Rodríguez-Gómez, I. et al. (2022) Osteoporosis and its association with cardiovascular disease, respiratory disease, and cancer: findings from the UK Biobank prospective cohort study. Mayo Clinic Proceedings, 97(1), pp. 110-121.
(doi: $\underline{10.1016 / j . \text { mayocp.2021.07.019) }}$

This is the Author Accepted Manuscript.
There may be differences between this version and the published version. You are advised to consult the publisher's version if you wish to cite from it.
https://eprints.gla.ac.uk/263418/

Deposited on: 18 January 2022

Enlighten - Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

Osteoporosis and its association with cardiovascular disease, respiratory diseases and cancer - Findings from the UK Biobank prospective cohort study

Irene Rodríguez-Gómez PhD ${ }^{1,2,3}$, Stuart R Gray $\mathrm{PhD}^{3}$, Frederick K. Ho $\mathrm{PhD}^{4}$, Fanny Petermann-Rocha MSc ${ }^{3,4}$, Paul Welsh PhD ${ }^{3}$, John Cleland MD, PhD ${ }^{5}$, Stamatina Iliodromiti MD, $\mathrm{PhD}^{6}$, Ignacio Ara $\mathrm{PhD}^{1,2}$, Jill Pell MD, $\mathrm{PhD}^{3}$, Naveed Sattar MD, PhD ${ }^{4}$, Lyn D. Ferguson MD, $\mathrm{PhD}^{4 *}$, Carlos Celis-Morales $\mathrm{PhD}^{3,7,8 *}$

1. GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain
2. CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
3. Institute of Cardiovascular and Medical Scienses, BHF Glasgow Cardiovascular Research Centre, Glasgow, G12 8TA
4. Institute of Health and Wellbeing, University of Glasgow, Glasgow, G12 8RZ
5. Robertson Centre for Biostatistics, Institute of Health and Wellbeing, University of Glasgow, Glasgow Royal Infirmary, Glasgow, United Kingdom.
6. Centre for Women's Health, Institute of Population Health Sciences, Queen Mary University London, London, United Kingdom
7. Centro de Investigación en Fisiología del Ejercicio (CIFE), Universidad Mayor, Santiago 7510041, Chile.
8. Grupo de Estudio en Educación, Actividad Física y Salud (GEEAFyS), Universidad Católica del Maule, Talca 3480112, Chile.
*LDF and CCM contributed equaly and are consider joint-senior authors

Running title: Osteoporosis and risk of chronic diseases

## Corresponding author:

31 Dr. Carlos Celis-Morales
32 BHF Glasgow Cardiovascular Research Centre.
33 Institute of Cardiovascular and Medical Sciences
34 University of Glasgow
35 Glasgow, G12 8TA
36 United Kingdom
37 Tel: + 441413304201
38 Email: Carlos.Celis@glasgow.ac.uk

## Disclosures

The authors report no conflict of interest.

## Author Contributions

IRG, LDF and CCM postulated the research question and study design. SRG, FKH, FPR, PW, JC, SI, IA, JP and NS helped with implementation. CCM, FH provided statistical expertise and IRG conducted the primary statistical analysis. IRG, LDF and CCM wrote the manuscript. All authors interpreted the results and contributed to refinement of the study protocol and approved the final manuscript. LDF and CCM contributed equaly and are consider joint-senior authors.

## Data availability statements

Data from the UK Biobank are available on application. Researchers can apply to use the UK Biobank resource and access the data used. No additional data are available.


#### Abstract

This study aimed to investigate sex-specific associations of osteoporosis with incidence and mortality from cardiovascular disease (CVD), respiratory diseases, and cancer, as well as with all-cause mortality. In total, 305,072 participants ( $53 \%$ women) of UK Biobank were included in this study. Self-reported diagnosis of osteoporosis at baseline was the exposure of interest. CVD, respiratory disease, including chronic obstructive pulmonary disease (COPD), all cancer, prostate and breast cancer incidence and mortality, as well as all-cause mortality, were the outcomes. Associations between osteoporosis and health outcomes were investigated using Cox-proportional models. In men, osteoporosis was associated with a higher incident risk of all respiratory diseases (HR: 1.26 [ $95 \%$ CI: 1.06 to 1.50 ] including COPD (HR: 1.82 [1.38 to 2.40$]$ ). Men with osteoporosis also had a higher mortality risk from all-causes (HR: 1.71 [1.38 to 2.11]), CVD (HR: 1.68 [ 1.19 to 2.37]), respiratory disease (HR: 2.35 [1.70 to 3.24 ]) and COPD (HR 3.64 [2.24 to 5.91]). These associations persisted after adjustment for age, body mass index (BMI), and comorbidities. Women with osteoporosis had a higher risk of incident CVD (HR: 1.24 [1.97 to 1.44], respiratory diseases (HR 1.23 [1.13 to 1.33]) and COPD (HR 1.29 [1.10 to 1.52]). Women with osteoporosis also had a higher mortality risk from respiratory disease (HR: 1.31 [1.00 to 1.72]) and breat cancer (HR 1.60 [1.14 to 2.26]). Compared to women, men with osteoporosis had a higher risk of all-cause mortality, mortality from respiratory diseases including COPD, and cancer incidence. Osteoporosis was strongly associated with respiratory disease, including COPD, in both men and women, even after full adjustment for covariates; although, men with osteoporosis experienced a higher risk of adverse outcomes than women.


Keywords: mortality, COPD, CVD, bone, risk

## Introduction

Osteoporosis affects over 200 million people worldwide ${ }^{(1)}$, and is around 6 -fold more common in women than men ${ }^{(2)}$. Osteoporosis is a systemic skeletal disorder characterized by low bone mineral density and microarchitectural deterioration of bone tissue, leading to enhanced bone fragility ${ }^{(3)}$. The condition is consdered a public health problem by healthcare authorities because it is associated with an increased risk of fractures ${ }^{(4)}$, which are associated with poorer quality of life, higher disability, institutionalization, and excess mortality ${ }^{(5)}$.

Although previous studies have investigated the association of osteoporosis with chronic diseases including cardiovascular diseases (CVD), respiratory diseases, and cancer ${ }^{(6,7)}$, most of these studies have focused on women with an existing history of osteoporotic fractures, post-menopausal women or older populations ${ }^{(8-17)}$. With limited evidence available in healthy middle-age individuals and in men, large cohort studies including these populations and a more in-depth analysis of cause-specific incidence and mortality beyond all-cause mortality is required ${ }^{(6,7,18)}$. Therefore, the present study aimed to investigate the sex-specific associations of osteoporosis with incidence and mortality from CVD, respiratory diseases, and cancer as well as all-cause mortality using data from the UK Biobank prospective cohort study.

## Methods

## Study design and Participants

The UK Biobank is a prospective, population-based cohort study conducted in 22 assessment centres across England, Wales, and Scotland. A total of 502,536 participants (37-73 years) were recruited from the general population between 2007 and 2010 (5.5\%
response rate). Participants completed a touch screen questionnaire, had physical measurements taken, and provided biological samples at their baseline assessment visit, as described in detail elsewhere ${ }^{(19,20)}$. The outcomes in the current study were all-cause mortality, and incidence of and mortality from cancer, CVD, and respiratory diseases, with the exposure variable being self-reported physician-diagnosis of osteoporosis. Socio-demographic factors (age, sex, ethnicity and area-based socioeconomic status), smoking status, body mass index, systolic blood pressure, medications for CVD, selfreported physical activity time and dietary intake were treated as potential confounders.

## Outcomes

Death certificates held within the National Health Service Information Centre (England and Wales) and the National Health Service Central Register Scotland (Scotland) provided dates of deaths. Date and cause of hospital admissions were obtained via record linkage to Health Episode Statistics (England and Wales) and Scottish Morbidity Records (Scotland). Further information about data linkage can be found at http://content.digital.nhs.uk/services. Hospital admissions follow-up was available until June 2020 in England and March 2017 in Wales and Scotland. Mortality was available until June 2020 for the whole cohort. Therefore, incident disease and mortality follow-up were censored at these dates respectively, or on the date of death, if earlier. Follow up was censored at the latest date for which linked data were available-31st Jantary 2018 for participants from England and Wales and 30th November 2016 for participants from Scotland or date of death if this oceurred earlier, or the first date of hospitalisation for the outcome of interest (for incident outcomes only). We defined incident events as a hospital admission or death with a relevant ICD-10 (international classification of diseases, 10th revision) code defined as: CVD (I05-I89), respiratory diseases (J09-J98
and I26-I27), chronic obstructive pulmonary disease (COPD) (J44), breast cancer (C50), prostate cancer (C61) and all-cause cancer (C0.0-C9.9, D3.7-9, D4.0-8).

## Covariates

Age, ethnicity and education were self-reported and collected through touch-screen questionnaires. Socioeconomic status was measured using the Townsend deprivation score, an area-based index of material deprivation derived from Census information on housing, employment, social class and car availability [17]. Anthropometric measurements were obtained by trained personnel following standard operating procedures and using calibrated equipment. Weight was measured, without shoes and outdoor clothing, using the Tanita BC 418 body composition analyser. Height was measured, without shoes, using the wall-mounted SECA 240 height measure. Body mass index (BMI) was calculated from weight (in kilograms) divided by square of height (in meters). The World Health Organization's criteria were used to classify BMI into categories of underweight ( $<18.5 \mathrm{~kg} / \mathrm{m}^{2}$ ), normal weight ( 18.5 to $24.9 \mathrm{~kg} / \mathrm{m}^{2}$ ), overweight ( 25 to $29.9 \mathrm{~kg} / \mathrm{m}^{2}$ ) and obese ( $\geq 30 \mathrm{~kg} / \mathrm{m}^{2}$ ). Waist circumference was measured midway between lowest rib margin and iliac crest, in a horizontal plane, using a non-elastic SECA 200 tape measure. Further details can be found in the UK Biobank protocol (https://www.ukbiobank.ac.uk/key-documents/).

Smoking status was categorized into never, former or current smoker. Physical activity was collected through the International Physical Activity Questionnaire (IPAQ) short form, and total physical activity was computed as the sum of walking, moderate and vigorous activity, measured as metabolic equivalents (MET-min/week) [18]. We derived total time spent in sedentary behaviours from the sum of self-reported time spent driving, using a computer, and watching television. Average sleep duration was self-reported and
further classified as short ( $<7 \mathrm{~h} /$ day), normal (7-9 h/day) or long ( $>9 \mathrm{~h} /$ day). Handgrip strength was measured as previously described ${ }^{(21)}$, and the mean of the right and left values was expressed in absolute units (kg) for subsequent analysis. Dietary information was collected via the Oxford WebQ, a web-based 24-hour recall questionnaire that was developed specifically for use in large population studies ${ }^{(22,23)}$. Medical history of health conditions diagnosed by a physician (menopause, depression, stroke, angina, heart attack, hypertension, cancer, diabetes, hypertension, COPD, hypothyroidism, hyperthyroidism, eating disorders, Cushing's syndrome, rheumatoid arthritis, inflammatory bowel disease, Crohn's disease, ulcerative colitis, liver disease, kidney chronic disease, bone fractures, and femoral fractures and longstanding illness) was collected using the self-completed baseline assessment questionnaire. Medication use was also self-reported and included diuretic medications, vitamin or calcium and micronutrients supplementation, corticosteroid, hormone replacement therapy (HRT). Biochemical assays was measured at the baseline assessment visit, including C-reactive protein and $25(\mathrm{OH}) \mathrm{D}$ (a measure of vitamin D status) were performed at a central laboratory on around 480,000 samples. Further details of these measurements can be found in the UK Biobank Data Showcase and Protocol (https://www.ukbiobank.ac.uk/key-documents/). Vitamin D was imputed with the minimum detectable value $(10 \mathrm{nmol} / \mathrm{L})$ if it was below the limit of detection, and the maximum detectable value ( $375 \mathrm{nmol} / \mathrm{L}$ ) if too high for detection.

## Ethics

The UK Biobank study was approved by the North West Multi-Centre Research Ethics Committee; participants provided written informed consent for data collection, analysis, and record linkage. This study is part of UK Biobank project 7155 (NHS National Research Ethics Service 16/NW/0274).

## Statistical analyses

Participant characteristics were presented according to presence or absence of osteoporosis using means and standard deviation (SD) for quantitative variables and percentages for categorical variables. The association between osteoporosis and health outcomes, for men and women, were investigated using Cox-proportional hazard models with years of follow up as the time varying co-variate. The results are reported as hazard ratios (HR) and their $95 \%$ confidence intervals ( $95 \%$ CI). The proportional hazard assumption was checked using Schoenfeld residuals. Participants who already had the disease outcome of interest at baseline were excluded from the analysis (i.e. participants with prevalent CVD at baseline were excluded from analysis on CVD incidence and mortality). In addition, sensitivity analyses were conducted where participants who had any of the disease outcomes of interest at baseline (CVD, cancer and respioratory diseases) were excluded from all analyses (Supplementary table S1). Furthermore, all analyses were performed using a 2-year landmark analysis to exclude participants who experienced events within the first two years of follow-up. Finally, to assess whether the associations between osteoporosis and health outcomes differed by sex, sex*risk factor interaction terms were included in the Cox models, which can be interpreted as the ratio of HR among men to HR among women.

For all these analyses, we ran three incremental models that included different covariates. Model 0 included sociodemographic covariates: age, deprivation index, ethnicity and education. Model 1 also included lifestyle factors: BMI categories, smoking, grip strength, total physical activity, sedentary time, sleep duration and dietary intake of dairy products, alcohol, fruit and vegetables, red meat and processed meat. Model 2 was the
same as Model 1 but also included health markers: systolic blood pressure, C-reactive protein, total cholesterol, medication (including diuretic), vitamin D blood concetration, vitamin or calcium and micronutrients supplementation, corticosteroid, hormone replacement therapy (HRT), bone fractures and prevalent comorbidities including hypothyroidism, hyperthyroidism, eating disorders, Cushing's syndrome, diabetes, rheumatoid arthritis, inflammatory bowel disease, Crohn's disease, ulcerative colitis, liver disease, kidney chronic disease, and femoral fractures at baseline. In this last model, hypogonadism and menopause were also included as sensitivity analyses for men and women, respectively. Statistical analyses were performed using the statistical software STATA 14 (StataCorp LP). Statistical significance was defined as $p<0.05$.

## Results

Of the 502,536 participants recruited to UK Biobank, 305,072 ( $52.9 \%$ women) were eligible for inclusion in the 2 -year landmark analyses and had full data available. The mean follow-up period was 9.2 (range 7.9-11.0) years for mortality and 8.9 (range 4.611.0) years for disease-specific incidence. Over the follow-up period, 28,411 (5.7\%) participants developed CVD, 89,174 (17.8\%) respiratory disease [16,832 (3.4\%) COPD], and $69,675(13.9 \%)$ cancer $[10,586(2,1 \%)$ breast cancer and $9,944(2,0 \%)$ prostate cancer]. In addition, 31,073 (6.2\%) participants died: 10,774 (2.1\%) from CVD, 7,422 (1,5\%) from respiratory disease [1,985 (0.4\%) from COPD], and 17,154 (3.4\%) from cancer $[1,422(0.3 \%)$ from breast cancer and $1,127(0.2 \%)$ from prostate cancer].

Table 1 summarises the main characteristics of the participants by presence of osteoporosis and sex. In summary, people with osteoporosis were older, more likely to be
underweight, report short sleep duration, and were more likely to use corticosteroids and vitamin or mineral supplement use. Individuals with osteoporosis also had a higher prevalence of comorbidities including hypothyroidism, hyperthyroidism, Cushing's syndrome, rheumatoid arthritis, Crohn's disease, ulcerative colitis, liver disease, chronic kidney disease, CVD, COPD and cancer. In addition, men with osteoporosis had a higher prevalence of current smoking, were more likely to report long sleep duration and hypogonadism, and spent less time physically active than participants without osteoporosis. A greater proportion of women with osteoporosis had a history of eating disorders and were post-menopausal compared to women without osteoporosis.

The associations of osteoporosis with incidence and mortality outcomes in men are reported in Figure 1. After full adjustment for age, BMI, and multiple covariates, osteoporosis in men was associated with an $71 \%$ higher risk of all-cause mortality. Risk of CVD mortality was $68 \%$ higher in men with osteoporosis compared to those without the condition. The incidence and mortality risk for all respiratory diseases was 1.26 and 2.35 fold higher in men with osteoporosis compared to men without osteoporosis and, for COPD specifically, was 1.82 - and 3.64 --fold higher respectively in men with versus without osteoporosis. Cancer incidence, except to the fully adjusted model, was 1.26 -fold higher in men with osteoporosis in comparison to their counterparts without osteoporosis. No associations were observed for cancer mortality or, more especially, for prostate cancer incidence and mortality in men. When these analyses were re-run excluding participants with prevalent diseases at baseline the results held true for all-cause mortality, respiratory incidence and mortality, COPD incidence and mortality and cancer incidence in men, but the association was only significant in the minimally adjusted models for CVD mortality (Supplementary Table S1).

Women with osteoporosis showed in the initial analysis with the minimally adjusted model that they had an 15\% higher risk of all-cause mortality (Figure 2). The incidence of CVD was $24 \%$ higher in women with osteoporosis compared to those without the condition after adjustment for confounders. The incidence and mortality risk for all respiratory diseases was 1.23- and 1.31_-fold higher in women with osteoporosis compared to men without osteoporosis and, for COPD specifically, was 1.29- and 1.63-fold higher respectively, although for mortality risk only the least adjusted model was significant. Risk of breast cancer mortality was $60 \%$ higher in women with osteoporosis. No associations were observed for all cancer mortality or incidence. When these analyses were re-run, excluding participants with prevalent diseases at baseline, the results remained similar for CVD incidence, respiratory mortality and incidence and COPD incidence in women (Supplementary Table S1).

The male:female risk ratios are reported in Figure 3. Compared to women, men with osteoporosis had a higher risk of all-cause mortality and a higher risk of mortality from respiratory diseases and COPD. Men with osteoporosis also had a higher risk of cancer incidence compared to women.

## Discussion

The current study examined the associations between osteoporosis and a range of fatal and non-fatal health outcomes in men and women participating in UK Biobank, a large prospective population-based study. Our findings demonstrated differences by sex. Compared with women, osteoporosis in men was associated with a wider range of adverse
heath outcomes and had stronger associations. These findings suggest that drivers to osteoporosis are more harmful to general health in men than in women.

Our findings on all-cause mortality are in agreement with previous studies conducted in patients with osteoporosis, such as the Tromso study, where both men and women with osteoporosis had a higher risk of all-cause mortality ${ }^{(6)}$. However, no sex differences were observed between osteoporosis and all-cause mortality, probably due to the relatively small sample size of the Tromso study ( $n=6,565$ participants aged $50-79$ years). Consistent with our findings, previous systematic reviews have reported a higher risk of mortality for men after suffering from bone fracture compared to women ${ }^{(9,10)}$. Most of the studies included in these systematic reviews evaluated risk of death associated with osteoporotic fractures. However, one study conducted by Gutzwiller et al. (2018) showed that all-cause mortality was higher in men than women independent of bone fractures ${ }^{(11)}$.

Concerning cause-specific incidence and mortality, previous studies have reported that men and women with osteoporosis have a higher risk of respiratory diseases ${ }^{(24)}(25)$. Looker et al., using data from 3,275 older, non-Hispanic white adults from the third National Health and Nutrition Examination Survey, reported that participants with osteoporosis had a $38 \%$ increased risk of COPD mortality compared to those without osteoporosis; however, this study did not assess men and women separately ${ }^{(24)}$. Another study conducted in 5,779 men and women participating in the Rotterdam Study reported a strong association between bone mineral density and respiratory disease mortality in men (HR: 2.15 [ $95 \%$ CI: $1.05 ; 4.42]$ ) and women (HR 1.72 [ $95 \%$ CI: 1.16; 2.57]) ${ }^{(25)}$. Our data add to these findings by confirming an association when including non-fatal as well as fatal respiratory disease. Also, we were able to show that the associations with
respiratory disease were independent of age, BMI, and multiple comorbidities. Moreover, our study provided novel evidence that men with osteoporosis experienced a higher risk than women for respiratory and COPD incidence and mortality.

Osteoporosis was associated with a higher mortality risk from CVD in men only. However, when the analyses were restricted to participants without any chronic disease at baseline (CVD, respiratory diseases and cancer) the association in men remains significant only in the minimally adjusted model, suggesting they may have been due to confounding and reverse causation. These findings differed from studies which reported an association between osteoporosis and CVD outcomes ${ }^{(26,27)}$. However, these differences may reflect adjustment for fewer potential confounders, not performing a 2 year landmark analysis, or inclusion of people with existing chronic conditions, in contrast with our study. Our study also demonstrated that CVD incidence was higher only in osteoporotic women, which in this case still remains when excluding participants with prevalent diseases at baseline. Similar results from the Multiple Outcomes of Raloxifene Evaluation (MORE) trial also indicated that osteoporosis was a strong predictor of incident cardiovascular events in postmenopausal women independent of age and other traditional cardiovascular risk factors (adjusted $\mathrm{RR}=3.9,95 \% \mathrm{CI} 2.0-7.7$ ) ${ }^{(26)}$. Likewise, osteoporosis was also associated with angiographically-determined coronary artery disease in a retrospective study, comprised predominantly of women referred for angiography and bone mineral density assessment ${ }^{(27)}$.

Previous studies have suggested that cancer, especially breast and prostate cancer, is a risk factor for osteoporosis ${ }^{(28)}$, however, there is limited evidence on whether osteoporosis is a risk factor for cancer ${ }^{(28)}$. Our findings demonstrated an association
between osteoporosis and increased incidence of cancer in men, although this incidence disappeared when we adjusted for all confounding factors. Similarly, in women the association between osteoporosis and increased risk of breast cancer was also found. In this respect, after excluding participants without any chronic disease at baseline, these associations were no longer significant, but a trend was observed. Considering this and the reported potential risk factor of HRT for breast cancer, especially in older women, which is also commonly prescribed for osteoporosis ${ }^{(29)}$, studies involving a larger sample of participants with both diseases are needed.

Our study show that men with osteoporosis have a higher risk of developing respiratory diseases and COPD and dying from CVD, respiratory diseases and COPD compared with women with osteoporosis. Although the prevalence of osteoporosis is lower in men than in women, diagnosis of osteoposrosis in men should not be overlooked as it is an early indicator of long term morbidity and mortality irrespective of the risk of fractures.

Our study has some limitations. The UK Biobank has been shown to have a "healthy volunteer selection bias" and is not representative of the general population of the UK in several ways; therefore our estimates of prevalence and incidence, such as the low incidence of femoral fracture in this study, may not be generalisable to the UK or overseas population ${ }^{(30)}$, but effect sizes should still be generalisable. Moreover, we could not stratify our analyses by osteoporosis severity or osteopenia. Study strengths include that this is the largest study to address the associations between osteoporosis and a wide range of outcomes - cardiovascular and respiratory disease, cancer and all-cause mortality - by sex and adjusted by a large number of confounders. In addition, by performing a 2-year
land-mark analysis and sensitivity analyses excluding individuals with pre-existing disease, we were able to minimise the impact of reverse causation.

## Conclusion

In conclusion, our results show evidence of a strong association of osteoporosis in men with all-cause mortality, as well as incidence and mortality from respiratory disease, in particular COPD. In contrast, these associations were only observed for respiratory incidence and mortality and COPD incidence in women, in addition to the CVD incidence. Importantly, all these associations persisted after comprehensive adjustment for age, BMI, and comorbidities. While CVD mortality risk also appears greater in men with osteoporosis versus those without osteoporosis, this risk is likely mediated at least in part by pre-existing chronic disease; similarly to breast cancer mortality in women. Therefore, compared with women, osteoporosis in men was associated with a wider range of adverse health outcomes and had stronger associations. These findings suggest management of osteoporosis should include screening for associated cardiovascular and respiratory disease risk, especially in men.

## Acknowledgements

We are grateful to UK Biobank participants. This research has been conducted using the UK Biobank resource under application number 7155. Irene Rodríguez-Gómez received a postdoctoral contract from the Government of Castilla-La Mancha (2019/9601).

## References

1. Reginster J-Y, Burlet N. Osteoporosis: a still increasing prevalence. Bone. 2006;38(2):4-9.
2. Kauppi M. Determinants of bone strength and predictors of hip fracture among Finnish adults. Results from the Health 2000 Survey and the Mini-Finland Health Survey. 2015.
3. Consensus A. Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med. 1993;94(6):646-50.
4. Leboime A, Confavreux CB, Mehsen N, Paccou J, David C, Roux C. Osteoporosis and mortality. Joint Bone Spine. 2010;77:S107-S12.
5. Cauley JA. Public health impact of osteoporosis. J Gerontol A Biol Sci Med Sci. 2013;68(10):1243-51.
6. Hauger AV, Bergland A, Holvik K, Ståhle A, Emaus N, Strand BH. Osteoporosis and osteopenia in the distal forearm predict all-cause mortality independent of grip strength: 22-year follow-up in the population-based Tromsø Study. Osteoporos Int. 2018;29(11):2447-56.
7. Dragomirescu I, Llorca J, Gómez-Acebo I, Dierssen-Sotos T. A join point regression analysis of trends in mortality due to osteoporosis in Spain. Sci Rep. 2019;9(1):1-8.
8. Kado DM, Browner WS, Palermo L, Nevitt MC, Genant HK, Cummings SR. Vertebral fractures and mortality in older women: a prospective study. Arch Intern Med. 1999;159(11):1215-20.
9. Bello MO, Garla VV. Osteoporosis In Males. StatPearls [Internet]: StatPearls Publishing; 2019.
10. Schlaff WD. Introduction: An update on bone metabolism and osteoporosis. Fertil Steril. 2019;112(5):773-4.
11. Gutzwiller J-P, Richterich J-P, Stanga Z, Nydegger UE, Risch L, Risch M. Osteoporosis, diabetes, and hypertension are major risk factors for mortality in older adults: an intermediate report on a prospective survey of 1467 communitydwelling elderly healthy pensioners in Switzerland. BMC Geriatr
. 2018;18(1):115.
12. Lello S, Capozzi A, Scambia G. Osteoporosis and cardiovascular disease: an update. Gynecol Endocrinol. 2015;31(8):590-4.
13. Baldini V, Mastropasqua M, Francucci C, D'Erasmo E. Cardiovascular disease and osteoporosis. J Endocrinol Invest. 2005;28(10 Suppl):69-72.
14. Barzi A, Hershman DL, Till C, Barlow WE, Ramsey S, Lenz H-J, et al. Osteoporosis in colorectal cancer survivors: analysis of the linkage between SWOG trial enrollees and Medicare claims. Arch Osteoporos. 2019;14(1):83.
15. Rocca WA, Gazzuola Rocca L, Smith CY, Grossardt BR, Faubion SS, Shuster LT, et al. Loss of ovarian hormones and accelerated somatic and mental aging. Physiology. 2018;33(6):374-83.
16. Rodríguez-Gómez I, Mañas A, Losa-Reyna J, Rodríguez-Mañas L, Chastin SF, Alegre LM, et al. Associations between sedentary time, physical activity and bone health among older people using compositional data analysis. PloS one. 2018;13(10).
17. Rodríguez-Gómez I, Mañas A, Losa-Reyna J, Rodríguez-Mañas L, Chastin SF, Alegre LM, et al. Compositional influence of movement behaviours on bone health during ageing. Med Sci Sports Exerc. 2019.
18. Nunes BP, Flores TR, Mielke GI, Thume E, Facchini LA. Multimorbidity and mortality in older adults: a systematic review and meta-analysis. Arch Gerontol Geriatr. 2016;67:130-8.
19. Palmer LJ. UK Biobank: bank on it. The Lancet. 2007;369(9578):1980-2.
20. Sewankambo N, Tumwine JK, Tomson G, Obua C, Bwanga F, Waiswa P, et al. Enabling dynamic partnerships through joint degrees between low-and highincome countries for capacity development in global health research: experience from the Karolinska Institutet/Makerere University partnership. PLoS Med. 2015;12(2).
21. Celis-Morales CA, Welsh P, Lyall DM, Steell L, Petermann F, Anderson J, et al. Associations of grip strength with cardiovascular, respiratory, and cancer outcomes and all cause mortality: prospective cohort study of half a million UK Biobank participants. Bmj. 2018;361:k1651.
22. Liu B, Young H, Crowe FL, Benson VS, Spencer EA, Key TJ, et al. Development and evaluation of the Oxford WebQ, a low-cost, web-based method for assessment of previous 24 h dietary intakes in large-scale prospective studies. Public Health Nutr. 2011;14(11):1998-2005.
23. Anderson J, Celis-Morales C, Mackay D, Iliodromiti S, Lyall D, Sattar N, et al. Adiposity among 132479 UK Biobank participants; contribution of sugar intake vs other macronutrients. Int J Epidemiol. 2017;46(2):492-501.
24. Looker A. Relationship between femur neck bone mineral density and prevalent chronic obstructive pulmonary disease (COPD) or COPD mortality in older nonHispanic white adults from NHANES III. Osteoporos Int. 2014;25(3):1043-52.
25. Campos-Obando N, Castano-Betancourt MC, Oei L, Franco OH, Stricker BHC, Brusselle GG, et al. Bone mineral density and chronic lung disease mortality: the Rotterdam study. J Clin Endocrinol Metab. 2014;99(5):1834-42.
26. Tankó LB, Christiansen C, Cox DA, Geiger MJ, McNabb MA, Cummings SR. Relationship between osteoporosis and cardiovascular disease in postmenopausal women. J Bone Miner Res. 2005;20(11):1912-20.
27. Marcovitz PA, Tran HH, Franklin BA, O’Neill WW, Yerkey M, Boura J, et al. Usefulness of bone mineral density to predict significant coronary artery disease. Am J Cardiol. 2005;96(8):1059-63.
28. Drake MT. Osteoporosis and cancer. Curr Osteoporos Rep. 2013;11(3):163-70.
29. Cancer CGoHFiB. Type and timing of menopausal hormone therapy and breast cancer risk: individual participant meta-analysis of the worldwide epidemiological evidence. The Lancet. 2019;394(10204):1159-68.
30. Batty GD, Gale CR, Kivimäki M, Deary IJ, Bell S. Comparison of risk factor associations in UK Biobank against representative, general population based studies with conventional response rates: prospective cohort study and individual participant meta-analysis. BMJ. 2020;368.

Table 1. Cohort characteristics by osteoporosis and sex.

|  | Men |  |  |  | Women |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Non-Osteoporosis |  | Osteoporosis |  | Non-Osteoporosis |  | Osteoporosis |  |
| Sociodemographics |  |  |  |  |  |  |  |  |
| Total, n (\%) | 143251 | (47.7) | 523 | (11.4) | 157224 | (52.3) | 4074 | (88.6) |
| Age (years), mean (SD) | 56.9 | (8.2) | 60.4 | (6.8) | 56.0 | (8.1) | 62.2 | (5.4) |
| Deprivation Index, n (\%) |  |  |  |  |  |  |  |  |
| Lower | 49489 | (34.6) | 154 | (29.4) | 53124 | (33.8) | 1429 | (35.1) |
| Middle | 48130 | (33.6) | 171 | (32.7) | 53761 | (34.2) | 1346 | (33.0) |
| Higher | 45632 | (31.8) | 198 | (37.9) | 50339 | (32.0) | 1299 | (31.9) |
| Educational Level, n (\%) |  |  |  |  |  |  |  |  |
| College or University degree | 56868 | (47.5) | 190 | (47.6) | 60855 | (45.8) | 1337 | (43.1) |
| A levels/AS levels or equivalent | 14933 | (12.5) | 47 | (11.8) | 19467 | (14.6) | 443 | (14.3) |
| O levels/GCSEs or equivalent | 27017 | (22.6) | 88 | (22.1) | 37391 | (28.1) | 987 | (31.9) |
| NVQ / HND / HNC or equivalent | 20876 | (17.4) | 74 | (18.5) | 15250 | (11.5) | 332 | (10.7) |
| Ethnicity, n (\%) |  |  |  |  |  |  |  |  |
| White | 136318 | (95.2) | 508 | (97.1) | 149304 | (95.0) | 3933 | (96.6) |
| South Asian | 2835 | (2.0) | 7 | (1.3) | 2258 | (1.4) | 66 | (1.6) |
| Black | 1917 | (1.3) | 3 | (0.6) | 2581 | (1.6) | 17 | (0.4) |
| Chinese | 345 | (0.2) | 1 | (0.2) | 568 | (0.4) | 9 | (0.2) |
| Mixed background | 1836 | (1.3) | 4 | (0.8) | 2513 | (1.6) | 49 | (1.2) |
| Lifestyle |  |  |  |  |  |  |  |  |
| BMI, n (\%) |  |  |  |  |  |  |  |  |
| Underweight ( $<18.5$ ) | 304 | (0.2) | 7 | (1.3) | 1157 | (0.7) | 111 | (2.7) |
| Normal weight (18.5-<25.0) | 37318 | (26.0) | 205 | (39.2) | 65102 | (41.4) | 2130 | (52.3) |
| Overweight (25.0-<30.0) | 71869 | (50.2) | 213 | (40.7) | 57634 | (36.7) | 1338 | (32.8) |
| Obese ( $>30.0$ ) | 33760 | (23.6) | 98 | (18.8) | 33331 | (21.2) | 495 | (12.2) |
| Waist circumference (cm), mean (SD) | 96.3 | (10.9) | 95.0 | (11.9) | 83.8 | (12.1) | 81.0 | (11.2) |
| Smoking, n (\%) |  |  |  |  |  |  |  |  |
| Never | 71065 | (49.6) | 214 | (40.9) | 94361 | (60.0) | 2397 | (58.8) |
| Previous | 55819 | (39.0) | 221 | (42.3) | 49896 | (31.7) | 1361 | (33.4) |
| Current | 16367 | (11.4) | 88 | (16.8) | 12967 | (8.3) | 316 | (7.8) |
| Dairy Products, n (\%) |  |  |  |  |  |  |  |  |
| Full cream | 12302 | (8.6) | 52 | (10.0) | 7356 | (4.7) | 173 | (4.2) |
| Semi-skimmed | 97297 | (67.9) | 324 | (62.0) | 96197 | (61.2) | 2333 | (57.3) |
| Skimmed | 23987 | (16.7) | 88 | (16.8) | 37535 | (23.9) | 1053 | (25.8) |
| Soya | 3731 | (2.6) | 23 | (4.4) | 8681 | (5.5) | 268 | (6.6) |
| Other type | 1575 | (1.1) | 8 | (1.5) | 2152 | (1.4) | 76 | (1.9) |
| Never/rarely consumed | 4359 | (3.1) | 28 | (5.3) | 5303 | (3.3) | 171 | (4.2) |
| Processed Meat, $\mathrm{n}(\%)$ |  |  |  |  |  |  |  |  |
| Never | 8000 | (8.6) | 56 | (10.7) | 20452 | (13.0) | 660 | (16.2) |
| Less than once a week | 31159 | (21.8) | 116 | (22.2) | 60388 | (38.4) | 1593 | (39.1) |
| Once a week | 42779 | (29.9) | 142 | (27.2) | 44833 | (28.5) | 1075 | (26.4) |
| 2-4 times a week | 52358 | (36.5) | 177 | (33.8) | 28873 | (18.4) | 669 | (16.4) |
| 5-6 times a week | 7183 | (5.0) | 23 | (4.4) | 2154 | (1.4) | 61 | (1.5) |
| Once or more daily | 1772 | (1.2) | 9 | (1.7) | 524 | (0.3) | 16 | (0.4) |
| Red meat (portion/week), mean (SD) | 2.2 | (1.5) | 2.2 | (1.6) | 1.9 | (1.3) | 1.9 | (1.4) |
| Fruit and Vegetables (g), mean (SD) | 313.7 | (197.9) | 322.2 | (206.9) | 361.0 | (189.6) | 377.4 | (197.1) |
| Alcohol, $\mathrm{n}(\%)$ (\%) |  |  |  |  |  |  |  |  |
| Daily or almost daily | 37278 | (26.0) | 133 | (25.4) | 26332 | (16.7) | 694 | (17.0) |
| Three or four times a week | 38724 | (27.0) | 106 | (20.3) | 34014 | (21.6) | 802 | (19.7) |
| Once or twice a week | 36968 | (25.8) | 128 | (24.5) | 41035 | (26.1) | 958 | (23.5) |
| One to three times a month | 12428 | (8.7) | 50 | (9.5) | 20229 | (12.9) | 462 | (11.3) |


| Special occasions only | 9755 | (6.8) | 47 | (9.0) | 22302 | (14.2) | 650 | (16.0) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Never | 8098 | (5.7) | 59 | (11.3) | 13312 | (8.5) | 508 | (12.5) |
| Sleep, n (\%) |  |  |  |  |  |  |  |  |
| Normal 7-9 h/d | 106057 | (74.0) | 316 | (60.4) | 118215 | (75.2) | 2900 | (71.2) |
| Short sleep $<7 \mathrm{~h} / \mathrm{d}$ | 35180 | (24.6) | 157 | (30.0) | 36620 | (23.3) | 1099 | (27.0) |
| Long sleep $>9 \mathrm{~h} / \mathrm{d}$ | 2014 | (1.4) | 49 | (9.4) | 2389 | (1.5) | 75 | (1.8) |
| TV viewing (h), men (SD) | 2.7 | (1.5) | 1 | (0.2) | 2.7 | (1.5) | 2.9 | (1.6) |
| Total PA (min/week), mean (SD) | 3088.7 | (3359.2) | 2672.5 | (2996.4) | 2656.9 | (2751.5) | 2659.1 | (2736.4) |
| Handgrip Strength (kg), mean (SD) | 39.6 | (8.7) | 35.1 | (9.0) | 23.6 | (6.1) | 20.4 | (5.8) |
| Health |  |  |  |  |  |  |  |  |
| SBP (mmHg), mean (SD) | 140.9 | (17.4) | 139.2 | (18.1) | 134.6 | (19.1) | 137.0 | (19.2) |
| C-reactive protein ( $\mathrm{mg} / \mathrm{L}$ ), mean (SD) | 2.3 | (4.1) | 3.2 | (5.4) | 2.5 | (4.1) | 2.5 | (4.4) |
| HDL cholesterol (mmol/L), mean(SD) | 1.3 | (0.3) | 1.3 | (0.4) | 1.6 | (0.4) | 1.7 | (0.4) |
| Vitamin D (nmol/L), mean (SD) | 49.9 | (21.2) | 58.9 | (22.3) | 49.6 | (20.8) | 62.2 | (22.3) |
| Steroid, n (\%) | 1523 | (1.1) | 50 | (9.6) | 1642 | (1.0) | 152 | (3.7) |
| Vitamin/mineral supplements, n (\%) | 7714 | (5.4) | 43 | (8.2) | 11525 | (7.3) | 394 | (9.7) |
| Comorbidities, n (\%) | 0.1 | (0.4) | 0.3 | (0.5) | 0.1 | (0.4) | 0.2 | (0.5) |
| CVD, n (\%) | 48276 | (33.7) | 198 | (37.9) | 38367 | (24.4) | 1104 | (27.2) |
| COPD, n (\%) | 2206 | (1.5) | 25 | (4.9) | 1935 | (1.2) | 116 | (2.9) |
| Cancer, n (\%) | 8527 | (6.0) | 62 | (11.9) | 13390 | (8.5) | 598 | (14.7) |
| Hypothyroidism, n (\%) | 2256 | (1.6) | 12 | (2.3) | 11455 | (7.3) | 384 | (9.4) |
| Hyperthyroidism, n (\%) | 450 | (0.3) | 2 | (0.4) | 1769 | (1.1) | 67 | (1.6) |
| Cushing's syndrome, n (\%) | 3 | (0.0) | 1 | (0.2) | 33 | (0.0) | 5 | (0.1) |
| Femoral fracture, n (\%) | 24 | (0.0) | 0 | (0.0) | 16 | (0.0) | 0 | (0.0) |
| Eating disorders, n (\%) | 10 | (0.0) | 0 | (0.0) | 198 | (0.1) | 19 | (0.5) |
| Rheumatoid arthritis, n (\%) | 939 | (0.7) | 14 | (2.7) | 1865 | (1.2) | 101 | (2.5) |
| Inflammatory bowel disease, n (\%) | 44 | (0.0) | 0 | (0.0) | 52 | (0.0) | 3 | (0.1) |
| Crohn's disease, n (\%) | 380 | (0.3) | 14 | (2.7) | 457 | (0.3) | 39 | (1.0) |
| Ulcerative colitis, n (\%) | 726 | (0.5) | 19 | (3.6) | 781 | (0.5) | 37 | (0.9) |
| Liver disease, n (\%) | 265 | (0.2) | 8 | (1.5) | 261 | (0.2) | 23 | (0.6) |
| Kidney chronic disease, n (\%) | 352 | (0.3) | 8 | (1.5) | 319 | (0.2) | 16 | (0.4) |
| Diabetes, n (\%) | 9004 | (6.3) | 29 | (5.5) | 4871 | (3.1) | 126 | (3.1) |
| Hypogonadism, n (\%) | 663 | (0.5) | 5 | (1.0) |  | - |  | - |
| Menopause, n (\%) |  | - |  | - | 93446 | (70.1) | 3408 | (97.3) |

BMI, body mass index; CVD, cardiovascular disease; COPD, chronic obstructive pulmonary cholesterol.


Figure legends

Figure 1. Cox proportional hazard model of the association of osteoporosis with allcause mortality, CVD, respiratory diseases and cancer mortality and incidence in men.

Data are presented as adjusted HR and $95 \% \mathrm{CI}$. The reference group were men without osteoporosis at baseline assessment. Model 0 was adjusted for age, deprivation index, ethnicity and education. Model 1 additionally adjusted by BMI, smoking, grip strength,
total physical activity, sedentary time, sleep duration and dietary intake. Model 2 was adjusted as in model 1 but also included systolic blood pressure, C-reactive protein, cholesterol, medication (including diuretic), vitamin D , vitamin or calcium and micronutrients supplementation, corticosteroid, hormone replacement therapy (HRT), bone fractures, and prevalent comorbidities. Participants with prevalent CVD, respiratory diseases and cancer at baseline were excluded from the analyses if the diiseases was used as an outcome (i.e. for the CVD mortality and incidence outcomes, participants with baseline medical diagnoses of heart diseases were excluded). Significant associations ( $p<$ 0.05 ) are highlighted in bold. CVD, cardiovascular disease; COPD, chronic obstructive pulmonary disease; HR , hazard ratio; CI , confidence interval.

Women


Figure 2. Cox proportional hazard model of the association of osteoporosis with allcause mortality, CVD, respiratory diseases and cancer mortality and incidence in women.

The reference group were men without osteoporosis at baseline assessment. Model 0 was adjusted for age, deprivation index, ethnicity and education. Model 1 additionally adjusted by BMI, smoking, grip strength, total physical activity, sedentary time, sleep duration and dietary intake. Model 2 was adjusted as in model 1 but also included systolic
blood pressure, C-reactive protein, cholesterol, medication (including diuretic), vitamin D , vitamin or calcium and micronutrients supplementation, corticosteroid, hormone replacement therapy (HRT), bone fractures, menopause and prevalent comorbidities. Participants with prevalent CVD, respiratory diseases and cancer at baseline were excluded from the analyses if the diiseases was used as an outcome (i.e. for the CVD mortality and incidence outcomes, participants with baseline medical diagnoses of heart diseases were excluded). Significant associations ( $p<0.05$ ) are highlighted in bold. CVD, cardiovascular disease; COPD, chronic obstructive pulmonary disease; HR, hazard ratio; CI, confidence interval.


Figure 3. Men-to-women HR on all-cause mortality, CVD, respiratory diseases and cancer mortality and incidence.

Data are presented as ratio of the HR of men-to-women and their 95\% CI. Models were adjusted for all covariates included in the model 2 . HR above 1 suggests a higher risk in men compared with women, whereas HR below 1 indicates a higher risk in women compared with men. Analyses were adjusted for age, deprivation index, ethnicity, education, BMI, smoking, grip strength, total physical activity, sedentary time, sleep duration, dietary intake, systolic blood pressure, C-reactive protein, cholesterol, medication (including diuretic), vitamin D , vitamin or calcium and micronutrients supplementation, corticosteroid, hormone replacement therapy, bone fractures and prevalent comorbidities. CVD, cardiovascular disease; COPD, chronic obstructive pulmonary disease; HR , hazard ratio; CI, confidence interval

566

Supplementary Table 1. Cox proportional hazard model of the association with all-cause mortality, CVD, respiratory diseases and cancer mortality and incidence stratified by sex and with participants with prevalent diseases at baseline excluded (CVD, respiratory diseases and cancer).

|  | Men |  |  | Women |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | HR | 95\% CI | P-value | HR | 95\% CI | P-value |
| All-cause Mortality |  |  |  |  |  |  |
| Model 0 | 2.50 | $(1.85$; 3.38) | <0.0001 | 1.12 | (0.94; 1.35) | 0.213 |
| Model 1 | 2.28 | $(1.69$; 3.08) | <0.0001 | 1.09 | (0.91; 1.10) | 0.343 |
| Model 2 | 2.02 | (1.49; 2.76) | <0.0001 | 1.12 | (0.92; 1.36) | 0.275 |
| CVD Mortality |  |  |  |  |  |  |
| Model 0 | 1.67 | $(1.07$; 2.63) | 0.025 | 1.12 | (0.86; 1.47) | 0.397 |
| Model 1 | 1.57 | (0.99; 2.46) | 0.052 | 1.14 | (0.87 ; 1.49) | 0.337 |
| Model 2 | 1.47 | (0.93; 2.32) | 0.095 | 1.10 | (0.82; 1.48) | 0.524 |
| CVD Incidence |  |  |  |  |  |  |
| Model 0 | 1.22 | $(0.88$; 1.70) | 0.231 | 1.27 | $(1.11$; 1.47) | 0.001 |
| Model 1 | 1.21 | (0.87; 1.68) | 0.249 | 1.32 | $(1.14$; 1.52) | <0.0001 |
| Model 2 | 1.16 | $(0.83$; 1.61) | 0.382 | 1.34 | $(1.14$; 1.56) | <0.0001 |
| Respiratory Mortality |  |  |  |  |  |  |
| Model 0 | 2.79 | $(1.92$; 4.05) | <0.0001 | 1.44 | $(1.11$; 1.87) | 0.007 |
| Model 1 | 2.31 | $(1.59$; 3.36) | <0.0001 | 1.34 | $(1.03$; 1.74) | 0.030 |
| Model 2 | 2.07 | $(1.41$; 3.02) | <0.0001 | 1.29 | (0.96; 1.74) | 0.089 |
| Respiratory Incidence |  |  |  |  |  |  |
| Model 0 | 1.44 | $(1.20 ; 1.72)$ | <0.0001 | 1.27 | $(1.18$; 1.37) | <0.0001 |
| Model 1 | 1.37 | $(1.15$; 1.65) | 0.001 | 1.29 | $(1.20$; 1.39) | <0.0001 |
| Model 2 | 1.26 | $(1.05 ; 1.51)$ | 0.012 | 1.23 | $(1.13$; 1.33) | <0.0001 |
| COPD Mortality |  |  |  |  |  |  |
| Model 0 | 4.31 | $(2.14$; 8.69) | <0.0001 | 1.22 | (0.62; 2.39) | 0.564 |
| Model 1 | 3.47 | $(1.71$; 7.01) | 0.001 | 1.02 | (0.52; 2.02) | 0.945 |
| Model 2 | 3.02 | $(1.47$; 6.21) | 0.003 | 1.09 | (0.51; 2.31) | 0.825 |
| COPD Incidence |  |  |  |  |  |  |
| Model 0 | 2.43 | $(1.79$; 3.31) | <0.0001 | 1.40 | $(1.19$; 1.65) | <0.0001 |
| Model 1 | 2.16 | $(1.59$; 2.94) | <0.0001 | 1.35 | $(1.14$; 1.59) | <0.0001 |
| Model 2 | 1.88 | (1.37 ; 2.57) | <0.0001 | 1.22 | $(1.01$; 1.47) | 0.039 |
| All Cancer Mortality |  |  |  |  |  |  |
| Model 0 | 1.17 | $(0.77$; 1.79) | 0.451 | 0.96 | $(0.78$; 1.17) | 0.661 |
| Model 1 | 1.15 | $(0.75$; 1.74) | 0.522 | 0.96 | $(0.78$; 1.18) | 0.693 |
| Model 2 | 1.11 | (0.73; 1.70) | 0.617 | 1.03 | $(0.83$; 1.27) | 0.803 |
| All Cancer Incidence |  |  |  |  |  |  |
| Model 0 | 1.26 | $(1.03$; 1.56) | 0.028 | 0.95 | $(0.86$; 1.05) | 0.340 |
| Model 1 | 1.28 | $(1.04$; 1.58) | 0.022 | 0.97 | $(0.88$; 1.07) | 0.533 |
| Model 2 | 1.20 | (0.97; 1.48) | 0.090 | 0.98 | (0.88; 1.09) | 0.657 |
| Breast/Prostate Cancer Mortality |  |  |  |  |  |  |
| Model 0 | 1.02 | $(0.25$; 4.09) | 0.978 | 1.57 | $(0.89$; 2.75) | 0.117 |
| Model 1 | 1.04 | (0.26; 4.19) | 0.952 | 1.64 | (0.93; 2.87) | 0.087 |


| Model 2 | 1.10 | $(0.27 ; 4.45)$ | 0.895 | 1.65 | $(0.93 ; 2.94)$ | 0.089 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Breast/Prostate Cancer Incidence |  |  |  |  |  |  |
| Model 0 | 1.00 | $(0.65 ; 1.53)$ | 0.982 | 0.91 | $(0.74 ; 1.11)$ | 0.335 |
| Model 1 | 1.02 | $(0.67 ; 1.57)$ | 0.921 | 0.94 | $(0.77 ; 1.15)$ | 0.572 |
| Model 2 | 0.99 | $(0.65 ; 1.53)$ | 0.980 | 0.99 | $(0.80 ; 1.23)$ | 0.951 |

567

For these analyses, we ran three incremental models that included different covariates. Model 0 included sociodemographic covariates: age, deprivation index, ethnicity and educational level. Model 1 was adjusted as in model 0 but also included lifestyle factors: BMI, smoking, grip strength, total physical activity, sedentary time, sleep duration and dietary intake of dairy products, alcohol, fruit and vegetables, red meat and processed meat. Model 2 was the same as Model 1 but also included health markers: systolic blood pressure, C-reactive protein, cholesterol, medication (including diuretic), vitamin D, vitamin or calcium and micronutrients supplementation, corticosteroid, hormone replacement therapy (HRT), bone fractures and prevalent comorbidities including hypothyroidism, hyperthyroidism, eating disorders, Cushing's syndrome, diabetes, rheumatoid arthritis, inflammatory bowel disease, Crohn's disease, ulcerative colitis, liver disease, kidney chronic disease, and femoral fractures at baseline. In this last model, hypogonadism and menopause were also included as sensitivity analyses for men and women, respectively. To minimise the potential contribution of reverse causality, all analyses were conducted using a landmark analysis excluding events occurring in the first 2-years of follow-up. Moreover, all participants with prevalent CVD, respiratory diseases and cancer at baseline were excluded from all analyses.

