Human olfactory mesenchymal stromal cell transplantation ameliorates experimental autoimmune encephalomyelitis revealing an inhibitory role for IL16 on myelination

Lindsay, S. L. , Molęda, A. M., MacLellan, L. M., Keh, S. M., McElroy, D. E., Linington, C. , Goodyear, C. S. and Barnett, S. C. (2022) Human olfactory mesenchymal stromal cell transplantation ameliorates experimental autoimmune encephalomyelitis revealing an inhibitory role for IL16 on myelination. Acta Neuropathologica Communications, 10, 12. (doi: 10.1186/s40478-022-01316-9) (PMID:35093166) (PMCID:PMC8800340)

[img] Text
263415.pdf - Published Version
Available under License Creative Commons Attribution.

13MB

Abstract

One of the therapeutic approaches for the treatment of the autoimmune demyelinating disease, multiple sclerosis (MS) is bone marrow mesenchymal stromal cell (hBM-MSCs) transplantation. However, given their capacity to enhance myelination in vitro, we hypothesised that human olfactory mucosa-derived MSCs (hOM-MSCs) may possess additional properties suitable for CNS repair. Herein, we have examined the efficacy of hOM-MSCs versus hBM-MSCs using the experimental autoimmune encephalomyelitis (EAE) model. Both MSC types ameliorated disease, if delivered during the initial onset of symptomatic disease. Yet, only hOM-MSCs improved disease outcome if administered during established disease when animals had severe neurological deficits. Histological analysis of spinal cord lesions revealed hOM-MSC transplantation reduced blood–brain barrier disruption and inflammatory cell recruitment and enhanced axonal survival. At early time points post-hOM-MSC treatment, animals had reduced levels of circulating IL-16, which was reflected in both the ability of immune cells to secrete IL-16 and the level of IL-16 in spinal cord inflammatory lesions. Further in vitro investigation revealed an inhibitory role for IL-16 on oligodendrocyte differentiation and myelination. Moreover, the availability of bioactive IL-16 after demyelination was reduced in the presence of hOM-MSCs. Combined, our data suggests that human hOM-MSCs may have therapeutic benefit in the treatment of MS via an IL-16-mediated pathway, especially if administered during active demyelination and inflammation.

Item Type:Articles
Additional Information:The authors gratefully acknowledge the funding from the Chief Scientist Office (Grant number: TCS1922/CSO), the Multiple Sclerosis Society (Grant number: 056/MSS) and the Medical Research Council (Grant number: MR/V00381X/1/MRC).
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Barnett, Professor Susan and Lindsay, Dr Susan and Linington, Professor Christopher and McElroy, Dr Daniel and Keh, Miss Siew and Maclellan, Dr Lindsay and Goodyear, Professor Carl
Authors: Lindsay, S. L., Molęda, A. M., MacLellan, L. M., Keh, S. M., McElroy, D. E., Linington, C., Goodyear, C. S., and Barnett, S. C.
College/School:College of Medical Veterinary and Life Sciences > School of Infection & Immunity
College of Medical Veterinary and Life Sciences > School of Medicine, Dentistry & Nursing
Research Centre:College of Medical Veterinary and Life Sciences > School of Infection & Immunity > Centre for Immunobiology
Journal Name:Acta Neuropathologica Communications
Publisher:BioMed Central
ISSN:2051-5960
ISSN (Online):2051-5960
Copyright Holders:Copyright © 2022 The Authors
First Published:First published in Acta Neuropathologica Communications 10: 12
Publisher Policy:Reproduced under a Creative Commons License

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
309989Heparin mimetics: Novel non-anticoagulant compounds to promote CNS repairSusan BarnettMedical Research Council (MRC)MR/V00381X/1III - Immunology