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Apicomplexa are obligate intracellular parasites that cause

several human and veterinary diseases worldwide. In

contrast to most intracellular pathogens these protozoans

are believed to invade a rather passive host cell in a process,

that is, tightly linked to the ability of the parasites to move by

gliding motility. Indeed specific inhibitors against

components of the gliding machinery and the analysis of

knockdown mutants demonstrate a linkage of gliding motility

and invasion. Intriguingly, new data show that it is possible to

block gliding motility, while host cell invasion still occurs.

This suggests that either the current models established for

host cell invasion need to be critically revised or that

alternative, motor independent mechanisms are in place

including a more active role of the host cell that can

complement a missing actin–myosin-system. Here

we discuss some of the discrepancies that need

to be addressed for a better understanding of

invasion.
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Introduction
Apicomplexa are obligate intracellular parasites and

therefore the invasion of the host cell is an essential step

during their life cycle. While most pathogens rely on the

modulation of host cell factors to trigger their own uptake

via endocytosis or phagocytosis, most apicomplexan para-

sites penetrate their host cell in the absence of any visible

membrane ruffling in an active process [1] that seems to

be tightly linked to the parasites ability to move by

gliding motility [2].
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Host cell invasion is a stepwise process that can be

roughly defined in four steps. First, host cell approach;

second, host cell recognition; third, formation of a tight

junction with the host cell and fourth, host cell penetra-

tion. During these steps the ability of the parasite to move

by gliding motility plays a crucial role in host cell

approach and possibly host cell penetration [2]. Gliding

motility requires the action of the Myosin A (MyoA)-

motor complex, termed the glideosome [3], parasite actin

[4] and micronemal transmembrane proteins of the TRAP

family [5,6] that interact with actin via the glycolytic

enzyme aldolase [7]. The sequential secretion of micro-

nemes and rhoptries [8�,9] leads to the formation of a tight

junction between the parasite and the host cell and it is

believed that the gliding machinery provides the necess-

ary force during the penetration process through the

junction (Figure 1; for recent reviews see [2,10–12]).

Surprisingly, recent reverse genetic studies demonstrated

that core components (including actin, MyoA, TRAP-

family proteins and AMA1) of the invasion machinery can

be removed without blocking host cell penetration

[13��,14��]. This study leads to two interpretations. First,

all apicomplexan parasites use a single entry mechanism

and hence the current invasion model is wrong and needs

to be replaced by a new model. Second, the current model

is overall valid but an additional, motor independent

invasion mechanism is at work that facilitates host cell

invasion in KO mutants of the glideosome. The latter

could also suggest that significant differences exist in the

invasion mechanisms of different species and stages of

apicomplexans.

Here we re-evaluate previous key-findings that support

the current invasion model and discuss alternative mech-

anisms apicomplexan parasites might have at their dis-

posal in order to invade a host cell.

Gliding motility is not coupled to invasion
Gliding motility is not restricted to apicomplexan parasites,

but is also present in free living protozoans. For example,

an almost identical form of gliding motility can be found in

other members of the chromealveolates, such as free-living

diatoms that use their actin–myosin motor to move in a

substrate dependent manner [15,16]. Gregarines represent

a group of early emerging apicomplexans that parasitise

invertebrates and urochordates. They approach the host

cell by gliding motility [17] but do not invade. Instead they

tightly attach and feed on the host cell with their apical pole

partially integrated [18�]. For the acquisition of nutrients

the gregarines evolved sophisticated adaptations of their
www.sciencedirect.com
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apical complex that include unique secretory organelles.

Similarly, free living relatives of apicomplexan parasites,

such as the colpodellids feed by myzozytosis (cellular

vampirism), which requires the establishment of a hole

in the host cell membrane [19,20]. Intriguingly, apicom-

plexans such as Plasmodium and Toxoplasma also secrete

the content of their rhoptries to establish a ring-like struc-

ture through which they invade [10]. This raises the

question if myzozytosis and host cell penetration are based

on similar molecular mechanisms that do not require glid-

ing motility.

Theileria sporozoites are non-motile and do not show the

typical apical complex with micronemes being absent.

Unlike its relatives Theileria can enter the host cell in any

orientation, independent of parasite and host cell actin

[21]. A zippering mechanism has been proposed that

involves the formation of multiple, tight interactions

between the parasite and the host cell [22]. Whether this

mechanism is homologous to a zoite that invades in an

apical orientation, if the zippering mechanism can pro-

vide the necessary force for rapid invasion or if other

force-generating mechanisms are involved in host cell

penetration is not clear.

Cryptosporidium invades the host cell but remains extra-

cytoplasmatic and is capable of extensive actin remodel-

ling within the host cell [23]. Furthermore,

Cryptosporidium recruits host cell sugar transporters and

aquaporins to the attachment site to generate a diffusion

gradient that allows the rapid generation of protrusions

[24]. Interestingly, recent studies demonstrate that other

apicomplexans such as Toxoplasma gondii and Plasmodium
berghei are capable of modulating the actin cytoskeleton of

the host cell, which play an important role during invasion

[25,26�] and it remains to be seen which host cell factors

can be recruited to the attachment zone to facilitate

invasion by these parasites.

In summary, these observations hint at the existence of

distinct invasion mechanism in apicomplexans (Figure 1)

and it raises the question of whether certain apicomplex-

ans use the gliding machinery to generate a force at the

tight junction that allows them to gain access to the host

cell. If so, the question is whether this mechanism is used

exclusively or in addition to others.

Gliding motility a driving force for invasion?
Several lines of evidence support a model, where at least

in case of T. gondii and Plasmodium spp. the gliding

machinery powers host cell penetration. However, recent

advances in reverse genetics allowed the detailed re-

dissection of this machinery and demonstrated that

key-invasion factors such as AMA1 [14��], MIC2, MyoA

or actin [13��] can be removed without abolishing host cell

invasion. Therefore a re-evaluation of previous findings is

required.
www.sciencedirect.com 
Inhibitor studies
The rapid entry of apicomplexans into the host cell has

puzzled researchers for decades and several potential

uptake mechanisms, including zippering mechanisms

or chemical induction of endocytotic events have been

discussed [27,28]. Cytosolic components of the host cell,

such as ATP or magnesium ions are important for host cell

invasion by Plasmodium merozoites [29–34] and Toxo-
plasma [35,36], highlighting the importance of the host

cell environment for invasion. While these studies

reported only reductions in host cell invasion, a complete

block can be achieved by treating the host cell with the

actin destabilising drug cytochalasin D (CD). Intrigu-

ingly, three independent studies used CD to dissect

the role of parasite and host cell actin during invasion

in T. gondii reached different conclusions [37,25,38]. The

first study by Ryning and Remington [37] carefully com-

pared the uptake of T. gondii and heat-killed Candida by

phagocytic and non-phagocytic cells. Although the

authors could not exclude that CD also inhibits actin

of the parasite, they demonstrate that preincubation of

parasites for 30 min with 10 mg CD (=19.7 mM), followed

by dilution to a final concentration of 0.39 mM did not

significantly affect parasite invasion and conclude:

‘‘The results of this study suggest that T. gondii acts on the
nonphagocytic cell in some undefined way, inducing phagocytosis
rather than utilizing the cells merely as a passive agent during
the entry process. If this were not the case, it would be unlikely
that the inhibition of entry of T. gondii and its reversibility after
withdrawal of CD from the medium to which the cells were
exposed would exactly parallel inhibition and recovery of T.
gondii entry into PM, as well as phagocytosis of heat-killed
Candida by macrophages. Our studies do not preclude the
concept that T. gondii actively gains entry into nonphagocytic
cells without active participation by the host cell; however, we
consider this a less likely mechanism.’’ [37].

With the onset of genetic manipulation, the role of

parasite and host cell actin was re-addressed using a

combination of epithelial cell and T. gondii mutants

resistant to CD [39]. Here, a low CD concentration of

0.2 mM was chosen to demonstrate that CD resistant

parasites invade better then wild type parasites and it

was concluded that invasion exclusively depends on

parasite actin. Curiously, one of the mutant parasite lines

resistant to CD was found not to have mutations in actin

[39], leading to the question what alternative mechanisms

the parasite has at its disposal to invade in presence of low

doses of CD.

Strangely, a recent study [25] reported slightly higher

concentrations of CD (0.5 mM) to be sufficient to com-

pletely block invasion  by the CD resistant parasites [25].

Furthermore this study shows that host cell actin

accumulates at the point of entry, in a mechanism that

might be similar to Cryptosporidium [23]. Therefore, three
Current Opinion in Microbiology 2013, 16:438–444
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Figure 1
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Left: Different modes of host cell invasion by different apicomplexans. (1) Motile zoite, that is, capable to significantly modify the cytoskeleton of the

host cell and to recruit different host cell surface proteins to the attachment zone, as described for C. parvum, T. gondii and Plasmodium sporozoites.

(2) Motile zoite that invades the host cell using its own actin–myosin-motor to invade a passive host cell, as described for T. gondii and Plasmodium

Current Opinion in Microbiology 2013, 16:438–444 www.sciencedirect.com
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independent studies come to different conclusions

regarding the role of host cell and parasite actin during

invasion  hinting that both may be involved. Further-

more, the demonstration that depletion of actin in T.
gondii does not abrogate host cell invasion  strongly

suggests that invasion does not exclusively depend on

parasite actin [13��].

The myosin ATPase inhibitor butanedione monoxime

(BDM) has been used to demonstrate a role of myosins

during the penetration of the host cell [40,41]. However,

BDM is a relatively non-specific inhibitor and affects

multiple cellular processes, such as ionic current flow

[42,43]. Indeed, one study suggests that the unconven-

tional myosins of apicomplexans are not specifically

inhibited by BDM [44]. A similar problem as for CD

might well be encountered with Latrunculin, which has

been claimed to inhibit actin driven processes in Toxo-
plasma and Plasmodium falciparum but strikingly did not

inhibit the extremely cytochalasin and jasplakinolide

sensitive gliding motility of P. berghei sporozoites [45].

The confusion created by using different inhibitor con-

centrations and different parasite lines in different exper-

iments are reminiscent of a previous study using a specific

inhibitor of falcipain-1, a P. falciparum cystein protease,

suggesting that it was essential for host cell invasion by

merozoites [46]. Subsequently a genetic deletion of fal-

cipain-1 showed that the enzyme plays no role in the

erythrocytic cycle [47]. We thus suggest being more

prudent when using inhibitors, that is, to perform assays

over a wide range of concentrations and ideally to verify

the supposed specific effect with biochemically purified

protein as well as with gene deletion.

Confusing evidences from reverse genetics
Since gene deletion is often not straightforward to

achieve, in T. gondii a tetracycline-dependent knock-

down system was central for the functional dissection

of the key-components of the gliding machinery

[3,6,9,48,49�,50,51]. Intriguingly, none of the knock-

downs showed the expected total block in host cell

invasion, although a complete block of gliding was

described in several cases (Figure 1). Invasion rates

between 10% and 25% [6,9,48,49�,50,51,52�] were

reported and none of these studies analysed the speed

of host cell penetration (which should be significantly

slower) in detail. Together these studies demonstrate that

knockdown of motor components although sufficient to

block gliding motility on glass slides does not result in a

block of host cell invasion leading to the question how
sporozoites. (3) Immotile zoite that invades the host cell using its own actin–m

merozoites. (4) Immotile zoite that invades the host cell using a zippering m

Right: A simplified model of the actin–myosin-system beneath the surface of 

or knockout approaches are indicated. The model is not drawn to scale. The

of the key components for the gliding machinery.
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much force needs to be generated at the tight junction by

this motor to facilitate host cell penetration. In this respect

the phenotype of one mutant is very intriguing: a knock-

down for GAP45. In the absence of GAP45 the remaining

components of the gliding machinery (MyoA and MLC1)

are relocated to the cytosol of the parasite leading to a block

of motility [53��]. Furthermore the integrity of the IMC,

which is a prerequisite to stabilise the glideosome [54,55] is

lost. Yet, this mutant invades with an overall invasion rate

of 20% [53��]. How is this possible, if not only the MyoA-

motor itself, but the whole platform for other, possibly

redundant motors is missing?

While the uncoupling of gliding and host cell invasion can

be attributed to background expression levels of the gene

of interest (GOI) in the respective knockdowns, the

essentiality of the gliding machinery for host cell invasion

has not been demonstrated. Rather it appears that even

low background expression level is sufficient to allow for

host cell invasion.

To address this obvious discrepancy, a ligand controlled

site-specific recombination system based on dimerisable

Cre-recombinase (DiCre) was adapted to T. gondii [13��].
This allowed the complete removal of several genes of

interest (GOI) and the generation of conditional knock-

outs for MIC2, AMA1, MyoA, MLC1, GAP45 and Act1 in

T. gondii ([13��], Figure 1; MM, unpublished results).

Clonal knockouts from the induced population could

be isolated for several factors previously described as

essential, including MIC2, AMA1 and MyoA. This clearly

demonstrates that they are not essential for in vitro growth

and that parasites are capable to invade the host cell in the

absence of the actin–myosin-system ([13��]; MM, unpub-

lished). While these reverse genetic data demonstrate the

existence of an actin–MyoA–AMA1/MIC2 independent

invasion pathway in T. gondii tachyzoites it cannot yet be

ruled out that several redundant mechanisms for host cell

invasion exist in apicomplexan parasites and that differ-

ent species prefer one over the other.

Or is it possible that our model for gliding motility and

invasion needs to be revised? Currently the linear motor

model predicts that myosin and actin provide the force

necessary for gliding. However, it is also plausible that the

primary function of myosin and actin is the definition

(formation and/or release) of attachment sites [56] that

provide directionality of the movement. The force itself

could be easily generated by other means, for example,

through hydrodynamic forces generated by cytosolic fluid

dynamics that have been implicated in rapidly moving
yosin-motor to invade a passive host cell, as described for Plasmodium

echanism to invade the host cell, as described for Theileria merozoites.

the parasite. Some key-factors that have been studied using knockdown

 table provides a summary of knockdown and knockout studies on some

Current Opinion in Microbiology 2013, 16:438–444
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Figure 2

(a) (b)

N

Current Opinion in Microbiology

Formation of a collar-like structure during invasion of the host cell by T. gondii. Scanning (a) and transmission (b) electron micrographs of tachyzoites

of Toxoplasma gondii invading culture human umbilical endothelial cells. The apical end of the parasite is orientated towards the epithelial cell but there

also appears to be the development of a protrusion the host cell plasmalemma to form collar around the invading parasite. N — nucleus. Bars

represent 1 mm.
cells, such as keratinocytes [57]. In this case one would

predict that myosin and actin are required during gliding

motility to determine the directionality of the movement.

However, once the parasite is attached to the surface of the

host cell, the direction is defined by the tight junction and

consequently myosin and actin function is not required.

Although actin, myosins and micronemal proteins appear

to have an important function in steps upstream of host

cell penetration, recent findings and a critical review of

the literature do not provide a conclusive argument for

their essential role during host cell penetration. There-

fore it is also necessary to re-investigate the role of the

host cell during this process.

The role of the host cell in parasite penetration
Apicomplexan parasites are capable of significantly mod-

ifying and hijacking host cellular functions [58], although

our current view is that this mainly occurs in order to

secure parasite survival after invasion. Several studies

point out that apicomplexan invasion does at least to a

certain extent depend on cytosolic host cell factors, such

as actin, tubulin, ATP, magnesium ions, aquaporins and

sugar transporters [23,24,59,60�]. While these studies

cannot demonstrate a complete block in host cell invasion

by modulating these factors, it is possible that a parasite

modulates multiple parameters in order to gain rapid

access to the host cell and clearly demonstrates that

the host cell is not as passive as previously believed.

Indeed, it is likely that different parasites and different

parasite stages modulate different cellular parameters and

use different proteins in different ways, thus limiting the

theory of a uniform invasion mechanism.
Current Opinion in Microbiology 2013, 16:438–444 
While triggering phagocytosis or endocytosis appears to

be an unlikely mechanism, due to the rapid nature of the

penetration (�30 s), it has been shown that host cell actin

and tubulin are recruited to the attachment site and that

their modulation contributes to parasite invasion [25,61].

Indeed ultrastructural evidences show that upon attach-

ment a collar like structure can form between T. gondii
and the non-phagocytic host cell (Figure 2; DF, unpub-

lished). Since invasion of parasites without these protru-

sions can also be readily observed, the formation of this

collar might represent an alternative invasion mechanism,

where the host cell plays an active role during the

penetration process.

However, the question still remains: how can parasites

penetrate the host cell in the absence of their gliding

machinery? Clearly more work needs to be done as the

field suddenly seems to be once again ‘wide open’.
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