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Abstract8

This paper proposes two new methods (the Quantile Group LASSO and the Quantile9

Group SCAD models) to evaluate the predictability of a large group of factors on carbon10

futures returns. The most powerful predictors are selected through the dimension-11

reduction mechanism of the two models, while potential differences of the statistically12

significant predictors for different quantiles of carbon returns are carefully considered.13

First, we find that the proposed models outperform a series of competing ones with14

respect to prediction accuracy. Second, impacts of the selected predictors over the15

carbon price distribution are estimated through a quantile approach, which outperforms16

the mean shrinkage model in our case with data featured by a non-normal distribution.17

Specifically, the Brent spot price, the crude oil closing stock in the UK, and the growth18

of natural gas production in the UK are found to impact carbon futures returns only19

in extreme conditions with a strong asymmetric feature. Importantly, our estimators20

remain robust against the extreme event caused by the Covid-19. Our findings reveal21

that the identification of appropriate carbon return predictors and their impacts hinge22

on the carbon market conditions, and should be of interest to various stakeholders.23
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1. Introduction27

The rising concentration of greenhouse gases (GHGs) results in adverse consequences28

of global warming and climate change whereby the sustainability of human activities29

and development could be potentially weakened. In response to global climate change,30

the carbon market has been specifically developed as an effective mechanism of the31

carbon emissions reduction, while considering the carbon market dynamics has become32

an integral part of the worldwide policymaking (Zhu et al., 2018). Operating on the33

principle of ‘cap-and-trade’, the European Union Emission Trading System (EU ETS)34

initialized on January 2005 is the largest multinational carbon market worldwide so far35

to constrain CO2 emissions by carbon-consumed industries in Europe.136

An accurate prediction of carbon price dynamics and an in-depth investigation of37

its determination are of great importance for various stakeholders involving academic38

researchers, policymakers, carbon-consumed installations, and financial investors (Zhu39

and Chevallier, 2017), whereas existing efforts are surprisingly sparse. Specifically, car-40

bon price fluctuations directly impact the performance of carbon emissions reduction41

in carbon market (Zhu et al., 2018). Carbon price dynamics also affect the cost of42

most human activities and economic development (such as power production, modern43

transportation, land-use changes, etc.). The latter is known to be largely driven by the44

carbon-consumed energy (i.e., oil, natural gas, and coal), which are major sources of45

carbon emissions (Balcılar et al., 2016; Kara et al., 2008). As an emerging financial46

product, futures contracts of carbon allowances provide investors with an important47

instrument for the risk diversification in their investment portfolios (Paolella and Tas-48

1According to European Commission (https://ec.europa.eu/clima/policies/ets en), the EU ETS
covers around 50% of total CO2 emissions in EU and controls for the emissions from more than 11,000
carbon-intensive installations in 31 European countries.
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chini, 2008). Importantly, it is known that the carbon price formation is characterized49

with asymmetry (Duan et al., 2021), extant literature that moves beyond the mean-50

based predictions is nevertheless scant. Thus, thorough forecasting for future carbon51

price movements while considering the impact of extreme events worldwide, e.g., the52

ongoing Covid-19 epidemic, is of paramount importance and still left for research.53

We propose two innovative dimension-reduction and quantile forecasting methods,54

i.e. the quantile group least absolute shrinkage and selection operator (Quantile Group55

LASSO) and the Quantile Group SCAD models, to identify statistically significant56

predictors of the dynamics of carbon futures returns in the EU ETS over the carbon57

price distribution. Unlike the existing literature that usually learns predictors of carbon58

futures returns via a small number of variables in a narrowed field, this study includes59

a large number of predictors, which may possibly determine the dynamics of carbon60

futures returns. Our massive data enable us to include the related information as much61

as possible, however, traditional statistical models which are widely used in return62

forecasting could not incorporate massive amount of variables.63

Therefore, we advocate these two novel methods that are able to identify ‘key fac-64

tors’ among a large number of variables to improve the predictive efficiency for carbon65

returns. The high predictive accuracy and feasibility of these methods is demonstrated66

in our empirical analysis. In our study, the predictors are selected from a compre-67

hensive pool related to the carbon market dynamics including 44 market fundamental68

variables and 18 technical variables.2 Impacts of the most powerful carbon-return pre-69

dictors, which are allowed to be different at various carbon quantiles, on carbon return70

dynamics are estimated through a quantile regression. Performance of our employed71

2‘Carbon price’ and ‘Carbon return’ are used interchangeably in the paper, as like the literature
we transform the carbon price into returns to avoid nonstationarity. Detailed descriptions are in the
data section.
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estimators remains robust when facing extreme events associated with the ongoing72

Covid-19 epidemic worldwide.73

Our research contributes to the literature in the following ways. First, via a large set74

of candidate models we account for a large set of predictive sources regarding the carbon75

return dynamics from aspects of energy demand-supply fluctuations, energy price dy-76

namics, stock price indicators, aggregate credit provisions, macroeconomic conditions,77

and technical indicators, respectively. Based on two sterling properties of our proposed78

methods, i.e., the ‘interpretability of the final estimator’ and the ‘fast computation’,79

we are able to identify the most powerful predictors among all potential ones for fu-80

ture dynamics of carbon returns, while allowing for potential differences of significant81

predictors at various carbon return quantiles.82

Second, to evaluate the forecasting performance, through comparisons of the mean-83

squared prediction error (MSPE) and the mean absolute value of prediction error84

(MAPE), we demonstrate that the Quantile Group LASSO model and the Quan-85

tile Group SCAD model have superior out-of-sample predictability compared to the86

currently-popular methods. Meanwhile, regarding the predictor selection, these two87

methods consider and allow for the heterogeneity of significant predictors at different88

quantiles of carbon returns.89

Third, in contrast to mean-based approaches, we further employ a quantile regres-90

sion model to estimate distinct impacts of the selected forecasting factors on carbon91

futures returns across all market conditions in the data set. Applying the quantile ap-92

proach to examining the tail behavior of carbon futures prices could better capture the93

true interdependence between the carbon return and its predictors. We find that the94

Brent oil price, the crude oil closing stock in the UK, and the growth of natural gas95

production in the UK statistically significantly affect carbon returns during extreme96
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events (i.e., at low and high quantile levels). In addition, it is worth noting that our97

estimators are also shown to be robust against extreme events in the ongoing Covid-1998

epidemic.99

Overall, our empirical research possesses important implications to a wide group100

of entities, involving policymakers, carbon-consumed industrial productions, and in-101

vestors, for an accurate cost assessment of carbon-consumed productions and activities,102

a sensible risk diversification of the investment portfolio, and an effective reduction of103

carbon market risks.104

The rest of the paper is organized as follows: Section 2 summarizes the extant related105

literature in carbon price forecasting; Section 3 proposes our methodology. Section 4106

introduces our data set as well as the main variables used in this study. Section 5107

discusses the empirical results. Section 6 concludes.108

2. Literature review109

2.1. Carbon price prediction110

How is our research connected with the extant literature? Previous studies employ111

various methods for the carbon price/return prediction.3 Early research mainly uses112

a qualitative research approach to discuss carbon price prediction. In recent studies,113

considering changes in carbon price over time as a time series, popular time-series fore-114

casting methods are extensively applied to the carbon price prediction. For example,115

Paolella and Taschini (2008) model the conditional dynamics of CO2 and SO2 price116

returns in the US and EU markets using a novel Generalized Autoregressive Condi-117

tional Heteroskedasticity (GARCH)-structure approach, and find that a mixed-normal118

3See a recent review of related studies in Zhu et al. (2018).
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GARCH model outperforms standard GARCH and other GARCH models in terms119

of the forecastability. Benz and Trück (2009) apply the Markov switching and AR-120

GARCH model to capture distinct behaviors of carbon return volatility in different121

regimes in the EU ETS and examine the improvement of its forecasting performance122

compared with conventional prediction methods without considering switching regimes.123

Focusing on the EU carbon markets, Chevallier (2011b) applies a nonparametric124

approach for the carbon price prediction and investigates that the approach outperforms125

conventional linear autoregression models, where forecasting errors could be reduced126

by almost 15% through the nonparametric modeling. Byun and Cho (2013) focus on127

the European Climate Exchange market and apply the GARCH-structured models to128

forecast carbon price dynamics. They observe a more effective predictive power of GJR-129

GARCH model against TGARCH and standard GARCH models. Koop and Tole (2013)130

forecast carbon price dynamics in the EU ETS using the dynamic averaging method131

and examine its forecast accuracy compared to conventional methods. They further132

discuss the forecastability of market fundamental and institutional factors for the carbon133

price dynamics. Sanin et al. (2015) find that the Autoregressive Moving Average X134

(ARMAX)-GARCH approach with an additive stochastic jump process outperforms135

the standard ARMAX-GARCH approach regarding the carbon price prediction in the136

EU ETS. Overall, while there is a growing literature in the carbon price forecasting, the137

methodology is mostly based on an assumption of linear movements of carbon prices,138

and the potentially-existing nonlinearity is nevertheless neglected.139

2.2. Nonlinear carbon-price pattern140

To model the nonlinear carbon-price changing patterns, existing research mainly141

relies on the techniques of artificial intelligence and ensemble (hybrid), respectively.142

For example, Fan et al. (2015) forecast carbon price movements in the EU ETS using143
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a multi-layered perception (MLP)-artificial neural networks (ANN) approach and find144

a better predictive performance than the single and variant models. At the same time,145

the ensemble (hybrid) method is developed to further improve the weakness of single146

models and enhance forecasting accuracy. For example, Zhu et al. (2016) conduct the147

carbon and energy price prediction using an ensemble empirical mode decomposition148

(EEMD)-based least square support vector machines (LSSVM) and examine more accu-149

rate forecasting performance of the EEMD-LSSVM compared to conventional methods.150

Sun et al. (2016) confirm the improvement of forecasting accuracy when combining vari-151

ational mode decomposition (VDM) and spiking neural networks (SNN) in contrast to152

conventional methods. Zhu et al. (2018) propose a multiscale nonlinear ensemble learn-153

ing framework, including EMD and LSSVM with a kernel function prototype for the154

prediction of carbon prices in the EU. They find high levels of predictive accuracy and155

robustness of their proposed methods compared to standard forecasting methods.156

Although more sophisticated methods have been developed to account for the non-157

linearity of carbon price dynamics, potentially heterogeneous change patterns of carbon158

prices at different price quantiles are neglected. Moreover, most of the extant litera-159

ture conducts the carbon price prediction merely based on historical information of160

carbon price changes, whereas the predictive power of its forecasting factors is still161

nevertheless ignored. Indeed, it has been well-established that carbon price changes162

are determined by a large number of factors mainly involving energy market dynamics,163

financial market performance, technical indicators, weather and macroeconomic condi-164

tions (See, e.g., Zhang and Wei, 2010). Specifically, Alberola et al. (2008) conduct an165

econometric analysis to find carbon price drivers by identifying the potential structural166

breaks in the EU ETS. They point out that energy prices and weather conditions can167

explain changes in carbon price levels in EU ETS. Chevallier (2009) uses a series of168
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GARCH-structured models to analyze the relationship between carbon futures returns169

and macroeconomic-financial factors involving stock, bond, commodity markets, and170

macroeconomic factors based on the EU ETS. Chevallier (2011a) applies a Markov-171

switching VAR approach to identify the ‘boom-bust’ cycle in the EU carbon market172

and measures the determination of carbon pricing by macroeconomic factors and energy173

prices.174

2.3. Carbon price determinants175

In addition to macroeconomic factors, the impact of energy prices on carbon price176

determination has also been discussed. Kumar et al. (2012) conducts a VAR analysis177

and investigate the dynamic price linkage among carbon, fossil energy, and stock prices178

of clean energy and technology. Sadorsky (2012) applies a series of multivariate GARCH179

models and find strong correlations among oil prices and stock prices of clean energy180

and technology. Using a multivariate GARCH model, which can consider structural181

changes and the heterogeneity of price correlations between carbon market and market182

fundamentals in the economic upturn and downturn periods, Koch (2014) finds strong183

price linkages among carbon, energy, and financial markets. Ji et al. (2018) analyzes the184

information linkage and knowledge spillover between carbon and energy markets, viz.185

oil, natural gas, and coal, in the format of return and volatility, respectively. The close186

relationship between the oil price volatility and carbon prices have also been discussed187

in Gong and Lin (2017); Xu and Lin (2018); Gong and Lin (2021); Gong et al. (2021).188

While existing studies have discussed the determination of carbon prices considering189

different groups of forecasting factors, to the best of our knowledge, we are the first190

to investigate the predictability among possible forecasting factors of carbon prices in191

quantiles.192
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3. Methodology193

In this section, we briefly introduce each of the candidate method we use to quantify194

the importance of potential Carbon price forecasting factors, as well as out-of-sample195

forecasting comparison method.196

3.1. The candidate models197

3.1.1. LASSO198

The Least Absolute Shrinkage and Selection Operate (LASSO) proposed by Tibshirani199

(1996) is one of the most popular methods to solve the high dimensional estimation200

problem (See, e.g., Zhang et al., 2008). It penalizes the likelihood function and obtains201

a sparse solution.202

The LASSO estimator is defined as203

β̂LASSO = arg min
β

{
1

N
‖Y −Xβ‖22 + λ

N∑
i=1

|βi|

}
,

where λ is the regularization parameter, and the `1 penalty
∑N

i=1 |βi| is employed to204

ensure sparsity.205

With the increase of the regularization parameter λ, estimation parameters will be206

continuously shrunk towards zero by the LASSO. If the λ is large enough, some of them207

will be shrunk to exactly zero. According to this, the LASSO is often used in variable208

selection. Due to its high accuracy in prediction and variable selection, the LASSO is209

the most commonly used technique for solving high-dimensional estimation problems.210
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Our forecasts for the carbon price returns using LASSO are211

p̂t+1 = β̂LASSO0 +
N∑
i=1

β̂LASSOi xi,t.

Here212

β̂LASSO = arg min
β

 1

t− 1

t−1∑
l=1

(
pl+1 − β0 −

N∑
i=1

βixi,l

)2

+ λcv

N∑
i=1

|βi|

 , (1)

where β̂LASSO is the regression coefficients estimated by LASSO using the data up to213

month t, pt+1 is the log return of carbon prices at month t+ 1, xi,t is the ith predictor214

available at month t, and λcv is the non-negative regularization parameter selected by215

the cross-validation method.216

3.1.2. Adaptive LASSO217

The adaptive LASSO (Zou, 2006) is an advanced high-dimensional estimation method218

which is based on the LASSO. Unlike the LASSO which uses a standard `1 penalty, the219

adaptive LASSO employs a weighted `1 penalty, and therefore avoid the overestimation220

problem. Moreover, compared with LASSO, it holds consistent selection property with221

weaker conditions.222

The adaptive LASSO estimator is223

β̂adapt = arg min
β

{
1

N
‖Y −Xβ‖22 + λ

N∑
i=1

|βi|
|β̂init,i|

}
, (2)

The adaptive LASSO estimator can be obtained in two steps. The first step is to224

obtain the weight value which is given by the formula (1) in LASSO, and the regulariza-225

tion parameter λ̂init,cv in (1) is chosen by the cross-validation method, thus the weight226
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value is β̂init,i = β̂(λ̂init,cv). For the second step, we use the weight value in step 1,227

and chose the regularization parameter λcv in (2) by the cross-validation method again.228

In this way, we obtain the final estimator. The regularization parameters in adaptive229

LASSO are selected in step 1 and step 2 sequentially, and it is less computationally230

expensive than optimize them simultaneously.231

Unlike the LASSO where the same regularization parameter λ are employed for all232

the parameters βi (i = 1, 2..., p) in the penalty term, the different parameter βi in233

the adaptive LASSO has different penalty value which depends on the different weight234

value β̂init. Therefore, the adaptive LASSO has the following property:235

(1) If β̂init,i = 0, then the estimator β̂adapt,i = 0, which ensures the sparsity of the236

solution.237

(2) If |β̂init,i| is large, then the value of penalty term for parameter βi will be small.238

Similarly, if |β̂init,i| is small, then the penalty value for parameter βi will be large.239

Therefore, the adaptive LASSO not only has less biased estimators, but also avoid240

selecting undesired variables.241

Our forecasts for the carbon price returns using Adaptive LASSO are242

p̂t+1 = β̂adapt0 +
N∑
i=1

β̂adapti xi,t.

Here243

β̂adapt = arg min
β

 1

t− 1

t−1∑
l=1

(
pl+1 − β0 −

N∑
i=1

βixi,l

)2

+ λcv

N∑
i=1

|βi|
|β̂init,i|

 ,

where β̂adapt is the regression coefficients estimated by the adaptive LASSO using the244

data up to month t, βinit,i is an initial estimator, pt+1, xi,t and λcv are defined the same245
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as in (1).246

3.1.3. Group LASSO247

In some situations, the parametric vector β in a high-dimensional regression model248

has a group structure {g1, g2, ..., gq} which is essentially based on the index number249

{1, 2, ..., p}. That is, ∪qj=1gj = {1, 2, ..., p} and gj ∩ gk = ∅.250

Then the parametric vector β is251

β = (βg1 , βg2 , ..., βgq), where βgj = {βr; r ∈ gj}.

The group LASSO estimator in a linear model (Yuan and Lin, 2006) is then defined252

as253

β̂group = arg min
β

{
1

N
‖Y −Xβ‖22 + λ

q∑
j=1

mj‖βgj‖2

}
, (3)

where ‖βgj‖2 denotes the standard Euclidean norm, that is ‖βgj‖2 =
(∑k

l=1 β
2
gj ,l

) 1
2
.254

The multiplier mj is used to balance cases where the groups are of very different sizes,255

usually we set256

mj =
√
Tj, (4)

where Tj is the number of parameters in jth group. The advantages of the group LASSO257

estimator are two folds: First, it can deal with the data where features are organized into258

related groups. Second, it remains high prediction accuracy and estimation consistency259

as the LASSO.260

Our forecasts for the carbon price returns using Group LASSO is261

p̂t+1 = β̂group0 +
N∑
i=1

β̂groupi xi,t.
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Here262

β̂group = arg min
β

 1

t− 1

t−1∑
l=1

(
pl+1 − β0 −

N∑
i=1

βixi,l

)2

+ λcv

q∑
i=1

mi‖βgi‖2

 ,

where β̂group is the regression coefficients estimated by the group LASSO using the263

data up to month t, ‖βgi‖2 =
(∑Ti

l=1 β
2
gi,l

) 1
2
, mi =

√
Ti with Ti being the number of264

parameters in ith group, pt+1, xi,t and λcv are defined the same as in (1).265

3.1.4. ARMA and ARMAX Models266

Unlike the LASSO, the adaptive LASSO and the group LASSO which focus on high-267

dimensional regression problems, the AutoRegressive-Moving-Average (ARMA) model268

is one of the most famous methods in time-series analysis, which can understand and269

predict future value.270

The ARMA model (Whittle, 1953, Box et al., 2015) is a combination of Autoregres-271

sive (AR) model and Moving-average (MA) model. The autoregressive model of order272

p which refers to AR(p) is written as273

Yt = c+

p∑
i=1

αiYt−i + εt

where Yt is the observation at time t, α1, ..., αp are parameters in AR(p) model, c is a274

constant, and the random variable εt is white noise which means they are independent275

and identically distributed with E(εt) = 0 and V ar(εt) = σ2.276

The moving-average model of order q which refers to MA(q) is written as277

Yt = µ+ εt +

q∑
i=1

βiεt−i,
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where Yt is the observation at time t, β1, ..., βq are parameters in MA(q) model, µ is278

the expectation of Xt, and εt, εt−1 are white noise error terms.279

Now the ARMA (p,q) model which refers to p autoregressive terms and q moving-280

average terms is written as281

Yt = c+ εt +

p∑
i=1

αiYt−i +

q∑
i=1

βiεt−i,

where Yt is the observation at time t, αi and βi are parameters in ARMA(p,q) model,282

c is a constant and εt, εt−1 are white noise error terms.283

The AutoRegressive-Moving-Average model with exogenous inputs (ARMAX) is a284

generalization of the ARMA model. The ARMAX(p,q,g) model adds external covariates285

to an ARMA (p,q) model, which is given by286

Yt = c+ εt +

p∑
i=1

αiYt−i +

q∑
i=1

βiεt−i +

g∑
i=1

γiXt−i,

where γi is the parameter of the exogenous covariate X.287

By comparing the autocorrelation (ACF) function which gives correlations between288

pt and pt − h for h = 1, 2, 3..., we use the following ARMA (1,1) and ARMAX(1,1,1)289

models to understand and predict our carbon price return data290

• ARMA (1,1):291

pt = c+ αpt−1 + εt + βεt−1,

• ARMAX(1,1,1):292

pt = c+ αpt−1 + εt + βεt−1 + γXt−1,

where pt is the observation of the carbon price return at time t, Xt−1 is the external293
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covariate at time t− 1, α, β, and γ are parameters, c is a constant, and εt is the white294

noise.295

Then the forecasts of the carbon price returns using ARMA (1,1) model is296

• one-month ahead: p̂t+1 = ĉ+ α̂pt + β̂ε̂t297

• two-months ahead: p̂t+2 = ĉ+ α̂p̂t+1298

• three-months ahead: p̂t+3 = ĉ+ α̂p̂t+2299

...300

• i-months ahead: p̂t+i = ĉ+ α̂p̂t+i−1301

where p̂t+i is the predicted value of the carbon price return at time t + i, pt is the302

true value of the carbon price return at time t, ε̂t = pt − p̂t, and ĉ, α̂, β̂ are para-303

metric estimators of ARMA(1,1) model. Here we omit the prediction procedure of the304

ARMAX(1,1,1) model which can be constructed similarly.305

3.1.5. GARCH and GARCHX Models306

The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model (En-307

gle, 2001) is the most commonly used financial time-series model and has inspired a fam-308

ily of sophisticated models in econometrics (i.e., GARCH-family). The GARCH model309

is a generalized version of the Autoregressive conditional heteroskedasticity (ARCH)310

model, which describes the variance of the current error term as a function of the ac-311

tual sizes of the previous periods’ error terms. When the variance of the error is assumed312

to follow the autoregressive moving average (ARMA) model, this model is called the313

GARCH model.314
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The GARCH(p, q) regression model is defined by

yt = µt + εt, εt|Ψt−1 ∼ N(0, σ2
t )

σ2
t = ω +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjσ
2
t−j,

where Ψt−1 denotes the information set at time t−1, µt is the expected value of yt at time315

t, εt is the error term at time t, σ2
t is the variance of the current error term conditioned316

on all the information up to time t−1, ω, αi, βj are parameters in GARCH(p, q) model,317

ω > 0, αi ≥ 0, β ≥ 0.318

The main idea of GARCH model is that the conditional variance σt of current319

error term εt given information up to time t − 1 is correlated to its own past values320

σ2
t−j (j = 1, 2, ..., q) and the recent values of squared errors ε2t−i (i = 1, 2, ..., p). This321

model can be augmented with exogenous variables, which is the so-called GARCHX322

model.323

By comparing the autocorrelation (ACF) function which gives correlations between

pt and pt−h for h = 1, 2, 3..., we use the following GARCH (1,1) and GARCHX (1,1,1)

models to understand and predict our carbon price return data

pt = µt + εt, εt|Ψt−1 ∼ N(0, σ2
t )

• GARCH (1,1):

σ2
t = ω + αp2t−1 + βσ2

t−1,

• GARCHX (1,1,1):

σ2
t = ω + αp2t−1 + βσ2

t−1 + γXt−1,
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where pt is the observation of carbon price return at time t, Xt−1 is the exogenous324

covariate at time t− 1, µt is the expected value of pt, ω, α, β, and γ are parameters.325

3.2. Our models326

3.2.1. Quantile Group LASSO327

The quantile regression (Koenker and Hallock, 2001), which focuses on obtaining328

the information of conditional median or conditional quantiles of the response, is an329

important analysis method in econometrics and statistics (e.g., Koenker, 2004; Machado330

and Mata, 2005; Buchinsky, 1994; Yu et al., 2003). Compared with the standard linear331

regression, which is only able to capture the relationship between the predictors and the332

mean response, the quantile regression can provide more information about different333

conditional quantiles of the response, and therefore outliers have fewer effects in the334

analysis.335

Let Y be a random variable and the cumulative distribution function is336

FY (y) = P (Y ≤ y),

then the τth quantile of Y is defined by337

QY (τ) = F−1Y (τ) = inf{y : FY (y) ≥ τ}.

where inf is the infimum. Suppose the τth quantile function is338

QY |X = XTβτ ,
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then the parametric estimator β̂τ is given by339

β̂τ = arg min
β

n∑
i=1

(ρτ (yi − xTi β)),

where the check function ρτ (u) = u{τ − I(u ≤ 0)} and I is an indicator function.340

During the last decade, the analysis for high-dimensional data has drawn much341

attention. The key feature of the high-dimensional problem is the number of predictors342

is larger than the sample size, and the most common way for solving this problem is to343

introduce a penalty term in the estimation function.344

The parametric estimator in the penalized quantile regression model is345

β̂τ = arg min
β

{
1

N

N∑
i=1

(ρτ (yi − xTi β)) +

p∑
j=1

pλ(|βj|)

}
,

where ρτ (u) is the check function and pλ(·) is a penalty function with a tuning parameter346

λ.347

In this study, we employ two most popular and commonly used penalties: The348

LASSO penalty (Tibshirani, 1996) and the SCAD penalty (Fan and Li, 2001). More-349

over, due to the structure of potential forecasting factors, we use more proper and350

advanced versions which are constructed on the LASSO and the SCAD, respectively:351

The Group LASSO penalty (Yuan and Lin, 2006), and the Group SCAD penalty (Wang352

et al., 2007). Both are wildly used in statistical and economic analysis (See, e.g., Meier353

et al., 2008).354

Suppose the parametric vector β has a group structure {g1, g2, ..., gq} which is a355

combination of the index number {1, 2, ..., p}. That is, ∪qj=1gj = {1, 2, ..., p} and356
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gj ∩ gk = ∅, then the parametric vector β is357

β = (βg1 , βg2 , ..., βgq), where βgj = {βr; r ∈ gj}.

The parametric estimator in the penalized quantile regression with Group LASSO358

penalty is defined as359

β̂qgLASSOτ = arg min
β

{
1

N

N∑
i=1

(ρτ (yi − xTi β)) + λ

q∑
j=1

mj‖βgj‖2

}
, (5)

where βgj are the parameters in gjth group, ‖βgj‖2 denotes the standard Euclidean360

norm ‖βgj‖2 =
(∑k

l=1 β
2
gj ,l

) 1
2
. The multiplier mj is used to balance cases where the361

groups are of very different sizes, usually we set mj =
√
Tj, where Tj is the number of362

parameters in jth group.363

Compared with the classic penalization method LASSO (Tibshirani, 1996), which364

intends to select explanatory variables individually, the group LASSO penalty proposed365

by Yuan and Lin (2006) considers a common scenario that features can be organized366

into related groups. In this case, there is indeed information contained in the grouping367

structure, thus ignoring it and using standard methods will lead inaccurate estimators.368

The quantile group LASSO estimator in (5) employs the group LASSO penalty in the369

classic quantile regression, which makes it not only be able to capture the information370

in the feature groups, but also can discover useful predictive relationships between371

variables under different quantile levels.372

Our forecasts of the carbon price returns at the median case using the Quantile373

Group LASSO are374

p̂t+1 = β̂qgLASSOτt,0 +
N∑
i=1

β̂qgLASSOτt,i
xi,t.
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Here375

β̂qgLASSOτt = arg min
β

{
1

t− 1

t−1∑
l=1

(ρτt(pl+1 − β0 −
N∑
i=1

βixi,l)) + λ

q∑
i=1

mi‖βgi‖2

}
,

where β̂qgLASSOτt is the regression coefficients estimated by the Quantile Group LASSO376

using the data up to month t with τ = 0.5, βgi are the parameters in gith group and377

‖βgi‖2 =
(∑Ti

l=1 β
2
gi,l

) 1
2
, pt+1 is the log return of carbon price at month t+ 1, xi,t is the378

ith predictor available at month t, mi =
√
Ti and Ti is the number of parameters in ith379

group.380

3.2.2. Quantile Group SCAD381

The parametric estimator in the penalized quantile regression with group SCAD penalty382

is383

β̂qgscadτ = arg min
β

{
1

N

N∑
i=1

(ρτ (yi − xTi β)) +

q∑
j=1

Pλ
(
‖βgj‖2

)}
,

where βgj are the parameters in gjth group, and Pλ(·) is the group SCAD penalty which

is defined as

Pλ(|x|) =


λ|x|, if |x| ≤ λ.

− (|x|2−2aλ|x|+λ2)
2(a−1) , if λ < |x| < aλ.

(a+1)λ2

2
, if |x| > aλ.

Our forecasts of the carbon price returns at the median case using Quantile Group384

SCAD is385

p̂t+1 = β̂qgscadτt,0 +
N∑
i=1

β̂qgscadτt,i
xi,t (6)
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Here386

β̂qgscadτt = arg min
β

{
1

t− 1

t−1∑
l=1

(ρτt(pl+1 − β0 −
N∑
i=1

βixi,l)) +

q∑
j=1

Pλ
(
‖βgj‖2

)}
,

where β̂qgscadτt is the regression coefficients estimated by Quantile Group SCAD using387

the data up to month t with τ = 0.5, pt+1, xi,t and βgi are defined the same as in (6).388

3.3. Out-of-sample Comparisons389

The out-of-sample performance test, which can avoid the over-fitting problem of using390

the whole data set, is commonly used to test statistical models’ prediction ability in391

many areas, such as statistics, econometrics, envirometrics, computer science and so392

on (See, e.g., Welch and Goyal, 2007; Rapach et al., 2010; Clark and West, 2006). It393

is conducted by dividing the original data set into two parts: the in-sample data set394

and the out-of-sample data set. We train the statistical model in the in-sample data395

set, and then compare the forecasting result of the obtained statistical model with the396

original data in the out-of-sample data set.397

Inspired by Campbell and Thompson (2007) and jointly considering the sterling398

performance and wide applications of the following criteria in the extant literature,399

we employ the mean-squared prediction error (MSPE), the mean absolute prediction400

error (MAPE), the R2 statistic of mean-squared prediction error (R2
MSPE) and the401

R2 statistic of the absolute value of prediction error (R2
MAPE) to compare the out-of-402

sample prediction accuracy of the candidate forecast model (Quantile Group LASSO403

model and the Quantile Group SCAD model) with the benchmark model (the LASSO404

model, the adaptive LASSO model, the group LASSO model, the ARMA model, and405

the GARCH model).406
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The out-of-sample R2 statistic of mean-squared prediction error (R2
MSPE) is407

R2
MSPE = 1− MSPEC

MSPEB
,

and408

MSPEC =
1

q

q∑
i=1

(rm+i − r̂Cm+i)
2,

409

MSPEB =
1

q

q∑
i=1

(rm+i − r̂Bm+i)
2,

whereMSPEC is the mean-squared prediction error of the candidate model andMSPEB410

is the mean-squared prediction error of the benchmark model, rm+i is the actual carbon411

price return at time m+ i, r̂Cm+i and r̂Bm+i are the predicted carbon price returns of the412

candidate model and the benchmark model at time m+ i respectively, m is the length413

of the in-sample estimation data set, and q is the length of the out-of-sample prediction414

data set.415

Similarly, the out-of-sample R2 statistic of the absolute value of prediction error416

(R2
MAPE) is417

R2
MAPE = 1− MAPEC

MAPEB
,

and418

MAPEC =
1

q

q∑
i=1

|rm+i − r̂Cm+i|,

419

MAPEB =
1

q

q∑
i=1

|rm+i − r̂Bm+i|,

where MAPEC is the average absolute value of the prediction error of the candidate420

model and MAPEB is the average absolute value of the prediction error of the bench-421

mark model. Here rm+i, r̂
C
m+i and r̂Bm+i are defined the same as before.422
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The R2
MSPE statistic and the R2

MAPE statistic can evaluate the proportional re-423

duction of the prediction errors MSPE and MAPE for the candidate forecast model424

to the benchmark model respectively. To know whether the accurate predictability425

of the candidate forecast model is better than the benchmark model, people usually426

test whether the MSPE of the candidate forecast model is smaller than the MSPE of427

the benchmark model, which means the candidate forecast model has more accurate428

out-of-sample performance, or the MSPE of candidate forecast model is larger than429

or equals to the MSPE of the benchmark model, which means the candidate forecast430

model is not that competitive (See, e.g., Campbell and Thompson, 2007; Baumeister431

and Kilian, 2015; Wang et al., 2017). With the same spirit, here a positive value of432

R2
MSPE indicates that compared with the benchmark forecast model, the candidate433

forecast model is more accurate and has less prediction error in terms of the MESP434

criterion in the out-of-sample data set. Similarly, a positive value of R2
MAPE means435

the candidate model has better forecast ability than the benchmark model in terms436

of the MAPE criterion in the out-of-sample data set. Moreover, the larger values of437

R2
MSPE and R2

MAPE mean the candidate model has higher forecast accuracy than the438

benchmark model.439

4. Data440

4.1. Carbon price441

Although the underlying asset of the Carbon futures is an annual product4 , the prices442

of Carbon futures are constantly fluctuating during trading hours. To construct our443

dependent variable, we collect the monthly observations of carbon futures closing price444

4We thank an anonymous referee for pointing it out.
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at the end of each month from the ICE ECX EUA futures continuous contract #15.445

These data enable us to construct monthly observations for our key dependent variable446

of interest: the carbon futures returns, which is defined as logarithmic monthly changes447

in carbon futures closing prices. Other data are collected from DataStream covering the448

period from March 2009 to December 2020. Table 1 reports the descriptive statistics449

for our response variable —the carbon futures price return.450

[Table 1 about here.]451

The monthly carbon price return is skewed left as the negative skewness value in452

Table 1, and the kurtosis value means the data is platykurtic. The Jarque-Bera test453

shows the carbon price return series is not normally distributed. This information454

drives us to use the Quantile Group LASSO and Quantile Group SCAD models, which455

can capture different information under different quantiles when the data doesn’t hold456

the normality assumption. Based on the ADF test statistic, the data is stationary as457

the null hypothesis of non-stationary is rejected at the 5% significance level.458

As in Inoue and Kilian (2005), we divide the whole sample set into a in-sample459

training data set and a out-of-sample forecast data set. First, we obtain the parametric460

estimators of each model in the in-sample training data set, and then use them to get461

forecasting results in the out-of-sample period. Second, we compare the forecasting462

results with the true value in the out-of-sample data set. The in-sample training period463

spans from March 2009 to December 2019, and then we make the six-month and twelve-464

month forecasts of the carbon price return.465

5https://www.theice.com/index
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4.2. Predictors466

In this paper, we use a large number of predictors, including 18 technical indicators and467

44 macroeconomic variables. To ensure the stationarity, the macroeconomic variables468

have been preprocessed by taking logarithm and differencing transformations, i.e., the469

log returns. The technical indicators could provide more information where the impor-470

tance and the predictive ability of technical analysis have been found (See, e.g., Gehrig471

and Menkhoff, 2006; Neely et al., 2014; Tan et al., 2021). In this paper, we employ 18472

technical indicators suggested by Yin and Yang (2016). These technical indicators are473

constructed on the following three technical rules: the moving-average (MA) rule, the474

momentum (MOM) rule, and the on-balance volume averages (VOL).475

1. The moving-average rule, which is a mechanical trading rule and aims to capture476

trends, is constructed by generating a buy signal (Si,t = 1) or sell signal (Si,t = 0)477

at the end of time t by comparing two moving averages:478

Si,t =

 1, if MAs,t ≥MAl,t

0, if MAs,t < MAl,t

and479

MAj,t =
1

j

j−1∑
i=0

Pt−i for j = s, l

where Pt is the level of carbon price at time t, s is the length of the short MA,480

l is the long-term MA and s < l. Based on the above formula, the MA rule is481

sensitive about the changes in price trends. In this paper, we use six moving-482

average indicators with s = 1, 2, 3 and l = 9, 12.483

2. The momentum rule is constructed by generating a buy signal (Si,t = 1) or sell484
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signal (Si,t = 0) at the end of time t by comparing the current carbon price and485

its level at m periods ago:486

Si,t =

 1, if Pt ≥ Pt−m

0, if Pt < Pt−m

where Pt denotes the carbon price at time t, and Pt−m denotes the level of carbon487

price at m periods ago. We use six momentum indicators with m = 1, 2, 3, 6, 9, 12.488

3. The on-balance volume averages rule, which aims to capture market trend using489

past prices, is constructed by generating a buy signal (Si,t = 1) or sell signal490

(Si,t = 0) at the end of time t by comparing two moving averages based on OBVt:491

Si,t =

 1, if MAOBVs,t ≥MAOBVl,t

0, if MAOBVs,t < MAOBVl,t

and492

MAOBVj,t =
1

j

j−1∑
i=0

OBVt−i for j = s, l,

493

OBVt =
t∑

k=1

V OLk, Dk

where V OLk is the trading volume during month k, Dk is a binary variable which494

equals 1 if Pk − Pk−1 ≥ 0 and takes a value of −1 if Pk − Pk−1 < 0. Similar to495

the moving-average rule, we employ six on-balance volume average indicators for496

s = 1, 2, 3 and l = 9, 12.497

To construct the above 18 technical indicators, we use the data of carbon price from498

Datastream and trading volumes of ICE ECX EUA Futures Contract 1.499

Besides these technical variables, by referring to Neely et al. (2014) and Tan et al.500

26



(2021), we also consider the 44 macroeconomic variables covering information of energy501

commodities, financial markets and economic activities, which may have the predictive502

power for the carbon price. These data are available in DataStream, EIA6, and ICE7.503

Moreover, the 44 macroeconomic variables can be divided into the following groups:504

the energy source group, the energy price group, the stock market index group, the505

monetary policy group, and the economic information group, where each group usually506

contains similar information from different countries. The full group information is507

provided in List 1 of the Appendix.508

5. Empirical results509

This section presents and discusses our empirical results. We start with a horse race of510

a set of forecasting models, and move to analysis of forecasting factors for the dynamics511

of carbon prices. A quantile analysis is then conducted to investigate the impacts of512

the selected predictors for different quantiles of carbon returns over the carbon price513

distribution. Robustness of our estimators and the corresponding findings in the face514

of extreme events associated with the ongoing Covid-19 epidemic is further examined.515

5.1. A horse race of forecasting models516

5.1.1. Baseline Out-of-sample Forecasting Results517

First, we report the results of the MSPE and MAPE of the six-month and twelve-month518

out-of-sample forecast tests in Table 28. Table 2(a) shows the result in the six-month519

6Source: The US Energy Information Administration https://www.eia.gov
7Source: The Intercontinental Exchange https://www.theice.com/
8We also make the three-month out-of-sample forecast, which are consistent with our six-month

and twelve-month out-of-sample forecast tests. While the three-month results are not reported due to
limited space in the paper, they are available from the authors upon request.
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forecast, and Table 2(b) shows the result in the twelve-month forecast. The list of520

candidate forecast models is in the first column of each table9. Here the forecasting521

abilities of the Quantile Group LASSO and the Quantile Group SCAD models are522

evaluated at the median quantile level, i.e., the 50% quantile, for fair comparisons with523

the competing models which do not take quantiles into consideration.524

[Table 2 about here.]525

The smaller MSPE and MAPE values indicate higher prediction accuracy of the526

forecast model. Therefore, the most important finding in Table 2 is that in both the six527

and twelve months forecast tests, the Quantile Group LASSO and the Quantile Group528

SCAD models have much smaller MSPE and MAPE values than all the other models.529

This means these two models have better prediction performances than the competing530

models in our test.531

Although the ARMA, GARCH, ARMAX(S) and GARCHX(S) models are the clas-532

sical and widely used time-series models in economics and financial analysis, here all of533

them have statistically significantly larger MSPE and MAPE values, which means lower534

prediction accuracy, compared with the rest high-dimensional forecast model group (the535

Quantile Group LASSO model, the Quantile Group SCAD model, the LASSO model,536

the adaptive LASSO model, the group LASSO model).537

Among the high-dimensional forecast model group, the Quantile Group LASSO and538

the Quantile Group SCAD models have much better performance than others. In the539

six-month forecast, the Quantile Group LASSO model has the lowest MAPE value and540

the second-lowest MSPE value, and the Quantile Group SCAD model has the lowest541

MSPE value and the same lowest MAPE value. In the twelve-month forecast, the542

9The ARMAXS and GARCHXS in the list are the ARMAX and GARCHX models with selected
variables described in Section 5.2.1.
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Quantile Group LASSO model has the smallest values for both MSPE and MAPE, and543

the Quantile Group SCAD model has the second smallest MSPE and MAPE values.544

In other words, no matter for MSPE or MAPE criterion, in the six-month and twelve-545

month forecast tests, the Quantile Group LASSO and Quantile Group SCAD models546

are the top two models in terms of prediction accuracy.547

5.1.2. Comparisons among high-dimensional models using time-series models as benchmarks548

From Table 2, we know that the time-series forecast group (the ARMA (1,1), GARCH549

(1,1), ARMAX (1,1,1), GARCHX (1,1,1), ARMAXS (1,1,1), and GARCHXS (1,1,1)550

models) has obvious lower prediction accuracy than the high-dimensional forecast group551

(the Quantile Group LASSO, the Quantile Group SCAD, the LASSO, the adaptive552

LASSO, and the group LASSO) in both the six-month and twelve-month forecasts. To553

quantitatively compare the forecasting ability of these two groups, we set the ARMA554

(1,1) and GARCH (1,1) models, which have relatively better forecasting performances555

in the time-series group, as the benchmark models and the rest models as the candidate556

models. The R2
MSPE and R2

MAPE values are employed to evaluate the predictive ability557

of each model. It is worth mentioning that the positive (negative) R2
MSPE and R2

MAPE558

values indicate that the candidate model has better (lower) forecasting accuracy than559

the benchmark model. The larger positive value of R2
MSPE and R2

MAPE, the better560

prediction ability of the candidate forecast model compared with the corresponding561

benchmark model.562

The following Table 3 contains the results of R2
MSPE and R2

MAPE in the six-month563

and twelve-month forecasts. Table 3(a) and 3(b) show the results when the benchmark564

model is the ARMA (1,1) model and the GARCH (1,1) model, respectively. The upper565

part (i.e., Panel A) in each table is the results in the six-month forecast, and the bottom566

part (i.e., Panel B) is the results in the twelve-month forecast. The list of candidate567
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forecast models is in the first column of each table.568

[Table 3 about here.]569

The most important finding in Table 3 is that the Quantile Group LASSO and570

the Quantile Group SCAD have larger R2
MSPE and R2

MAPE values than all the other571

models in both the six-month and twelve-month forecasts, no matter the benchmark572

model is the ARMA (1,1) model or the GARCH(1,1) model. This means compared573

with these two well-known time-series models, the Quantile Group LASSO and the574

Quantile Group SCAD have much better prediction performances in our out-of-sample575

tests. Besides, all the R2
MSPE and R2

MAPE values of the high-dimensional forecast group576

in Table 3 are positive, except the Adaptive Lasso which has been found unstable in577

our experiments. This indicates that most of our high-dimensional forecasting models578

have higher forecast accuracy than the time-series forecasting models.579

It is also worth noticing that in the six-month forecast, all the time-series candidate580

forecasting models (the ARMAX (1,1,1), GARCHX (1,1,1), ARMAXS (1,1,1), and581

GARCHXS (1,1,1)) have negative R2
MSPE and R2

MAPE values. For the twelve-month582

forecast, the ARMAX (1,1,1) and ARMAXS (1,1,1) models also have negative R2
MSPE583

and R2
MAPE values, while the GARCHX (1,1,1) and GARCHXS (1,1,1) models have584

small positive R2
MSPE values, but part of the R2

MAPE values are still negative. This585

means brute-force introduction of a large number of variables into the time-series models586

cannot provide better prediction accuracy than the vanilla ARMA (1,1) and GARCH587

(1,1) models.588

Although compared with the ARMAX (1,1,1) and the GARCHX (1,1,1) models589

which consider all possible variables, the ARMAXS (1,1,1) and the GARCHXS (1,1,1)590

with carefully selected variables have better forecasting performances, they are still591
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not comparable to the ARMA (1,1) and the GARCH(1,1) models, let alone the afore-592

mentioned high-dimensional forecast group. This indicates that information of relative593

variables should be smartly wrapped into the forecasting models, just as our high-594

dimensional group, rather than naively combining them.595

To conclude, the high-dimensional model, which can predict future prices by cap-596

turing important information from a large number of variables, is more accurate than597

the time-series models, no matter these time-series models consider the variables or598

not. Among the high-dimensional forecast group, the Quantile Group LASSO model599

and the Quantile Group SCAD model have better prediction performances than all the600

other methods, for the reason that they can obtain more information of forecasting601

factors at different quantiles, thus are more accurate and proper in the situation where602

the response series is not normally distributed.603

5.1.3. Comparisons between Quantile Group LASSO/SCAD and other high-dimensional604

methods605

From Table 3, we can know that the Quantile Group LASSO and the Quantile Group606

SCAD have better forecasting results than others. To quantitatively compare the pre-607

diction ability of these two models with the competing ones, we set the Quantile Group608

LASSO and the Quantile Group SCAD as the candidate models respectively, and all609

the other models as the benchmark models.610

The following Table 4 reports the results of R2
MSPE and R2

MAPE in both the six-611

month and twelve-month forecast tests. Table 4(a) and 4(b) show the results when612

the candidate models are the Quantile Group LASSO and the Quantile Group SCAD,613

respectively. The upper part in each table is the results in the six-month forecast, and614

the bottom part is the results in the twelve-month forecast. The list of benchmark615

forecast models is in the first column of each table.616
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[Table 4 about here.]617

According to Table 4, there are larger R2
MSPE and R2

MAPE values when the time-618

series models as the benchmark in both the six-month and twelve-month forecasts. It619

indicates that the Quantile Group LASSO and the Quantile Group SCAD have greatly620

improved the prediction accuracy over the time series model group, as R2
MSPE and621

R2
MAPE values show how much accuracy of the candidate model has improved over the622

benchmark model. This finding is consistent with the results in Table 2 and 3 as well.623

Besides, all the values in Table 4 are positive, which implies the Quantile Group LASSO624

and the Quantile Group SCAD have better prediction results than all the other models625

in our experiments. This finding is exciting since these competing models are widely626

used in many areas (See, e.g., Engle, 2001; McLeod and Li, 1983; Varian, 2014).627

In summary, the Quantile Group LASSO and the Quantile Group SCAD models628

have the best out-of-sample prediction performances, and the time-series group has629

the worst prediction results in our six-month and twelve-month forecast tests. In ad-630

dition, the high-dimensional forecast group (the quantile group LASSO, the quantile631

group SCAD, the LASSO, and the group LASSO) have higher forecast accuracy than632

the time-series group, even if the time-series models take into account the relative633

variables as well. This indicates that the high-dimensional models are better at han-634

dling information from a large number of important variables, thus are more accurate635

than the traditional time-series models in prediction. More importantly, among these636

high-dimensional models, the Quantile Group LASSO and the Quantile Group SCAD,637

which have more flexibility and fewer model restrictions, are useful in the case where638

the response series has a complex distribution.639
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5.2. Analysis of forecasting factors640

5.2.1. General information641

As we mentioned before, the Quantile Group LASSO and the Quantile Group SCAD642

models can select the most important variables and use them to implement forecasting.643

In the last section, we focus on the forecasting results. Now we continue to analyze the644

potential forecasting factors.645

Based on the related literature (See, e.g., Fezzi and Bunn, 2009; da Silva et al.,646

2016; Hammoudeh et al., 2014; Tan and Wang, 2017), we consider a large set of 44647

macroeconomic variables, and they are divided into the following five groups: the energy648

source group, the energy price group, the stock market index group, the monetary policy649

group, and the economic information group. One of the most important findings in the650

variable selection is that both the Quantile Group LASSO and the Quantile Group651

SCAD only select the variables in the energy source group and the energy price group.652

In other words, among all the macroeconomic variables, the monthly carbon futures653

price is affected by the crude oil and natural gas only. This information is beneficial654

since it sheds light on the most important factors affecting the carbon futures price.655

The common variables selected by the Quantile Group LASSO and the Quantile Group656

SCAD are as follows: the Europe Brent spot price, the growth of crude oil import in the657

United Kingdom, the growth of crude oil import in Germany, the growth of crude oil658

stock in the United Kingdom, the growth of natural gas import in France, the growth659

of natural gas import in the United Kingdom, and the growth of natural gas import in660

Italy.661

These forecasting factors suggest that, among a large number of factors that consists662

of the traditional energy (oil, gas) price and demand, the economic factors and financial663

market index, only the Brent spot price and the demand for crude oil and natural gas664
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are the determinants of the carbon price.665

The finding that the Brent price has a link to the carbon price in the EU is consistent666

with other studies. For example, Bachmeier and Griffin (2006) showed the Brent price667

is the key factor of the carbon price. Mansanet-Bataller et al. (2007) found that the668

Brent price is the most important variable affecting the carbon price return, Fezzi and669

Bunn (2009) and Alberola et al. (2008) showed that the energy price highly influences670

the carbon price.671

For the relationship between the demanding of traditional energy (oil and nature672

gas) and the carbon price, the impact is quite intuitive: the more imports of crude673

oil and natural gas, the more likely to have higher energy consumption, and hence the674

more likely to have increased CO2 emission, and therefore the more likely larger CO2675

allowances are needed which affects the carbon price. This finding coincides with some676

literature. For instance, Chevallier (2011a) showed that economic activities influences677

the carbon price. Declercq et al. (2011) investigated the relationship between the eco-678

nomic recession and the CO2 emission. Bredin and Muckley (2011) also highlighted679

the impact of economic activities and the industrial production on the carbon price.680

However, for the rest forecasting factors, there are some debates in the literature,681

and our findings provide some new perspectives. For example, Chevallier (2009) showed682

that the interest rate and treasury bill yields are not robust in the carbon price forecast.683

However, there are some factors found by other studies but unselected here. For in-684

stance, Oberndorfer (2009) found that there is a relationship between the stock market685

index of the EU and the carbon price. Chevallier (2009) showed that the stock and686

bond markets in the EU affect the carbon price.687

Except for the macroeconomic variables, our analysis also sheds light on the role of688

the technical indicators. Some literature stated they have advantages over the standard689
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fundamental variables in terms of forecasting. See, e.g., Neely et al. (2014); Lin (2018);690

Yin and Yang (2016). However, these technical indicators are not shown to be important691

in our study.692

In summary, among a large set of potential forecasting factors, the Brent price and693

the demands for crude oil and natural gas in the EU are the main drivers of the carbon694

price. The Quantile Group LASSO and Quantile Group SCAD models can select these695

important variables and use them to make accurate forecasting.696

5.2.2. Does the importance of each forecasting factor vary across quantiles?697

The previous subsection shows that the Quantile Group LASSO and the Quantile Group698

SCAD methods can select important factors and use them to implement forecasting.699

Does the importance of each forecasting factor vary across quantiles? We address700

this question by analyzing these forecasting factors using quantile regressions. Quantile701

regression is an extension of the basic and standard linear regression in which researchers702

use the values of several variables to explain or predict the mean values of the response703

variable. Compared with the ordinary least squares, the quantile regression has three704

main advantages: First, it makes no assumption about the distribution of the target705

variable; Second, it can model the relationship between the predictor variables and706

specific quantiles of the response variable; Third, it tends to resist the influence of707

outliers. Thus, it is highly suitable for our case.708

[Table 5 about here.]709

Table 5 displays the estimated coefficients of quantile regressions under the low,710

medium, and high quantile levels (τ = 0.1, 0.5, 0.9), respectively. At each quantile level,711

all the forecasting factors by the Quantile Group LASSO method are taken into consid-712
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eration10. Overall, the most powerful factors/predictors for carbon futures returns and713

their corresponding impacts hinge on carbon market conditions (i.e., whether normal714

or extreme scenarios).715

At the low quantile level (τ = 0.1), the Quantile Group LASSO method selects nine716

important variables. Four of them are statistically significant: the Europe Brent spot717

price return, the crude oil closing stock return in the UK, the growth of natural gas718

production in the UK, and the growth of natural gas import in Italy. The negative719

estimated coefficients of these three variables, i.e., the Europe Brent spot price return,720

the growth of natural gas production in the UK, and the growth of natural gas import in721

Italy, indicate that the increase (decrease) of them will decrease (increase) the carbon722

futures price return in the EU. Meanwhile, the positive estimated coefficient of the723

crude oil closing stock return in the UK implies that, the increase (decrease) of it will724

increase (decrease) the carbon futures price return in the EU, at the low quantile level.725

At the median quantile level (τ = 0.5), there are seven variables selected by the726

Quantile Group LASSO method, but only the growth of natural gas import in Italy727

is statistically significant. It has a negative estimated coefficient as well, which means728

at the median quantile level, the increase (decrease) of it will decrease (increase) the729

carbon futures price return in the EU. This is consistent with the previous findings in730

the low quantile case.731

At the high quantile level (τ = 0.9), among all the variables selected by the Quantile732

Group LASSO, the following factors are statistically significant: the Europe Brent spot733

price return, the crude oil closing stock return in the UK, the growth of natural gas734

production in the UK, and the FTSE 100 index. Moreover, the increase (decrease)735

10Due to the limited space, here we omit the results of the Quantile Group SCAD which has very
similar performances as the Quantile Group Lasso.
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of the crude oil closing stock return in the UK and the FTSE 100 index will increase736

(decrease) the carbon futures price return in the EU. The increase (decrease) of the737

Brent price return and the growth of natural gas production in the UK will decrease738

(increase) the carbon futures price return in the EU, at the high quantile level.739

Now we further analyze the similarities and differences between the results at differ-740

ent quantile levels. The Brent price return, the crude oil closing stock return in the UK,741

and the growth of natural gas production in the UK have been shown “ statistically742

significant” and have important relationships with the carbon futures price return at743

both the low and high quantile levels. This finding is quite intuitive and straightfor-744

ward. It means that they are “key factors”, and highly influence the carbon futures745

price during extreme events (i.e., at the high quantile level)746

However, these factors are not statistically significant at the median quantile level,747

where the growth of natural gas import in Italy has been found to be statistically748

significant. This is also the only factor that is statistically significant at both the low749

and median quantile levels, which means the growth of natural gas import in Italy has750

an important impact on the carbon futures price return in the EU, at the low to median751

quantile levels. The high quantile level case has one additional statistically significant752

variable: the FTSE 100 index. It means that, at the high quantile level, the FTSE753

index has an impact on the carbon futures price in the EU, but not at the low and754

median quantile level cases.755

In summary, we analyze the variables selected by Quantile Group LASSO at different756

quantile levels. The Brent price, the crude oil closing stock return in the UK, and the757

growth of natural gas production in the UK are important factors in the carbon futures758

price prediction during extreme events (i.e., at the high quantile level). This finding is759

consistent with other studies (See, e.g., Fezzi and Bunn, 2009; Alberola et al., 2008).760
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The growth of natural gas import in Italy is an important factor at the median quantile761

level, and the FTSE index has a statistically significant impact on the carbon futures762

price during extreme events (i.e., at the high quantile level), which is novel.763

5.3. Extreme event due to the Covid-19 & Robustness764

In the last section, we have seen many results of factor analysis under different quantile765

levels, where the time spans from 2009 to 2020. However, as we all know, 2020 is a766

quite different year due to the worldwide pandemic. Coronavirus has impacted everyone767

and every area of people’s life, e.g., people have been asked to work from home to keep768

social distancing, many factories have been temporarily closed, a huge number of flights769

have been canceled, there are very few cars on the street in most cities, and so on.770

Thus, a natural question arises: does the extreme event in 2020 have an impact on771

our previous findings of the carbon price? A straightforward approach to answer this772

question is constructing an additional index associated with the happening/absence of773

the extreme event, and then testing the significance of this new index variable. Based774

on this idea, first we design a dummy variable in which the element is 0 when the775

samples are collected in the time period before 2020, and the element is 1 when the776

data are collected in 2020. Then we have an augmented set of variables which includes777

this dummy variable and the variables considered in Table 5. Finally we conduct a778

similar quantile regression as in the last section to see whether the extreme event has a779

significant impact on the carbon futures price in the EU or not. The following Table 6780

shows the estimated coefficients of quantile regressions under the low, medium, and high781

quantile levels (τ = 0.1, 0.5, 0.9), respectively, and the results of the dummy variable782

are displayed on the last row in the table.783

[Table 6 about here.]784
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From Table 6, we can see that the dummy variable is statistically significant at the785

highest level (1%) under all quantile levels, which means the extreme event in 2020 has786

a huge impact on the carbon futures price in the EU, no matter what quantile levels787

we care about. This finding, however, is not so surprising, since it is quite intuitive788

that the “pause” of human activities in the whole world results in drastically reduced789

energy consumption and CO2 emission, thus the carbon price fluctuates.790

Now we know the Covid-19 significantly influences the carbon futures price in the791

EU, but can we have a more in-depth understanding of the difference introduced by792

the extreme event? We tackle this problem by conducting further analysis on the data793

collected in 2020 only. A similar quantile regression with variables shown in Table 5794

is taken into consideration to make a reasonable comparison. The following Table 7795

displays the estimated coefficients of quantile regressions under different quantile levels796

using the data in 2020 only.797

[Table 7 about here.]798

Comparing the results in Table 7 with Table 5, there are indeed some differences.799

At the low quantile level (τ = 0.1), the Europe Brent spot price return, the crude800

oil closing stock return in the UK, and the growth of natural gas import in Italy are801

significant in both 5 and Table 7, which means they are key factors at the quantile level802

(τ = 0.1) regardless of extreme conditions. However, the growth of natural gas import803

in France and the natural gas futures return in the US are significant in Table 7, but804

not in Table 5, which means these two factors have an impact on the carbon price when805

the extreme event happens.806

At the median quantile level (τ = 0.5), similar to Table 5, there is only one significant807

variable in Table 7, i.e., the growth of crude oil import in Germany. It means, during808
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the extreme event, this factor is important to the carbon price at the median quantile809

level.810

At the high quantile level (τ = 0.9), the Europe Brent spot price return and the811

crude oil closing stock return in the UK are also significant in both tables, as well as812

the growth of natural gas production in the UK and the FTSE index, which again813

demonstrates the importance of these factors in both the long term period and the814

extreme event. Besides, the growth of crude oil import in Germany, the growth of815

natural gas import in the UK, and the growth of natural gas production in France816

are shown to be significant in Table 7, but not in Table 5. This means during the817

extreme event, the high quantile level of the carbon price has more determinants than818

the normal situation.819

Generally speaking, compared with Table 5, there are more factors shown to have820

significant relationships with the carbon price during the extreme event, especially821

at the extreme quantile levels (the low/high quantile level). This finding somehow822

coincides with the reality, as in extreme cases, price fluctuations are usually quite823

different from normal periods, and it is often caused by more factors in different areas824

(Ren et al., 2019; Duan et al., 2021).825

Thus far, we have analyzed impacts and differences caused by the Covid-19. Now826

here is another question: are our estimators robust to the extreme event? To answer827

this question, we use the data before 2020, i.e., the time spans from 2009 to 2019,828

and conduct a similar quantile regression as in Table 5 to obtain comparable results.829

The following Table 8 displays the estimated coefficients of quantile regressions under830

different quantile levels using the data before 2020.831

[Table 8 about here.]832

Comparing the results in Table 8 and Table 5 where the time spans from 2009 to833
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2020, we can know that most of the significant predictors in Table 5 are also shown to834

be significant in Table 8, which indicates the robustness of our estimators against the835

extreme event 2020. At the low quantile level, there are three factors: the Europe Brent836

spot price return, the growth of natural gas production in the UK, and the growth of837

natural gas import in Italy, are significant in both Table 8 and Table 5. Here is only838

one predictor, the crude oil stock return in the UK, which has been found significant839

in Table 5, but not in Table 8. This may be caused by the extreme event, as it is also840

significant in Table 7 which considers the data in the extreme event only.841

At the median quantile level, the only significant predictor in Table 5, the growth842

of natural gas import in Italy, is found to be significant in Table 8 as well. At the high843

quantile level, these two factors: the Europe Brent spot price return and the growth844

of natural gas production in the UK, are significant in both Table 8 and Table 5. In845

contrast, the crude oil closing stock return in the UK and the FTSE index are significant846

in Table 5, but not in Table 8. This may be due to the extreme event, since these two847

factors are also found to be significant when we analyze the data in 2020 only. In short,848

most of the significant factors with the data from 2009 to 2020 are found to be also849

significant with the data before 2020, which shows the robustness of our estimators850

against the extreme event due to the Covid-19.851

6. Concluding remarks852

This paper proposes the Quantile Group LASSO model and the Quantile Group SCAD853

model for the prediction of dynamics of carbon futures returns in the EU ETS. The854

predictive performance of the two models is examined to outperform popular and com-855

peting ones as demonstrated by smaller values of both MSPE and MAPE for the for-856

mer two. Through a dimension-reduction mechanism, the most powerful carbon-return857
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predictors are selected from a wide group of potential candidates, and the selected pre-858

dictors are allowed to be different across various quantiles of carbon futures returns.859

Moreover, a quantile regression method is applied to identify possibly heterogeneous860

impacts of the predictors on carbon returns across the data distribution. The quantile861

method is documented to outperform the mean shrinkage models, especially when data862

like ours are featured by the abnormal price distribution, viz. non-normal distribution.863

Our results indicate that the Brent spot price, the crude oil closing stock in the UK, and864

the growth of natural gas production in the UK exert statistically significant impacts865

on carbon futures returns during extreme events (i.e., at low and high quantile levels).866

Importantly, our obtained estimators are shown to be robust against the extreme event867

due to the Covid-19 epidemic.868

We demonstrate that the most powerful factors/predictors for carbon futures re-869

turns and their corresponding impacts hinge on carbon market conditions (i.e., whether870

normal or extreme scenarios). Policymakers and market practitioners should recog-871

nize such the variation, rather than simply assuming that the statistically significant872

carbon-return predictors are constant over the carbon price distribution, for a clearer873

interpretation of carbon return dynamics. Our findings possess statistically significant874

implications for various stakeholders. In a carbon-constrained environment, a clear875

comprehension of the significant carbon-return predictors and their impacts can help876

policymakers uncover the dynamics of carbon returns. Through this, the effectiveness877

of policy interventions towards carbon price stabilization, as well as the health and pros-878

perity of the carbon market, is enhanced. At the same time, this study improves the879

assessment of production costs of carbon-intensive sectors and other carbon-consumed880

economic and human activities by revealing the future price dynamics of carbon emis-881

sion allowances. This study also contributes to sensible risk diversifications of the882
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investment portfolio, which underlying assets involve carbon futures contracts.883
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Appendix1042

• Appendix A: Variable List1043

(1) Group 1: the energy source group1044

1. Growth of crude oil production in France: calculated as the first differ-1045

ence of log the volume of crude oil primary production in France.1046

2. Growth of crude oil production in the United Kingdom: calculated as1047

the first difference of log the volume of crude oil primary production in1048

the UK.1049

3. Growth of crude oil production in Germany: calculated as the first dif-1050

ference of log the volume of crude oil primary production in Germany.1051

4. Growth of crude oil import in France: calculated as the first difference1052

of logging the crude oil imports in France.1053

5. Growth of crude oil import in the United Kingdom: calculated as the1054

first difference of log the crude oil imports in the United Kingdom.1055

6. Growth of crude oil import in Germany: calculated as the first difference1056

of log the crude oil imports in Germany.1057

7. Growth of crude oil stock in France: calculated as the first difference of1058

log the crude oil ending stocks in France.1059

8. Growth of crude oil stock in the United Kingdom: calculated as the first1060

difference of log the crude oil ending stocks in the United Kingdom.1061

9. Growth of crude oil stock in Germany: calculated as the first difference1062

of log the crude oil ending stocks in Germany.1063

10. Growth of natural gas import in France: calculated as the first difference1064

of log the natural gas imports in France.1065
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11. Growth of natural gas import in the United Kingdom: calculated as the1066

first difference of log the natural gas imports in the United Kingdom.1067

12. Growth of natural gas import in Italy: calculated as the first difference1068

of log the natural gas imports in Italy.1069

13. Growth of natural gas production in France: calculated as the first dif-1070

ference of log the natural gas production in France.1071

14. Growth of natural gas production in the United Kingdom: calculated as1072

the first difference of logging the natural gas production in the United1073

Kingdom.1074

15. Growth of natural gas production in Italy: calculated as the first differ-1075

ence of log the natural gas production in Italy.1076

(2) Group 2: the energy price group1077

1. Europe Brent spot price: calculated as the first difference of log EU1078

Brent spot price.1079

2. US natural gas liquid composite price: calculated as the first difference1080

of log US natural gas liquid composite price.1081

3. US natural gas futures: calculated as the first difference of log US natural1082

gas futures of contract 1.1083

4. UK natural gas futures: calculated as the first difference of log UK1084

natural gas futures.1085

(3) Group 3: the stock market index group1086

1. Stock return in the US: calculated as the first difference of log Dow Jones1087

industrial average index.1088

2. Stock return in the United Kingdom: calculated as the first difference1089

of log FTSE100 index.1090

52



3. Stock return in France.: calculated as the first difference of log CAC 401091

index.1092

4. Stock return in Germany.: calculated as the first difference of log Dax1093

performance index.1094

(4) Group 4: the monetary policy group1095

1. Money supply in France: calculated as the first difference of log France1096

money supply M2.1097

2. Money supply in the United Kingdom: calculated as the first difference1098

of log UK money supply M2.1099

3. Money supply in Germany: calculated as the first difference of log Ger-1100

many money supply M2.1101

4. Money supply in Italy: calculated as the first difference of log Italy1102

money supply M2.1103

(5) Group 5: the economic information group.1104

1. Unemployment rate in the UK: the total unemployment rate in the UK.1105

2. Unemployment rate in Germany: the registered unemployment rate in1106

Germany.1107

3. Unemployment rate in France: the total unemployment rate in France.1108

4. Unemployment rate in Italy: the total unemployment rate in Italy.1109

5. Inflation in France: the monthly inflation rate in France.1110

6. Inflation in Germany: the monthly inflation rate in Germany.1111

7. Inflation in Italy: the monthly inflation rate in Italy.1112

8. Short-term interest rate in the US.1113

9. Short-term interest rate in the UK.1114
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10. Short-term interest rate in the EU.1115

11. Long-term interest rate in the US.1116

12. Long-term interest rate in the UK.1117

13. Long-term interest rate in the EU.1118

14. Long-term yield in the UK: the long-term government bond yield in the1119

UK.1120

15. Long-term yield in France: the long-term government bond yield in1121

France.1122

16. Long-term yield in Germany: the long-term government bond yield in1123

Germany.1124

17. Long-term yield in Italy: the long-term government bond yield in Italy.1125

• Appendix B: Variable Name in Table 51126

– BPRI: Europe Brent spot price1127

– UKCS: Growth of crude oil stock in the United Kingdom1128

– UKGF: UK natural gas futures1129

– BDOI: Growth of crude oil import in Germany1130

– UKGI: Growth of natural gas import in the United Kingdom1131

– FRGP: Growth of natural gas production in France1132

– UKGP: Growth of natural gas production in the United Kingdom1133

– FTSE: Stock return in the United Kingdom1134

– UKOP: Growth of crude oil production in the United Kingdom1135

– FRGI: Growth of natural gas import in France1136
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– ITGI: Growth of natural gas import in Italy1137

– GFC1: US natural gas futures1138

– UKOI: Growth of crude oil import in the United Kingdom1139
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Table 1: Descriptive statistics for the carbon price return data

Mean Stdev Skewness Kurtosis ADF Jarque-Bera
0.0078 0.1319 -0.6174 1.7039 −3.6736∗∗ 0.000∗∗∗

Notes: This Table reports summary statistic for the response vari-
able —the monthly carbon price returns, and the sample period runs
from March 2009 to December 2020. The ADF shows the value of
the Augmented Dickey-Fuller (ADF) test with the null hypothesis of
nonstationarity. Jarque-Bera shows the p-values of the Jarque-Bera
test with the null hypothesis of normality.
∗∗∗ denotes statistically significance at 1% level
∗∗ denotes statistically significance at 5% level
∗ denotes statistically significance at 10% level
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Table 2: The MSPE and MAPE in the six-month and twelve-month forecasts

(a) six-month forecast

forecasting model MSPE MAPE

LASSO 0.0121 0.0941
Adaptive LASSO 0.0121 0.0942

Group LASSO 0.0101 0.0865
ARMA (1,1) 0.0159 0.1087

GARCH (1,1) 0.0158 0.1087
ARMAX (1,1,1) 0.0324 0.1444

GARCHX (1,1,1) 0.0331 0.1367
ARMAXS (1,1,1) 0.0298 0.1359

GARCHXS (1,1,1) 0.0645 0.1692
Quantile Group LASSO 0.0086 0.0445
Quantile Group SCAD 0.0081 0.0445

(b) twelve-month forecast

forecasting model MSPE MAPE

LASSO 0.0158 0.1087
Adaptive LASSO 0.0257 0.1272

Group LASSO 0.0156 0.1078
ARMA (1,1) 0.0198 0.1184

GARCH (1,1) 0.0212 0.1245
ARMAX (1,1,1) 0.1689 0.2599

GARCHX (1,1,1) 0.0191 0.1208
ARMAXS (1,1,1) 0.0219 0.1255

GARCHXS (1,1,1) 0.0198 0.1190
Quantile Group LASSO 0.0098 0.0781
Quantile Group SCAD 0.0111 0.0871

Notes: Table 2 reports MSPE and MAPE values of the six-month and twelve-month
forecasts. The smaller MSPE and MAPE values indicate higher prediction accuracy
of the forecast model.
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Table 3: The R2
MSPE and R2

MAPE based on the time-series forecast group

(a) ARMA(1,1) as the benchmark model

forecasting model R2
MSPE R2

MAPE

Panel A: Six-month forecast
ARMAX (1,1,1) -1.0377 -0.3284

GARCHX (1,1,1) -1.0817 -0.2575
ARMAXS (1,1,1) -0.8742 -0.2502

GARCHXS (1,1,1) -3.0566 -0.5565
LASSO 0.2389 0.1343

Adaptive LASSO 0.2389 0.1334
Group LASSO 0.3648 0.2042

Quantile Group LASSO 0.4591 0.5906
Quantile Group SCAD 0.4906 0.5906

Panel B: Twelve-month forecast
ARMAX (1,1,1) -7.5303 -1.1951

GARCHX (1,1,1) 0.0353 -0.0202
ARMAXS (1,1,1) -0.1061 -0.0599

GARCHXS (1,1,1) 0.0000 -0.0051
LASSO 0.2020 0.0819

Adaptive LASSO -0.2979 -0.0743
Group LASSO 0.2121 0.0895

Quantile Group LASSO 0.5051 0.3404
Quantile Group SCAD 0.4393 0.2644

(b) GARCH(1,1) as the benchmark model

forecasting model R2
MSPE R2

MAPE

Panel A: Six-month forecast
ARMAX (1,1,1) -1.0506 -0.3284

GARCHX (1,1,1) -1.0949 -0.2575
ARMAXS (1,1,1) -0.8861 -0.2502

GARCHXS (1,1,1) -3.0822 -0.5565
LASSO 0.2342 0.1343

Adaptive LASSO 0.2342 0.1334
Group LASSO 0.3608 0.2042

Quantile Group LASSO 0.4557 0.5906
Quantile Group SCAD 0.4873 0.5906

Panel B: Twelve-month forecast
ARMAX (1,1,1) -6.9669 -1.087

GARCHX (1,1,1) 0.0991 0.0297
ARMAXS (1,1,1) -0.0330 -0.0080

GARCHXS (1,1,1) 0.0660 0.0441
LASSO 0.2547 0.1269

Adaptive LASSO -0.2123 -0.0217
Group LASSO 0.2641 0.1341

Quantile Group LASSO 0.5377 0.3727
Quantile Group SCAD 0.4764 0.3004

Notes: Table 3 reports the results of R2
MSPE and R2

MAPE in the six-month and twelve-
month forecasts. Table 3(a) and 3(b) show the results when the benchmark models
are the ARMA (1,1) model and the GARCH (1,1) model respectively. The larger
positive value of R2

MSPE and R2
MAPE , the better prediction ability of the candidate

forecast model compared with the corresponding benchmark model.
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Table 4: The R2
MSPE and R2

MAPE of the Quanitle Group LASSO (SCAD) models

(a) Quantile Group LASSO as the candidate model

benchmark model R2
MSPE R2

MAPE

Panel A: Six-month forecast
LASSO 0.2893 0.5271

Adaptive LASSO 0.2893 0.5276
Group LASSO 0.1485 0.4855
ARMA (1,1) 0.4591 0.5906

GARCH (1,1) 0.4557 0.5906
ARMAX (1,1,1) 0.7345 0.6918

GARCHX (1,1,1) 0.7401 0.6744
ARMAXS (1,1,1) 0.7114 0.6725

GARCHXS (1,1,1) 0.8666 0.7369

Panel B: Twelve-month forecast
LASSO 0.3797 0.2815

Adaptive LASSO 0.6187 0.3860
Group LASSO 0.3718 0.2755
ARMA (1,1) 0.5051 0.3404

GARCH (1,1) 0.5377 0.3727
ARMAX (1,1,1) 0.9419 0.6994

GARCHX (1,1,1) 0.4869 0.3534
ARMAXS (1,1,1) 0.5525 0.3776

GARCHXS (1,1,1) 0.5050 0.3436

(b) Quantile Group SCAD as the candidate model

benchmark model R2
MSPE R2

MAPE

Panel A: Six-month forecast
LASSO 0.3306 0.5271

Adaptive LASSO 0.3306 0.5276
Group LASSO 0.1980 0.4855
ARMA (1,1) 0.4906 0.5906

GARCH (1,1) 0.4873 0.5906
ARMAX (1,1,1) 0.7500 0.6918

GARCHX (1,1,1) 0.7552 0.6744
ARMAXS (1,1,1) 0.7281 0.6725

GARCHXS (1,1,1) 0.8744 0.7369

Panel B: Twelve-month forecast
LASSO 0.2975 0.1987

Adaptive LASSO 0.5681 0.3152
Group LASSO 0.2885 0.1920
ARMA (1,1) 0.4394 0.2644

GARCH (1,1) 0.4764 0.3004
ARMAX (1,1,1) 0.9342 0.6648

GARCHX (1,1,1) 0.4188 0.2789
ARMAXS (1,1,1) 0.4931 0.3059

GARCHXS (1,1,1) 0.4393 0.2680

Notes: Table 4 reports the results of R2
MSPE and R2

MAPE in both the six-month and
twelve-month forecast tests. Table 4(a) and 4(b) show the result when the candidate
model is the Quantile Group LASSO and Quantile Group SCAD model, respectively.
The larger value of R2

MSPE and R2
MAPE means a larger promotion of prediction

ability of the candidate model over the corresponding benchmark model.
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Table 5: Regression results under different quantiles

Panel A: τ = 0.1 Panel B: τ = 0.5 Panel C: τ = 0.9

BPRI −0.126∗∗ -0.139 −0.123∗∗

(0.058) (0.078) (0.057)

UKCS 0.301∗∗∗ 0.054 0.261∗∗∗

(0.078) (0.061) (0.066)

UKGF -0.014 −0.014
(0.063) (0.055)

BDOI -0.049 −0.076
(0.062) (0.052)

UKGI -0.059 0.012
(0.054) (0.031)

FRGP -0.006 −0.022
(0.016) (0.014)

UKGP −0.226∗∗∗ −0.209∗∗∗

(0.055) (0.054)

FTSE 0.361∗∗

(0.171)

UKOP -0.029
(0.074)

FRGI 0.057 0.089
(0.064) (0.131)

ITGI −0.137∗ −0.262∗

(0.075) (0.148)

GFC1 -0.006
(0.062)

UKOI -0.049
(0.062)

Notes: (i) This table summarizes coefficient results of quantile
regression under different quantile levels (τ = 0.1, τ = 0.5 and
τ = 0.9). (ii) At each quantile level, the model contains all the vari-
ables selected by the Quantile Group LASSO method. (iii) standard
errors are in parentheses.
∗∗∗ denotes statistically significance at 1% level
∗∗ denotes statistically significance at 5% level
∗ denotes statistically significance at 10% level
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Table 6: Regression results with an indicator of the extreme event in 2020

Panel A: τ = 0.1 Panel B: τ = 0.5 Panel C: τ = 0.9

BPRI 0.026 -0.092 0.023
(0.033) (0.101) (0.057)

UKCS 0.141∗∗∗ 0.052 0.213∗∗∗

(0.045) (0.071) (0.065)

UKGF 0.040 -0.087
(0.036) (0.055)

BDOI -0.133 -0.054
(0.105) (0.052)

UKGI -0.048 0.019
(0.048) (0.029)

FRGP −0.023∗∗ -0.018
(0.009) (0.014)

UKGP −0.122∗∗∗ −0.188∗∗∗

(0.031) (0.054)

FTSE 0.097
(0.171)

UKOP 0.013
(0.042)

FRGI -0.021 0.173
(0.036) (0.115)

ITGI −0.180∗∗∗ −0.340∗∗

(0.043) (0.130)

GFC1 -0.031
(0.035)

UKOI -0.037
(0.054)

Dummy −0.101∗∗∗ 0.130∗∗∗ 0.162∗∗∗

(0.015) (0.054) (0.024)

Notes: (i) This table summarizes coefficient results of quantile re-
gression under different quantile levels (τ = 0.1, τ = 0.5 and τ = 0.9)
with an indicator of the extreme event in 2020. (ii) The indicator
(dummy variable) is displayed on the last row of the table. (iii) At
each quantile level, the model contains all the variables selected by
the Quantile Group LASSO method and the new dummy variable.
(iv) standard errors are in parentheses.
∗∗∗ denotes statistically significance at 1% level
∗∗ denotes statistically significance at 5% level
∗ denotes statistically significance at 10% level
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Table 7: Regression results at the extreme event during 2020

Panel A: τ = 0.1 Panel B: τ = 0.5 Panel C: τ = 0.9

BPRI 0.135∗∗ -0.101 −0.035∗∗∗

(0.030) (0.224) (0.038)

UKCS 1.248∗∗ -0.046 0.439∗∗∗

(0.345) (0.348) (0.087)

UKGF 0.056 0.134
(0.026) (0.065)

BDOI −0.320∗ −0.631∗∗∗

(0.164) (0.088)

UKGI -0.015 0.215∗∗∗

(0.209) (0.037)

FRGP 0.037 −0.056∗∗∗

(0.023) (0.003)

UKGP -0.868 −0.540∗∗∗

(0.241) (0.096)

FTSE 0.784∗∗∗

(0.104)

UKOP -0.064
(0.139)

FRGI 0.549∗∗∗ -0.407
(0.053) (0.596)

ITGI −0.505∗∗ 0.278
(0.108) (0.632)

GFC1 −0.337∗∗

(0.084)
UKOI -0.239

(0.587)

Notes: (i) This table summarizes coefficient results of quantile re-
gression under different quantile levels (τ = 0.1, τ = 0.5 and τ = 0.9)
at the extreme event during 2020. (ii) At each quantile level, the
model contains all the variables selected by the Quantile Group
LASSO method. (iii) standard errors are in parentheses.
∗∗∗ denotes statistically significance at 1% level
∗∗ denotes statistically significance at 5% level
∗ denotes statistically significance at 10% level
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Table 8: Regression results before the extreme event in 2020

Panel A: τ = 0.1 Panel B: τ = 0.5 Panel C: τ = 0.9

BPRI −0.121∗∗ 0.017 0.138∗∗∗

(0.065) (0.109) (0.099)

UKCS -0.011 0.095 0.089
(0.091) (0.137) (0.086)

UKGF -0.030 -0.076
(0.072) (0.086)

BDOI -0.034 0.001
(0.080) (0.059)

UKGI -0.011 0.014
(0.050) (0.025)

FRGP -0.018 -0.023
(0.019) (0.018)

UKGP −0.312∗∗∗ −0.302∗∗∗

(0.082) (0.068)

FTSE 0.103
(0.245)

UKOP 0.089
(0.095)

FRGI 0.037 -0.005
(0.067) (0.090)

ITGI −0.194∗∗∗ −0.173∗

(0.065) (0.112)

GFC1 0.023
(0.056)

UKOI -0.042
(0.045)

Notes: (i) This table summarizes coefficient results of quantile re-
gression under different quantile levels (τ = 0.1, τ = 0.5 and τ = 0.9)
before the extreme event in 2020. (ii) At each quantile level, the
model contains all the variables selected by the Quantile Group
LASSO method. (iii) standard errors are in parentheses.
∗∗∗ denotes statistically significance at 1% level
∗∗ denotes statistically significance at 5% level
∗ denotes statistically significance at 10% level
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