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Abstract

We consider a wide range of UV scenarios with the aim of informing searches for CP violation at the TeV 
scale using effective field theory techniques. We demonstrate that broad theoretical assumptions about the 
nature of UV dynamics responsible for CP violation map out a small subset of relevant operators at the TeV 
scale. Concretely, this will allow us to reduce the number of free parameters that need to be considered in 
experimental investigations, thus enhancing analyses’ sensitivities. In parallel, reflecting the UV dynamics’ 
Wilson coefficient hierarchy will enable a streamlined theoretical interpretation of such analyses in the 
future. We demonstrate a minimal approach to analysing CP violation in this context using a Monte Carlo 
study of a combination of weak boson fusion Higgs and electroweak diboson production, which provide 
complementary information on the relevant EFT operators.
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1. Introduction

The lack of concrete evidence for new interactions beyond the Standard Model (BSM) has 
led to an increased consideration of effective field theory methods [1] in high energy collider 
physics. Besides their resurgence as largely model-independent interpretation tools, EFT appli-
cations to collider searches and measurements have witnessed rapid theoretical progress over the 
past years (see e.g. Refs. [2,3] for recent reviews). They increasingly become the lingua franca
adopted by the multi-purpose experiments at the Large Hadron Collider (LHC) to report, and 
interpret results (see e.g. the recent [4]). While efforts are underway to extend SM effective field 
theory methods to even higher operator dimensions [5–10], most analyses so far have focused on 
deformations from dimension-six operator interactions [11–15] as leading terms in the effective 
field theory expansion

LEFT = LSM +
∑

i

Ci

�2 Od6
i . (1)

Although the EFT methodology provides a theoretically consistent framework for the inter-
pretation of particle physics measurements, their generic approach to BSM searches typically, 
and unavoidably, leads to a significant shortfall in the new physics potential of concrete LHC 
searches and measurements when many new interactions need to be considered. In the light of 
expected uncertainties and hadron collider energy coverage, the underlying EFT assumption of 
an absence of direct evidence of new propagating degrees of freedom often pushes constraints 
on the Wilson coefficients (WCs) Ci/�

2 in Eq. (1) to a regime where perturbative matching to 
concrete ultraviolet (UV) scenarios becomes challenged or impossible (for a recent discussion 
see [16]). This does not constitute a breakdown of EFT methods, but demonstrates a lack of a 
particular analysis’ sensitivity to motivated UV completions of the SM, which is not visible from 
the constraint on the WCs themselves directly. While direct searches for motivated new degrees 
of freedom in concrete scenarios typically explore higher mass scales directly at hadron collid-
ers compared to indirect deviations from expected SM correlations (see e.g. [17]), in parallel, 
concrete UV scenarios often also require a dedicated RGE-improved matching procedure see 
e.g. Refs. [16,18]. More concretely: Specific UV scenarios impose hierarchies among WCs that 
are also reflected in their evolution over a broad range of momentum transfer scales that typically 
informs a LHC measurement result. While these questions arise beyond the mere application of 
EFT to collider data, they need to be taken into account when EFT methods are supposed to 
inform a more concrete UV picture, which are their raison d‘être.

Searches in the light of a large available EFT parameter space do always make assumptions, 
see e.g. [4]. This raises the questions in how far these measurements can inform generic UV 
extensions, which is the purpose of this work. Indeed, we find that limiting the number of Wilson 
coefficients considered in asymmetry studies of CP-sensitive observables is theoretically well-
motivated and justified. A general counter-argument that is raised for such investigations is that 
all information should be considered as part of a global statistical function such that matching 
computations are trivially includable. While this holds for naive extensions of the SM, this is 
less straightforward for loop-induced matching that contains logarithmic scale dependencies of 
physical processes [16]. This would require experimentalists to track the full RGE flow effects as 
part of their investigation, which is currently not done and is unlikely to be included in the near 
future.

Starting from generic model considerations at the UV scale, we inform the EFT interpretation 
of TeV-scale measurements by landscaping WCs on the basis of anticipated UV scenarios’ parti-
2
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cle content and interactions. This enables us to reconcile and contextualise common assumptions 
with theoretically consistent UV completions, which is the aim of this work. We discuss the im-
plications of generic UV scenarios for the particular subset of SMEFT operators that parametrise 
CP-violation in the gauge-Higgs sector. Building on previous work [19], we consider scalar and 
fermionic degrees of freedom to classify the operator patterns that arise from these theories in 
Sec. 2, with a particular focus on the gauge representation of fermionic extensions. We gain ev-
idence that generic analyses of CP violation by taking all ad hoc EFT interactions into account 
on an equal footing (see, e.g., the recent Refs. [4,20–22]) overestimate the expected phenomeno-
logical patterns of CP violation in the gauge-Higgs sector. The UV-EFT connection described 
in Sec. 2, will therefore enable the LHC experimental collaborations to reduce their effective 
coupling parameter space in a theoretically well-motivated way, thus enhancing their analyses’ 
sensitivities in ways that directly inform UV completions in a theoretically transparent fashion. 
In Sec. 3, we demonstrate such a procedure in a minimal fashion: The combination of weak 
boson fusion Higgs production, and mainly W±γ production combines complementary infor-
mation when analysed with generically (C)P-sensitive observables (see [23–30]). We conclude 
in Sec. 4.

2. Scenarios with low energy CP violation

To start with, we consider that the SM particle content is extended by a heavy fermion �. The 
additional gauge-invariant renormalizable Lagrangian involving � is written as

L� = �̄
(
i /D − M�

)
� − {

ψ̄ Yψ �H + h.c.
}
, (2)

where, the covariant derivative /D is defined by the gauge quantum numbers of � under the 
SM gauge symmetry SU(3)C ⊗ SU(2)L ⊗ U(1)Y . The heavy fermion interacts with the SM 
fermions, and Higgs boson H through the Yukawa interactions, where ψ represents the light 
SM fermions, both quarks and leptons. Here, we are not displaying the flavour indices explicitly 
in Eq. (2), as they are not relevant for our current discussion. In principle, even if one invokes 
explicit CP-violation in these Yukawa couplings, these will contribute to an even number of γ5

in the spin traces leading to CP-conserving effective operators in the field strength (X3) and the 
gauge-Higgs (φ2X2) classes.1 In pursuit of CP-violating (CPV) effective operators, we require 
an odd number of γ5 matrices in the spin traces as such structures generate the fourth rank Levi-
Civita tensor εμνρσ , i.e., in turn generates the dual of the field strength tensors. In particular, 
this holds at loop-level [31–34]. The single heavy fermion extension of the SM therefore fails to 
generate these CPV operators. Thus, in our next attempt, we add two heavy vector-like fermions 
to find out whether it is possible to generate the loop-induced CPV operators or not.

The new Lagrangian with two heavy vector-like leptons (VLL) �1 and �2 is written as

L2� = �̄1
(
i /D − M�1

)
�1 + �̄2

(
i /D − M�2

)
�2 − {

�̄1 Y� V �2 + h.c.
}
, (3)

where, V contains both CP-even and odd interactions, V = H
(
a 14 + b γ5

)
with ‘a’ and ‘b’ 

parametrising the CP-even and odd couplings, respectively. These couplings are complex in gen-
eral, but we consider them as real in our discussion for simplicity without loss of any generality. 
The loop diagrams with an even number of γ5 vertices generate CP-even operators and an odd 

1 These are dimension-six SMEFT Warsaw basis operators [15]. The X3 and φ2X2 refer to the triple-field-strength 
and the two-Higgs-two-field-strength Warsaw basis effective operator classes.
3
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Fig. 1. X(= B, W, G) represents the SM field strength tensors. For X1 = X2, we get the SMEFT dimension-six operators 
QHW , QHB , QHG , QHW̃ , QHB̃ and QHG̃ , and for X1 �= X2, we get the operators QHWB and QHW̃B . Depending 
on the number of γ5 s in the vertices, we categorise the diagram in the LHS into two cases: CP-even and CP-odd effective 
operator generating diagrams. The diagrams with an even number of γ5 vertices generate to CP-even operators and an 
odd number of γ5 vertices generate to CP-odd effective operators.

number of γ5 vertices generate CP-odd effective operators, see Fig. 1. The rank four Levi-Civita 
tensor εμνρσ is induced using

2iσρσ γ5 = εμνρσ σμν, (4)

where, σμν = i
2

[
γμ, γν

]
is the Lorentz generator for the spin- 1

2 fields.
In this minimal scenario, the SM gauge quantum numbers of the heavy fermions are restricted. 

In general, the allowed gauge quantum numbers are: �1 �→ ({1, RC}, {1, RL} + 1, {0, Y} + 1/2)

and �2 �→ ({1, RC}, {1, RL}, {0, Y}), where RC , RL, and Y are the quantum numbers under 
the SM gauge group SU(3)C ⊗ SU(2)L ⊗ U(1)Y respectively. We discuss below one minimal 
example model where the SM is extended by an isospin-doublet and an isospin-triplet heavy 
VLL.

2.1. Doublet-triplet VLL

We consider two heavy VLL χ2 and χ3 with masses mχ2
and mχ3

respectively where their 
SM gauge quantum numbers are(

χ
) : (1,2,1/2),

(
χ

) : (1,3,1). (5)
2 L,R 3 L,R

4
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Fig. 2. Two-loop diagram generating the SMEFT Warsaw basis QW and QW̃ operators by integrating out heavy VLL, see 
Eq. (6). Unlike the QW operator which is generated at one-loop processes, the QW̃ is generated at two-loop processes. 
The diagram in the bottom-right contributes to the WCs of the QW̃ operator. The CP-even and odd couplings are defined 
as a = αχ and b = βχ in this model, see Eq. (9). We discuss more on the loop calculation and the coefficients of the QW̃
operator in Appendix A.

Table 1
The one-loop generated X3 and φ2X2 operators classes and their WCs after integrating out the heavy 
VLL in Eq. (6). The CPV operators are displayed in first three rows. To compactify the result, we take the 
multiplicative factor (16π2m2)−1 out of the WCs (Ci ), see Eq. (7).

Operators Operator structures Wilson coefficients (Ci )

QHB̃

(
H †H

)
B̃μνBμν −4g2

Y
Im

[
yχ

L
y∗
χ
R

]
QHW̃

(
H †H

)
W̃μν

I WI,μν −g2
W

Im
[
yχ

L
y∗
χ
R

]
QHW̃B

1
2

(
H †σI H

)
W̃μν

I Bμν − 10
3 g

W
g

Y
Im

[
yχ

L
y∗
χ
R

]
QHB

(
H †H

)
BμνBμν 1

60 g2
Y

[
19|αχ |2 + 15|βχ |2

]
QHW

(
H †H

)
Wμν

I WI,μν 1
6 g2

W

[
|αχ |2 + |βχ |2

]
QHWB

1
2

(
H †σI H

)
Wμν

I Bμν 2
15 g

W
g

Y

[
6|αχ |2 + 5|βχ |2

]
QW εIJKWIν

μ W
Jρ
ν W

Kμ
ρ

7
180 g3

W

As explained above, these heavy fields interact with the SM Higgs doublet through the Yukawa 
interactions that accommodate the explicit CP violations leading to the generation of CPV oper-
ators. The relevant part of the BSM Lagrangian, containing these heavy leptons, is written as
5
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Table 2
The one-loop generated dimension-eight CPV φ4X2 operators and their WCs after integrating out the heavy VLL in 
Eq. (6). These operators modify the contributions of the dimension-six CPV operators shown in Table 1. These SMEFT 
dimension-eight operator structures are taken from Ref. [7].

Operators Operator structures Wilson coefficients (Ci ) × (16π2m4)−1

Q
(2)

B2H4

(
H †H

)2
B̃μνBμν − 5

3 g2
Y

[
|αχ |2 − 2|βχ |2

]
Im

[
yχ

L
y∗
χ
R

]
Q

(2)

W2H4

(
H †H

)2
W̃μν

I WI,μν − 1
10 g2

W

[
2|αχ |2 − 5|βχ |2

]
Im

[
yχ

L
y∗
χ
R

]
Q

(2)

WBH4
1
2

(
H †H

)(
H †σI H

)
W̃ I,μνBμν − 16

15 g
W

g
Y

[
|αχ |2 − 5|βχ |2

]
Im

[
yχ

L
y∗
χ
R

]

Table 3
Ratio of operators and Wilson coefficients at dimension-eight and -six.

C(2)

B2H4
C

HB̃
= (H†H)

m2 × (− 5
3

[
|αχ |2−2|βχ |2

]
)

−4

∣∣∣∣∣〈H†H 〉= v2
2

= v2

2m2 × 5
[
|αχ |2−2|βχ |2

]
12

C(2)

W2H4
C

HW̃
= (H†H)

m2 × (− 1
10

[
2|αχ |2−5|βχ |2

]
)

−1

∣∣∣∣∣〈H†H 〉= v2
2

= v2

2m2 ×
[
2|αχ |2−5|βχ |2

]
10

C(2)

WBH4
C

HW̃B
= (H†H)

m2 × (− 16
15

[
|αχ |2−5|βχ |2

]
)

− 10
3

∣∣∣∣∣〈H†H 〉= v2
2

= v2

2m2 × 8
[
|αχ |2−5|βχ |2

]
25

Fig. 3. Points in the Re(yχL
y∗
χR

)-Im(yχL
y∗
χR

) plane were the leading contribution arises from dimension-six operators. 
The scan was performed for three different VLL masses by sampling yχL

and yχR
such that the absolute values of the 

ratios shown in Table 3 are all less than unity. Shaded with gray is the non-perturbative region where |yχL,R
| > 4π .

LDT ⊃ χ̄2(iD/χ2
− mχ2

)χ2 + χ̄3(iD/χ3
− mχ3

)χ3

−
{
HT χ̄I

3
σ I (yχ

L
PL + yχ

R
PR)iσ2 χ2 + h.c.

}
. (6)

Here, I (= 1, 2, 3) is the SU(2)L index of the isospin-triplet lepton χ3 , the σ I represent the 
Pauli matrices, and PL(PR) is the left(right) chiral projection operator. Integrating out these 
heavy VLL and matching this BSM to the SMEFT, we determine the WCs of the X3 and φ2X2

operator classes. The effective Lagrangian is defined as
6
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LEFT = LSM + 1

16π2m2

∑
i

CiQi , (7)

where m is the cut-off scale of the effective theory. The masses of the VLL are taken as de-
generate (m = mχ2

= mχ3
). We note that the heavy fermions are SU(3)C singlet fields in this 

example model. Therefore, the following effective operators belonging to X3 and φ2 X2 classes 
are generated after matching:

{QW,QHW,QHB,QHWB} ∪ {
QW̃ ,QHW̃ ,QHB̃,QHW̃B

}
. (8)

We tabulate the matched WCs associated with these operators in Table 1, where we have defined

αχ = yχ
R

+ yχ
L

2
, and βχ = yχ

R
− yχ

L

2
, (9)

to obtain compact expressions of the WCs. Here, we assume that the left (yχ
L
) and the right (yχ

R
)

chiral couplings are different. This is necessary to generate the CPV operators, because the WCs 
of these operators are proportional to their difference, as shown in Table 1. It is worthwhile to 
mention that if we consider coloured heavy fermions, the additional operators

{QG,QHG} ∪ {
QG̃,QHG̃

}
(10)

are also generated.
We integrate out the heavy fermions using a framework work based on the functional methods 

developed in Ref. [35] to calculate these WCs at one-loop. As this will be important in the 
following, we emphasise that the QW̃ operator does not arise at one-loop-level, and we have to 
look beyond one-loop matching to generate this operator. In Fig. 2, we show a schematic diagram 
depicting the origin of this particular CPV operator in this model at two-loop, which is also the 
leading order contribution at dimension-six. We note that these processes get contributions from 
other higher dimension operators generated at 1-loop, for example, the φ2X3-class of dimension-
eight operators, after φ acquires vev. The three relevant CPV dimension-eight operators are 
shown in Table 2 along with the matching of their respective WCs. Table 3 shows the ratio of 
their contributions with respect to dimension-six when the Higgs doublet acquires the vev and 
in order to identify the regions where higher orders are suppressed we perform the scan over yχL

and yχR
of Fig. 3. For perturbative couplings of a heavy VLL with mass m � 2.7 TeV, dimension-

six is dominant, while for smaller masses the same applies for certain regions depending on the 
value of Re(yχL

y∗
χR

). It is worth highlighting that when EFT is a valid approach for comparably 
large VLL masses, the validity of the dimension-six approach is set by the perturbativity of 
the couplings alone. This is due to the fact that the dimension-eight operators of Table 2 are 
sensitive to the same coupling combination as the dimension-six matching. In a scenario, where 
one considers contributions from dimension-eight or higher dimensional operators, the dominant 
contributions to the WCs of these processes will be determined by the interplay of the loop 
suppressions versus the cut-off suppression of the dimension-eight or more. We elaborate on 
the contributions of these diagrams to the WCs of QW̃ operator in Appendix A, where we also 
comment on the non-appearance of QW̃ in scalar extensions of the SM.

3. A minimal fit of CP violation

In the light of the previous section, we can now outline the approach to capture a complete 
picture of CP violation at dimension-six level. With Q˜ absent at one-loop matching order in 
W

7
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realistic and perturbative extensions of the SM, CP violation related to electroweak interactions 
can be dissected through a combination of diboson and electroweak Higgs measurements, and in 
particular observed asymmetries of tailored CP-sensitive distributions in these channels [28,29,
36–38]. These observables also have the benefit of being insensitive to CP-even deformations of 
the SM interactions, in particular to “squared” dimension-six CP-odd contributions. This makes 
asymmetries particularly well-suited to pinpoint CP violation, while the CP-even cross section 
and rate information enters the limit setting through statistical uncertainties.

We will outline that possible CP violation introduced via the QHW̃ , and QHB̃ operators can be 
efficiently captured by the differential distribution of sensitive observables in Higgs production 
through Weak Boson Fusion (WBF) channels [23,24,39–44], as well as diboson production [45–
47], predominantly pp → Wγ [9,19].

3.1. WBF analysis

We study the effects of the additional operators in WBF production pp → Hj1j2, concentrat-
ing on Higgs decays to τ leptons only [42,43], due to the challenging nature of H → bb̄ [48–50], 
although additional channels should significantly enhance sensitivity [51]. Our toolchain consists 
of FEYNRULES [52,53] for modelling the BSM operators which produces a UFO [54] model file. 
Through the MADGRAPH [55] framework, the model is imported for event generation using
MADEVENT [55–57]. Events are generated with a Higgs mass of 125 GeV and total decay width 
�H = 4.2 MeV, and we perform our analysis by imposing selection criteria at parton-level.

Large rapidity separation y and back-to-back jets with large invariant-mass are characteris-
tics of the WBF signal topology [58–61], commonly used for discrimination from contributing 
backgrounds. We thus require at least two jets with pT > 25 GeV and invariant mass of the two 
leading jets of mjj > 800 GeV. Additionally, the search region is constrained imposing a cut on 
the absolute rapidity difference |�yjj | > 2.8.

We define the efficiency of identifying the Higgs as the ratio of the SM cross section rates 
of pp → (H → τ τ̄ )j1j2 with tagged taus divided by the rate of pp → Hj1j2 with identical jet 
cuts. Higgs candidates are identified by requiring two τ -tagged leptons with pT (τ) > 40 GeV 
and isolated from each other,2 such that their reconstructed invariant mass is within 10 GeV of 
the Higgs. Taus are identified with an efficiency for purely-hadronic decay of 85% and a branch-
ing ratio BR(τ → hadrons) = 0.65. Our final Higgs identification efficiency was subsequently 
calculated as 1.03% and is used to rescale the event samples of pp → Hj1j2 generated with and 
without the introduction of the additional operators. Finally, the parity-sensitive signed azimuthal 
angle �φj1j2 is calculated for the events satisfying our search requirements.

3.2. Diboson analysis

The analysis of diboson final states of Refs. [9,19] complements the WBF search detailed 
above. In particular, parity-sensitive signed azimuthal angles are constructed from final states of 
Wγ → �νγ , W+W− → �+ν��

−ν̄� and WZ → �ν�+�− processes, modified by the introduction 
of the three CP-violating operators.3

2 We define isolation of the two taus by requiring �R =
√

(�η)2 + (�φ)2 > 0.4, where �η and �φ are the pseudo-
rapidity and azimuthal separations between them.

3 We use the same toolchain as the WBF analysis, unless stated otherwise.
8
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Wγ → �νγ process
The decays of W in the Wγ production to electrons and muons are considered separately with 

different cuts applied following Ref. [62]. Events are generated with zero and one jet, and are 
merged using the MLM scheme through PYTHIA8 [63].4

We use the reconstruction mode of MADANALYSIS [65–68] to interface FASTJET [69,70]
and cluster jets using the anti-kT algorithm [71] of radius 0.4. The search region is constraint 
to events that have a total missing energy /ET > 40, arising from the neutrino of the W boson 
decay. Exactly one isolated electron (muon)5 is required with absolute pseudorapidity |ηe| < 2.5
(|ημ| < 2.4) and transverse momentum pT (e) > 30 GeV (pT (μ) > 26 GeV) and no other lepton 
with pT > 20 GeV. Additionally, at least one isolated photon6 separated from the lepton by 
�R(γ, �) > 0.5 and satisfying |η| < 2.5, pT (γ ) > 25 GeV must be identified. We define a rate 
normalisation factor for electrons and muons as Re,μ = N

e,μ
CMS/N

e,μ
MC, where Ne

CMS = 96000 and 
N

μ
CMS = 164400 are the number of events observed in the signal region by CMS [62] based 

on an integrated luminosity of 137.1/fb, and Ne,μ
MC is the number of events we obtain after the 

aforementioned cuts without the effects of the BSM operators. The signed azimuthal angle in this 
particular process is then defined as �φγ� = φγ − φ� (�φγ� = φ� − φγ ) if the photon’s rapidity 
is greater (less) than the lepton’s. It should be noted that although at LO the �φγ� distribution has 
two distinct and well-separated peaks; additional jet activity significantly distorts this behaviour 
leading to a considerable reduction of sensitivity. This is in line with the absence of the so-called 
radiation zero [72–75] of Wγ production when additional jet emission is considered [76–78]. It 
is therefore beneficial in this particular search to impose an additional veto on jets with pT (j) >
30 GeV to enhance the sensitivity to the BSM couplings [77].

W+W− → �+ν��
−ν̄� process

We include the WW channel in the diboson analysis by considering the eνeμνμ final state as 
in Ref. [79] and subsequently rescaling to include final states for all the light lepton modes 
of the channel. A requirement of ET > 20 GeV is imposed on the missing energy and ex-
actly one electron and one muon must be identified with pT > 10 GeV with no jet activity in 
the cone �R < 0.4. Additional cuts |η(�)| < 2.5 and pT (�) > 27 GeV are then imposed on 
the two leptons. The reconstructed invariant mass and transverse momentum of the dilepton 
constrain the search region via enforcing meμ > 55 GeV and pT (eμ) > 30 GeV, respectively, 
which suppress the Drell-Yan and H → WW background contamination. The rate of the ac-
cepted events is normalised to the fiducial cross section of the channel σfid = 379.1 fb, calculated 
by ATLAS [79]. The observable studied in this case is �φ��, where as in the other channels 
the order that the azimuthal angles are subtracted depends on the rapidity ordering of the lep-
tons.

WZ → �ν�+�− process
The WZ channel is characterised by one same-flavor opposite-charge lepton pair originating 

from the Z boson and an additional lepton. Thus, exactly three leptons should appear in the 
region |η(�)| < 2.5 and pT (�) > 5 GeV without jets within small separation �R < 0.4 for an 

4 Including additional jet emission in diboson production is essential to reflect sensitivity-limiting hard jet emission, 
which impacts, e.g., the radiation zero, see below. Additional jet radiation is a not as relevant for WBF type selections 
where jet emission follows a bremstrahlung paradigm, with little impact on the leading jet correlations themselves [64].

5 Electrons and muons are considered isolated if the sum of transverse momenta of all jets within �R < 0.4 is less 
than 50% of the lepton’s pT .

6 Isolated photons satisfy the same criteria as isolated electrons and muons.
9
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event to be considered. Furthermore, we reconstruct the invariant mass of the candidate pair with 
opposite charges satisfying 61 ≤ m�� ≤ 121 (in GeV) and consider the remaining lepton as the 
one originating from the W boson. The search region is constrained by imposing a cut on the W -
induced lepton pT (�) > 20 GeV. We define the signed azimuthal angle �φ�Z by reconstructing 
the Z boson’s rapidity and azimuthal angle (based on the four-momentum calculated as the sum 
of the dilepton pair 4-momenta). The rate of the process is then normalised to the fiducial cross 
section of this specific search region obtained by CMS, σfid = 258 fb [80].

3.3. Statistical analysis of �φ distributions

For each of the studied processes, the differential distribution for �φij can be obtained, which 
includes linear contributions from the additional operators

dσ(CHW̃B/�2,CHW̃ /�2,CHB̃/�2)

d�φij

= dσSM

d�φij

+ CHW̃B

�2

dσHW̃B

d�φij

+ CHW̃

�2

dσHW̃

d�φij

+ CHB̃

�2

dσHB̃

d�φij

. (11)

Cross sections σHW̃B , σHW̃ and σHB̃ capture the interference effects introduced by the operators 
QHW̃B , QHW̃ and QHB̃ , respectively, but are independent by construction to their respective 
WCs. This allows us to scan various values of the three coefficients and by rescaling linearly 
we obtain different differential distributions of (11). Subsequently, a χ2-statistic is calculated 
as

χ2
(

CHW̃B

�2 ,
CHW̃

�2 ,
CHB̃

�2

)
=

∑
i∈bins

(bi
SM+d6(CHW̃B/�2,CHW̃ /�2,CHB̃/�2) − bi

SM)2

σ 2
i

,

(12)

where bi
SM+d6(CHW̃B/�2, CHW̃ /�2, CHB̃/�2) denotes the number of events in the i-th bin, 

as obtained by multiplying (11) with an integrated luminosity, and bi
SM = bi

SM+d6(0, 0, 0). The 

uncertainties σi =
√

bi
SM are statistical fluctuations. Systematic errors could in principle be in-

troduced via a covariance matrix, however in this particular setting, cancellations between the 
symmetric SM and antisymmetric BSM contributions in the χ2 sum would render them irrele-
vant. Confidence level intervals can be then calculated using

1 − CL ≥
∞∫

χ2

dx pk(x) , χ2 = χ2
(

CHW̃B

�2 ,
CHW̃

�2 ,
CHB̃

�2

)
, (13)

where pk(x) is the χ2 distribution of k degrees of freedom evaluated by subtracting the number 
of fitted WCs from the number of total bins. A scan is performed with the χ2-statistic calcu-
lated at an integrated luminosity of 3/ab, and contours evaluated in the CHW̃B -CHW̃ plane at 
95% confidence level for the WBF process and the combined diboson processes are shown in 
Fig. 4. Contours are calculated by both fixing CHB̃ = 0 and by profiling, where the CHB̃ value 
is determined such that it minimises the χ2 function.
10



S. Das Bakshi, J. Chakrabortty, C. Englert et al. Nuclear Physics B 975 (2022) 115676
Fig. 4. Contours at 95% C.L. for WBF analysis with the Higgs detected through the h → τ−τ+ channel combined with 
di-boson analyses. Bounds are shown with CW̃ fixed at zero and we profiled over CHB̃ .

3.4. Discussion

The result of the diboson-Higgs combination is shown in Fig. 4, for a LHC luminosity of 3/ab 
for different WC choices. As can be seen, these channels serve to constrain the dominant operator 
directions ∼ CW̃ , CHW̃B when CW̃ = 0 is injected into the fit.7 It is worth noting that the CHB̃

direction is difficult to constrain in the production and decay modes that we consider, predomi-
nantly because CHB̃ reflects weaker U(1)Y dynamics. In concrete scenarios, these are typically 
suppressed compared to the CHW̃ direction. Our analysis is not sensitive to the CHB̃ direction 
as can be seen from the profiled contours of Fig. 4, which shows that constraints on the expected 
dominant deviations from the SM can be obtained. Subsidiary measurements that specifically 
target this operator is given by H → γ γ and decay plane investigations of H → ZZ → 4�

which then enhance the sensitivity to a level that constraints can be formulated on all contribut-
ing operators as demonstrated in Ref. [28]. In this sense, the inclusion of more Higgs data will 
further enhance the sensitivity, however, an inclusive picture of the CP-violation can be obtained 
from the combination of Higgs and diboson data. When the results of Fig. 4 are used to in-
form a concrete UV scenario using a matching calculation, the CHW̃ , CHW̃B constraints are 
sufficient to constrain the parameter space as CHB̃ is related through the gauge representation. 
Additional sensitivity to CHB̃ would then reflect the hypercharge assignments which can also be 
obtained from CP-even operator measurements [19]. Since our analysis does not include con-
tributions from dimension-eight, its validity applies only when the higher order deformations 
are suppressed compared to the included dimension-six. Concerns of the sensitivity of concrete 
analyses when phrased as EFT constraints have raised questions concerning the self-consistency 
of EFT approaches, see, e.g., Refs. [84–86] and [87,88]. Coming back to the discussion in Sec. 2
(see also Table 3 and Fig. 3) we can address this potential issue through our dimension-six and 
-eight matching calculation. When interpreted in terms of a heavy VLL, our constraints lie in 

7 This situation is somewhat similar to imposing U = 0 in electroweak oblique corrections constraints [81,82] (see 
e.g. the fit reported in Ref. [83]). While U is not related to a dimension-six operator, CW̃ is two-loop suppressed for the 
scenarios considered in this work. When a perturbative matching is possible, a hierarchy 0 � CW̃ as part of the set of 
Eq. (8) is expected.
11
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the range of values for the WCs where contributions from dimension-six are indeed larger. The 
points of Fig. 3 for m = 1 TeV (such mass scales are outside the LHC coverage, see e.g. [89]) 
result in WCs in the regions |CHB̃ | � 0.4, |CHW̃ | � 0.4 and |CHW̃B | � 0.6.

4. Summary and conclusions

Effective field theory is rapidly (and deservedly) becoming the lingua franca of disseminating 
hadron collider measurements and commenting on these measurements’ agreement or tension 
with the SM expectation. Ultimately, EFT methods should inform concrete scenarios that extend 
the SM towards higher energies. The agnostic approach of the generic dimension-six extension 
of the SM [15] can be misleading in this regard. Concrete scenarios will exhibit hierarchical 
WC structures due to their particle and symmetry content, which need to be included to en-
able a translation of EFT constraints into relevant model parameter regions. This selects regions 
between the fully marginalised constraints and by-hand zero WC choices, which are the two 
customary avenues to report results.

In this work, we approach this problem from a top-down perspective. Using well-motivated, 
yet theoretically broadly defined assumptions about the UV theory, we analyse their effective 
dimension-six interactions via an one-loop matching procedure. We find that the QW̃ is ei-
ther absent, or at least two-loop suppressed for scenarios: Heavy scalar extensions of the SM 
do not generate triple field strength and gauge-Higgs CPV SMEFT dimension-six operators. 
On the other hand, one needs to extend the SM by at least two heavy vector-like fermions to 
generate these operators at two-loop-level. The non-SM CPV Yukawa couplings play a crucial 
role to induce the rank-four Levi-Civita tensor, and thus the dual of the field strength ten-
sors.

The phenomenological consequence of this is that new CP-violating electroweak physics can 
in principle be captured via a combination of Higgs and diboson analyses. The diboson sensitivity 
at the LHC is driven by the large cross section and the relatively clean Wγ channels, which serve 
to predominantly constrain the QHW̃B , which is related to a blind direction of Higgs data. The 
possibility to omit contributions QW̃ is therefore critical and allows to constrain the remaining 
operators at dimension-six, one-loop matched level, i.e. at the theoretical level where the BSM 
modifications are expected to be sizable.
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Appendix A. Q
˜W

operator at two-loop processes

In this section, we discuss the origin of the CPV X3 operators that are absent at the one-
loop matching of different BSMs to SMEFT [90–94]. We have considered the heavy fermion 
extensions of the SM in Sec. 2, and have argued that these CPV operators are generated in the 
process of integrating out, and matching to SMEFT only at two-loop and beyond. We further note 
that these operators cannot be generated by integrating out only heavy scalars (up to two-loop 
at least) due to the lack of presence of γ5 and, therefore, the fourth-ranked antisymmetric tensor 
to form the dual field strength. Thus, CP-violation in the scalar potential cannot be captured 
through these operators. The presence of this operator, certainly, signifies the CP-violation in 
the non-SM Yukawa interactions. In the subsequent discussion, we focus on the specific VLL 
models [19,95–98], and outline the dominant emergence of QW̃ from two-loop processes for the 
first time. Note that in an EFT context, the ‘pinching’ the Higgs propagator in Fig. 5 indicates the 
emergence of the considered operator under RGE flow. While this is a technically challenging 
subject in its own right in EFT discussion, such issues are absent when we consider UV-complete 
scenarios, see also [16].

A.1. Doublet-singlet VLL

We work with a BSM scenario where the SM is extended by one isospin-doublet and two 
isospin-singlet heavy VLL having the following SM gauge quantum number:

�L,R =
(

η

ξ

)
L,R

: (1,2,Y), η′
L,R : (1,1,Y + 1

2
), ξ ′

L,R : (1,1,Y − 1

2
). (A.1)

The relevant part of the BSM Lagrangian involving these heavy leptons is given by [19]

LDS = �̄(iD/� − m�)� + η̄′(iD/η − mη)η
′ + ξ̄ ′(iD/ξ − mξ)ξ

′

−
{
�̄H̃ (Yη

L
PL + Yη

R
PR)η′ + �̄H(Yξ

L
PL + Yξ

R
PR)ξ ′ + h.c.

}
. (A.2)

Here, we dedicate our analysis to demonstrate the emergence of QW̃ (= εIJKW̃ Iν
μ W

Jρ
ν W

Kμ
ρ )

at two-loop level, where W̃ Iν represents the dual of the field strength tensor WIν . The origin of 
μ μ
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Fig. 5. Two-loop diagram generating the SMEFT Warsaw basis QW and QW̃ operators by integrating out heavy Doublet-
Singlet VLL, see Eq. (A.2). Note that only the heavy isospin-doublet lepton couples to the SU(2)L field strength tensors. 
The Yukawa vertices are shown in generic manner in this figure. The ‘a’ and ‘b’ are defined according to the Yukawa 
terms in the Lagrangian.

Fig. 6. Possible configurations of the two-loop diagram contributing to the QW̃ operator. The internal (loop) and external 
momentums are explicitly shown.

QW̃ operator is depicted in Fig. 5. We depict the Yukawa vertices in the two-loop diagram in 
terms of ‘a’ and ‘b’ instead of parameters of any specific model to note down the results in more 
14
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generic form and readily applicable to similar models of different couplings.8 The contribution 
of this two-loop diagram can be captured through the following integral,9

I(p1,p2;mξ ,m�) =
∫

d4k1

(2π)4

d4k2

(2π)4 Tr[
1

/k1 − mξ

(a + bγ5)
1

k2
2 − m2

H

1
/k1 + /k2 − m�

(
σμνW

Iμντ I
)

1
/k1 + /k2 + /p1 − m�

(
σρσ WJρσ τJ

) 1
/k1 + /k2 + /p1 + /p2 − m�(

σαβWKαβτK
) 1

/k1 + /k2 − m�

(a + bγ5)

]
, (A.3)

where, τ is are normalised SU(2) generators (= σ i/2). The momentum configurations are shown 
in Fig. 6. Then, we collect the terms leading to the CPV effective operator QW̃ through two 
following integrals:

I��CP
1 (p1,p2;mξ ,m�) =

∫
d4k1

(2π)4

d4k2

(2π)4 Tr[
1

/k1 − mξ

a
1

k2
2 − m2

H

1
/k1 + /k2 − m�

(
σμνW

Iμντ I
)

1
/k1 + /k2 + /p1 − m�

(
σρσ WJρσ τJ

) 1
/k1 + /k2 + /p1 + /p2 − m�(

σαβWKαβτK
) 1

/k1 + /k2 − m�

bγ5

]
, (A.4)

and,

I��CP
2 (p1,p2;mξ ,m�) =

∫
d4k1

(2π)4

d4k2

(2π)4 Tr[
1

/k1 − mξ

bγ5
1

k2
2 − m2

H

1
/k1 + /k2 − m�

(
σμνW

Iμντ I
)

1
/k1 + /k2 + /p1 − m�

(
σρσ WJρσ τJ

) 1
/k1 + /k2 + /p1 + /p2 − m�(

σαβWKαβτK
) 1

/k1 + /k2 − m�

a

]
. (A.5)

Now, we proceed to solve I��CP
1 further using the identities, σμνγ5 = − i

2εμνρσ σρσ and 
Tr

[
τ I τ J τK

] = i
4εIJK , and we rewrite,

8 We expand the Yukawa vertex and collect the coefficients of 1 and γ5 to determine ‘a’ and ‘b’ respectively. This 
convention is introduced and explained in Eq. (3).

9 Here, we use an identity involving γ5 in (3+1)-dimension to rewrite σμνγ5 in terms of the fourth rank Levi-Civita 
tensor before proceeding to the trace calculation [31–34]. Then, one can continue this integration to the D dimension 
following t’ Hooft-Veltman dimensional regularization method.
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I��CP
1 (p1,p2;mξ ,m�)

= i

4
a b εIJKWIμνWJρσ WKαβ

∫
d4k1

(2π)4

d4k2

(2π)4

1

k2
2 − m2

H

Tr

[
1

/k1 − mξ

1
/k1 + /k2 − m�

σμν

1
/k1 + /k2 + /p1 − m�

σρσ

1
/k1 + /k2 + /p1 + /p2 − m�

σαβγ5
1

−/k1 − /k2 − m�

]
= a b

8
εIJKWIμνWJρσ W̃Kαβ

∫
d4k1

(2π)4

d4k2

(2π)4

1

k2
2 − m2

H

Tr

[
1

/k1 − mξ

1
/k1 + /k2 − m�

σμν

1
/k1 + /k2 + /p1 − m�

σρσ

1
/k1 + /k2 + /p1 + /p2 − m�

σαβ

1

−/k1 − /k2 − m�

]
= −a b

8
εIJKWIμνWJρσ W̃Kαβ

∫
d4k1

(2π)4

d4k2

(2π)4

1

k2
2 − m2

H

Tr

[(
/k1 + mξ

) (
/k1 + /k2 + m�

)
(
k2

1 − m2
ξ

)(
(k1 + k2)

2 − m2
�

)
σμν

(
/k1 + /k1 + /p1 + m�

)
σρσ

(
/k1 + /k2 + /p1 + /p2 + m�

)
σαβ

(
/k1 + /k2 − m�

)]
(
(k1 + k2 + p1)

2 − m2
�

) (
(k1 + k2 + p1 + p2)

2 − m2
�

) (
(k1 + k2)

2 − m2
�

)
(A.6)

⊃ − a b

8
εIJKWIμνWJρσ W̃Kαβ

∫
d4k1

(2π)4

d4k2

(2π)4

1

k2
2 − m2

H

1(
k2

1 − m2
ξ

)(
(k1 + k2)

2 − m2
�

)
(
4 i gσα gβμ gνρ

) [
m3

ξm
3
� − m2

ξ m�k2
1 + m3

�k2
1 + . . .

]
(
(k1 + k2 + p1)

2 − m2
�

) (
(k1 + k2 + p1 + p2)

2 − m2
�

) (
(k1 + k2)

2 − m2
�

)
= − i a b

2
εIJKWIμ

νW
Jν

ρW̃Kρ
μ

∫
d4k1

(2π)4

d4k2

(2π)4

1

k2
2 − m2

H

1(
k2

1 − m2
ξ

)(
(k1 + k2)

2 − m2
�

)
[
m3

ξm
3
� − m2

ξ m�k2
1 + m3

�k2
1 + . . .

]
(
(k1 + k2 + p1)

2 − m2
�

) (
(k1 + k2 + p1 + p2)

2 − m2
�

) (
(k1 + k2)

2 − m2
�

) . (A.7)

Here, instead of computing the full momentum integral, we have highlighted the part that leads 
to the QW̃ operator. We have used Package-X [99] to cross-check our results. We perform similar 

calculations for I��CP
2 ,

I��CP
2 (p1,p2;mξ ,m�)

= i

4
a b εIJKWIμνWJρσ WKαβ

∫
d4k1

(2π)4

d4k2

(2π)4

1

k2
2 − m2

H

Tr

[
1

/
γ5

1
/ /

σμν

k1 − mξ k1 + k2 − m�
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1
/k1 + /k2 + /p1 − m�

σρσ

1
/k1 + /k2 + /p1 + /p2 − m�

σαβ

1
/k1 + /k2 − m�

]
= a b

8
εIJKWIμνWJρσ W̃Kαβ

∫
d4k1

(2π)4

d4k2

(2π)4

1

k2
2 − m2

H

Tr

[
1

/k1 − mξ

1

−/k1 − /k2 − m�

γ5σμν

1
/k1 + /k2 + /p1 − m�

σρσ

1
/k1 + /k2 + /p1 + /p2 − m�

σαβ

1
/k1 + /k2 − m�

]
= −a b

8
εIJKWIμνWJρσ W̃Kαβ

∫
d4k1

(2π)4

d4k2

(2π)4

1

k2
2 − m2

H

Tr

[(
/k1 + mξ

) (
/k1 + /k2 − m�

)
(
k2

1 − m2
ξ

)(
(k1 + k2)

2 − m2
�

)
σμν

(
/k1 + /k1 + /p1 + m�

)
σρσ

(
/k1 + /k2 + /p1 + /p2 + m�

)
σαβ

(
/k1 + /k2 + m�

)]
(
(k1 + k2 + p1)

2 − m2
�

) (
(k1 + k2 + p1 + p2)

2 − m2
�

) (
(k1 + k2)

2 − m2
�

)
(A.8)

⊃ − a b

8
εIJKWIμνWJρσ W̃Kαβ

∫
d4k1

(2π)4

d4k2

(2π)4

1

k2
2 − m2

H

1(
k2

1 − m2
ξ

)(
(k1 + k2)

2 − m2
�

)
(
4 i gσα gβμ gνρ

) [
m3

ξm
3
� + 3m2

ξ m�k2
1 − m3

�k2
1 + . . .

]
(
(k1 + k2 + p1)

2 − m2
�

) (
(k1 + k2 + p1 + p2)

2 − m2
�

) (
(k1 + k2)

2 − m2
�

)
= − i a b

2
εIJKWIμ

νW
Jν

ρW̃Kρ
μ

∫
d4k1

(2π)4

d4k2

(2π)4

1

k2
2 − m2

H

1(
k2

1 − m2
ξ

)(
(k1 + k2)

2 − m2
�

)
[
m3

ξm
3
� + 3m2

ξ m�k2
1 − m3

�k2
1 + . . .

]
(
(k1 + k2 + p1)

2 − m2
�

) (
(k1 + k2 + p1 + p2)

2 − m2
�

) (
(k1 + k2)

2 − m2
�

) . (A.9)

Here, we choose not to show the contribution from the � − η′ two-loop diagram separately as 
� − η′ contribution can be derived by replacing mξ → mη in Eqs. (A.7) and (A.9).

A.2. Doublet-triplet VLL

We present the contribution from the two-loop diagram produced in the particular VLL model 
discussed in Sec. 2. The corresponding two-loop diagram is discussed in Fig. 2, and the momen-
tum configurations are available in Fig. 7. Similar to the earlier case, the relevant loop integral is 
given by

IDT(p1,p2;mχ2
,mχ3

) =
∫

d4k1

(2π)4

d4k2

(2π)4 Tr

[
1

k2 − m2

1
/k1 − mχ

(
σμνW

Iμντ I
)

2 H 3
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Fig. 7. Diagrams showing the momentum configurations for the two-loop diagram in the Doublet-Triplet VLL model.

1
/k1 + /p1 − mχ3

(
σρσ WJρσ τJ

)
1

/k1 + /p1 + /p2 − mχ3

(a + bγ5)
1

/k1 + /k2 + /p1 + /p2 − mχ2

(
σαβWKαβτK

)
1

/k1 + /k2 − mχ2

(a + bγ5)

]
(A.10)

⊃ − i a b εIJKWIμ
νW

Jν
ρW̃Kρ

μ∫
d4k1

(2π)4

d4k2

(2π)4

1

k2
2 − m2

H

1(
k2

1 − m2
χ3

)(
(k1 + p1)

2 − m2
χ3

)
[
m3

χ2
m2

χ3
+ . . .

]
(
(k1 + p1 + p2)

2 − m2
χ3

)(
(k1 + k2 + p1 + p2)

2 − m2
χ2

)(
(k1 + k2)

2 − m2
χ2

) . (A.11)

We perform the derivation similar to the previous subsection and deduce the above equation. 
Unlike the Doublet-Singlet VLL model, in this model the SU(2)L field strength tensor can couple 
to both the leptons in the loop. Therefore, we get a larger number of possible two-loop diagrams 
in this model in comparison to the Doublet-Singlet model, where the field strength tensor couples 
only to the isospin-doublet lepton. Also following similar arguments, one can conclude that the 
CPV triple gluon field strength operator QG̃ (= f ABCG̃Aν

μ G
Bρ
ν G

Cμ
ρ ) is generated in BSMs with 

heavy colored fermions.
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