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Abstract—Proactive reconfiguration of network slices accord-
ing to uncertain traffic demands is essential to improve network
resource utilization while ensuring service quality in 5G-and-
beyond systems. Existing researches on network slice reconfigu-
ration are either model-driven or data-driven methods. However,
model-driven methods may cause resource over-provisioning due
to a lack of prediction mechanism, while data-driven methods are
unrealistic in inter-slice reconfiguration that involves costly and
time-consuming operations such as VNF migration. To address
these issues, in this paper, we propose a Hybrid Model-Data
driven (HMD) framework that intelligently performs inter-slice
reconfiguration by leveraging prediction interval and robust
optimization. We design a Prediction Interval-oriented Predictor
(PIP) to produce a prediction interval that can bracket the
future traffic demand with a prespecified probability. Based on
the prediction interval, we design an inter-slice reconfiguration
scheme (named box optimizer) to perform fast inter-slice re-
configurations. To tackle the over-conservativeness of the box
optimizer, we further design the ellipsoid optimizer with better
optimality at a cost of increased complexity. Numerical results
demonstrate that the proposed framework can provide high
robustness with low power consumption. Meanwhile, the trade-
off between the power consumption and the realized robustness
can be flexibly adjusted according to the type of slice and the
level of traffic demand fluctuations.

Index Terms—network slice reconfiguration, dynamic network
slicing, prediction interval, robust optimization

I. INTRODUCTION

ETWORK slicing is a key technology to support the

diversified service provisioning in 5G-and-beyond and
6G networks [2]. Based on Software Defined Network (SDN)
and Network Function Virtualization (NFV), network slicing
enables on-demand, fully-automated provisioning of services
according to the users’ traffic demands. However, traffic de-
mands of a network slice are usually uncertain and fluctuate
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over time. Resource slicing by only taking into account the
nominal traffic demand or Peak Hour Interval (PHI) demand
without considering the future traffic demand variations may
cause a mismatch between resource provisioning and traffic
demands [3]. Thus, in order to meet subscribers’ ever-changing
traffic demands, it is essential to reconfigure network slices
adaptively.

A network slice is defined by its Service Function Chain
(SFC), which is composed of a number of sequentially
interconnected Virtual Network Functions (VNFs) [4]. The
reconfiguration of network slices can be either intra-slice
reconfiguration or inter-slice reconfiguration. Intra-slice re-
configuration is performed at small time scales which adjusts
the flow path and the association of VNF instance of the
flows within individual network slices [5], while inter-slice
reconfigurations are performed at large time scales which
involves resource scaling between multiple network slices(i.e.,
slice breathing [6]) and VNF migration (i.e., slice mobility
[7]). Some recent work such as [4], [8] propose to adaptively
reconfigure network slices to meet users’ instantaneous traffic
demands. However, due to a lack of prediction mechanism,
these reactive schemes may cause Service Level Agreement
(SLA) violations since inter-slice reconfiguration involves
heavyweight operations such as VNF scaling and migration
[9]. Moreover, these operations may cause service interruption
due to the time-consuming data transfer process in the migra-
tion of virtual machines (or containers) and the associated user
data. Therefore, in order to overcome Quality of Service (Qos)
degradation, it is of vital importance to reconfigure network
slices according to traffic demands in a proactive fashion.
Recently, two kinds of methods are widely adopted to perform
proactive slice reconfigurations: model-driven methods and
data-driven methods.

To tackle the uncertain demand issue, many researchers
have proposed model-driven solutions which adopt Robust
Optimization (RO) to perform inter-slice reconfiguration [10],
[11]. In these investigations, it is assumed that the future traffic
demand is within an wuncertainty set, based on which a RO
model regarding network slicing reconfiguration is formulated.
The solution of the RO model is “robust” enough such that
any constraints in the uncertainty set can be satisfied. However,
since the uncertainty sets used in these work are hand-crafted
rather than prediction-generated, their width are usually too
large and may produce over-conservative solutions. Moreover,
due to a lack of prediction mechanism, the width of the



uncertainty set in these investigations cannot be adaptively
adjusted according to the traffic fluctuations, which will cause
resource over-provisioning even in mild uncertainty cases.

Recently, with the advancement of machine learning, a
number of researchers seek to reconfigure network slices with
data-driven methods by exploiting various machine learning
techniques [12], [13]. These methods usually exploit the
predict-then-optimize paradigm which first predicts the traffic
demand and then optimizes the network slice reconfiguration
problem based on the predictions. However, the predictors
employed in these investigations are all point predictors, which
are unable to provide any indication about the accuracy of
their predictions. Moreover, since traffic demand is usually
affected by various stochastic events, point predictors are
usually unreliable and inaccurate in traffic demand forecasting
[14]. This will lead to the inaccuracy of the network slice re-
configuration model, thus the obtained reconfiguration solution
may not accurately match the future traffic demand, resulting
in resource over-provisioning or SLA violation.

Unlike point predictors that predict the traffic demand
without indicating any accuracy, prediction interval-oriented
predictors [14] generate an interval that can bracket future
traffic demand with a prespecified probability called confi-
dence level (1 — ), which can be flexibly specified according
to the type of network slice. Moreover, since the traffic
demand of a network slice fluctuates with short or long-
lived effects (e.g., the mobility of end users and changes in
the number of served users), the aggregated traffic demands
exhibit periodicity and variability [15], which can be well
captured by the prediction intervals. These observations inspire
us to exploit prediction intervals for designing better schemes
for inter-slice reconfiguration.

In this paper, we propose a Hybrid Model-Data driven
(HMD) framework to proactively reconfigure network slices
under demand uncertainty. In this framework, we propose a
prediction scheme that forecasts the aggregate traffic demands
of individual network slices and produces a prediction interval
with prespecified accuracy. Based on the prediction inter-
val, we formulate the inter-slice reconfiguration problem as
an RO model. Finally, through mathematical transformations
and deriving its robust counterpart (RC), the RO model is
equivalently transformed into a Mixed Integer Linear Program
(MILP) as well as a Mixed Integer Second Order Cone
Program (MISOCP) and is solved by a state-of-the-art solver.

Our contributions can be summarized as follows:

1) We propose to employ Gated Recurrent Unit (GRU) and
the bootstrap method to design the Prediction Interval-oriented
Predictor (PIP), which generates prediction intervals for the
future traffic demands. Compared with point predictors, PIP
can avoid making risky slice reconfiguration decisions under
demand uncertainty.

2) By jointly leveraging prediction interval and robust
optimization, we design a hybrid model-data driven framework
that proactively reconfigures network slices. The combination
of prediction interval and robust optimization opens the door
for further attempts to address the uncertainty issues in net-
work slicing.

3) We present numerical results that evaluate the perfor-
mance of the HMD framework based on real traffic data,
and obtain new insights that will help Infrastructure providers
(InPs) make flexible trade-offs between the power consump-
tion and the realized robustness when performing inter-slice
reconfigurations under uncertain traffic demands.

The remainder of the paper is organized as follows. Section
IT reviews the related work on network slice reconfiguration.
In Section III, an overview of the proposed HMD framework
is provided. We elaborate the design of PIP in Section IV.
In Section V, we present the system model and problem
formulation. In Section VI, we derive the RC of the problem
and its solution. In Section VII, we present the numerical
results, and finally we conclude the paper in Section VIII.

II. RELATED WORK

Recently, there has been some research work on the problem
of network slice reconfiguration, which can be roughly clas-
sified into three categories, i.e., model-driven methods, data-
driven methods and hybrid model-data-driven methods. In this
section, we overview the researches that are most relevant to
our work.

A. Model-Driven Methods

Model-driven slice reconfiguration researches can be further
classified into two classes: reactive schemes [4], [8], [16] and
proactive schemes [10], [17]. Reactive slice reconfigurations
are performed after a mismatch between resource demand and
provisioning occurs, while proactive reconfigurations are per-
formed before the mismatch takes place. In reactive schemes,
the network slices are reconfigured to meet their instantaneous
traffic demands. Wang et al. [4] proposed a hybrid slice
reconfiguration model to avoid a mismatch between slices’
demands and resource provisioning. Based on column genera-
tion, the authors of [8] proposed to implement a make-before-
break scheme to perform inter-slice reconfiguration with aim
of reducing network operational costs. In [16], the authors
proposed a dynamic resource allocation scheme for dynamic
5G network slicing for a vehicular emergency scenario.

For proactive network slice reconfiguration, it is of vital
importance to exploit the information about future traffic
demands. The authors of [10] proposed a light-robustness
optimization model for network slicing, where the future traffic
demand is modeled as a random variable that takes values in
an interval following an unknown distribution. In [17], the
authors proposed a Mixed Integer Program (MIP) model for
the network slice design and deployment problem, in which the
I"-robust uncertainty set is used to emulate the uncertain traffic
demands. However, due to the lack of prediction mechanism,
the uncertainty sets in these researches are too conservative
and thus may lead to resource over-provisioning.

B. Data-Driven Methods

Data-driven approaches use data as input to make end-to-
end slice reconfiguration decisions [5], [18]-[20]. The authors
of [18] proposed an intelligent resource scheduling strategy
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Fig. 1. The architecture of the HMD framework.

by exploiting a collaborative learning framework that consists
of Deep Learning (DL) in conjunction with Reinforcement
Learning (RL). In [19], the authors addressed the demand-
aware inter-slice resource management in network slicing by
using DQN within which a discrete normalized advantage
function is introduced to avoid unnecessary evaluations of
Q-value. To maximize the long-term average revenue under
uncertain demands of network slices, the authors of [20]
proposed a dynamic resource management framework where
DRL is adopted with an extra speedup mechanism. In our
previous work [5], we modeled the intra-slice reconfiguration
problem as an MDP and solved it by using Branching Dueling
Q-network. Since data-driven methods are data-intensive and
require numerous trial-and-error interactions with the environ-
ment, it is unrealistic to adopt them in inter-slice reconfigura-
tion that involves costly and time-consuming operations such
as VNF migration.

C. Hybrid Model-Data Driven Methods

To overcome the drawbacks of pure model-driven methods
and data-driven methods, a simple yet effective idea is to
combine the advantages of these two methods, resulting in the
hybrid model-data driven methods for network slice reconfig-
uration [12], [13], [21]. These solutions usually exploit the
predict-then-optimize paradigm. In [12], the authors address
the network slice admission control and traffic scheduling
based on the predictions of future traffic by using Holt-Winters
theory. Whereas in [13], the authors chose to predict the
number of VNF instances required to satisfy the uncertain
traffic demands. Based on the prediction, an Integer Linear
Programming (ILP) is solved to perform proactive VNF relo-
cation with aim of minimizing end-to-end delay. In contrast,
in [21], radio slices capacity is predicted, and the prediction
results are used to assist the subsequent network slice resource
allocation.

However, these solutions are not adequate since only point
prediction is employed, resulting in a lack of confidence for the
subsequent slice reconfiguration. To the best of our knowledge,
interval prediction is rarely exploited in existing hybrid model-
data driven methods to address the demand uncertainty in
network slicing.

III. OVERVIEW OF THE HMD FRAMEWORK

The architecture of our proposed HMD framework is shown
in Fig. 1. In HMD framework, inter-slice reconfigurations

Substrate Network e

between multiple network slices are performed periodically
by the management and orchestration (MANO) [22] entity at
discrete time steps. In our considered scenario, a number of
network slices of different service types have been deployed
over a shared common substrate network. During the lifecycle
of these slices, their aggregated traffic demands are dynamic
due to the ever-changing demands and possible mobility of
the slice users. Therefore, these slices need to be adaptively
reconfigured to match the ever-changing demands. To this end,
for individual slices, we first train a corresponding predictor
(i.e., PIP) by the historical traffic data to produce prediction
intervals of the future demands. Thereafter, based on the
prediction interval produced by the predictor, an optimization
method is designed to make proactive reconfiguration deci-
sions on these slices.

A. PIP Design Principles

For individual network slices, a PIP is designed to forecast
its traffic demands in future time windows. The aggregated
traffic demand of the subscribed users in a network slice is
essentially a time series that exhibits distinct long-term trends
with strong periodicities [15]. Therefore, it can be predicted
by the popular Recurrent Neural Networks (RNNs), such as
LSTM, GRU, etc.

However, traditional RNN-based predictors only generate
point predictions, thus they suffer from two limitations despite
their popularity in traffic demand prediction. First, RNN-based
predictors produce unsatisfactory prediction accuracy under
high traffic uncertainty. This is owing to the unpredictability of
short-lived events, which cause traffic bursts beyond the overall
trend [14]. Second, the point predictions generated by RNNs
do not provide any information about their accuracy. These
drawbacks make RNN-based predictors unable to provide
sufficiently accurate traffic predictions and the credibility for
subsequent slice reconfigurations.

Instead, prediction interval offers an upper bound and a
lower bound that can bracket future traffic demand with a
prescribed probability, thereby making the predictions more
meaningful and reliable for the subsequent slice reconfigura-
tions. Such prediction intervals can not only produce predic-
tion results for future traffic demands, but also can provide the
accuracy of the prediction. Therefore, instead of pursuing an
unreliable point prediction, we propose to design an interval
predictor for individual network slices. At present, a variety of
methods have been proposed to generate prediction intervals,
such as bootstrap method, Mean-Variance Estimation (MVE)



method, etc [23]. In the design of PIP, due to its adaptability
and stability in time series prediction [14], we choose the
bootstrap method to produce prediction intervals for individual
slices.

B. The Overall Design of the Optimizer

The optimizer is designed to make proactive inter-slice
reconfiguration decisions based on the prediction intervals
provided by the PIP. In the design of the optimizer, two kinds
of uncertainties are considered. The first uncertainty comes
from the prediction intervals produced by PIP, which repre-
sents the possible realizations of future traffic demand. The
second uncertainty originates from the stochastic bandwidth of
wireless backhauls in 5G/B5G infrastructure [24]. By jointly
considering these uncertainties, an RO model is formulated to
conduct inter-slice reconfigurations. Thereafter, two solutions
with different complexity and different level of optimality are
proposed to resolve the RO, which are named box optimizer
and ellipsoid optimizer.

The box optimizer is designed based on the box uncertainty
set that is constructed by directly combining the prediction
intervals and the intervals reflect wireless link perturbations.
Since the box uncertainty set is a high-dimensional box-shape
set, the RO is turned out to be a Robust Mixed Integer Linear
Program (RMILP). By deriving its robust counterpart based
on Lagrangian Duality, the RMILP is equivalently transformed
into a MILP and is solved by state-of-the-art solvers.

However, the box optimizer produces excessively conserva-
tive solutions since the worst possible realizations within the
box uncertainty set must be satisfied. In practice, the region
of the possible future traffic demands is a high-dimensional
ellipsoid since the aggregated traffic rate within a network
slice follows normal distribution [25]. Therefore, an ellipsoid
uncertainty set that inscribes in the box uncertainty set can
provide almost the same coverage probability over the uncer-
tain parameters as that of the box uncertainty set. Inspired by
this idea, we further design an ellipsoid optimizer based on the
ellipsoid uncertainty set. Compared with the box optimizer, the
ellipsoid optimizer can further reduce the power consumption
at a cost of increased complexity on the premise of nearly the
same guaranteed robustness. In the following two sections, we
will introduce the design of PIP and the optimizers in detail.

IV. THE DATA-DRIVEN PIP

The framework of the proposed PIP is shown in Fig. 2,
which jointly exploits the bootstrap method and GRUs to
generate prediction intervals for individual network slices.
(Please note that due to space limit, the internal gates of GRU
are not depicted in detail in Fig. 2, but are represented by
hidden layers instead). The rationale behind this particular
design is as follows. First, compared with other single-neural-
network-based methods such as MVE and Bayesian methods,
bootstrap method exploits an ensemble of Neural Networks
(NNs) to better address the model and data uncertainties [26],
[27]. Second, compared with LSTM, GRU is more preferred
because it has fewer internal gates than LSTM, thus saving
a lot of training time without sacrificing performance [28].

Input  Hidden Output
layer layer layer
okl
Yi
Subset Dy
Vk
t
Historical r -
. esample
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Fig. 2. The framework of the proposed PIP.

Therefore, the design of PIP jointly exploits the advantages
of the bootstrap method and GRUs to obtain high-quality
prediction intervals in traffic demand forecasting. The detailed
principle of PIP is given as follows.

Theoretically, the prediction target (i.e., rf, which is the
actual traffic demand of slice & to be predicted at time ¢) can
be expressed by

=yl e (1
where yF is the true regression, and €F is the noise with
zero mean and normal distribution [14]. In practice, the true
regression yF is approximated by the prediction g made by
the GRU.

The basic idea of the bootstrap method is that an ensemble
of GRUs can produce a less biased estimate of the true
regression yf. Therefore, an ensemble of Z GRU models are
built and ¥ is approximated by averaging the point predictions
of these GRU models, i.e.,

1 Z
ko _k,i
%752%7 @

where ;gf " is the output of the ith GRU network. To train these
GRU models, Z training datasets {D; }Z ; are resampled from
the original dataset with replacement. Thereafter, the subset D;
is used to train the ith GRU model and produce the prediction
result 777",

In essence, prediction interval quantifies the uncertainty of
the difference between the true traffic demand rF and the
predicted demand 7F. The difference is given by

=g = — 5+ 3)
The uncertainty of the difference between r and 7 is quanti-
fied by the variance of ¥ — ¢. In general, it is supposed that
yk — ¥ and €F are statistically independent [14]. Therefore,
the variance of yf — 7F is given by

2 2 2
O =02 o 4
o= g T o “®

2

where T is the variance of model misspecification errors,

t
and crfk is the variance caused by random noise. The variance
t
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of model misspecification errors (i.e., a;k) is approximated by
the sample variance of the outputs of these Z GRU models:

zZ
1 ki
o == (0" — ) (5)

i=1
From (3) and (4), the variance of the noise (i.e., O'?k) is
approximated by: ‘
Uf_{; ~ E[(ry —4f)* - U;;c- (6)

We train another GRU (named residual GRU) with the same
structure to predict the residuals of the input values:

dp, = maz{(ry — gf)* — oo, 0}. 7
According to (7), a new dataset, {(r¥, 521 2L, is constructed
to train the residual GRU with the following loss function [14]:

1 7 1
_ 1 2 \
L= ;:1:[171(065) +oal )

Now we know both O’;k and 052’“ then the variance of ¥ — ¥
t t

is obtained from (4). Thus, the (1 — «)% prediction interval

for 7F is generated according to [29]:

PIf = [gf — Ra/2 " O'rfayf + Raf2 * Urf]a 9

where z, /5 is the o/2 quantile of the standard normal distribu-
tion. This prediction interval will be regarded as the uncertain
parameters of the RO model, which will be elaborated in the
following sections.

V. THE OPTIMIZER: PROBLEM FORMULATION

In this section, we present the system model and the prob-
lem formulation of inter-slice reconfiguration. The solution of
the problem will be given in the next section.

1) Infrastructure Model

Fig. 3 shows the network slicing model in 5G networks,
which mainly includes two parts: the network slices and the
substrate network. For ease of reference, the symbols used in

TABLE I
SETS, PARAMETERS AND VARIABLES NOTATION
Notation Description
Sets
G = (V,E)  Substrate network, with V' and E are substrate
nodes and links respectively
K Set of network slices
Sk, Tk Ingress node and egress node of slice k
Fr Set of VNFs of slice k
Qrk SFC of slice k, where Qx = Fr U {fZ, fl’ch}
Deterministic Parameters
C; Available computing resources of node ¢
5:i(fE) Binary parameter indicates whether node 4 can
provide VNF f£
e Power consumption of node ¢ on idle state
Pl s Power consumption of node ¢ at full utilization
;UT.t Power consumption of NIC on node ¢ in active
mode
B, Be Unit bandwidth and computing resources con-
sumed by one unit of data flow
Uncertain Parameters
B Bandwidth of substrate link (¢, )
7* Traffic demands of slice &
Variables
bij(er') Bandwidth allocated to virtual link ej’ by the
substrate link (4, 5)
zij(eg') Auxiliary binary variable indicating the positiv-
ity of bij (erkn)
Yik Binary variable indicates whether virtual node

fE of slice k is deployed on substrate node i
0% Binary variable indicates the on-off status of
substrate node %

the paper are summarized in Table I. The substrate network
is a hierarchical data-center (DC) based 5G infrastructure that
is modeled as a directed graph denoted by G = (V, E), in
which V and FE are sets of substrate nodes (i.e., the physical
servers. We use these terms interchangeably) and substrate
links respectively. In the considered model, the VNFs of a net-
work slice can be scattered across multiple datacenters. Such
deployment can benefit from low latency and radio/location
awareness of network edge, as well as the large capacity of
the Core network. For instance, for IoT slices, some delay-
insensitive network functions, (e.g., subscription, notification,
and security) can be deployed at the Core Network, while
the mission-critical functions such as device discovery, device
registration can be deployed at the network edge [30].

The available computing resource of node ¢ is denoted by
C;. Note that other types of resources such as memory and
storage can be incorporated as needed. To capture the uncertain
bandwidth of wireless backhauls in 5G/B5G networks [24], we
use the stochastic parameter B;”; to denote the time-varying
bandwidth of substrate link (i,j) € E. Specifically, f?g takes
values in the symmetric interval [B;; — ij, B + B’Z]

2) Network Slice Model

There are |K| slices deployed over the substrate network,
where K is the set of network slices. The SFC of slice s, € K
is defined by a three tuple (S, T, Fx), which are ingress
node, egress node, and the set of requested VNFs, respectively.
The VNF set Fj consists of [; ordered VNFs denoted by



Fi ={fF, -+, fE} [31]. We introduce two dummy VNF f§
and fl’Z .1 to denote the ingress node and egress node of slice &
respectively. Therefore, the SFC of slice k can be represented
by Qi = FrU{f§, fF 11} For ease of presentation, we define
VNF fk of slice k to be its virtual node. Accordingly, the
link between f¥ and f% ., of slice k is defined as its virtual
link, which is denoted by e}*. At time ¢, the prediction interval
provided by the PIP on the traffic demand of slice k is denoted
by [FF — 7k, 7k + #F], where #* = 2, 5 - 7* according to (9).
Please note that we omit the subscript ¢ for simplicity of our
description.

3) The Constraints

According to the VNF-MANO framework proposed by
ETSI, the VNF instances (VNFIs) of a network slice are
managed by the VNF Manager (VNFM) [22]. In fact, a
VNFI is implemented as a Virtual Machine (VM) or container
deployed on a physical node. We use the binary variable ;"
to indicate whether the virtual node f¥ of slice s, is deployed
on node i or not. For virtual node f¥, since only the physical
nodes that are capable of f¥ can be its mapping candidates,
hence we have

Yl < Si(fR) VI eQrVkeK i€, (10)

where 6;(f*) is a binary indicator parameter that indicates
whether node 7 € V can offer function f,’fl € F, wherein F

denotes the set of VNFs in the system.

In our model, flow splitting is prohibited due to the fol-
lowing reasons. First, flow splitting may increase the number
of activated servers and NICs, which will increase the overall
power consumption. Moreover, flow splitting will also lead
to certain coordination overhead, such as state information
maintenance, traffic distribution, .etc [32]. Therefore, to avoid
flow splitting, we constrain that each VNF is mapped to
exactly one physical node, which means that

>yl =1,YfF € Q. V€ K. (11)
eV
It is worth mentioning that our model allows VNF-

consolidation, which means that multiple VNFs of a network
slice can be consolidated on the same server [33]. VNF-
consolidation can help to reduce the number of transit nodes,
thus further decreasing the power consumption.

Please note that the node mapping variables corresponding
to f§ and ff | ,ie., y?, and yzl-j“,:’l for all € V, are known
variables which are decided by the ingress node Sj and egress

nodes T}, of slice k, i.e.,

m )L ifi=Sg,m=0ori="T,m=|Fi|+1,
Yik = 0, otherwise .
(12)
We use variable b;;(e}") to denote the bandwidth allocated
to virtual link e}’ by the physical link (4,j). We assume
that one unit of data flow consumes (3, units of bandwidth
resources. To meet the bandwidth requirements on each virtual
link, we have

> bij(ef) > B, ¥m € {0, Ik}, Vk € K.
ijEE

(13)

In addition, we have the following capacity constraints on each
physical link which indicates that the bandwidth allocated to
all the slices by link (¢, 7) € E should not exceed its available
bandwidth, i.e.,

lk—l
>N bijer) < B, Vij € E.

kel m=0

(14)

We assume that one unit of data flow consumes (3. units of
computing resources. Given that the predicted traffic demand
7* of slice k, the amount of computing resource required to
meet slice k’s demand will be B.7%. By summing up the
computing resource requirement of all network slices, we have
the following computation capacity constraint:

. e _
Calle = Z Z Ber 'yl < Ci, Vi€V,
kex fff,yG]‘-k

5)

where ¢, is the amount of computing resources allocated to
all the slices on the 7th substrate node.

We introduce binary variable z;;(e}) to indicate the posi-
tivity of b;;(e’), i.e., z;;(ef’) = 1 if b;;(e}") > 0, otherwise
zi;(e}") = 0. Such nonlinear relationship between z;;(e}") and
b;j(ef) can be equivalently transformed into the following

linear constraints:

ebij(ezn) < zij(ezn) < Lsz(ez"),Vz] € F, fﬁ@ € Fi,k ek,

(16)
where € is a sufficiently small positive constant such that
eb;j(ef’) < 1, and L is a sufficiently large positive constant.
Please note that € and L in constraint (16) should not be set too
small or too large. If € is too small, the above transformation
will not be equivalent due to the possible rounding and
tolerance mechanism of the solver [34]. Therefore, we set them
as tight as possible, which means ¢ = IninijeE{l/(bfj + l;f;)}
and L = maxijeE{l/(bf‘j — I;Z)}

By introducing variable z;;(e}") that indicates the positivity
of b;;j(ef’), the nonlinearity in the objective function can
be avoided (i.e., the nonlinear relation between Nzi)ort and
b;;(ef"), see Constraint (21)). Moreover, the path connectivity
constraint can be readily expressed by {z;;(e}")} and {y/% } in
linear constraints [5], [35]. Particularly, the following should
hold for all (4,k,7) € V x K x F U {f¥}

> zigley) = X zile') =1, if i = Sp,m =0
J J
ZZU(BZL) — Zzﬂ(e?) = —1, if i = Tk,m = lk
J J
> zij(e) = X ziley) = (yfy, — yiy '), otherwise
J j ’ ‘
a7
such that the physical links are constrained to form a connected
path for each network slice.
4) Objective Function
In recent years, the power efficiency of IT infrastructure has
become the focus of attention since energy consumption ac-
counts for a large proportion of the operators’ expenditure and
the proportion is increasing year by year [36]. Therefore, the
objective in our model is to minimize the power consumption

of the system. Please note that our proposed HMD framework
is also effective for other choices of objectives (such as



the cost of resource consumption, the number of activated
substrate nodes, and the total link flow in the network, etc)
with necessary changes on corresponding constraints.

For substrate node ¢ € V, its power consumption originates
from three aspects: the power consumed by the VNFIs, the
power consumption of the NICs used for packet forwarding,
and the power required to keep node ¢ [36] active, i.e.,

P Pcpu+PJiVIC+Pstatzc (18)

First, the power consumed by the VNFIs on server ¢ (i.e.,
(pu) depends on the amount of allocated computing resources
[36], i.e.,

Pépu - (P;za:r - Pildle) X E(LJ,llc/Cviﬂ (19)
where P! . is the maximum power consumption at full

utilization, Pldle is the power consumption of server ¢ on idle
state, and ¢’ ,, is defined as in (15).

Calle

‘Second, the power consumption of the NICs on node ¢ (i.e.,
P} ;o) is given by [36]:
PJiVIC:PiortXN

D port»

(20)

where P, is the power consumed by the NICs at active
mode on node %, which corresponds to Pyynamic in (129) of
[36]; Ngon is the number of active NICs on node ¢, which is
given by:

lk 1
Nport = Z E Zz” (ex') + E zji(er) 21)
kex m jeVv JjeV

Finally, the power required to keep the ¢th server on (i.e.,
) is given by:

statw

Pliatic =7 Plaes (22)

where % is a binary variable indicates whether server i is
active or not, i.e., 'yi = 1 when server ¢ is on, otherwise
fyi = 0. If no NIC is activated on node 7, it means that the node
is not used by any slice and can be shut down to save energy.
Thus, the on-off state of server ¢ is decided by the positivity
of N}, ie, v* = 1if Nj,, > 0 otherwise 7' = 0. We
replace such nonlinear relationships by the following linear
constraints:

(Ni,. <7 <DNi, Vi€V, (23)

po’rt7

where ( and D are sufficiently small and large positive
constants respectively. The value of ¢ and D in constraint (23)
can be set in a similar ways as € and L in constraint (16).

5) Problem Formulation

Given the traffic prediction intervals and the above network
slicing model, the inter-slice reconfiguration problem is for-

mulated as follows:

min Pl (24)

y.z,b,y
s.t. (10) — (17), (23) (24.1)
yl €{0,1} ,Vie V.k e K, f € Fy (24.2)
zij(ef')€{0,1},Vije B keK,me{l, - I, —1} (24.3)
bij(el!) > O, Vije B keK,me{l,-- ly—1}  (24.4)
7€ {0,1},Vi € V. (24.5)

Since 7* and ég are uncertain parameters, thus this problem
is a Robust Mixed Integer Problem (RMIP). For ease of pre-
sentation, we rewrite problem (24) as the following equivalent
matrix form:

min & u (25)
(25.1)
(25.2)

s.t. ]§1u < ﬁl,
Bou < py,uel,

The dimensions of ﬁl and By are I; x J and Iy x J
respectively, in which I; = (|V]| + |E\ + Zlm (le + 1)),
o = 2(|V] + B (Si2 (G + 1) + 3330 U+ 2) +2V],

—2|E\Zk 1(lk+1)+|V|Zk l(lk—l-Z)—HV\ The detailed
transformation is described in Appendix A.

VI. THE OPTIMIZER: SOLUTIONS

In this section, we elaborate the robust optimizer which
is used to solve problem (25) in the following steps. First,
we derive the standard robust reformulation of problem (25).
Second, we construct the box uncertainty set and derive the
corresponding box optimizer. Finally, the ellipsoid uncertainty
set is constructed upon which the ellipsoid optimizer is de-
signed.

A. Standard Robust Problem Reformulation

The robust counterpart (RC) is a tractable deterministic
equivalence of the robust problem. To derive the RC of
problem (24), we need to transform problem (24) into the
standard form of robust problem, whose uncertainty parame-
ters only occur in the Left Hand Side (LHS) of its constraints
[37]. To this end, we first eliminate the uncertainty in the
objective function by introducing an artificial variable p such
that problem (25) can be equivalently transformed to:

e 20
st.eTu<yp (26.1)
Biu < p; (26.2)

Bou < ps,ueld. (26.3)

Next, we eliminate the uncertain parameters in the Right Hand
Side (RHS) vector p;. Notice that constraints (26.1) together
with (26.2) can be rearranged as follows:

& 50 =E)

27)



We introduce an auxiliary variable v/ = —1 and let x =
(u, p,u’)T such that constraint (27) together with constraint
(26.3) can be rearranged to the following matrix form:

]§1 0 51 u
c

<0, (28

Finally, we get the standard robust reformulation of (25),
which is given by:

min h”x 29)
st. Ax <0, (29.1)
Bx < 0,x € X, (29.2)

wherein h = (0,1,0)7. The dimension of A is N x M,
wherein N = I; +1 and M = J + 2. The set X = {z; |
xzj € {0,1}, for j = 1,--- ,|y| + |z| + |y|;2; > 0 for j =
ly|+|z|+|v|+1, -, J+1;2; = —1 for j = J+ 2}, where
|¢| represents the dimension of vector (.

In problem (29), A and B are the coefficient matrices with
and without uncertain parameters respectively. For uncertain
matrix A, its uncertainty set is composed of all the possible
realizations of A. In the following subsections, we will first
elaborate the box optimizer where the uncertainty set of
A is box-shaped. To overcome the over-conservativeness of
box optimizer, the ellipsoid optimizer based on the ellipsoid
uncertainty set of A will be proposed thereafter.

B. The Box Uncertainty Set based Solution

The box uncertainty set is constructed by directly combing
the prediction intervals and the link bandwidth variation in-
tervals, which turns out to be a box-shaped uncertainty set B.
The i-th row of B is expressed as:

BZ:{EIZ | dij_&ij S(NJ,” Séij+&ij7j:17"' ,M}
={a;|al <& <al},
(30)
where a;; and a;; are the mean and standard deviation of a;;,
respectively. The jth column of al and a¥ are a;j — a;; and
a;j + a;; respectively.

The RC of problem (29) based on the uncertainty set B is

the same problem but replacing constraint (29.1) by:

Ax < 0,YA € B. (31)

From [37], the robust problem with respect to B is equivalent
to the robust problem with respect to B;, where B; is the
projection of B on the subspace of the i-th row of A (denoted
by éiT). Therefore, (31) can be equivalently transformed into:

al'x<o0,va; € B;,i=1,---,N. (32)

By applying the box uncertainty set in (30), constraint (32)
can be transformed into:

(max afx) <0,Vi=1,---,N. (33)

a;eB;

By using (30), the inner maximization problem in LHS of (33)
is equivalently transformed into the following optimization

problem:

(34)

maxx’a;
a;

st.al <a; <al (34.1)

Please note that the optimization variable of problem (34) is
a; rather than x. The Lagrange dual of (34) is given by

min (a¥)Tp; — (@))T A (35)
Bis A
i >20,22>0 (35.2)

It is important to point out that the minimization operator in
(35) can be omitted since it is sufficient (and necessary) that
constraint (33) holds if there exists one pair of (g;, A;) such
that (a¥)Tu; — (al)TA; < 0. Therefore, the RC of problem
(25) based on uncertainty set (30) now becomes:

,{f}}& hTx (36)

st (a)Tp; — (@)THN <0,¥i=1,--- N (36.1)
wi—A=x,Vi=1,--- N (36.2)

wi >0,X>0Vi=1,---,N (36.3)
Bx<0,xe X, (36.4)

where p = {p;}i, A = {N\;}i,i = 1,--- | N. Due to the
sparsity of its coefficient matrix, the above problem can be
efficiently solved by off-the-shelf MIP solvers, such as Gurobi,
CPLEX, etc [34], [38].

C. The Ellipsoid Uncertainty Set based Solution

The box optimizer produces excessively conservative so-
Iutions since it is based on the box uncertainty set. To
overcome the over-conservativeness of the box optimizer and
improve its efficiency, we design an ellipsoid optimizer based
on the ellipsoid uncertainty set. For one thing, the ellipsoid
uncertainty set can provide the same coverage probability
as that of the box uncertainty set due to the normality of
network traffic demands. Therefore, the ellipsoid optimizer
can provide the same robustness as the box optimizer. For
another, the ellipsoid uncertainty set has a smaller size since
it is essentially a high-dimensional ellipsoid that inscribes in
the box uncertainty set. As a result, the ellipsoid optimizer can
provide better solutions than the box optimizer.

We denote the expectation and variance-covariance matrix
of a; as a; and X;, respectively. By using these parameters,
we construct the following ellipsoid uncertainty set:

57:: {57 ‘ (éi—ai)TEi_l(éi—a,;) S 1},Z: 1, 7]\[
(37
Since 3; is a symmetric positive definite matrix, it can be
decomposed as 3; = L;L7 through Cholesky decomposition.
Let v; = a; — a;, and then &; can be expressed as:

= {\72- +a; | vI(L) HT (L) v < 1}.

(38)
(39)



By introducing Q; = (L;)~' and t; = Q;V;, & can be

expressed as:
E={Q;"t;+a; ||t <1},

where ||-|| denotes Lo, norm. Applying this ellipsoid uncer-
tainty set, the RC of problem (29) has the same form as (29),
except that constraint (29.1) is replaced by

(40)

(max éiTx) <0,Vi=1,---,N. 41)
a;€e&;

By using (40), the inner minimization problem in the LHS of
(41) is transformed into:

max 5?){ = max (Q:lfl +a;)Tx (42)
a.€8,(0:) ]| <1
= max (Q;lfi)TX—l- al'x (43)
[[&:]]<1
= max (Q;")"x)"ti +afx (44
[[&:]]<1
= Q") x| +af x. (45)

The last equality of the above derivation is based on
Cauchy-Schwarz inequality. Based on the above derivation,

constraint (41) can be equivalently transformed into:
H(Q;l)TXH—i—aZ—TXSO,Vi: 1,---,N. (46)

Finally, the RC of problem (25) based on the ellipsoid uncer-
tainty set & is:

min hTx (47)
st ||Qfx||+alx<0,i=1,---,N, 47.1)
Bx <p,xe &, 47.2)

which is indeed a MISOCP. We can use the last versions
of state-of-the-art solvers, such as Gurobi 9.1.1, to solve the
above MISOCEP since it can now handle MISOCP efficiently
[34], [38].

VII. NUMERICAL RESULTS

In this section, we conduct numerical simulations to verify
the effectiveness of our proposed HMD framework. We first
examine the effectiveness of PIP in producing high-quality
prediction intervals by comparing it with existing methods.
After that, we demonstrate the performance of the HMD
framework through comparison with other benchmarks.

A. Performance Evaluation of PIP

1) Neural Network Structure and Data Preparation

For each slice, we create a PIP by using TensorFlow whose
hyper-parameters are listed in Table II. For each PIP, an
ensemble of 200 point predictors are constructed to evaluate
the model misspecification errors. To estimate the variance of
the residual, another point predictor is created. The structures
of all these 201 point predictors are the same, which are all
two-layer stacked GRU networks as shown in Fig. 2. The
internal hidden state of its GRUs is of size 10. We use the
widely used Mean Squared Error (MSE) as the loss function

TABLE II
HYPER PARAMETERS OF PIP

Parameter Value
Number of NNs (Z) 200
Number of GRU layers of each NNs 2

Size of hidden state 10

Loss functions MSE

Minibatch size 64

Learning rate 0.01

Historical traffic demands AS5M, B5M [39]
Dataset split 7:15:15
Time steps of past observations 80

Time steps ahead 1

Training steps 10000

5 —— Bootstrap - RNN

—— Bootstrap - GRU
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Fig. 4. The training process of the 100th GRU/RNN network of PIP.

and the minibatch size is set to 64. In addition, the learning
rate is set to 0.01.

We use the Internet traffic time series ASM and B5M as the
historical traffic demands of individual slices. These datasets
are real traffics that are gathered from the backbone network
for every 5 minutes [39]. Since inter-slice reconfigurations
are performed at a large time-scale, thus we set the PIP to
produce prediction intervals for every one hour. Accordingly,
the datasets are resampled with a sampling frequency of 12.
Each PIP is trained by 70% of the dataset of the corresponding
network slice. The rest of the dataset is equally divided into
two parts for evaluation and testing respectively. The number
of training steps of each point predictor is 10000. In addition,
we use 80 time steps in the past to predict one time step ahead.
We compared our approach against the MVE method as well
as the RNN-based bootstrap method.

2) Experiment 1 - The Convergence Performance of PIP

Fig. 4 shows the training process of PIP and the bootstrap
method implemented with RNN. We plot the training loss of
the 100th GRU and RNN network w.rt. training steps. It can be
observed that both methods converge with 4000 training steps.
In particular, we can see that GRU-based method has a slightly
faster convergence rate. This is because that RNN suffers from
the gradient vanishing problem, which may slow down its
training process. In contrast, GRUs exploit internal gates to
overcome this defect, thus they have a faster convergence rate.
These results suggest that PIP can be implemented as an online
predictor under the premise of only a small traffic sample.
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Fig. 5. 90% prediction intervals generated by the bootstrap method with GRU
as well as MVE method, whose NMPIWs are 0.41 and 0.64 respectively.
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Fig. 6. 90% prediction intervals generated by the bootstrap method with GRU
and RNN, whose NMPIWs are 0.41 and 0.51 respectively.

3) Experiment 2 - Prediction Results on Real Data

In this experiment, we compare the prediction intervals pro-
duced by PIP MVE and RNN-based methods. The prediction
intervals with 90% confidence level are produced, which are
drawn in Fig. 5 and Fig. 6. Both figures reveal that the width
of the prediction intervals produced by PIP is narrower than
that of MVE and RNN-based methods. To be precise, the
normalized mean prediction interval width (NMPIW) of their
produced prediction intervals are evaluated, which is defined
as [40]:

1 Ntest (a+ _ A—
NMPIW = =1 () (48)
Ntest Tmaz — Tmin

where n.s¢ 1s the number of predicted time steps; 7,4, and
T'mqn represent the maximum and minimum values of the true
targets; 7,7 and 7, are the upper and lower bounds of the
prediction interval. In this experiment, the NMPIW of the
prediction intervals obtained by PIP, MVE and RNN-based
methods are 0.41, 0.64 and 0.51, respectively. It is therefore
concluded that under the same confidence level, the prediction
interval produced by PIP is the most compact. In addition,
we can see that the 90% prediction intervals can cover
nearly 100% of the real traffic, while the point predictions
become inaccurate when the traffic fluctuates heavily. This
result further verifies that point prediction is inadequate in

supporting network slice reconfiguration since they are error-
prone in high dynamic scenarios. Furthermore, the results
show that as the fluctuation of traffic becomes milder, the
width of the prediction interval decreases accordingly, and
vice versa. Compared with the static traffic interval produced
by statistical traffic data [10], a prominent advantage of our
proposed PIP is that the width of the produced prediction
interval can be automatically adjusted according to the traffic
demand variations.

4) Experiment 3 - Quantitative Assessment of PIP under

different Confidence Levels

To further demonstrate the effectiveness of PIP, we compare
the NMPIW of the prediction intervals produced by MVE,
RNN and GRU-based (i.e., PIP) methods under different
confidence levels in Fig. 7a. We can see that the NMPIWs
corresponding to these three methods exhibit an exponential
growth w.r.t. (1 — «). This is the case since the width of the
prediction interval is exponential to (1 — «v) according to (9).
Moreover, we can see that the NMPIW of PIP is the lowest
and its curve grows much slower than the other two. Since
a wide prediction interval leads to a poor solution of slice
reconfiguration, thus we use only PIP to implement our HMD
framework.

To verify that the ellipsoid uncertainty set has nearly the
same coverage probability as the box uncertainty set, we
examine the coverage probability of these two sets under
different confidence levels in Fig. 7b. The coverage probability
is defined as:

1 Ntest
coverage probability = Z Ci, (49)
Ntest 4
where N
1 R
o= {brelr] (50)
0,1 ¢ [rt , Ty ]

in which r; is the real traffic demand at time ¢. We can see that
the coverage probability of the box uncertainty set is nearly the
same as that of the ellipsoid uncertainty set. This is because
of the normality property of traffic demands. Furthermore, we
find that the coverage probability is much larger than the confi-
dence level 1 — «, which is especially evident at 1 —a = 0.1.
Thus, we can conclude that the acquired protection level is
much higher than the prespecified confidence level. Moreover,
we can observe that the coverage probability decreases with
the number of slices. This is reasonable since the occurrence
of stochastic events increases with the number of slices, which
is hard to predict.

B. Performance Evaluation of HMD Framework

1) Simulation Settings

As shown in Fig. 3, the substrate network employed in
the simulations is a hierarchical DC-based 5G infrastructure
composed of the core DC, aggregation DC, edge DC, and the
cloudlets. The topology of each DC is the fat-tree [41], which
is widely used in DC deployment. Specifically, the core and
the aggregation DCs are 2-ary and 1-ary fat-tree respectively,
while the edge DCs are composed of one gateway connected
with two edge servers. As a result, the substrate network is



TABLE III
PARAMETERS OF THE SUBSTRATE NETWORK

Parameter Value

Number of nodes 57

Number of links 111

Bandwidth of links B} U[10,200] Mbps

Bandwidth perturbation w 0.25

Bb, Be 0.5, 0.1

C; U140, 200] vCPU

P;Z;ort U]0.1,0.5] kW

P o U100, 120] kW
i Uls. 15] kW

composed of 57 nodes and 111 directed links. The detailed
parameters of the simulation are summarized in Table III. To
emulate the variations of wireless backhauls, the bandwidth
of wireless link (i,j) € E is set to a uniformly distributed
random variable BiSj ~U [ij(l - w), Bisj(l + w)], where w
represents the level of link bandwidth perturbation.

In the considered system, the VNF set of the system
contains 8 different types of VNFs. Each server can provide
2 to 4 types of VNFs. In the simulation, network slices are
randomly generated from the 5 types of slices, whose SFCs
are defined in Table III of [5]. For each slice, a corresponding
PIP is constructed and is well trained by the real traffic data.

As we mentioned earlier, pure data-driven methods are data-
intensive and require numerous costly trial-and-error inter-
actions. Due to a lack of sufficient data, we are unable to
implement data-driven methods. Consequently, the following
three algorithms are used as our comparison references:

o Model-based with 1-std uncertainty set (Model-based-
Std): In this algorithm, the uncertainty set of the optimiza-
tion problem is not produced by prediction. Instead, it is
generated by the arithmetic mean and standard deviation
of historical demands [10];

o Model-based with perfect hindsight parameters (Model-
based-PH): In this algorithm, the optimization problem is
solved with perfect hindsight knowledge on all uncertain
parameters. This is the ideal case;

e HDM with point prediction (HMD-Point): which is an
HMD framework implemented by point predictors.

2) Experiment 4 - The performance of HMD framework in
different scenarios

This experiment aims to evaluate the performance of the
HMD framework under different scenarios. We compare the
performance of our proposed framework under different confi-
dence levels and link perturbation levels. For high and medium
uncertainty scenarios, the link perturbation parameter w is
set to 0.25 and 0.65 respectively. We randomly generate
20 network slices. The results of power consumption versus
confidence level under different levels of wireless link per-
turbations are shown in Fig. 8. We notice that, except for
the Model-based-PH algorithm, the power consumption of
all algorithms is about 4% higher than that in the medium
uncertainty scenario. This is reasonable since more resources
should be “reserved” to protect the slices’ SLAs against the
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Fig. 8. Power consumption vs. confidence level (1 — «) under different levels
of wireless link perturbations.

high uncertainty of the wireless links. Furthermore, we can see
that the power consumption of the box optimizer and ellipse
optimizer increase with the confidence level, which coincides
with the trend of the curves in Fig. 7a. This is because in
robust optimization, the optimal value of the objective function
increases with the width of the uncertainty set. For the same
reason, we can observe that the power consumption of the
ellipsoid optimizer is about 5% lower than that of the box
optimizer. Moreover, it is worth mentioning that the power
consumption of Model-based-Std is significantly greater than
that of our proposed algorithms.

3) Experiment 5 - Performance of HMD under different

numbers of network slices

In this experiment, we examine the performance of the
HMD framework under different numbers of network slices.
The wireless link perturbation parameter is set as w = 0.25,
while the confidence level is set to 90%. The results are shown
in Fig. 9. Since the power consumption of Model-based-Std is
much greater than the others, the curves of other algorithms
will be “squeezed” and become almost indistinguishable.
Thus, we omit the curve of Model-based-Std in the figures of
this experiment and subsequent simulations. As is expected,
we can observe that the power consumption of all algorithms
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Fig. 9. Power consumption vs. the number of network slices.

increases approximately linearly with the number of network
slices. In addition, the power consumption of the box optimizer
and the ellipsoid optimizer is about 10% and 3% higher than
that of HMD-Point-Prediction respectively. We would like
to highlight that this does not indicate the superior perfor-
mance of HMD-Point-Prediction but rather demonstrates the
superiority of our proposed box/ellipsoid optimizer. Indeed,
although the curve of HMD-point-prediction is lower than
those of box/ellipsoid optimizer, it is indeed inapplicable in
slice reconfiguration since point predictors become inaccurate
in high traffic fluctuations as is shown in Fig. 5 and Fig.
6. In contrast, the results demonstrate that our proposed
box/ellipsoid optimizer can satisfy the traffic demands of
future with nearly 100% probability, with only 3% to 10%
additional power consumption.

4) Experiment 6 - Acceptance ratio of HMD framework in

full-load scenario

Finally, we evaluate the performance of the HMD frame-
work in terms of acceptance ratio in the full-load scenario.
In this experiment, the link variation ratio and the confidence
ratio are set as w = 0.25 and (1 — «) = 90% respectively. In
real scenarios, there usually exist permanent and/or temporary
slices [10]. To emulate the full-load scenario, 20 permanent
slices that follow the ASM/B5M traffic tracks are deployed
in the substrate network, while a number of temporary slices
with fixed traffic demands arrive randomly. The arrival of
the temporary slice requests follows a Poisson process with
an arrival rate of 10/hour and their duration follows an
exponential distribution of 10 minutes on average. In addition,
we assume that the traffic demand of the temporary slices is
uniformly distributed in [0.5, 2.0] Gbps. The Acceptance Ratio
(AR) of the requests is plotted in Fig. 10.

We can observe that the AR of all algorithms decreases
rapidly at the beginning of the simulation, and it becomes flat
after a period of time. This is because that when the simulation
starts, a large number of slice requests arrive at the saturated
network will lead to a sharp drop in the AR. When the arrival
and the rejection reach an equilibrium, the curve of AR will
become flat. In addition, we can also observe that the AR
of the ellipse optimizer is about 10% higher than that of the
box optimizer. Therefore, it is worth choosing the complex
ellipse optimizer rather than the box optimizer to enjoy such
performance gain, especially in small-scale networks.
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Fig. 10. Acceptance ratio of requests in the full-load scenario over time.

5) Experiment 7 - Performance evaluation for large-scale
networks

Due to the NP-hardness problem (36), there do not exist ex-
act algorithms that can solve it in polynomial time. Indeed, our
proposed HMD-box/ellipsoid algorithms provide a theoretical
bound for this problem, which is applicable only in small-scale
networks. For the substrate network with hundreds of servers,
it is unrealistic and unnecessary to pursue an exact solution
for practical application. Instead, we can easily design a high-
performance heuristic algorithm that provides sub-optimal
solutions for large-scale problems. For example, based on the
variable neighborhood search (VNS) and local branching, the
metha-heuristic algorithm proposed in our previous work [11]
can be applied to search for a near-optimal solution. We refer
to this heuristic algorithm as VNS-heu.
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Fig. 11. Power consumption vs. confidence level (1 — o) under medium
uncertainty scenario in the large-scale network.

The performance of VNS-heu and HMD-Box are evaluated
in a large-scale substrate network, which is composed of
208 nodes and 768 links. We have compared the power
consumption of VNS-heu and the theoretical bound provided
by the box optimizer under medium uncertainty scenario in
Fig. 11 and Fig. 12. The results show that in the large-
scale network, the power consumption of VNS-heu is at most
10% higher than the theoretical bound given by the box
optimizer. Therefore, VNS-heu is appreciated in large-scale
networks, while in small-scale networks, HMD-box/ellipse is
more preferred.
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VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we address the problem of inter-slice reconfig-
uration under demand uncertainty. We have proposed a hybrid
model-data driven network slice reconfiguration framework by
jointly leveraging prediction interval and robust optimization.
We have designed a predictor with controllable prediction
accuracy to predict the uncertain traffic demand of the network
slice. Thereafter, based on the produced prediction interval,
we have exploited robust optimization to make proactive slice
reconfiguration. We have compared the performance of our
proposed framework with the method based on point predictor
as well as the ideal case where the InP has full knowledge
about the uncertain parameters. The simulation results have
shown that our proposed framework demonstrates superior
performance and the performance gap is within 10% compared
with the ideal case.

In this work, we focus on the inter-slice reconfiguration
at the core network. In the future, we will consider the
dynamic network slicing problem in radio access networks.
Furthermore, we intend to exploit the stochastic game theory
to model the traffic fluctuations of the slices, whereby a
distributed learning policy can be trained to perform slice
reconfiguration in a cooperative or competitive fashion.

APPENDIX A
DERIVATION OF THE MATRIX FORM OF (24)

We derive the matrix form of problem (24).

A. Decision Variables

The decision variable is denoted by u = (y, z,~,b)”. The
node mapping variables is y = (y1,y2, - 7ym)T
in which y;, = (yi1,yi2 in,IlCI)T’ in  which
Yik = (y?,kayil,m e ,yﬁka)T. Therefore, y is a
V| - Z’,f:l(lk + 2)-dimensional vector.  Similarly,
we use an |E| - Zl,le(lk + 1)-dimensional vector
b = (b(e1), -+ ,b(ejx)))” to denote the bandwidth allocation
variables, in which b(ey) = (b(e}),b(e}), -, b(e¥))T, in
which b(e}") = (by(e}"), ba(e]"), -+ , b (ef*))”. Since each
variable b;(e}") corresponds to an auxiliary variable z;(e}l),
thus we use a |E| - Z),f:l(lk + 1)-dimensional vector z to
represent all the auxiliary variables z;(e}").

>

In addition, we use a |V|-dimensional vector v =
(", -+ ,9!VT to denote the on-off status variables. There-
fore, the vector u is a 2| F| ~ZL’C:|1(Z;¢+1)—|—\V\ -Z‘k’ill(lk—k?))-
dimensional vector.

B. Constraints

To derive the matrix form of constraint (10), we first
. . . _ k»
introduce the VNF index matrix A = (dy, ;)(soc (1, 42))x|7|>
where
o 1, fF is the j-th VNF in F
I 0, otherwise.

And then we introduce the VNF association matrix 6 =
(9:.5)171x|v|> Where

1
Gig =1
5] {07

Therefore, constraint (10) can be represented in the matrix
form

node j can provide VNF f; € F
otherwise.

y < Vec(Ad),

where Vec(+) is the matrix vectorization operator.

The coefficient matrix of constraint (11) is denoted by the
( L’ill(lk + 2)) x (|V|ZL’C:‘1(Z;c + 2))-dimensional matrix
Ay = (LT,--- 1), where T is a 32\°!, (14 + 2)-dimensional

V]

identity matrix.

The coefficient matrix of constraint (12) is denoted by Ao,
which is a |V] - ‘,:ill(l;€ + 2)-dimensional diagonal matrix.
The ¢th diagonal element of A, is defined as:

2 1, ifi=S,m=0o0ri=T,,m=10;+1,
0, otherwise

and the RHS vector of constraint (12) is the |V| Z‘k’il (l+2)-

dimensional row vector do = (hj, hy,--- ,h|V‘)T, in which
h; = (h;1,h;2, -, h; )”. The kth term of h; is

_ 0 1 lk+2 \T
hiJf - (hi,k:a hi,k:? Tty hiljk 7) 5

where
e {1, if i =Sy, m=0ori="Tym=l+1,
ik —
) O7

The coefficient matrix of constraint (13) is denoted by the
( L’ill(lk +1)) x (|E|- (ZL’i'l(zk + 1)))-dimensional matrix
A3Z

otherwise

A3 = diag(Aé, e ,qu)’

in which A% = diag(A5°,... APY) with AE™ an |E|-
dimensional all-one row vector. The RHS vector of constraint
(13) is:

ds = 51;(77111,'“ j\ﬁlw)T,

where 1y, is a (I + 1)-dimensional all-one column vector.
The coefficient matrix of constraint (14) is denoted by

the |E| x (|E| - Zlkczl(lk + 1))-dimensional matrix Ay =

(Iy,---,14), in which Iy is an |E|-dimensional identity



matrix. The RHS vector of constraint (14) is dy =

(BY,--- ,B‘SE‘)T.

The coefficient matrix of constraint (15) is denoted by the
V| x (V] Z“C' (I + 2))-dimensional matrix:

As = 56 : dlag(F aF)7

in which F is a (Z‘k’il l; + 2)-dimensional row vector
denoted by F = (fi,---,fjc|). The kth element of F is
a (Ix + 2)-dimensional row vector, which is expressed as
fk = (Fg, -+ ,7x). The RHS vector of constraint (15) is
ds = (C1,---,Cl)) 7.
For constraint (16), we introduce the following two matrix,
whose dimensions are both (|E| - ( IIC\ 1+ 1)) x (2E] -

Il (zk+1)+ V)

= [_A67 Oa EAGL I% = [A67 07 _LA6]7

in which Ag is a |E| - (319 (1), + 1))-dimensional identity
matrix, and 0 is a (|E| - ( L’C:Il(lk +1))) x |V| dimensional
zero matrix. The RHS vector of constraint (16) is O

The coefficient matrix of constraint (17) is denoted by the
(VI-S e+ 1)) < (V-0 2+ B S20 +1)-
dimensional matrix Ar:

R; T
A= (A7,A7) = :
Riy; Ty

R;isa( ‘]:C:ll(lk +1))x( L’ill(lk +2))-dimensional matrix,
which can be express as

R; = diag(S;1,---

in which S; j is a (5 +1) x
is given by S; ,, = diag(q,- -,

_ J(0,0),

@, -,
T is a (X0 (e + 1)) x
matrix Wthh is given by

T; = diag(Ty1, -+, T )

7Si,|’C\>7

(I +2)-dimensional matrix which
q) with

if i =S, m
otherwise.

:OOri:Tk,m:lk

Il (

(|E] - > (I + 1))-dimensional

in which T;), = diag(T?,,---, T/ ). The m-th term of
T; ; is given by TZL,C = a; if 1 = Tx,m = lj, otherwise
T;’fk = —a;, where a; is the i-th row of A,q. The RHS
vector of constraint (17) is a |V] - “C‘ 1 (14 1)-dimensional

column vector that is given by d; = (gl,gg,- - ,gM) , in
which g; = (81,82, 7g%|’CI) . The k-th term of g; is
given by g; , = (g?jk,g},k, e ,gifk)T, where
-1, ifi=S,m=
gir =191, ifi=Tp,m=1
0, otherwise

For constraint (23), we first express the relationship between

N}, and z;j(e}*) in (21) as follows:

N ort — ISASZ - IS dlag(|A d]|ﬂ e

p 7|Aad]|) )

where Ig is an Z"Cl (I + 1)-dimensional all-one row vector;
Ajisa (SN (1 +1) x (1E]- Xl (1), + 1))-dimensional
diagonal matrlx in which |A® .| 1s the i-th row of |Aggl.

Therefore, Nyt = (N[}ortv o Nzl)‘(jr‘f)
by

adj
can be represented

Ig Ag
Cécgz = z,
I/ \Al

Nport =

L’ill(lk + 1))-dimensional block
ih (e + 1)) x (B -

L’i’l(zk +1))-dimensional matrix. Therefore, constraint (23)
can be represented by:

7DA8 E Z
<0,
(& ()
cicz.

Finally, we can obtain the following matrix form for the
constraints of problem (24):

where C{ is a [V| x (|]V]-
diagonal matrix, C3 is a (|V] -

where Ag =

Blu < P1
Bou < p»
in which
_ 0 0 0 —Aj —ds
Bl - 0 0 0 A4 ) 151 — d4 )
As; 0 O 0 ds
E 0 0 0 Vec(A9)
A, 0 0 0 1
—Aq 0 0 0 -1
A, 0 0 0 d,
—A, 0 0 0 —dsy
B2 = 0 —AG 0 6A6 , P2 = 0
0 Ag 0 —LAg 0
Al A2 0 0 d;
—-Al A2 0 0 —ds
0 —DAg E 0 0
0 CAg -E 0 0

in which ]§1 and p; are matrices with uncertain parameters,
while By and ps are deterministic matrices. Constraints (24.2)
- (24.5) can be expressed by the set U = {u; | u;
{0’1}’ forj = a|y‘ + |Z‘ + |’Y‘§uj > Oforj =
|+ 2]+ [v[+1,---, J}.

C. Objective

The coefficient vector of the objective function in (24) can
be express as ¢ = (c,,cC;,cy,0)T. The coefficient vector
corresponds to y is c, where

y,m ~k 7
Czk = P (Pmaw

= @)y, aeran s
— P!;,.)/C;. The coefficient vector corre-
sponds to z is a (| E| - “Cl 1 (I + 1))-dimensional row vector
expressed by portlTClCQ, where 1 is a |V|-dimensional all-
one column vector. The coefficient of ~ is ¢, = (¢! )\lel’
where ¢!, = Pjy..
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