SUPPLEMENTAL MATERIAL

Table of Contents

	Page
Antidiabetic regimens identified throughout patients' drug history	3-5
Detailed description of sensitivity analyses	6
Figures	
Supplemental Figure 1. Nested case-control design	7
Supplemental Figure 2. Construction of the study cohort in CPRD GOLD, CPRD Aurum and the SAIL	8
Databank Supplemental Figure 3. Nested case-control selection for MACCE outcome in CPRD GOLD, CPRD Aurum	9
and the SAIL Databank	7
Supplemental Figure 4. Nested case-control selection for heart failure outcome in CPRD GOLD, CPRD Aurum	10
and the SAIL Databank	
Supplemental Figure 5. Association between current use of SGLT2 inhibitor and GLP-1 receptor agonist	11-12
regimens compared with other combination regimens and risk of individual components of 3-point major adverse	
cardiac and cerebrovascular events; a) myocardial infarction, b) stroke, c) cardiovascular death	10
Supplemental Figure 6. Association between current use of SGLT2 inhibitor and GLP-1 receptor agonist regimens compared with other combination regimens and risk of 3-point major adverse cardiac and	13
cerebrovascular events, after excluding people with a history of atrial fibrillation	
Supplemental Figure 7. Association between current use of SGLT2 inhibitor and GLP-1 receptor agonist	14
regimens compared with other combination regimens and risk of 3-point major adverse cardiac and	11
cerebrovascular events, after excluding people with CKD stage 3+	
Supplemental Figure 8. Association between current use of SGLT2 inhibitor and GLP-1 receptor agonist	15
regimens compared with other combination regimens and risk of 3-point major adverse cardiac and	
cerebrovascular events and, after excluding regimens containing sulphonylureas	
Supplemental Figure 9. Association between current use of SGLT2 inhibitor and GLP-1 receptor agonist	16
regimens compared with other combination regimens and risk of heart failure, after excluding regimens containing DPP-4 inhibitors	
Supplemental Figure 10. Association between current use of SGLT2 inhibitor and GLP-1 receptor agonist	17
regimens compared with other combination regimens and risk of heart failure, after excluding regimens	17
containing TZDs	
Supplemental Figure 11. Association between current use of SGLT2 inhibitor and GLP-1 receptor agonist	18
regimens compared with other combination regimens and risk of heart failure, after excluding regimens	
containing TZDs or DPP-4 inhibitors	
Supplemental Figure 12. Association between current use of SGLT2 inhibitor and GLP-1 receptor agonist	19
regimens compared with other combination regimens and risk of 3-point major adverse cardiac and cerebrovascular events, with current exposure to ADM regimens defined as prescription + 30 days	
Supplemental Figure 13. Association between current use of SGLT2 inhibitor and GLP-1 receptor agonist	20
regimens compared with other combination regimens and risk of 3-point major adverse cardiac and	20
cerebrovascular events, with current exposure to ADM regimens defined as prescription + 60 days	
Supplemental Figure 14. Association between current use of SGLT2 inhibitor and GLP-1 receptor agonist	21
regimens compared with other combination regimens and risk of 3-point major adverse cardiac and	
cerebrovascular events, when MACCE definition was restricted to events occurring in hospital and ONS	
mortality records	
Supplemental Figure 15. Association between current use of (a.) SGLT2i and combined SGLT2i/GLP-1RA	22
regimens compared with GLP-1RA regimens and (b.) GLP-1RA and combined SGLT2i/GLP-1RA regimens	
compared with SGLT2i regimens and risk of 3-point major adverse cardiac and cerebrovascular events	22
Supplemental Figure 16. Propensity-matched cohort analysis of treatment with SGLT2 inhibitor and GLP-1 receptor agonist regimens compared with other combination regimens and the risk of MACCE	23
Supplemental Figure 17. Propensity-matched cohort analysis of treatment with SGLT2 inhibitor and GLP-1	24
receptor agonist regimens compared with other combination regimens and the risk of heart failure	24
Tables	
Supplemental Table 1. Baseline clinical characteristics and medication use in MACCE cases and matched	25-26
controls without a MACCE	
Supplemental Table 2. Baseline clinical characteristics and medication use in heart failure cases and matched controls without a heart failure event	27-28

Supplemental Table 3. Clinical characteristics and medication use in current users of SGLT2i regimens, GLP-1	29-3
receptor agonist regimens and other combination regimens (CPRD GOLD)	
Supplemental Table 4. Clinical characteristics and medication use in current users of SGLT2i regimens, GLP-1	32-34
receptor agonist regimens and other combination regimens (CPRD Aurum)	
Supplemental Table 5. Clinical characteristics and medication use in current users of SGLT2i regimens, GLP-1	35-37
receptor agonist regimens and other combination regimens (SAIL Databank)	
Supplemental Table 6. Odds ratio (95% CI) for heart failure associated with current use of SGLT2 inhibitor	38
and/or GLP-1 receptor agonist regimens compared with other combination regimens	
Supplemental Table 7. Assessment of unmeasured confounders in the primary and secondary analyses	39

Antidiabetic regimens identified throughout patients' drug history

Combined SGLT2 inhibitor (SGLT2i) and	d GLP-1 receptor agonist (GLP-1RA) regimens
SGLT2i/GLP-1RA	SGLT2i/GLP-1RA/Metformin/DPP-4i/Insulin
SGLT2i/GLP-1RA/Acarbose	SGLT2i/GLP-1RA/Metformin/DPP-4i/Meglitinide
SGLT2i/GLP-1RA/DPP-4i	SGLT2i/GLP-1RA/Metformin/Meglitinide/Insulin
SGLT2i/GLP-1RA/Insulin	SGLT2i/GLP-1RA/Metformin/SU/Acarbose
SGLT2i/GLP-1RA/Metformin	SGLT2i/GLP-1RA/Metformin/SU/DPP-4i
SGLT2i/GLP-1RA/SU	SGLT2i/GLP-1RA/Metformin/SU/Insulin
SGLT2i/GLP-1RA/TZD	SGLT2i/GLP-1RA/Metformin/SU/Meglitinide
SGLT2i/GLP-1RA/Meglitinide	SGLT2i/GLP-1RA/Metformin/SU/TZD
SGLT2i/GLP-1RA/DPP-4i/Insulin	SGLT2i/GLP-1RA/Metformin/TZD/DPP-4i
SGLT2i/GLP-1RA/Metformin/Acarbose	SGLT2i/GLP-1RA/Metformin/TZD/Insulin
SGLT2i/GLP-1RA/Metformin/DPP-4i	SGLT2i/GLP-1RA/Metformin/TZD/Meglitinide
SGLT2i/GLP-1RA/Metformin/Insulin	SGLT2i/GLP-1RA/SU/DPP-4i/Insulin
SGLT2i/GLP-1RA/Metformin/Meglitinide	SGLT2i/GLP-1RA/SU/TZD/DPP-4i
SGLT2i/GLP-1RA/Metformin/SU	SGLT2i/GLP-1RA/TZD/DPP-4i/Insulin
SGLT2i/GLP-1RA/Metformin/TZD	SGLT2i/GLP-1RA/Metformin/Acarbose/Meglitinide
SGLT2i/GLP-1RA/SU/Acarbose	SGLT2i/GLP-1RA/Metformin/DPP-4i/Meglitinide/Insulin
SGLT2i/GLP-1RA/SU/DPP-4i	SGLT2i/GLP-1RA/Metformin/SU/Acarbose/Insulin
SGLT2i/GLP-1RA/SU/Insulin	SGLT2i/GLP-1RA/Metformin/SU/DPP-4i/Acarbose
SGLT2i/GLP-1RA/SU/TZD	SGLT2i/GLP-1RA/Metformin/SU/DPP-4i/Insulin
SGLT2i/GLP-1RA/TZD/Insulin	SGLT2i/GLP-1RA/Metformin/SU/TZD/Acarbose
SGLT2i/GLP-1RA/SU/Meglitinide	SGLT2i/GLP-1RA/Metformin/SU/TZD/DPP-4i
SGLT2i/GLP-1RA/TZD/Meglitinide	SGLT2i/GLP-1RA/Metformin/SU/TZD/Insulin
SGLT2i/GLP-1RA/Metformin/Acarbose/Insulin	SGLT2i/GLP-1RA/Metformin/SU/TZD/Meglitinide
SGLT2i/GLP-1RA/Metformin/DPP-4i/Acarbose	SGLT2i/GLP-1RA/Metformin/SU/DPP-4i/Acarbose/Insulin
GLP-1RA regimen	s without SGLT2i agents
Mono:GLP-1RA	GLP-1RA/DPP-4i/Meglitinide/Insulin
GLP-1RA/Acarbose	GLP-1RA/Metformin/Acarbose/Insulin
GLP-1RA/DPP-4i	GLP-1RA/Metformin/DPP-4i/Acarbose
GLP-1RA/Insulin	GLP-1RA/Metformin/DPP-4i/Insulin
GLP-1RA/Meglitinide	GLP-1RA/Metformin/DPP-4i/Meglitinide
GLP-1RA/Metformin	GLP-1RA/Metformin/Meglitinide/Insulin
GLP-1RA/SU	GLP-1RA/Metformin/SU/Acarbose
GLP-1RA/TZD	GLP-1RA/Metformin/SU/DPP-4i
GLP-1RA/Acarbose/Insulin	GLP-1RA/Metformin/SU/Insulin
	GLP-1RA/Metformin/SU/Meglitinide
GLP-1RA/Acarbose/Meglitinide	GLP-1RA/Metformin/SU/TZD
GLP-1RA/DPP-4i/Insulin	
GLP-1RA/DPP-4i/Meglitinide	GLP-1RA/Metformin/TZD/Acarbose
GLP-1RA/Meglitinide/Insulin	GLP-1RA/Metformin/TZD/DPP-4i
GLP-1RA/Metformin/Acarbose	GLP-1RA/Metformin/TZD/Insulin
GLP-1RA/Metformin/DPP-4i	GLP-1RA/Metformin/TZD/Meglitinide
GLP-1RA/Metformin/Insulin	GLP-1RA/SU/Acarbose/Insulin
GLP-1RA/Metformin/SU	GLP-1RA/SU/DPP-4i/Acarbose
GLP-1RA/Metformin/TZD	GLP-1RA/SU/DPP-4i/Insulin
GLP-1RA/Metformin/Meglitinide	GLP-1RA/SU/DPP-4i/Meglitinide
GLP-1RA/SU/Acarbose	GLP-1RA/SU/Meglitinide/Insulin
GLP-1RA/SU/DPP-4i	GLP-1RA/SU/TZD/DPP-4i
GLP-1RA/SU/Insulin	GLP-1RA/SU/TZD/Insulin
GLP-1RA/SU/Meglitinide	GLP-1RA/SU/TZD/Meglitinide
GLP-1RA/SU/TZD	GLP-1RA/TZD/DPP-4i/Acarbose
GLP-1RA/TZD/Acarbose	GLP-1RA/TZD/DPP-4i/Insulin
GLP-1RA/TZD/DPP-4i	GLP-1RA/TZD/DPP-4i/Meglitinide
GLP-1RA/TZD/Insulin	GLP-1RA/TZD/Meglitinide/Insulin
GLP-1RA/TZD/Meglitinide	GLP-1RA/Metformin/Acarbose/Meglitinide
GLP-1RA/DPP-4i/Acarbose/Meglitinide	GLP-1RA/SU/Acarbose/Meglitinide

GLP-1RA/Metformin/DPP-4i/Acarbose/Insulin	GLP-1RA/Metformin/TZD/DPP-4i/Insulin
GLP-1RA/Metformin/DPP-4i/Meglitinide/Insulin	GLP-1RA/Metformin/TZD/DPP-4i/Meglitinide
GLP-1RA/Metformin/SU/Acarbose/Insulin	GLP-1RA/Metformin/TZD/Meglitinide/Insulin
GLP-1RA/Metformin/SU/DPP-4i/Acarbose	GLP-1RA/SU/DPP-4i/Acarbose/Insulin
GLP-1RA/Metformin/SU/DPP-4i/Insulin	GLP-1RA/TZD/DPP-4i/Meglitinide/Insulin
GLP-1RA/Metformin/SU/DPP-4i/Meglitinide	GLP-1RA/Metformin/Acarbose/Meglitinide/Insulin
GLP-1RA/Metformin/SU/Meglitinide/Insulin	GLP-1RA/Metformin/SU/Acarbose/Meglitinide
GLP-1RA/Metformin/SU/Acarbose	GLP-1RA/Metformin/SU/DPP-4i/Acarbose/Insulin
GLP-1RA/Metformin/SU/TZD/DPP-4i	GLP-1RA/Metformin/SU/TZD/Acarbose/Insulin
GLP-1RA/Metformin/SU/TZD/Insulin	GLP-1RA/Metformin/SU/TZD/DPP-4i/Acarbose
GLP-1RA/Metformin/SU/TZD/Meglitinide	GLP-1RA/Metformin/SU/TZD/DPP-4i/Insulin
GLP-1RA/Metformin/TZD/Acarbose/Insulin	GLP-1RA/Metformin/SU/TZD/Acarbose/Meglitinide
SGLT2i regimens w	rithout GLP-1RA agents
Mono:SGLT2i	SGLT2i/Metformin/TZD/Insulin
SGLT2i/DPP-4i	SGLT2i/SU/DPP-4i/Acarbose
SGLT2i/Meglitinide	SGLT2i/SU/DPP-4i/Insulin
SGLT2i/Metformin	SGLT2i/SU/TZD/DPP-4i
SGLT2i/Insulin	SGLT2i/SU/TZD/Insulin
SGLT2i/SU	SGLT2i/TZD/DPP-4i/Acarbose
SGLT2i/TZD	SGLT2i/TZD/DPP-4i/Insulin
SGLT2i/Acarbose	SGLT2i/Metformin/Acarbose/Meglitinide
SGLT2i/DPP-4i/Acarbose	SGLT2i/Metformin/TZD/Meglitinide
SGLT2i/DPP-4i/Insulin	SGLT2i/SU/Acarbose/Meglitinide
SGLT2i/DPP-4i/Meglitinide	SGLT2i/SU/DPP-4i/Meglitinide
SGLT2i/Meglitinide/Insulin	SGLT2i/SU/Meglitinide/Insulin
SGLT2i/Metformin/Acarbose	SGLT2i/SU/TZD/Acarbose
SGLT2i/Metformin/DPP-4i	SGLT2i/SU/TZD/Meglitinide
SGLT2i/Metformin/Meglitinide	SGLT2i/TZD/Acarbose/Meglitinide
SGLT2i/Metformin/Insulin	SGLT2i/TZD/Meglitinide/Insulin
SGLT2i/Metformin/SU	SGLT2i/Metformin/DPP-4i/Meglitinide/Insulin
SGLT2i/Metformin/TZD	SGLT2i/Metformin/SU/Acarbose/Insulin
SGLT2i/SU/Acarbose	SGLT2i/Metformin/SU/DPP-4i/Acarbose
SGLT2i/SU/DPP-4i	SGLT2i/Metformin/SU/DPP-4i/Insulin
SGLT2i/SU/Insulin	SGLT2i/Metformin/SU/TZD/Acarbose
SGLT2i/SU/TZD	SGLT2i/Metformin/SU/TZD/DPP-4i
SGLT2i/TZD/DPP-4i	SGLT2i/Metformin/SU/TZD/Insulin
SGLT2i/TZD/Insulin	SGLT2i/Metformin/TZD/DPP-4i/Meglitinide
SGLT2i/Acarbose/Meglitinide	SGLT2i/Metformin/TZD/DPP-4i/Insulin
SGLT2i/SU/Meglitinide	SGLT2i/Metformin/Acarbose/Meglitinide/Insulin
SGLT2i/TZD/Acarbose	SGLT2i/Metformin/SU/Acarbose/Meglitinide
SGLT2i/TZD/Meglitinide	SGLT2i/Metformin/SU/DPP-4i/Meglitinide
SGLT2i/Metformin/Acarbose/Insulin	SGLT2i/Metformin/SU/Meglitinide/Insulin
SGLT2i/Metformin/DPP-4i/Acarbose	SGLT2i/Metformin/SU/TZD/Meglitinide
SGLT2i/Metformin/DPP-4i/Insulin	SGLT2i/Metformin/TZD/Acarbose/Meglitinide
SGLT2i/Metformin/DPP-4i/Meglitinide	SGLT2i/Metformin/TZD/Meglitinide/Insulin
SGLT2i/Metformin/Meglitinide/Insulin	SGLT2i/SU/Acarbose/Meglitinide/Insulin
SGLT2i/Metformin/SU/Acarbose	SGLT2i/SU/TZD/Acarbose/Meglitinide
SGLT2i/Metformin/SU/DPP-4i	SGLT2i/Metformin/SU/DPP-4i/Acarbose/Insulin
SGLT2i/Metformin/SU/Meglitinide	SGLT2i/Metformin/SU/TZD/DPP-4i/Insulin
SGLT2i/Metformin/SU/Insulin	SGLT2i/Metformin/SU/Acarbose/Meglitinide/Insulin
SGLT2i/Metformin/SU/TZD	SGLT2i/Metformin/SU/TZD/DPP-4i/Acarbose
SGLT2i/Metformin/TZD/Acarbose	SGLT2i/Metformin/SU/TZD/Acarbose/Meglitinide
SGLT2i/Metformin/TZD/DPP-4i	
	luding GLP-1RA and SGLT2i agents
Acarbose/Insulin	DPP-4i/Insulin
Acarbose/Meglitinide	DPP-4i/Meglitinide
DPP-4i/Acarbose	Meglitinide/Insulin

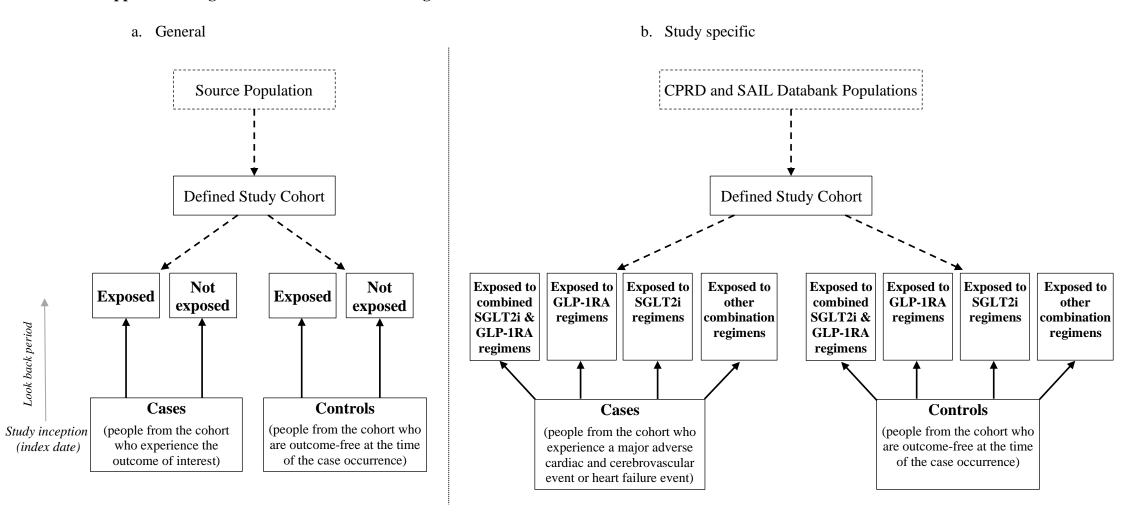
Matternation / A coult one	Mathematica/DDD 4:/A contract/frantic					
Metformin/Acarbose	Metformin/DPP-4i/Acarbose/Insulin					
Metformin/DPP-4i	Metformin/DPP-4i/Acarbose/Meglitinide					
Metformin/Insulin	Metformin/DPP-4i/Meglitinide/Insulin					
Metformin/Meglitinide	Metformin/SU/Acarbose/Insulin					
Metformin/SU	Metformin/SU/Acarbose/Meglitinide					
Metformin/TZD	Metformin/SU/DPP-4i/Acarbose					
SU/Acarbose	Metformin/SU/DPP-4i/Insulin					
SU/DPP-4i	Metformin/SU/DPP-4i/Meglitinide					
SU/Insulin	Metformin/SU/Meglitinide/Insulin					
SU/Meglitinide	Metformin/SU/TZD/Acarbose					
SU/TZD	Metformin/SU/TZD/DPP-4i					
TZD/Acarbose	Metformin/SU/TZD/Insulin					
TZD/DPP-4i	Metformin/SU/TZD/Meglitinide					
TZD/Insulin	Metformin/TZD/Acarbose/Insulin					
TZD/Meglitinide	Metformin/TZD/Acarbose/Meglitinide					
DPP-4i/Acarbose/Insulin	Metformin/TZD/DPP-4i/Acarbose					
DPP-4i/Acarbose/Meglitinide	Metformin/TZD/DPP-4i/Insulin					
DPP-4i/Meglitinide/Insulin	Metformin/TZD/DPP-4i/Meglitinide					
Acarbose/Meglitinide/Insulin	Metformin/TZD/Meglitinide/Insulin					
Metformin/Acarbose/Insulin	SU/DPP-4i/Acarbose/Insulin					
Metformin/Acarbose/Meglitinide	SU/DPP-4i/Meglitinide/Insulin					
Metformin/DPP-4i/Acarbose	SU/TZD/Acarbose/Insulin					
Metformin/DPP-4i/Insulin	SU/TZD/Acarbose/Meglitinide					
Metformin/DPP-4i/Meglitinide	SU/TZD/DPP-4i/Acarbose					
Metformin/Meglitinide/Insulin	SU/TZD/DPP-4i/Insulin					
Metformin/SU/Acarbose	SU/TZD/DPP-4i/Meglitinide					
Metformin/SU/DPP-4i	SU/TZD/Meglitinide/Insulin					
Metformin/SU/Insulin						
	TZD/Acarbose/Meglitinide/Insulin					
Metformin/SU/Meglitinide	TZD/DPP-4i/Meglitinide/Insulin					
Metformin/SU/TZD	SU/DPP-4i/Acarbose/Meglitinide					
Metformin/TZD/Acarbose	SU/Acarbose/Meglitinide/Insulin					
Metformin/TZD/DPP-4i	Metformin/DPP-4i/Acarbose/Meglitinide/Insulin					
Metformin/TZD/Insulin	Metformin/SU/Acarbose/Meglitinide/Insulin					
Metformin/TZD/Meglitinide	Metformin/SU/DPP-4i/Acarbose/Insulin					
SU/DPP-4i/Acarbose	Metformin/SU/DPP-4i/Acarbose/Meglitinide					
SU/DPP-4i/Insulin	Metformin/SU/TZD/Acarbose/Insulin					
SU/DPP-4i/Meglitinide	Metformin/SU/TZD/Meglitinide/Insulin					
SU/Acarbose/Insulin	Metformin/SU/TZD/DPP-4i/Acarbose					
SU/Acarbose/Meglitinide	Metformin/SU/TZD/DPP-4i/Insulin					
SU/Meglitinide/Insulin	Metformin/SU/TZD/DPP-4i/Meglitinide					
SU/TZD/Acarbose	Metformin/SU/TZD/Meglitinide/Insulin					
SU/TZD/DPP-4i	Metformin/TZD/Acarbose/Meglitinide/Insulin					
SU/TZD/Insulin	Metformin/TZD/DPP-4i/Acarbose/Insulin					
SU/TZD/Meglitinide	Metformin/TZD/DPP-4i/Acarbose/Meglitinide					
TZD/DPP-4i/Acarbose	Metformin/TZD/DPP-4i/Meglitinide/Insulin					
TZD/DPP-4i/Insulin	SU/TZD/Acarbose/Meglitinide/Insulin					
TZD/DPP-4i/Meglitinide	SU/TZD/DPP-4i/Acarbose/Insulin					
TZD/Acarbose/Insulin	Metformin/SU/DPP-4i/Acarbose/Meglitinide					
TZD/Acarbose/Meglitinide	Metformin/SU/TZD/DPP-4i/Acarbose/Insulin					
TZD/Meglitinide/Insulin	Metformin/SU/TZD/Acarbose/Meglitinide/Insulin					
Metformin/Acarbose/Meglitinide/Insulin	Metformin/TZD/DPP-4i/Acarbose/Meglitinide/Insulin					
Other monotherapy regimens						
Mono:Metforminformin	Mono:Meglitinide					
	Mono:DPP-4i					
Mono:SU Mono:TZD						
	Mono:Insulin					
Mono:Acarbose						

The most commonly used combination regimens were metformin/sulphonylurea, metformin/DPP-4i, sulphonylurea/DPP-4i and metformin/sulphonylurea/DPP-4i.

Detailed description of sensitivity analyses

To assess the robustness of our results, we conducted several sensitivity analyses. First, we assessed how robust our observed associations were to potential unmeasured confounding using the E-value measure. The E-value is defined as the minimum strength of association on the risk ratio scale that an unmeasured confounder would need to have with both the treatment and the outcome to fully explain away a specific treatment-outcome association, conditional on the measured covariates. A large E-value implies considerable unmeasured confounding would be needed to explain away an effect estimate. A small E-value implies little unmeasured confounding would be needed to explain away an effect estimate. Second, we repeated our primary analysis determining the association between MACCE and antidiabetic regimen exposure in those without cardiovascular disease (defined as non-fatal myocardial infarction, acute coronary syndrome, stroke, transient ischaemic attack, unstable angina, heart failure and revascularisation) additionally excluding those with atrial fibrillation. Third, as SGLT2 inhibitors canagliflozin and dapagliflozin are not recommended in people with moderate to severe renal impairment (eGFR <60ml/min/1.73m²), we excluded people with CKD stage 3+ from the primary analysis. Fourth, since sulphonylureas have previously been associated with a higher risk of MACCE, and thiazolidinediones (TZDs) and some DPP-4 inhibitors with higher risks of heart failure, we repeated the MACCE analysis excluding people with antidiabetic regimens containing sulphonylureas and the heart failure analysis excluding people with antidiabetic regimens containing TZDs and/or DPP-4 inhibitor agents. This involved censoring individuals from the source population upon a prescription for sulphonylureas, TZDs and DPP-4 inhibitors. Cases and controls were identified from those with a censor date beyond the index date. Fifth, we varied our definition of current exposure to antidiabetic regimens using grace periods of 30 and 60 days. Sixth, we restricted our MACCE outcome definition to events occurring in hospital or ONS mortality records. Seventh, we directly compared the association between MACCE and exposure to: (a.) GLP-1RA and combined GLP-1RA/SGLT2i regimens with SGLT2i regimens and (b.) SGLT2i and combined GLP-1RA/SGLT2i regimens with GLP-1RA regimens. Finally, our nested case-control analyses were supplemented by propensity-matched cohort analyses examining the risk of MACCE and heart failure associated with SGLT2i regimens and GLP-1RA regimens compared with other combination regimens. Due to the low prevalence of the SGLT2i/GLP-1RA regimen and outcome events, it was not feasible to analyse this regimen in the propensitymatched analysis.

In the propensity-matched cohort analyses, we identified the antidiabetic regimen which triggered entry into the cohort; defined as SGLT2i regimens, GLP-1RA regimens, SGLT2i/GLP-1RA regimens, other combination regimen and other monotherapy regimens. We then estimated the probability of treatment with each antidiabetic regimen using a multinomial logistic regression model with the antidiabetic regimens as the dependent variable and independent variables consisting of baseline patient characteristics; age, gender, region, Index of Multiple Deprivation (English IMD 2015 and Welsh IMD 2014), ethnicity, duration of type 2 diabetes, duration of treated diabetes, history of smoking, current smoker at cohort entry, history of renal disease, microvascular disease (nephropathy, retinopathy, neuropathy), cardiovascular disease, atrial fibrillation, COPD, dementia, liver disease, cancer, depression, bipolar disorder, schizophrenia, mean value over patient history and closest value in the year prior to cohort entry of biological variables (HbA1c, BMI, systolic and diastolic blood pressure, total cholesterol, creatinine, GFR) and binary variables indicating prescriptions for the following drugs in the year prior to cohort entry and count of the number of prescriptions in the year prior to cohort entry; antidiabetic medications (metformin, sulphonylurea, TZD, acarbose, meglitinides, GLP-1RA, DPP-4 inhibitors, SGLT2i), antihypertensive agents (ACE inhibitors, angiotensin II receptor blockers, beta blockers, calcium-channel blockers, diuretics, other), lipid-lowering agents (statins, fibrates, ezetimibe, other), antiplatelet agents (aspirin, clopidogrel, other), NSAIDs, steroids, anticoagulants, antipsychotics, antiosteoporotic agents. We used the missing indicator method for missing data in the biological variables, replacing missing values with a constant value and including a binary missing indicator variable in the model.


We then matched patients who were treated with SGLT2i and GLP-1RA regimens with patients who were treated with other combinations, but had similar model-based probabilities of being treated (maximum propensity score caliper \pm 0.01).

Patients were then followed until the endpoint (primary endpoint, MACCE; secondary endpoint, heart failure), death, transfer out of practice, or study end (31 November 2018); whichever occurred first. Cox Proportional Hazard models estimated the risk of the endpoints associated with the antidiabetic regimens. Estimates from each database (CPRD GOLD, CPRD Aurum, SAIL Databank) were meta-analysed using DerSimonian and Laird random-effects models.

Reference

1. VanderWeele TJ, Ding P. Sensitivity Analysis in Observational Research: Introducing the E-Value. Ann Intern Med 2017;167(4):268.

Supplemental Figure 1. Nested case-control design

A nested case-control study is a case-control study "nested" within a cohort. In the first instance, a study cohort is defined from which cases and controls will be drawn. Cases are those from the defined cohort who develop the outcome of interest at a given point in time. Cases are matched to a random subset of people from the defined cohort who have not experienced the outcome of interest at that time. Controls are matched on potential confounders, along with a time element. This may include age, date of entry into the cohort, length of time in the cohort, or a combination of these. The controls may develop the outcome later and become a case themselves, and they may also act as a control for other cases.

In a specified look back window, the exposure status of cases and controls preceding the index date is identified, and the analysis establishes if an association between exposure and outcome exists.

Supplemental Figure 2. Construction of the study cohort in CPRD GOLD, CPRD **Aurum and the SAIL Databank**

Source Population

First-ever prescription for non-insulin antidiabetic medication (ADM) between January 1998 and July 2018

(diagnostic codes for type 2 diabetes may occur prior to or after the 1st prescription)

Exclusion (Days $[-\infty, 0]$)

Prior use of insulin

GOLD: n=8,700 Aurum: n=31,452 SAIL: n=11,629

Women with polycystic ovarian syndrome GOLD: n=6,023 Aurum: n=26,352 SAIL: n=7,872

Exclusion (Days [-365, -1])

<1 year at GP practice GOLD: n=3,995 Aurum: n=17,896 SAIL: n=4,626

Exclusion (Days [-365, 0])

Women with gestational diabetes

GOLD: n=1.177 Aurum: n=5,902 SAIL: n=1,072

Exclusion (Days [0,0])

Age < 18 GOLD: n=583 Aurum: n=2,369 **SAIL:** n=715

> **Study Cohort Entry** Initiation of new class of antidiabetic after SGLT2 inhibitor drugs entered the UK market (12/11/2012)

Exclusion

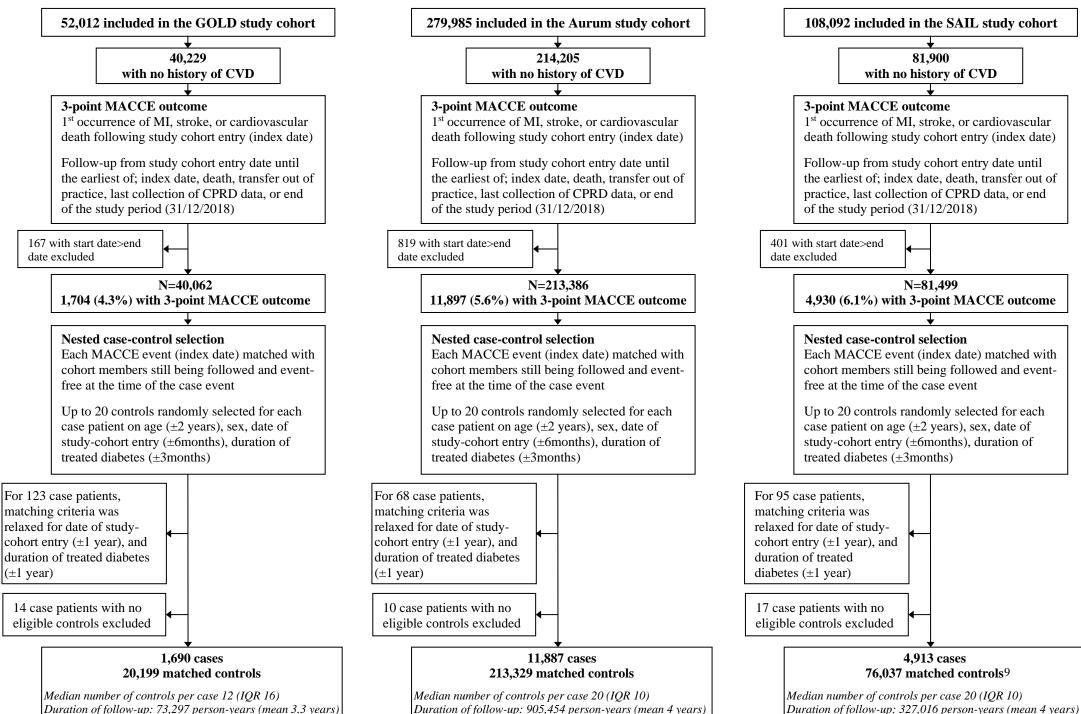
No antidiabetic prescriptions, no switching or addition of antidiabetics after 12/11/2012

GOLD: n=38,282 Aurum: n=115.854 SAIL: n=42.359

Exclusion (Days $[-\infty, -1]$)

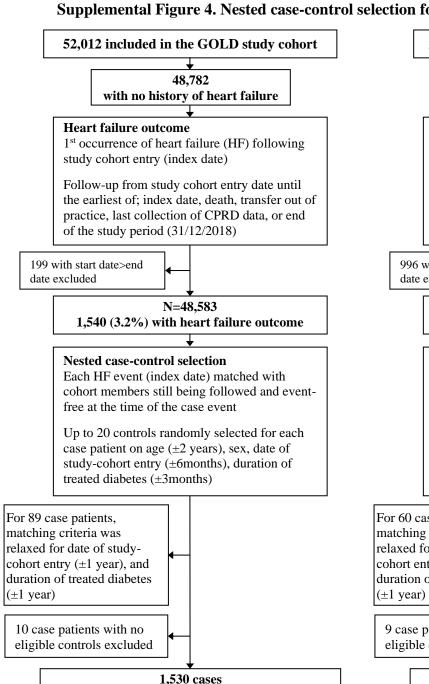
Died or transferred out of practice

GOLD: n=53,292 Aurum: n= 117,258 SAIL: n=47,950


History of HIV or antiretroviral therapy **GOLD:** n=65 Aurum: n= 444 SAIL: n=63

Study Cohort

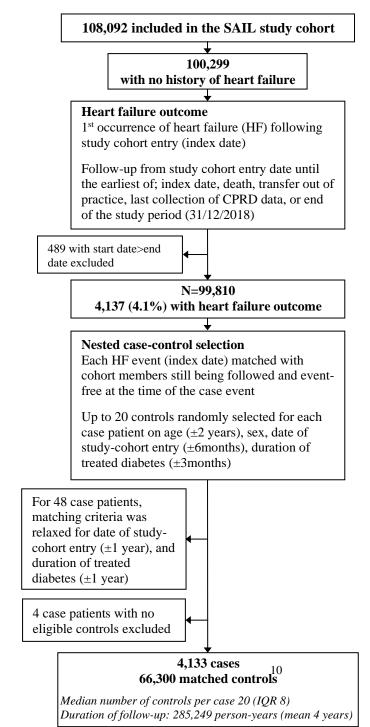
GOLD: N=52,012 Aurum: N=279,985 SAIL: N=108,092


Cohort entry date=date of first ADM prescription, switch or addition of new ADM class following market entry date of SGLT2 inhibitor-based drugs (12/11/2012)

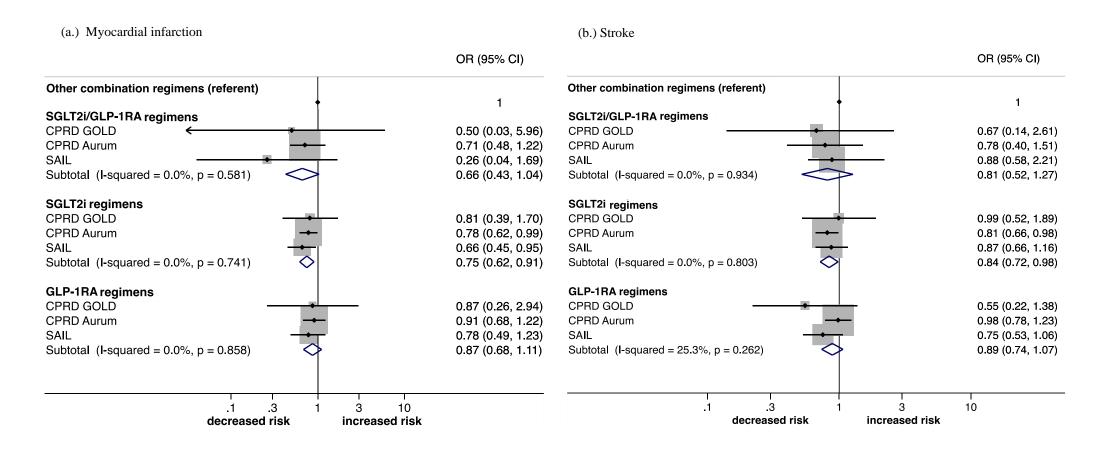
Supplemental Figure 3. Nested case-control selection for MACCE outcome in CPRD GOLD, CPRD Aurum and the SAIL Databank

108,092 included in the SAIL study cohort 81,900 with no history of CVD 3-point MACCE outcome 1st occurrence of MI. stroke, or cardiovascular death following study cohort entry (index date) Follow-up from study cohort entry date until the earliest of; index date, death, transfer out of practice, last collection of CPRD data, or end of the study period (31/12/2018)401 with start date>end N=81,499 4,930 (6.1%) with 3-point MACCE outcome **Nested case-control selection** Each MACCE event (index date) matched with cohort members still being followed and eventfree at the time of the case event Up to 20 controls randomly selected for each case patient on age (±2 years), sex, date of study-cohort entry (±6months), duration of treated diabetes (±3months) relaxed for date of studycohort entry (±1 year), and 17 case patients with no eligible controls excluded **4,913** cases

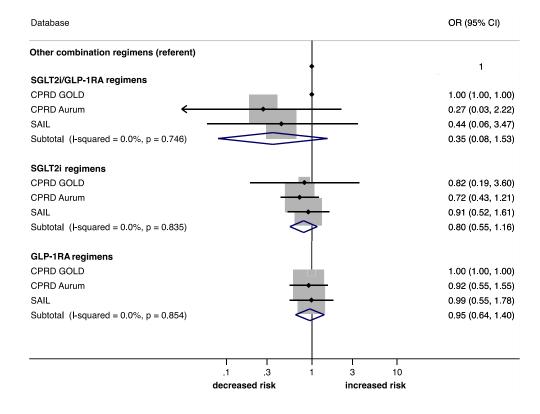
Supplemental Figure 4. Nested case-control selection for heart failure outcome in CPRD GOLD, CPRD Aurum and the SAIL Databank

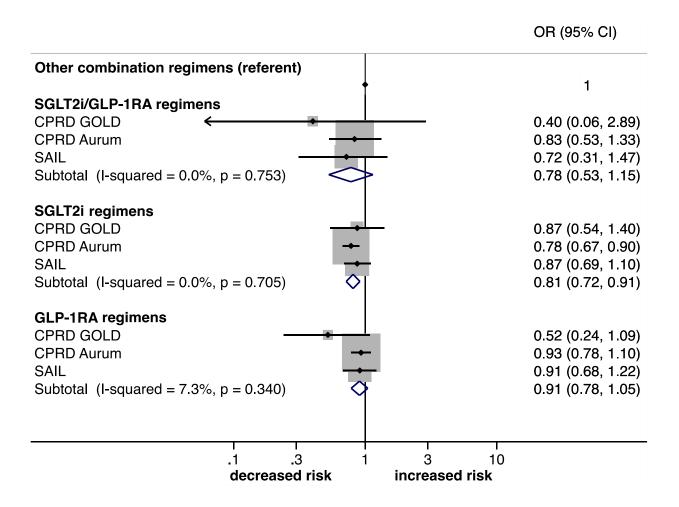

18.419 matched controls

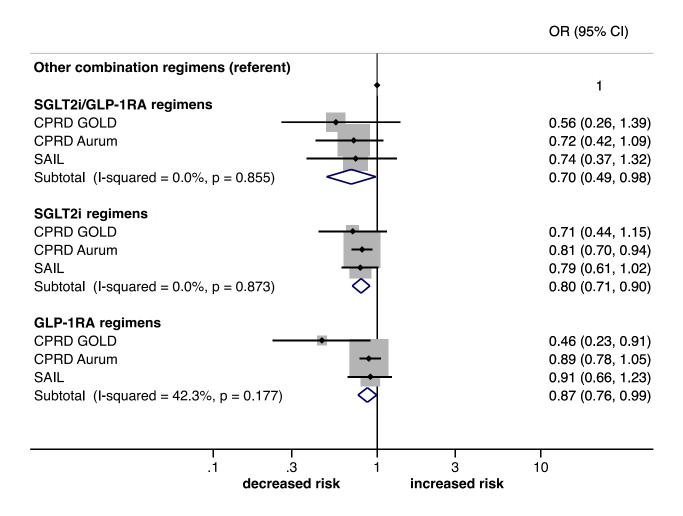
Duration of follow-up: 66,086 person-years (mean 3.3 years)

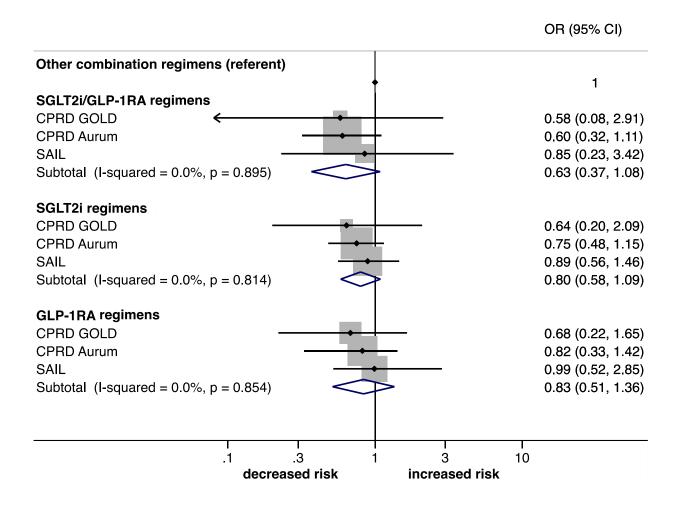

Median number of controls per case 12 (IOR 15)

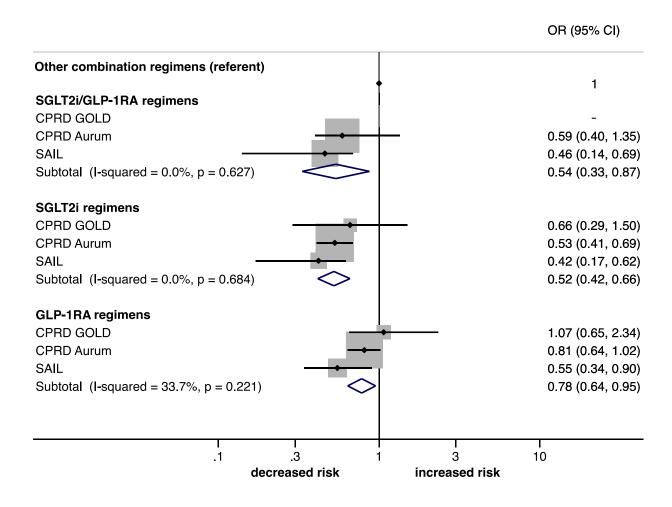
279,985 included in the Aurum study cohort 262,125 with no history of heart failure Heart failure outcome 1st occurrence of heart failure (HF) following study cohort entry (index date) Follow-up from study cohort entry date until the earliest of: index date, death, transfer out of practice, last collection of CPRD data, or end of the study period (31/12/2018) 996 with start date>end date excluded N=216,129 11,774 (4.5%) with heart failure outcome Nested case-control selection Each HF event (index date) matched with cohort members still being followed and eventfree at the time of the case event Up to 20 controls randomly selected for each case patient on age (±2 years), sex, date of study-cohort entry (±6months), duration of treated diabetes (±3months) For 60 case patients, matching criteria was relaxed for date of studycohort entry (±1 year), and duration of treated diabetes 9 case patients with no eligible controls excluded 11.765 cases 216.354 matched controls Median number of controls per case 20 (IOR 10)

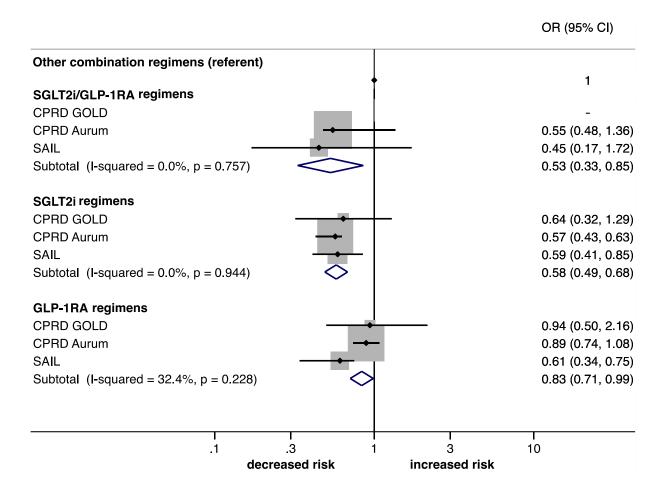

Duration of follow-up: 913,381person-years (mean 4 years)

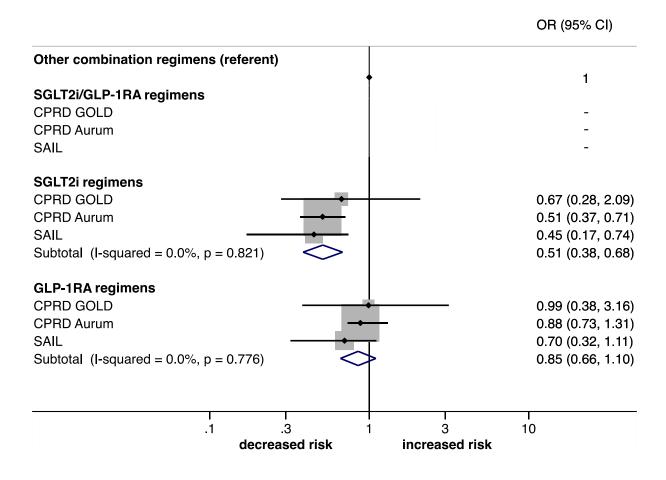

Supplemental Figure 5. Association between current use of SGLT2 inhibitor and GLP-1 receptor agonist regimens compared with other combination regimens and risk of individual components of 3-point major adverse cardiac and cerebrovascular events: a) myocardial infarction, b) stroke, c) cardiovascular death

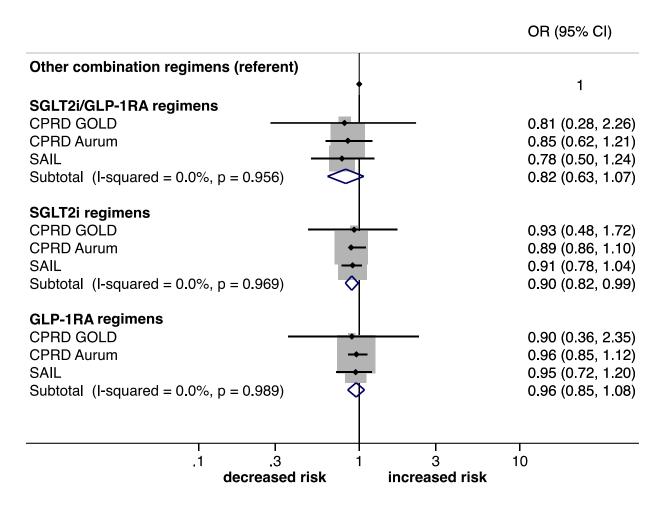

(c.) Cardiovascular death

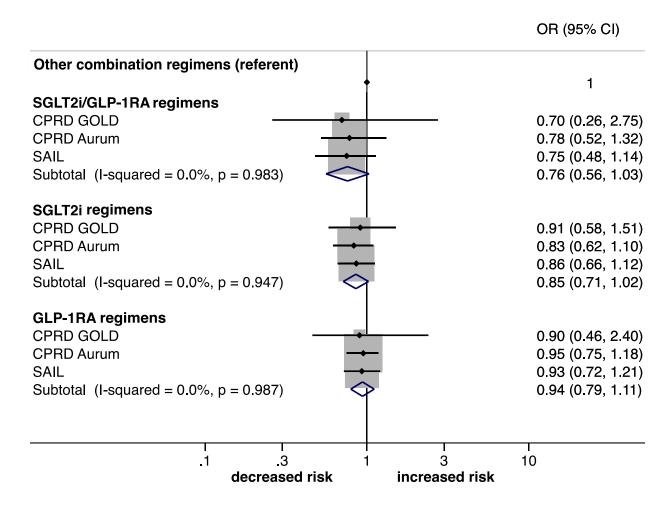

Supplemental Figure 6. Association between current use of SGLT2 inhibitor and GLP-1 receptor agonist regimens compared with other combination regimens and risk of 3-point major adverse cardiac and cerebrovascular events, after excluding people with a history of atrial fibrillation

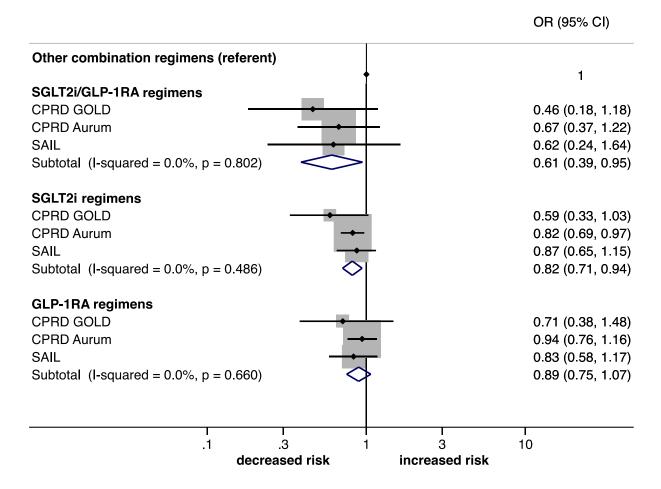

Supplemental Figure 7. Association between current use of SGLT2 inhibitor and GLP-1 receptor agonist regimens compared with other combination regimens and risk of 3-point major adverse cardiac and cerebrovascular events, after excluding people with CKD stage 3+

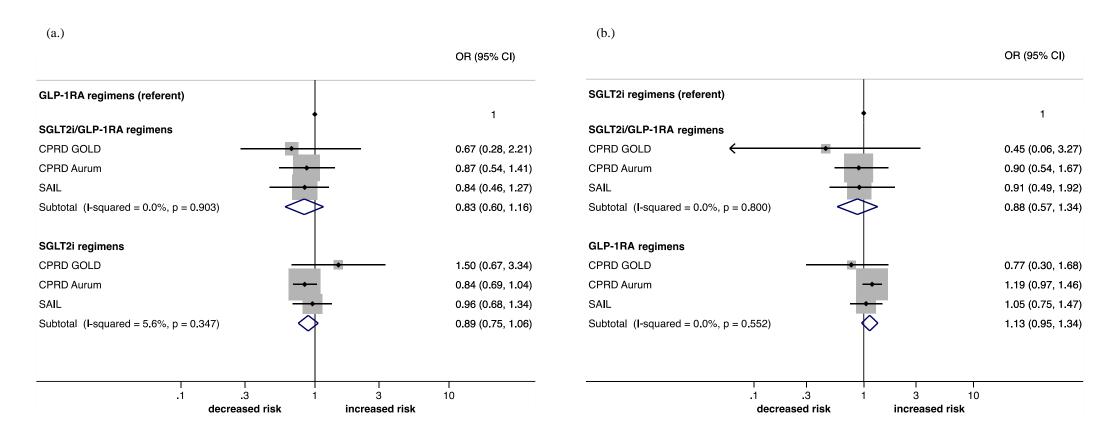

Supplemental Figure 8. Association between current use of SGLT2 inhibitor and GLP-1 receptor agonist regimens compared with other combination regimens and risk of 3-point major adverse cardiac and cerebrovascular events, after excluding regimens containing sulphonylureas

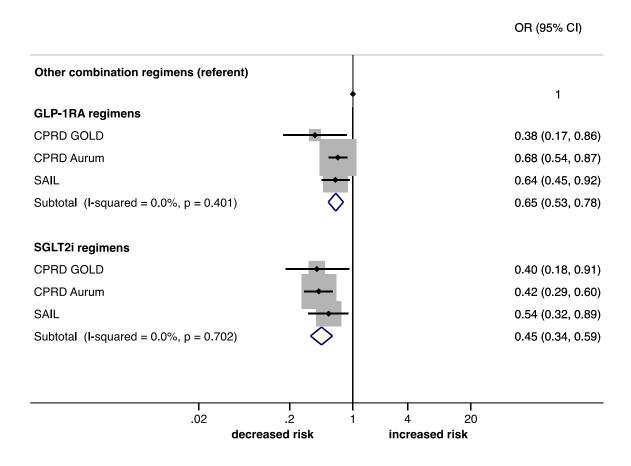

Supplemental Figure 9. Association between current use of SGLT2 inhibitor and GLP-1 receptor agonist regimens compared with other combination regimens and risk of heart failure, after excluding regimens containing DPP-4 inhibitors

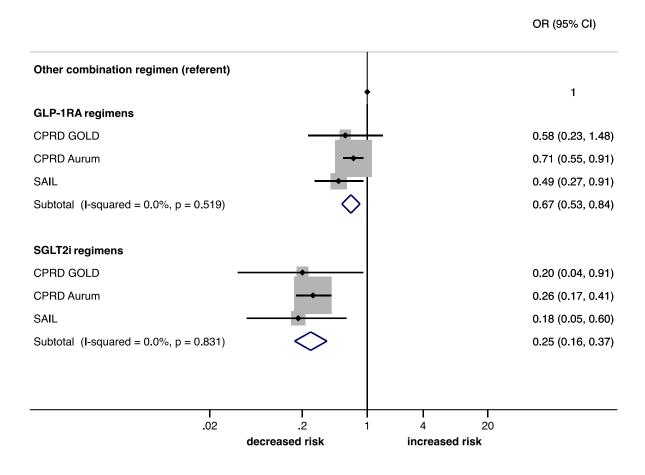

Supplemental Figure 10. Association between current use of SGLT2 inhibitor and GLP-1 receptor agonist regimens compared with other combination regimens and risk of heart failure, after excluding regimens containing TZDs


Supplemental Figure 11. Association between current use of SGLT2 inhibitor and GLP-1 receptor agonist regimens compared with other combination regimens and risk of heart failure, after excluding regimens containing TZDs or DPP-4 inhibitors


Supplemental Figure 12. Association between current use of SGLT2 inhibitor and GLP-1 receptor agonist regimens compared with other combination regimens and risk of 3-point major adverse cardiac and cerebrovascular events, with current exposure to ADM regimens defined as prescription + 30 days


Supplemental Figure 13. Association between current use of SGLT2 inhibitor and GLP-1 receptor agonist regimens compared with other combination regimens and risk of 3-point major adverse cardiac and cerebrovascular events, with current exposure to ADM regimens defined as prescription +60 days


Supplemental Figure 14. Association between current use of SGLT2 inhibitor and GLP-1 receptor agonist regimens compared with other combination regimens and risk of 3-point major adverse cardiac and cerebrovascular events, when MACCE definition was restricted to events occurring in hospital and ONS mortality records


Supplemental Figure 15. Association between current use of (a.) SGLT2i and combined SGLT2i/GLP-1RA regimens compared with GLP-1RA regimens and (b.) GLP-1RA and combined SGLT2i/GLP-1RA regimens compared with SGLT2i regimens and risk of 3-point major adverse cardiac and cerebrovascular events

Supplemental Figure 16. Propensity-matched cohort analysis of treatment with SGLT2 inhibitor and GLP-1 receptor agonist regimens compared with other combination regimens and the risk of MACCE

Supplemental Figure 17. Propensity-matched cohort analysis of treatment with SGLT2 inhibitor and GLP-1 receptor agonist regimens compared with other combination regimens and the risk of heart failure

Supplemental Table 1. Baseline clinical characteristics and medication use in MACCE cases and matched controls without a MACCE

	CPRI	O GOLD	CPRD Aurum		SAIL	SAIL Databank	
	Cases	Controls	Cases	Controls	Cases	Controls	
N	1,690	20,199	11,887	213,329	4,913	76,037	
Sex, male	994 (58.8)	12,243 (60.6)	6,809 (57.3)	123,817 (58.0)	2,837 (57.7)	46,029 (60.5)	
Age, years	69.3±12.3	67.2±11.8	69.4±12.6	68.2±11.9	68.1±12.2	66.4±11.4	
Ethnicity							
White	1,450 (85.8)	15,489 (76.7)	9,889 (83.2)	164,684 (77.2)	1,151 (23.4)	17,788 (23.4)	
South Asian	101 (6.0)	1,340 (6.6)	962 (8.1)	17,577 (8.2)	54 (1.1)	1,087 (1.4)	
Black	40 (2.4)	626 (3.1)	408 (3.4)	8,808 (4.1)	7 (0.1)	197 (0.3)	
Other	19 (1.1)	305 (1.5)	112 (0.9)	2,148 (1.0)	15 (0.3)	298 (0.4)	
Unknown	80 (4.7)	2,439 (12.1)	516 (4.3)	20,112 (9.4)	3,686 (75.0)	56,667 (74.5)	
Index of Multiple Deprivation	` /						
1 (least deprived quintile)	339 (20.1)	4,507 (22.3)	2,222 (18.7)	42,923 (20.1)	708 (14.4)	12,996 (17.1)	
2	296 (17.5)	3,877 (19.2)	2,263 (19.0)	44,028 (20.6)	876 (17.8)	13,295 (17.5)	
3	347 (20.5)	4,197 (20.8)	2,342 (19.7)	43,633 (20.5)	944 (19.2)	15,770 (20.7)	
4	376 (22.3)	4,178 (20.7)	2,457 (20.7)	42,191 (19.8)	1,094 (22.3)	15,851 (20.9)	
5 (most deprived quintile)	332 (19.6)	3,435 (17.0)	2,595 (21.8)	40,412 (18.9)	1,256 (25.6)	17,367 (22.8)	
Unknown	Ò	5 (<0.1)	8 (0.1)	141 (0.1)	35 (0.7)	758 (1.0)	
Duration of treated diabetes , years	4.2±4.9	2.9±3.7	4.3±5.0	3.6±4.6	6.7±5.4	5.4±4.8	
BMI , kg/m ²	31.5±7.3	31.4±6.5	30.5±6.6	30.9±6.3	31.8±6.9	31.9±6.6	
HbA1c, % [mmol/mol]	8.7±1.9	8.4±1.8	8.6±1.9	8.3±1.8	8.9±2.0	8.7±1.8	
., ., ., <u>.</u>	[72±21]	[68±20]	[70±21]	[67±20]	[74±22]	[71±20]	
Hypertension, >140/80mmHg	420 (24.9)	5,515 (27.3)	2,991 (25.2)	50,249 (23.6)	1,189 (24.2)	18,362 (24.2)	
Smoking status	ì	, , ,				, , ,	
Smoker (current/ex-smoker)	933 (55.2)	10,069 (49.9)	6,472 (54.5)	106,913 (50.1)	2,713 (55.2)	39,128 (51.5)	
Never	695 (41.1)	9,243 (45.8)	4,984 (41.9)	100,094 (46.9)	1,964 (40.0)	33,423 (44.0)	
Unknown	62 (3.7)	887 (4.4)	431 (3.6)	6,322 (3.0)	236 (4.8)	3,486 (4.6)	
Microvascular complications	ì	, ,	` /		, ,	, , ,	
Retinopathy	389 (23.0)	2,885 (14.3)	4,041 (34.0)	61,575 (28.9)	1,658 (33.8)	18,828 (24.8)	
Peripheral neuropathy	160 (9.5)	1,116 (5.5)	1,286 (10.8)	15,391 (7.2)	486 (9.9)	4,649 (6.1)	
Nephropathy/CKD≥stage 3	382 (22.6)	3,010 (14.9)	2,559 (21.5)	36,098 (16.9)	1,000 (20.4)	10,846 (14.3)	
Charlson Comorbidity Score	1.5±1.6	1.0±1.4	18±1.6	1.4±1.5	1.7±1.6	1.3±1.5	
Prescriptions in the year prior to cohort	entry						
Antidiabetics							
Metformin	801 (47.4)	5,096 (25.2)	5,457 (45.9)	92,392 (43.3)	2,327 (47.4)	30,039 (39.5)	
Sulphonylurea	550 (32.5)	3,077 (15.2)	3,720 (31.3)	57,585 (27.0)	1,494 (30.4)	17,270 (22.7)	
Thiazolidinediones	143 (8.5)	819 (4.1)	817 (6.9)	14,224 (6.7)	293 (6.0)	4,276 (5.6)	
Alpha-glucosidase	7 (0.4)	22 (0.1)	25 (0.2)	287 (0.1)	6 (0.1)	82 (0.1)	
Meglitinides	5 (0.3)	25 (0.1)	46 (0.4)	877 (0.4)	18 (0.4)	263 (0.4)	
DPP-4 inhibitors	198 (11.7)	1,265 (6.3)	1,268 (10.7)	20,877 (9.8)	591 (12.0)	7,447 (9.8)	

GLP-1 receptor agonists	52 (3.1)	333 (1.7)	352 (3.0)	5,936 (2.8)	232 (4.7)	2,804 (3.7)
SGLT2 inhibitors	5 (0.3)	8 (<0.1)	11 (0.1)	224 (0.1)	5 (0.1)	50 (0.1)
Antihypertensives						
Angiotensin II receptor blocker	264 (15.6)	2,437 (12.1)	1,842 (15.5)	31,499 (14.8)	666 (13.6)	9,239 (12.2)
ACE inhibitor	609 (36.0)	6,032 (29.96)	4,257 (35.8)	75,637 (35.5)	1,863 (37.9)	27,820 (36.6)
Beta-blocker	320 (18.9)	2,799 (13.9)	2,215 (18.6)	32,813 (15.4)	960 (19.5)	11,874 (15.6)
Calcium channel blocker	555 (32.8)	5,404 (26.8)	3,690 (31.0)	60,761 (28.5)	1,467 (29.9)	20,578 (27.1)
Diuretic: thiazide,	469 (27.8)	4,354 (21.6)	3,209 (27.0)	52,814 (24.8)	1,440 (29.3)	18,972 (25.0)
potassium sparing or loop						
Other	216 (12.8)	1,713 (8.5)	1,499 (12.6)	22,476 (10.5)	541 (11.0)	7,089 (9.3)
Lipid-lowering agents						
Statin	895 (53.0)	9,644 (47.7)	2,904 (24.4)	52,339 (24.5)	2,775 (56.5)	43,540 (57.3)
Fibrate	21 (1.2)	202 (1.0)	1,682 (14.2)	31,677 (14.9)	125 (2.5)	1,539 (2.0)
Ezetimibe	26 (1.5)	294 (1.5)	100 (0.8)	1,563 (0.7)	92 (1.9)	1,198 (1.6)
Other	5 (0.3)	38 (0.2)	461 (3.9)	6,671 (3.1)	18 (0.4)	390 (0.5)
Antiplatelet agents				44 -0- (40 -)		
Aspirin	382 (22.6)	3,017 (14.9)	2,755 (23.2)	41,502 (19.5)	1,248 (25.4)	15,634 (20.6)
Clopidogrel	22 (1.3)	154 (0.8)	5 (<0.1)	6 (<0.1)	99 (2.0)	943 (1.2)
Other	5 (0.3)	19 (0.1)	200 (1.7)	2,061 (1.0)	12 (0.2)	81 (0.1)
Glucocorticoids	242 (14.3)	1,908 (9.5)	1,282 (10.8)	20,436 (9.6)	607 (12.4)	6,990 (9.2)
NSAIDs	242 (14.3)	2,830 (14.0)	2,502 (21.1)	42,711 (20.0)	744 (15.1)	11,958 (15.7)
Anticoagulants	86 (5.1)	706 (3.5)	605 (5.1)	8,058 (3.8)	295 (6.0)	3,101 (4.1)
Ever exposure to antidiabetic drugs prior t	o cohort entry					
Number of antidiabetic prescriptions	66±98	29±66	65±102	52±83	148±261	166±329
Metformin	1,406 (83.2)	18,208 (90.1)	9,939 (83.6)	186,042 (87.2)	4,043 (82.3)	66,442 (87.4)
Sulphonylurea	254 (15.0)	1,710 (8.5)	1,749 (14.7)	24,145 (11.3)	768 (15.6)	8,158 (10.7)
Thiazolidinediones	9 (0.5)	75 (0.4)	51 (0.4)	712 (0.3)	25 (0.5)	357 (0.5)
Alpha-glucosidase	<10	15 (0.1)	10 (0.1)	142 (0.1)	8 (0.2)	96 (0.1)
Meglitinides	<10	11 (0.1)	12 (0.1)	205 (0.1)	10 (0.2)	143 (0.2)
DPP-4 inhibitors	15 (0.9)	155 (0.8)	106 (0.9)	1,771 (0.8)	51 (1.0)	705 (0.9)
GLP-1 receptor agonists	<10	13 (0.1)	17 (0.1)	214 (0.1)	<10	78 (0.1)
SGLT2 inhibitors	<10	12 (0.1)	<10	98 (0.1)	<10	58 (0.1)

Cases and controls were matched for age $(\pm 2 \text{ years})$, sex, date of study-cohort entry $(\pm 6 \text{months})$, duration of treated diabetes $(\pm 3 \text{months})$. Presented as n (%) and mean \pm SD, where appropriate.

ACE, Angiotensin Converting Enzyme; BMI, body mass index; CKD, chronic kidney disease; CVD, cardiovascular disease defined as non-fatal myocardial infarction (MI), acute coronary syndrome (ACS), stroke, transient ischaemic attack (TIA), unstable angina, and revascularisation; GLP-1, Glucagon-like peptide-1; HbA1c, glycated haemoglobin; MACCE, Major Adverse Cardiac and Cerebrovascular Events defined as MI, ACS, stroke, TIA or cardiovascular death; SGLT2i, sodium-glucose cotransporter-2 inhibitor

Supplemental Table 2. Baseline clinical characteristics and medication use in heart failure cases and matched controls without a heart failure event

	CPRD	GOLD	CPRD	Aurum	SAIL D	SAIL Databank	
	Cases	Controls	Cases	Controls	Cases	Controls	
N	1,530	18,419	11,765	216,354	4,133	66,300	
Sex, male	910 (59.5)	11,433 (62.1)	6,822 (58.0)	126,685 (58.6)	2,418 (58.5)	40,437 (61.0)	
Age, years	72.5±11.6	70.8±11.5	72.6±11.5	71.7±10.9	71.4±11.1	69.9±10.4	
Ethnicity							
White	1,369 (89.5)	15,046 (81.7)	10,179 (86.5)	174,127 (80.5)	1,002 (24.3)	15,688 (23.7)	
South Asian	79 (5.2)	1,122 (6.1)	762 (6.5)	16,502 (7.6)	41 (1.0)	813 (1.2)	
Black	25 (1.6)	489 (2.7)	347 (3.0)	7,774 (3.6)	5 (0.1)	110 (0.2)	
Other	11 (0.7)	200 (1.1)	80 (0.7)	1,866 (0.9)	9 (0.2)	192 (0.3)	
Unknown	46 (3.0)	1,562 (8.5)	397 (3.4)	16,085 (7.4)	3,076 (74.4)	49,497 (74.7)	
Index of Multiple Deprivation *							
1 (least deprived quintile)	270 (17.7)	4,130 (22.4)	2,126 (18.1)	44,679 (20.7)	564 (13.7)	11,685 (17.6)	
2	257 (16.8)	3,645 (19.8)	2,157 (18.3)	45,413 (21.0)	702 (17.0)	11,643 (17.6)	
3	336 (22.0)	3,842 (20.9)	2,448 (20.8)	44,619 (20.6)	857 (20.7)	13,923 (21.0)	
4	346 (22.6)	3,781 (20.5)	2,455 (20.9)	41,631 (19.2)	905 (21.9)	13,678 (20.6)	
5 (most deprived quintile)	321 (21.0)	3,021 (16.4)	2,568 (21.8)	39,867 (18.4)	1,058 (25.6)	14,754 (22.3)	
Unknown	0	0	11 (0.1)	145 (0.1)	47 (1.1)	617 (0.9)	
Duration of treated diabetes , years	4.9±5.1	2.6±4.2	4.8±5.2	4.3±4.9	7.4±5.6	6.3±5.2	
BMI , kg/m^2	32.4±7.4	30.9±6.3	31.7±7.1	30.3±6.1	32.5±7.5	31.3±6.3	
HbA1c, % [mmol/mol]	8.4±1.9	8.3±1.8	8.4 ± 1.9	8.2±1.7	8.7±2.0	8.6±1.8	
	[68±21]	[67±20]	$[68\pm21]$	[66±19]	[72±22]	[70±20]	
Hypertension, >140/80mmHg	347 (22.7)	4,453 (24.2)	2,770 (23.5)	47,254 (21.8)	976 (23.6)	14,611 (22.0)	
Smoking status							
Smoker (current/ex-smoker)	908 (59.4)	9,587 (52.1)	6,929 (58.9)	112,958 (52.2)	2,494 (60.3)	36,090 (54.4)	
Never	558 (36.5)	7,912 (43.0)	4,425 (37.6)	96,620 (44.7)	1,446 (35.0)	27,280 (41.2)	
Unknown	64 (4.2)	920 (5.0)	411 (3.5)	6,776 (3.1)	193 (4.7)	2,930 (4.4)	
History of cardiovascular disease	584 (38.2)	4,060 (22.0)	4,522 (38.4)	49,298 (22.8)	1,445 (35.0)	12,939 (19.5)	
Microvascular complications							
Retinopathy	429 (28.0)	3,159 (17.2)	4,411 (37.5)	71,309 (33.0)	1,521 (36.8)	19,703 (29.7)	
Peripheral neuropathy	210 (13.7)	1,352 (7.3)	1,703 (14.5)	20,190 (9.3)	536 (13.0)	5,309 (8.0)	
Nephropathy/CKD≥stage 3	488 (31.9)	3,848 (20.9)	3,822 (32.5)	49,321 (22.8)	1,294 (31.3)	13,106 (19.8)	
Charlson Comorbidity Score	2.1±1.7	1.4±1.6	2.3±1.8	1.9±1.7	2.4±1.8	1.8±1.7	
Prescriptions in the year prior to cohort en	try						
Antidiabetics							
Metformin	777 (50.8)	5,918 (32.1)	5,686 (48.3)	101,830 (47.1)	2,103 (50.9)	30,281 (45.7)	
Sulphonylurea	548 (35.8)	3,911 (21.2)	4,006 (34.1)	67,195 (31.1)	1,392 (33.7)	18,681 (28.2)	

Thiazolidinediones	140 (9.2)	1,047 (5.7)	927 (7.9)	15,882 (7.3)	272 (6.6)	4,388 (6.6)		
Alpha-glucosidase	5 (0.3)	28 (0.2)	32 (0.3)	390 (0.2)	15 (0.4)	101 (0.2)		
Meglitinides	8 (0.5)	43 (0.2)	73 (0.6)	996 (0.5)	28 (0.7)	306 (0.5)		
DPP-4 inhibitors	185 (12.1)	1,442 (7.8)	1,282 (10.9)	22,815 (10.6)	504 (12.2)	7,570 (11.4)		
GLP-1 receptor agonists	55 (3.6)	348 (1.9)	432 (3.7)	5,812 (2.7)	203 (4.9)	2,680 (4.0)		
SGLT2 inhibitors	5 (0.3)	7 (<0.1)	11 (0.1)	209 (0.1)	45 (0.1)	47 (0.1)		
Antihypertensives	, ,	, ,	, ,	, ,	ì	, ,		
Angiotensin II receptor blocker	295 (19.3)	2,665 (14.5)	2,271 (19.3)	36,075 (16.7)	706 (17.1)	9,477 (14.3)		
ACE inhibitor	678 (44.3)	6,344 (34.4)	5,156 (43.8)	86,092 (39.8)	1,903 (46.0)	27,239 (41.1)		
Beta-blocker	553 (36.1)	3,869 (21.0)	4,081 (34.7)	50,067 (23.1)	1,431 (34.6)	15,475 (23.3)		
Calcium channel blocker	587 (38.4)	5,326 (28.9)	4,399 (37.4)	68,230 (31.5)	1,568 (37.9)	20,139 (30.4)		
Diuretic: thiazide,	660 (43.1)	4,577 (24.9)	5,018 (42.7)	60,711 (28.1)	1,874 (45.3)	19,181 (28.9)		
potassium sparing or loop								
Other	282 (18.4)	2,014 (10.9)	2,018 (17.2)	27,503 (12.7)	718 (17.4)	7,987 (12.1)		
Lipid-lowering agents								
Statin	984 (64.3)	10,359 (56.2)	3,747 (31.9)	63,331 (29.3)	2,731 (66.1)	42,969 (64.8)		
Fibrate	26 (1.7)	274 (1.5)	1,892 (16.1)	34,482 (15.9)	114 (2.8)	1,606 (2.4)		
Ezetimibe	43 (2.8)	349 (1.9)	125 (1.1)	1,797 (0.8)	101 (2.4)	1,478 (2.2)		
Other	16 (1.1)	86 (0.5)	1,242 (10.6)	16,072 (7.4)	40 (1.0)	514 (0.8)		
Antiplatelet agents								
Aspirin	603 (39.4)	4,807 (26.1)	4,287 (36.4)	64,898 (30.0)	1,579 (38.2)	20,758 (31.3)		
Clopidogrel	142 (9.3)	867 (4.7)	5 (<0.1)	8 (<0.1)	365 (8.8)	3,425 (5.2)		
Other	23 (1.5)	172 (0.9)	1,074 (9.1)	11,675 (5.4)	70 (1.7)	821 (1.2)		
Glucocorticoids	273 (17.8)	2,007 (10.9)	1,458 (12.4)	22,730 (10.5)	720 (17.4)	7,020 (10.6)		
NSAIDs	175 (11.4)	2,388 (13.0)	2,389 (20.3)	43,552 (20.1)	506 (12.2)	9,374 (14.1)		
Ever exposure to antidiabetic drugs prior to cohort entry								
Number of antidiabetic prescriptions	81±114	40±78	75±108	63±94	170±306	204±366		
Metformin	1,243 (81.2)	16,064 (87.2)	9,522 (80.9)	182,346 (84.3)	3,258 (78.8)	55,564 (83.8)		
Sulphonylurea	254 (16.6)	2,027 (11.0)	1,954 (16.6)	30,344 (14.0)	752 (18.2)	9,127 (13.8)		
Thiazolidinediones	14 (0.9)	83 (0.5)	58 (0.5)	779 (0.4)	26 (0.6)	486 (0.7)		
Alpha-glucosidase	<10	21 (0.1)	15 (0.1)	211 (0.1)	7 (0.2)	109 (0.2)		
Meglitinides	0	15 (0.1)	22 (0.2)	320 (0.2)	11 (0.3)	172 (0.3)		
DPP-4 inhibitors	14 (0.9)	187 (1.0)	181 (1.5)	2,120 (1.0)	67 (1.6)	768 (1.2)		
GLP-1 receptor agonists	<10	15 (0.1)	11 (0.1)	159 (0.1)	8 (0.2)	35 (0.1)		
SGLT2 inhibitors	<10	7 (0.1)	<10	75 (0.1)	<10	39 (0.1)		

Cases and controls were matched for age (± 2 years), sex, date of study-cohort entry (± 6 months), duration of treated diabetes (± 3 months). Presented as n (%) and mean $\pm SD$, where appropriate

ACE, Angiotensin Converting Enzyme; BMI, body mass index; CKD, chronic kidney disease; CVD, cardiovascular; GLP-1, Glucagon-like peptide-1; HbA1c, glycated haemoglobin; SGLT2i, sodium-glucose co-transporter-2 inhibitor

Supplemental Table 3. Clinical characteristics and medication use in current users of SGLT2i regimens, GLP-1 receptor agonist regimens and other combination regimens (CPRD GOLD)

			Antidiabetic r	regimen (N=21,889)		
	SGLT2i	GLP-1RA	SGLT2i/GLP-	Other	Other	No current
	regimens	regimens	1RA regimens	combination	monotherapy	exposure
		_	_	regimens	regimens	-
N (%)	643 (2.9)	372 (1.7)	49 (0.2)	4,684 (21.4)	11,242 (51.4)	4,898 (22.4)
Male, %	68.6	61.3	79.6	65.8	58.3	59.0
Age, years	60.1±8.8	61.0±9.4	57.3±9.2	67.2 ± 10.9	68.2±11.9	67.1±12.8
Ethnicity, %						
White	78.5	83.6	87.8	78.4	78.3	73.5
South Asian	5.8	4.6	<10	7.2	5.6	8.5
Black	2.2	<10	-	3.1	2.7	4.0
Other	1.9	-	-	1.1	1.5	1.9
Unknown	11.7	10.5	<10	10.2	11.9	12.0
Index of Multiple Deprivation, %						
1 (least deprived quintile)	27.5	24.5	16.3	20.2	22.9	21.5
2	19.8	15.9	24.5	19.2	18.9	19.3
3	19.4	21.8	24.5	20.8	21.0	20.2
4	16.5	19.4	14.3	21.1	21.0	20.8
5 (most deprived quintile)	16.8	18.6	20.4	18.7	16.2	18.2
Duration of treated diabetes , years	4.2±4.6	5.6±4.3	4.8 <u>±</u> 4.4	4.4 <u>±</u> 4.6	1.0±2.9	1.1±2.7
BMI , kg/m ²	34.7±6.5	36.4±6.2	35.7±4.8	31.1±6.2	31.3±6.5	30.9±6.8
HbA1c, % [mmol/mol]	9.2±1.7	9.1±1.8	9.7±1.6	8.9±1.9	8.2±1.8	8.4±1.9
	[77±19]	[76±19]	[82±17]	[74±21]	[66±19]	[68±21]
Hypertension, >140/80mmHg	24.6	25.5	24.5	22.1	29.5	27.0
Smoking status, %						
Smoker (current/ex-smoker)	53.6	56.5	40.8	50.1	50.6	48.7
Never	42.8	41.1	59.2	44.8	45.7	45.9
Unknown	3.6	2.4	-	5.1	3.7	5.4
Microvascular complications, %						
Retinopathy	16.8	34.7	30.6	24.2	10.7	14.1
Peripheral neuropathy	7.2	12.9	<10	7.6	5.0	5.3
Nephropathy/CKD≥stage 3	5.6	12.6	<10	16.2	15.9	15.5
Charlson Comorbidity Score	0.7±1.0	1.3±1.4	1.1±1.1	1.3±1.5	1.0±1.4	1.1±1.4

Prescriptions in the year prior to coho	ort entry					
Antidiabetics, %						
Metformin	54.7	76.9	67.4	57.5	11.6	25.3
Sulphonylurea	31.0	46.0	26.5	35.6	7.1	16.1
Thiazolidinediones	8.6	14.5	12.2	10	1.7	3.9
Alpha-glucosidase	<10	-	-	0.4	0.1	<10
Meglitinides	<10	<10	-	0.3	0.1	0.1
DPP-4 inhibitors	19.1	26.3	24.5	14	2.4	6.3
GLP-1 receptor agonists	3.3	30.7	26.5	1.3	0.9	1.7
SGLT2 inhibitors	<10	-	<10	<10	<10	-
Antihypertensives, %						
Angiotensin II receptor blocker	12.3	18.6	16.3	14.8	11.4	11.7
ACE inhibitor	38.6	45.2	38.8	35.8	28.4	27.3
Beta-blocker	8.6	13.7	<10	12.1	15.7	13.8
Calcium channel blocker	26.6	30.1	20.4	27.3	27.8	25.7
Diuretic: thiazide,	19.6	28.2	20.4	20.2	23.1	21.2
potassium sparing or loop						
Other	6.8	11.0	<10	10.6	8.8	7.2
Lipid-lowering agents, %						
Statin	57.9	71.0	69.4	57.3	45.4	42.6
Fibrate	1.2	2.7	<10	1.2	1.0	0.9
Ezetimibe	2.0	3.0	<10	1.5	1.5	1.3
Other	<10	<10	-	0.2	0.2	0.1
Antiplatelet agents, %						
Aspirin	13.5	22.3	20.4	21.9	13.8	13.2
Clopidogrel	1.1	<10	-	0.8	0.9	0.5
Other	-	-	-	0.2	0.1	<10
Glucocorticoids, %	6.4	12.6	<10	8.0	10.6	10.2
NSAIDs, %	17.3	23.7	12.2	13.1	14.0	13.9
Anticoagulants, %	1.1	2.7	<10	3.4	4.0	3.3
Current exposure to other antidiabeti	ic agents, %					
Metformin	85.5	85.2	85.7	93.5	87.4	-
Sulphonylurea	38.1	43.0	30.6	72.0	8.5	_
Thiazolidinediones	4.4	8.6	<10	10.3	0.2	-
Alpha-glucosidase	<10	0	0	0.5	0.1	-
Meglitinides	<10	0	0	0.5	0.1	-
DPP-4 inhibitors	23.6	3.0	<10	48.7	3.7	_

GLP-1 receptor agonists SGLT2 inhibitors	- 100	100	100 100	-	- -	
Number of antidiabetics currently exposed to, %						
1	7.8	8.9	-	-	100	-
2	39.4	46.5	12.2	75.3	-	-
3	45.7	40.6	55.1	23.9	-	-
4+	7.2	1.0	32.7	0.8	-	-

Presented as mean±SD and %. Due to privacy concerns and possible patient identification following stratification by ADM exposure, precise proportions could not be presented for some characteristics.

ACE, Angiotensin Converting Enzyme; BMI, body mass index; CKD, chronic kidney disease; CVD, cardiovascular; GLP-1, Glucagon-like peptide-1; HbA1c, glycated haemoglobin; SGLT2i, sodium-glucose co-transporter-2 inhibitor

Supplemental Table 4. Clinical characteristics and medication use in current users of SGLT2i regimens, GLP-1 receptor agonist regimens and other combination regimens (CPRD Aurum)

			Antidiabetic regi	men (N=225,216)		
	SGLT2i	GLP-1RA	SGLT2i/GLP-	Other	Other	No current
	regimens	regimens	1RA regimens	combination	monotherapy	exposure
				regimens	regimens	
N (%)	8,779 (3.9)	5,851 (2.6)	793 (0.4)	61,771 (27.4)	99,595 (44.2)	48,427 (21.5)
Male, %	66.6	60.0	68.0	70.0	55.5	57.4
Age, years	60.9±9.4	61.7±9.6	58.3±8.5	68.4±10.7	69.6±12.2	67.5±13.0
Ethnicity, %						
White	77.2	86.4	84.2	77.5	79.0	73.4
South Asian	8.4	3.9	3.9	8.9	7.4	9.7
Black	2.2	2.3	1.5	3.8	3.7	5.9
Other	0.9	0.7	0.9	0.9	0.9	1.3
Unknown	11.2	6.8	9.5	8.9	9.1	9.6
Index of Multiple Deprivation, %						
1 (least deprived quintile)	19.7	17.2	17.7	19.8	20.4	20.1
2	20.6	20.5	25.7	20.9	20.9	19.4
3	19.3	19.9	15.9	20.0	20.8	20.6
4	19.8	20.3	19.9	20.2	19.5	20.0
5 (most deprived quintile)	20.5	22.1	20.7	19.1	18.5	19.8
Duration of treated diabetes, years	5.8±4.5	6.8±4.5	7.0±4.5	5.9 ± 4.6	1.9±3.9	3.4 ± 4.6
BMI , kg/m^2	33.4±6.2	36.5±6.3	37.0±7.0	30.5 ± 6.0	30.6±6.2	30.6±6.5
HbA1c, % [mmol/mol]	9.1±1.7	8.9±1.7	9.3±1.7	8.6±1.7	8.1±1.7	8.4±1.9
	[76±18]	[73±18]	[77±18]	[70±18]	[64±18]	[68±20]
Hypertension, >140/80mmHg	21.6	24.1	21.8	19.8	26.1	23.9
Smoking status, %						
Smoker (current/ex-smoker)	53.0	56.9	57.5	50.8	50.2	48.7
Never	45.4	41.9	41.4	46.8	46.4	47.8
Unknown	1.6	1.2	1.1	2.4	3.4	3.5
Microvascular complications, %						
Retinopathy	38.5	43.0	41.6	40.5	21.1	27.5
Peripheral neuropathy	7.9	12.9	11.0	9.3	6.2	6.8
Nephropathy/CKD≥stage 3	4.8	13.5	6.6	18.4	17.9	17.1
Charlson Comorbidity Score	1.4±1.3	1.7±1.4	1.5±1.3	1.8±1.5	1.3±1.5	1.4±1.5

Prescriptions in the year prior to cohort entry									
Antidiabetics, %									
Metformin	73.2	80.6	80.6	72.5	21.9	40.2			
Sulphonylurea	40.9	51.3	47.2	45.5	13.7	25.9			
Thiazolidinediones	11.0	15.8	18.2	11.6	3.0	6.0			
Alpha-glucosidase	0.1	0.3	0.6	0.3	0.1	0.2			
Meglitinides	0.6	1.1	<10	0.7	0.2	0.4			
DPP-4 inhibitors	23.8	23.1	21.1	16.1	3.9	9.7			
GLP-1 receptor agonists	7.0	31.9	36.2	1.5	1.2	2.8			
SGLT2 inhibitors	1.1	0.3	1.1	0.1	0.1	0.1			
Antihypertensives, %									
Angiotensin II receptor blocker	14.8	20.2	19.6	16.1	13.9	14.2			
ACE inhibitor	42.0	47.9	47.5	42.1	31.6	32.3			
Beta-blocker	13.5	17.1	14.0	15.7	16.2	14.2			
Calcium channel blocker	26.3	30.0	25.4	29.9	29.0	26.4			
Diuretic: thiazide,	19.7	31.2	26.1	24.5	26.1	23.1			
potassium sparing or loop									
Other	8.7	14.3	11.7	11.8	10.3	9.9			
Lipid-lowering agents, %									
Statin	31.2	31.7	33.9	27.0	22.8	22.6			
Fibrate	15.5	18.9	15.5	18.1	13.2	13.2			
Ezetimibe	1.3	1.4	0.8	0.8	0.6	0.7			
Other	2.8	3.6	2.1	3.7	3.0	2.9			
Antiplatelet agents, %									
Aspirin	22.2	28.6	29.4	24.6	16.7	17.6			
Clopidogrel	0	0	0	0	0	0			
Other	0.8	1.0	0.6	1.1	1.0	0.9			
Glucocorticoids, %	9.8	12.0	11.7	9.7	9.6	9.4			
NSAIDs, %	20.8	23.5	20.6	19.5	20.3	19.7			
Anticoagulants, %	1.8	3.3	2.7	3.7	4.4	3.5			
Current exposure to other antidiabetic agents, %									
Metformin	85.1	84.1	87.9	92.9	83.1	-			
Sulphonylurea	39.4	44.3	34.4	72.8	10.6	-			
Thiazolidinediones	2.8	6.2	3.3	9.3	0.5	-			
Alpha-glucosidase	0.1	<10	<10	0.2	0.1	-			
Meglitinides	0.2	0.9	<10	0.6	0.1	-			
DPP-4 inhibitors	27.8	5.0	3.7	52.0	5.7	-			
GLP-1 receptor agonists	0.0	100.0	100.0	-	-	-			

SGLT2 inhibitors	100.0	0.0	100.0	-	-	-		
Number of antidiabetics currently exposed to, %								
1	7.7	9.3	-	-	100.0	-		
2	38.3	44.7	8.5	72.9	=	-		
3	45.0	41.5	55.5	26.4	=	-		
4+	9.0	4.6	36.1	0.7		-		

Presented as mean±SD and %. Due to privacy concerns and possible patient identification following stratification by ADM exposure, precise proportions could not be presented for some characteristics.

ACE, Angiotensin Converting Enzyme; BMI, body mass index; CKD, chronic kidney disease; CVD, cardiovascular; GLP-1, Glucagon-like peptide-1; HbA1c, glycated haemoglobin; SGLT2i, sodium-glucose co-transporter-2 inhibitor

Supplemental Table 5. Clinical characteristics and medication use in current users of SGLT2i regimens, GLP-1 receptor agonist regimens and other combination regimens (SAIL Databank)

			Antidiabetic	regimen (N=80,950)		
	SGLT2i	GLP-1RA	SGLT2i/GLP-	Other	Other	No current
	regimens	regimens	1RA regimens	combination	monotherapy	exposure
	_	_		regimens	regimens	_
N (%)	3,678 (4.5)	2,748 (3.4)	433 (0.5)	20,478 (25.3)	33,650 (41.6)	19,963 (24.7)
Male, %	67.1	58.4	68.4	63.4	58.6	59.1
Age, years	60.3±9.1	61.2±8.8	57.6±7.7	66.3±10.3	67.9±11.6	66.4±12.3
Ethnicity, %						
White	20.9	25.7	19.4	23.9	23.4	23.2
South Asian	1.6	0.7	1.2	1.4	1.2	1.9
Black	0.4	<10	<10	0.3	0.2	0.3
Other	0.3	<10	0	0.4	0.3	0.6
Unknown	76.9	73.3	79.2	74.1	74.9	74.1
Index of Multiple Deprivation, %						
1 (least deprived quintile)	16.8	14.3	18.2	15.5	16.9	18.8
2	14.3	16.2	15.0	17.2	17.9	18.0
3	18.7	20.9	14.1	20.9	20.9	20.4
4	22.0	23.2	20.1	21.2	21.1	19.9
5 (most deprived quintile)	27.4	25.1	32.1	24.3	22.2	21.7
Duration of treated diabetes , years	8.1±4.5	9.2±4.5	9.7±4.3	7.6 ± 4.6	3.6 ± 4.2	5.4±4.9
BMI , kg/m ²	34.2 ± 6.2	37.0±6.7	37.6±6.1	31.4±6.1	31.5±6.5	31.8±6.8
HbA1c, % [mmol/mol]	$9.4{\pm}1.7$	9.3±1.7	9.5±1.6	9.0±1.8	$8.4{\pm}1.8$	8.7±1.9
	[79±18]	[78±18]	[80±17]	[74±19]	[68±19]	[71±20]
Hypertension, >140/80mmHg	23.6	22.7	25.4	21.3	26.0	24.2
Smoking status, %						
Smoker (current/ex-smoker)	54.2	56.2	52.7	52.9	51.5	49.6
Never	43.8	40.5	43.9	43.2	43.6	44.8
Unknown	2.1	3.4	3.5	3.9	4.8	5.6
Microvascular complications, %						
Retinopathy	29.6	43.1	35.1	34.3	19.1	23.1
Peripheral neuropathy	8.2	10.6	11.3	7.1	5.4	6.0
Nephropathy/CKD≥stage 3	5.9	12.3	6.2	15.9	15.0	14.9
Charlson Comorbidity Score	1.2±1.3	1.7±1.4	1.5±1.3	1.6±1.5	1.2±1.5	1.3±1.5

Prescriptions in the year prior to co	onort entry	T	T	T	T	ı	
Antidiabetics, %	10.0						
Metformin	68.8	79.6	79.9	67.5	19.7	34.2	
Sulphonylurea	38.6	50.2	50.6	40.3	10.5	19.8	
Thiazolidinediones	7.3	13.2	12.0	10.6	2.4	4.6	
Alpha-glucosidase	<10	<10	<10	0.2	0.1	0.1	
Meglitinides	0.4	1.1	<10	0.5	0.2	0.3	
DPP-4 inhibitors	25.0	25.6	27.7	16.3	3.7	8.5	
GLP-1 receptor agonists	9.5	36.4	43.4	2.0	1.2	3.4	
SGLT2 inhibitors	0.7	<10	<10	0.1	<10	0.1	
Antihypertensives, %							
Angiotensin II receptor blocker	12.6	18.2	11.6	12.7	11.6	12.1	
ACE inhibitor	45.6	50.8	57.5	42.9	32.9	32.6	
Beta-blocker	14.4	18.7	14.6	15.8	16.4	15.0	
Calcium channel blocker	25.9	32.7	30.0	28.0	27.5	25.4	
Diuretic: thiazide,	19.5	30.5	27.0	23.8	26.8	24.3	
potassium sparing or loop							
Other	9.0	13.1	11.8	10.6	9.0	8.5	
Lipid-lowering agents, %							
Statin	68.8	75.2	74.8	66.5	51.7	52.0	
Fibrate	2.4	4.3	5.1	2.4	1.7	1.8	
Ezetimibe	1.5	3.2	2.5	1.7	1.4	1.5	
Other	0.7	0.7	<10	0.6	0.4	0.5	
Antiplatelet agents, %							
Aspirin	26.1	30.8	29.1	26.0	18.1	17.8	
Clopidogrel	0.9	1.8	<10	1.3	1.3	1.2	
Other	<10	0.3	_	0.1	0.1	0.2	
Glucocorticoids, %	7.2	8.2	6.7	8.3	10.2	9.8	
NSAIDs, %	19.6	19.0	19.6	14.4	15.8	15.4	
Anticoagulants, %	2.6	3.3	1.4	3.7	4.8	4.3	
Current exposure to other antidiabetic agents, %							
Metformin	83.9	83.2	86.6	92.5	83.8	_	
Sulphonylurea	39.4	47.9	41.6	70.9	9.8	_	
Thiazolidinediones	2.6	6.4	3.2	9.3	0.4	_	
Alpha-glucosidase	<10	0.4	0	0.2	0.1	_	
Meglitinides	0.2	0.3	<10	0.4	0.1	_	
DPP-4 inhibitors	29.6	4.7	3.5	55.5	5.5	_	

GLP-1 receptor agonists SGLT2 inhibitors	0.0 100.0	100.0 0.0	100.0 100.0	-	-	
Number of antidiabetics currently e	xposed to, %					
1	7.6	10.0	-	-	100.0	-
2	38.9	41.4	8.2	71.9	-	-
3	43.2	44.7	48.6	27.2	=	-
4+	10.3	3.9	43.2	0.8	-	-

Presented as mean±SD and %. Due to privacy concerns and possible patient identification following stratification by ADM exposure, precise proportions could not be presented for some characteristics.

ACE, Angiotensin Converting Enzyme; BMI, body mass index; CKD, chronic kidney disease; CVD, cardiovascular; GLP-1, Glucagon-like peptide-1; HbA1c, glycated haemoglobin; SGLT2i, sodium-glucose co-transporter-2 inhibitor

Supplemental Table 6. Odds ratio (95% CI) for heart failure associated with current treatment with SGLT2 inhibitor and/or GLP-1 receptor agonist regimens compared with other combination regimens

Treatment		CPR	ED GOLD			CPR	D Aurum			SAIL	Databank	
	Cases	Controls	Unadjusted OR (95% CI)	aOR* (95% CI)	Cases	Controls	Unadjusted OR (95% CI)	aOR* (95% CI)	Cases	Controls	Unadjusted OR (95% CI)	aOR* (95% CI)
N	1,530	18,419			11,765	216,354			4,133	66,300		
Combined SGLT2i	5	33	0.31	0.24	23	645	0.69	0.52	14	289	0.79	0.38
& GLP-1RA regimens	(0.3)	(0.2)	(0.12-1.93)	(0.12-0.81)	(0.2)	(0.3)	(0.45-1.04)	(0.31-0.86)	(0.3)	(0.4)	(0.46-1.36)	(0.14-0.91)
SGLT2i regimens	25	395	0.62	0.51	198	7,245	0.54	0.49	76	2,586	0.50	0.49
	(1.6)	(2.1)	(0.40-0.98)	(0.25-0.96)	(1.7)	(3.4)	(0.47-0.63)	(0.40-0.59)	(1.88)	(3.9)	(0.37-0.62)	(0.35-0.69)
GLP-1RA regimens	30	316	0.97	0.76	320	5,166	1.23	0.88	140	2,251	1.08	0.69
	(2.0)	(1.7)	(0.64-1.47)	(0.40-1.46)	(2.7)	(2.4)	(1.09-1.39)	(0.74-1.04)	(3.4)	(3.4)	(0.90-1.31)	(0.52-0.94)
Other combination regimens	442 (28.9)	4,566 (24.8)	1	1	3,219 (27.4)	62,422 (28.9)	1	1	1,133 (27.4)	18,526 (27.9)	1	1
Other monotherapy regimens	687	9,002	1.25	1.20	5,389	95,608	1.17	1.08	1,703	26,812	1.20	1.03
	(44.9)	(48.9)	(1.06-1.48)	(0.97-1.49)	(45.8)	(44.2)	(1.11-1.23)	(1.00-1.16)	(41.2)	(40.4)	(1.10-1.32)	(0.90-1.19)
No current regimen	341	4,107	1.32	1.20	2,616	45,268	1.18	1.19	1,067	15,836	1.22	1.32
	(22.3)	(22.3)	(1.14-1.54)	(0.95-1.52)	(22.2)	(20.9)	(1.11-1.24)	(1.10-1.28)	(25.8)	(23.9)	(1.10-1.35)	(1.09-1.59)

GLP-1RA, Glucagon-like peptide-1 receptor agonist; SGLT2i, sodium-glucose co-transporter-2 inhibitor; aOR, adjusted odds ratio.

^{*} Adjusted for case-control matching factors (age, duration of treated diabetes), ethnicity, Index of Multiple Deprivation, microvascular complications, Charlson Comorbidity Index, smoking status, BMI, HbA1c, blood pressure and total cholesterol at cohort entry, prescriptions for medications in the year prior to cohort entry (antidiabetic medications, antihypertensive agents, lipid-lowering agents, antiplatelet agents, corticosteroids, NSAIDs and anticoagulants), ever exposure of antidiabetic drugs and number of antidiabetic drugs prescribed prior to cohort entry

Supplemental Table 7. Assessment of unmeasured confounders in the primary and secondary analyses

Database	Primary end	dpoint: MACCE	Secondary endpoint: Heart failure		
	OR (95% CI)	E-value (point estimate)	OR (95% CI)	E-value (point estimate)	
SGLT2i/GLP-1RA					
CPRD GOLD	0.45 (0.15-1.39)	3.870	0.12 (0.02-0.85)	16.151	
CPRD Aurum	0.70 (0.47-1.04)	2.211	0.53 (0.35-0.82)	3.180	
SAIL	0.63 (0.34-1.15)	2.553	0.40 (0.17-0.92)	4.436	
Pooled estimate	0.66 (0.48-0.90)	2.399	0.47 (0.33-0.69)	3.677	
SGLT2i					
CPRD GOLD	0.92 (0.61-1.39)	1.394	0.50 (0.27-0.94)	3.414	
CPRD Aurum	0.78 (0.69-0.89)	1.883	0.50 (0.43-0.59)	3.414	
SAIL	0.80 (0.64-0.99)	1.809	0.55 (0.41-0.75)	3.038	
Pooled estimate	0.79 (0.71-0.88)	1.845	0.51 (0.44-0.58)	3.333	
GLP-1RA					
CPRD GOLD	0.79 (0.46-1.37)	1.846	0.82 (0.47-1.41)	1.737	
CPRD Aurum	0.93 (0.80-1.08)	1.360	0.84 (0.73-0.97)	1.667	
SAIL	0.87 (0.67-1.14)	1.564	0.67 (0.50-0.89)	2.350	
Pooled estimate	0.91 (0.80-1.03)	1.429	0.80 (0.71-0.91)	1.809	

Interpretation

As an example, considering the association between MACCE and exposure to SGLT2i/GLP-1RA regimens (pooled estimate), with an observed odds ratio of 0.66, an unmeasured confounder that was associated with both the outcome and the treatment by an odds ratio of 2.4-fold each, above and beyond the measured confounders, could explain away the estimate, but weaker confounding could not.