each
device. As a result, this can potentially impede the development of new tech-
nologies for smart cities [12], [13]. Therefore, to reduce the transmission cost,
and latency, FL can be used to locally process the information and only send
the model parameter updates to the cloud. Using the FL paradigm, the following
are the application domains of vision-aided solutions for smart cities.

– Smart transportation systems for real-time traffic management and naviga-
tion, incident detection, and automatic license plate/ tag recognition.

– Self driving cars (automatic driving management and driver assistance).
– Safety and security of public places using the CCTV images and videos.
– Drone video surveillance for crowd management on special events.
– Natural disaster management using satellite imagery and drone footage.

In [28], a FL framework is proposed using unlabelled data samples at each user
participating in the training process for two different application domains. The
authors have demonstrated the application of FL and obtained promising results
in natural disasters analysis and waste classification. Similarly, vision-aided ap-
plications enabled by FL also have a huge potential to improve the model training
in some other domains like VR/AR, gaming, agriculture and smart industries,
etc. The details of the used cases along with the area of applications are given
in Table 1.

Table 1. Summary of vision aided applications enabled by FL.

Ref Domains Area of application FL approach

[20] Health-care Neurological disorder Cross-silo/ Horizontal
[21] Health-care Brain tumor segmentation Cross-silo/ Horizontal
[22] Health-care Brain tumor segmentation Cross-silo
[23] Health-care Human emotion detection Cross-device/ Horizontal
[26] Smart homes Visual object detection Cross-device
[28] Smart city Disaster and waste classification Cross-silo

4 Challenges and Future Research

FL is an emerging yet very effective and innovative learning paradigm for col-
laborative model training. Despite of recent research efforts to address the core
challenges, FL is still prone to many limitations, especially in vision-aided ap-
plication that hinder it to be adopted in different domains. In this context, we
will discuss some of the challenges and future research directions.
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4.1 Privacy and security

In vision-aided applications, ML models are trained using highly sensitive data.
Although, data never leaves the edge device during the training process, it is
worth mentioning that FL does not address all the potential privacy issues.
For instance, the FL trained model may indirectly leak some information to a
third party user by model inversion, gradient analysis, or adversarial attacks
[29]. Therefore, counter measures like adding noise, adding differential privacy
is needed in cross-device architecture [12], [14].

Level of trust among the participants in the training process is also a very
big challenge in FL applications. In cross-silo structures, the clients are usually
trustworthy and bounded by collaborative agreements, which reduces the trust
deficit. As a result, there is a less possibility of privacy breach, which can help
to reduce sophisticated counter protective measures [30]. However, in the cross-
device architecture, the training process is done on a highly distributed dataset
and it is almost impossible to enforce collaborative agreement. Therefore, trust
deficit is a very big problem among the participants, and it is necessary to have
some security strategies to ensure security and protect the end-user interests
[19]. Similarly, privacy vs. performance trade-off is also a huge challenge in de-
centralized training, because it impacts the accuracy of final model [7].

4.2 Data heterogeneity

The data captured by vision sensors is highly diverse, since it is collected by
devices having different computational, storage, and network capabilities. For
instance, an image or video captured by a smartphone or a dash-cam may have
different pixel qualities [7]. Similarly, medical imaging data may also have dis-
tinct features and dimensions due to acquisition differences, quality and brand of
the device, and local demographic bias [19], [22]. Therefore, this non-identically
distributed data poses a substantial challenge, which leads to the failure of a FL
enabled solution under specific conditions. Data heterogeneity also leads to a
situation where there is a conflict in the optimal solution and demands a sophis-
ticated method to reach a global shared model. Therefore, data heterogeneity is
still an open research problem and needs attention based on specific applications.

4.3 Asynchronous Aggregation Mechanism

Communication architecture for model aggregation is also huge challenge and is
currently an active area of research. In cross-device model training, each device
has different storage, computation and communication capabilities. Furthermore,
device dropout is also very common in the training process due to connective
and energy constraint [30]. These system level characteristics pose a critical
challenge in model aggregation process. The traditional FedAvg algorithm uses
the synchronous model aggregation mechanism, thus prone to the straggler effect
in which FL server waits for all devices to complete their local training for
global model update as shown in Fig. 3 (a). This aggregation method slows
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down the training process as it depends on the slowest device in the network.
Furthermore, this mechanism does not account for a user who joins the training
process halfway. On the other hand, asynchronous aggregation updates the global
model as it receives the local update Fig. 3 (b). One of the advantage of using
asynchronous aggregation mechanism is its ability to deal with the straggler
effect.

FL Participants

t t+1

t+1

Server waits for each participant 

before aggregation

FL Participants

t t+1

t+1

t

Server aggregates the model 

whenever received

(a) Synchronous FL (b) Asynchronous FL

Fig. 3. Comparison of synchronous and asynchronous communication mechanism for
FL.

4.4 Scale of Federation

The scale of federation is highly dependent on the number of participants in
the training process for a specific application. For example, in health-care appli-
cations, cross-silo architecture is usually adopted for model training, where the
edge nodes are hospitals and government institutes [19], [30]. The participants in
the training process are trust-worthy and equipped with secure communications,
powerful computational resource. This is quite a straight forward training process
and each client is bounded by the collaborative agreement. However, in smart
city, cross-device architecture can be used for applications like transportation
system and self-driving cars. The fully decentralized model training has many
challenges including communication and propagation delays, trust deficit among
client, model convergence and aggregation, and agreement of optimal solution
[19]. This aspect of vision-aided application is unexplored.
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4.5 Accountability and Incentive Mechanism

Data quality in ML-driven applications is essential because the performance of
the system is highly dependent on the data. In FL model training, the data qual-
ity has more significance. In non-trusted federation, the accountability of clients
is very important to improve the performance of the model. This information
can be used to develop a revenue model to give incentives and encourage the
participants with relevant data to participate in the model training and improve
the global model accuracy.

5 Conclusions

Data-driven solutions have led to a wide range of innovations, especially in the
domain of vision-based applications and services. However, a lot of intelligence
still remains untapped because of inaccessibility of user-centric information due
to privacy challenges. Federated learning mechanism has led us to an exciting
research paradigm that allows us to collect and analyze the massive amount of
information without compromising on privacy and network resources. In this
paper, we have provided an outlook on FL-enabled vision-aided applications.
Furthermore, we have set the scene for vision applications in the era of 5G
connectivity through FL paradigm and highlighted a number of fundamental
challenges and future research directions.
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