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Abstract  1 

Peripartum cardiomyopathy (PPCM) is a potentially fatal form of idiopathic heart failure with varying 2 

incidences among countries and races. The cause of PPCM is uncertain but it may result from a 3 

combination of environmental and genetic factors, as well as pregnancy associated conditions such 4 

as pre-eclampsia. Animal studies suggested that impaired vascular and metabolic function may be 5 

central to the development of PPCM. Clarifying the pathogenic mechanisms is necessary to establish 6 

new therapies to improve the outcomes of patients with PPCM. Pregnancy hormones tightly 7 

coordinate a plethora of maternal adaptive responses, including haemodynamic, vascular, structural, 8 

and metabolic changes of the cardiovascular system. While pregnancy is considered to be a 9 

cardiovascular challenge, hormonal effects uniquely drive systemic insulin resistance and mostly 10 

fatty acid-dependent cardiac metabolism. In PPCM, the peripartum period is associated with 11 

profound and rapid hormonal changes that result in a brief period of disrupted cardiovascular 12 

(metabolic) homeostasis prone to secondary perturbations. This review summarizes and reflects on 13 

recent literature on the potential pathophysiological mechanisms and risk factors for PPCM with a 14 

focus on the maternal cardiovascular changes associated with pregnancy. We provide an updated 15 

framework to improve understanding of PPCM pathogenesis, which may lead to a better disease 16 

definition. 17 

 18 

Introduction 19 

Peripartum cardiomyopathy (PPCM) is a form of heart failure associated with pregnancy and the 20 

postpartum period1,2. PPCM is defined as an idiopathic cardiomyopathy presenting with heart failure 21 

secondary to left ventricular (LV) systolic dysfunction in the peripartum phase (i.e., towards the end 22 

of pregnancy, during delivery or in the months following delivery) where no other cause of heart 23 

failure is found1,3–5.  Diagnosis generally follows the exclusion of other (similar) conditions and 24 

differential diagnoses include pre-existing dilated cardiomyopathy, Takotsubo cardiomyopathy, 25 



3 
 

myocarditis, familial cardiomyopathy and valvular heart disease1,2,5,6. Furthermore, outcomes varied 26 

greatly in the European Society of Cardiology (ESC) EURObservational Research Programme (EORP) 27 

PPCM Registry4. Myocardial recovery (i.e., LV ejection fraction [LVEF] >50%) was observed in 46% of 28 

patients 6 months after diagnosis and persisting severe LV dysfunction or death was seen in 28% of 29 

patients worldwide4. Previous studies have indicated that PPCM patients often suffer from 30 

hypertension and palpitations, and may have a persisting higher risk for sudden death, arrhythmia, 31 

and other cardiovascular complications. Long-term prescribed drug use is common, even in patients 32 

with fully recovered LV function7,8. 33 

PPCM incidence appears to vary markedly among geographical regions, but differing definitions 34 

prevent direct comparison of studies. Countries with the lowest reported incidence (i.e., per live 35 

birth) include Japan (1 in 16 667)9,10, Denmark (1 in 10 000)11, and Sweden (1 in 5882)12.  In contrast, 36 

those with higher rates appear to be Nigeria (1 in 100)13, Haiti (1 in 333)14, Pakistan (1 in 840)15, and 37 

South Africa (1 in 1000)16. In comparison, estimated incidences in Germany are 1 in 1000 to 1500 live 38 

births17. Studies in the USA suggest an increasing incidence over the past 20 years18.  39 

Various pathophysiological mechanisms have been suggested19–23, but their clinical relevance 40 

remains to be confirmed. A common hypothesis states that PPCM is a multifactorial syndrome 41 

where several known and unknown factors in the setting of pregnancy may lead to PPCM, i.e., a 42 

“multiple-hit model”. This hypothesis is supported by the onset of PPCM in mice with a cardiac 43 

specific knockout for either the signal transducer and activator of transcription 3 (Stat3) gene or the 44 

peroxisome proliferator-activated receptor γ coactivator 1α (Ppargc1a) gene19,20. These mice 45 

developed severe heart failure postpartum, but did not present any heart failure-related symptoms 46 

before pregnancy19,20. A recent study in human induced pluripotent stem cells (hiPSC) derived from 47 

patients with PPCM highlighted a role of cardiomyocyte metabolism in the pathogenesis of PPCM24. 48 

Several pregnancy-associated hormones, including progesterone, oestrogens, prolactin, soluble fms-49 

like tyrosine kinase 1 (sFLT1), and fibroblast growth factor 21 (FGF21) play roles in the coordination 50 

of cardiac metabolism25–27. Impaired metabolism in PPCM patient-derived cardiomyocytes and 51 
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metabolic effects of pregnancy hormones may indicate that the hearts of patients with PPCM cannot 52 

cope with the profound fluctuations of hormones and downstream metabolic changes that occur in 53 

the peripartum period. This review summarizes and reflects on recent literature on the potential 54 

pathophysiological mechanisms and risk factors for PPCM with a focus on the physiological maternal 55 

changes associated with pregnancy.  We provide an updated framework to improve understanding 56 

of PPCM pathogenesis, which may lead to a better disease definition. 57 

 58 

Cardiovascular adaptations in pregnancy   59 

PPCM is hypothesized to occur due to the interaction of an external trigger and a predisposition: a 60 

“two-hit model”. While a putative predisposition remains elusive (but is likely to be genetic), far 61 

more is known about the challenges of pregnancy and the effects on the cardiovascular system that 62 

could trigger PPCM pathogenesis. Hormones are the key regulatory elements that drive the different 63 

stages and related adaptations during and after pregnancy. Maternal adaptations to the 64 

cardiovascular system include hemodynamic and structural changes, vascular remodelling, and 65 

bioenergetic shifts. These adaptive processes are necessary to prevent diseases like PPCM. 66 

Currently, it is unknown which adaptive processes fail in the pathogenesis of PPCM. More research is 67 

needed to identify these potentially insufficient mechanisms in PPCM. However, this section 68 

provides a basis for such studies by summarizing what is known about physiological pregnancy-69 

related adaptation from a cardiovascular perspective. 70 

 71 

Haemodynamic changes 72 

Pregnancy is associated with an increasing blood volume that leads to a chronically elevated cardiac 73 

volume load28. As a result, cardiac output increases to a prolonged peak from the second trimester 74 

to term and corresponds to an increased heart rate by ~20% and stroke volume by ~25%29–32. 75 

Increases in stroke volume were also found to be higher in subsequent pregnancies compared with 76 
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the first pregnancy29. Vascular resistance also falls by ~30% in the first trimester and recovers after 77 

delivery29–32. Gestational blood pressures were previously undefined, but a recent multicentre, 78 

longitudinal study in 4,279 women demonstrated that median systolic and diastolic pressures briefly 79 

declined during early pregnancy, but rose by 7 mmHg and 9 mmHg, respectively, above nominal 80 

pressures by late gestation32. These changes appear minor and could explain the inconsistency of 81 

previous studies. It is unknown whether haemodynamic changes could lead to PPCM, but low 82 

systolic blood pressure and elevated heart rate were associated with worse outcome in patients with 83 

PPCM33. 84 

 85 

Structural changes 86 

Parallel to haemodynamic changes, the human maternal heart undergoes substantial remodelling. 87 

Both left and right ventricular end diastolic diameters (LVEDD and RVEDD, respectively) increased by 88 

~20%, whereas the left end systolic diameter (LVESD) did not change between the third trimester 89 

and postpartum33.  A meta-analysis of 48 studies indicated that LV mass was about 28% higher in the 90 

last trimester of normotensive pregnancy34. These observations are indicative of gestational cardiac 91 

hypertrophy. Of note, cardiac dimensions and estimated weights were often compared to 92 

postpartum time points. While these structural changes are known to be transient, it is unknown 93 

whether heart dimensions can fully return to baseline (i.e., pre-pregnant) or the time required to do 94 

so. Additionally, several histological studies in rodents have indicated that the extensive cardiac 95 

remodelling does not involve fibrosis during or after pregnancy35–37. However, similar histological 96 

studies have not been performed in healthy women pre- or postpartum as these are limited by the 97 

requirement of cardiac biopsies and the associated risks. PPCM can have various cardiac phenotypes 98 

including ventricular dilation1, borderline non-compaction cardiomyopathy38,39, and peripartum 99 

takotsubo cardiomyopathy40,41, whereas normal pregnancy is associated with reversible eccentric 100 

cardiac hypertrophy42. This disparity may indicate that regulatory mechanisms involved in 101 

physiological cardiac remodelling during and after pregnancy could be impaired, leading to a 102 
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decompensated phenotype. Genetic variants of structural genes have been associated with PPCM 103 

and are discussed in detail in the Risk factors section. 104 

 105 

Vascular remodelling 106 

The balance between cardiac hypertrophy and vascular growth is crucial to maintain adequate 107 

cardiac function during pregnancy. In concert with increased ventricular mass, the vasculature is 108 

required to adapt accordingly. Like fibrosis, data on vascular changes is mostly available from rodent 109 

studies. It was shown that capillary density is transiently increased in mice in late pregnancy19,35. 110 

Specifically, pro-angiogenic gene (including Vegf, Ppargc1a, angiopoietin-1, and Fgf2)  are activated 111 

in early and mid-gestation, but return to non-pregnant levels in late gestation43. This is in line with 112 

the observed antiangiogenic environment associated with late gestation20. These findings in rodents 113 

corresponded with serum levels of PlGF, which reached a peak in the second trimester as well 114 

before returning to baseline levels in the last trimester in humans44.  In contrast, circulating VEGF 115 

appears to be stable in the first two trimesters before increasing near term45. Like VEGF, serum 116 

levels of soluble VEGF receptor-1 (sFlt-1) were elevated in late pregnancy46–48. Since sFlt-1 readily 117 

binds circulating VEGF, it is unknown whether the elevated levels of VEGF reflected levels of free 118 

VEGF or inactivated VEGF that is bound to sFlt-1. Hence, this may be a physiological response to 119 

maintain an angiogenic balance systemically and locally20. Disruption of this delicate balance is a key 120 

factor in the development of pre-eclampsia and is likely also involved in the pathogenesis of PPCM. 121 

Specifically, mice with cardiac ablation of the Ppargc1a gene (which encodes the transcription factor 122 

PGC-1α) developed a PPCM-like phenotype following inhibition of VEGF signalling20. Vascular 123 

function and remodelling in the peripartum period are key aspects of PPCM pathophysiology and is 124 

discussed in more detail in the following sections. 125 

 126 

Maternal cardiac metabolism during pregnancy   127 
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The maternal heart undergoes unique bioenergetic changes during pregnancy, which is tightly 128 

regulated during each gestational phase. In a normal, non-pregnant, fasted state, the human heart 129 

primarily utilizes free fatty acids (FFA) as a source of fuel49,50. Other metabolic substrates include 130 

ketones, lactate, and amino acids49,50. While glucose is one of the principal metabolic substrates for 131 

most human tissues, recent studies demonstrated that the heart consumes very little in the average 132 

population, at least in the fasting state49,50. As pregnancy progresses, maternal metabolism shifts 133 

from a predominant anabolic state with increased fat stores to a catabolic state with reduced fat 134 

mass and elevated levels of circulating FFA to meet the energetic needs of the foetus51. The 135 

transition from an anabolic state to a catabolic state is characterized by a profound increase of basal 136 

metabolic rates in mothers by up to 60%52. Insulin signalling plays a pivotal role in coordinating this 137 

shift. Insulin resistance gradually develops with gestation and results in hyperglycaemia and 138 

hyperinsulinemia in late pregnancy53,54. Consequently, glucose uptake is limited in the maternal body 139 

and is shunted to the foetus. Little is known about how cardiac metabolism changes during 140 

pregnancy in humans, but animal studies have provided insight into the associated molecular 141 

mechanisms. Early studies in rats showed a reduction in cardiac glucose oxidation by ~75% during 142 

pregnancy55, and studies in dogs indicated similar suppression of glucose use and a near doubling of 143 

FFA oxidation during late pregnancy56. Despite this metabolic shift towards FFA oxidation, and in 144 

contrast to insulin resistance in the liver and skeletal muscle, the hearts of mice in late pregnancy 145 

retain insulin sensitivity (defined as activation of signalling cascade)57. The causes for these 146 

metabolic changes is incompletely understood, but likely include inhibition of glycolysis by high 147 

levels of FFA in late pregnancy according to the Randle cycle58, and specific cellular reprogramming 148 

through hormonal signalling, such as induction by progesterone of PDK4, an endogenous inhibitor of 149 

PDH and thus of carbohydrate use (Figure 1)59. Understanding how cardiac bioenergetics are 150 

regulated is crucial to understanding the underlying mechanisms of heart diseases in general. 151 

Deletion of PGC-1α resulted in angiogenic imbalance, but PGC1α is also a key regulator of major 152 

metabolic pathways, especially related to fatty acid oxidation20. In vitro studies have also indicated 153 
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that PPCM patient-derived cardiomyocytes demonstrated reduced viability and metabolic flexibility 154 

upon inhibition of lipid metabolism24. Hence, impaired metabolic regulation may be a central aspect 155 

of the development of PPCM. 156 

 157 

Cardiovascular effects of hormones 158 

Sex and pregnancy-related hormones are the key modulators of the various stages of pregnancy. 159 

Several hormones are known to profoundly affect the cardiovascular system, but their specific 160 

molecular mechanisms and pathways are largely unknown. A plethora of association studies are 161 

available on hormone levels and effects regarding the pregnancy and foetal status, but most 162 

cardiovascular mechanisms have been demonstrated in animal models (Figure 2).  163 

Oestrogens are a class of sex hormones that govern the development of the female reproductive 164 

system as well as pregnancy. Oestrogen levels increase progressively during pregnancy and instantly 165 

decrease after delivery60. Cardiovascular effects of oestrogens are pleiotropic and exert mainly 166 

cardiovascular protective effects61. Oestrogens induce angiogenesis and vasodilation through 167 

increased NO synthesis62,63 and secretion of VEGF and PlGF64,65. Additionally, oestrogens were found 168 

to reduce inflammatory signalling, attenuate cardiac hypertrophy, and are protective against 169 

oxidative stress in endothelial cells and cardiomyocytes66–68. Many of its protective effects are 170 

derived from the potent inhibition of apoptosis in cardiomyocytes and endothelial cells69,70. It was 171 

recently demonstrated that a related class of receptors, the oestrogen-related receptors (ERRs), 172 

widely regulate cardiac metabolism, contractility, and conduction properties71. 173 

Like oestrogens, progesterone is primarily produced by the placenta during pregnancy with 174 

increasing serum levels toward delivery. Progesterone was shown to protect against apoptosis by 175 

direct inhibition of the L-type voltage dependent Ca2+ channel (in dogs) and via induction of the 176 

BCL2 Like 1 gene (Bcl2l1; in mice)72,73. Furthermore, eNOS mediated NO synthesis is enhanced after 177 

progesterone stimulation in the endothelium, causing a marked reduction in vascular resistance in 178 

pregnant rats and humans74,75. Recent studies in animals have demonstrated that progesterone can 179 
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inhibit glycolysis via Forkhead box protein O1 (FOXO1)-mediated mechanisms in tumors76,77. In 180 

cardiomyocytes, progesterone induced pyruvate dehydrogenase kinase (PDK4) activity, which 181 

inhibits pyruvate dehydrogenase, an essential step in glycolysis57.  182 

Prolactin has been widely associated with PPCM pathogenesis and is discussed in detail in the 183 

section on Pathophysiology. Serum levels peak at term and rapidly fall to pre-pregnancy levels after 184 

delivery if it is not repeatedly stimulated by breastfeeding78. Cardiovascular effects of prolactin 185 

include a blunted response to angiotensin in rats79, endothelial pro-survival signalling via the Janus 186 

activator kinase (JAK)-signal transducer and activator of transcription (STAT) signalling pathway80, 187 

and reversed phenylephrine-induced vascular tone in rat aortic rings81. Clearly such potential effects 188 

of prolactin are dose-related, and high dosages/concentrations often used in those studies preclude 189 

firm conclusions on the role of prolactin in humans.  190 

A lesser-known pregnancy-related hormone is FGF21, which is mainly produced by the liver during 191 

pregnancy under the control of PPAR-α82–84. The vast majority of studies were done in animals, as 192 

reflected in the following section. In addition, the heart is a target and a source of FGF2185. 193 

Downstream effects of FGF21 signalling in the heart are related to protection against pathological 194 

hypertrophy and damage following myocardial infarction85,86. Remarkably, cardiac remodelling was 195 

absent in pregnant FGF21 knockout mice and FFA oxidation was significantly reduced26. Most of 196 

these mechanisms remain to be confirmed in humans, but FGF21 has been correlated to maternal 197 

body mass index and adiposity87. Moreover, fasting glucose levels also inversely correlated with 198 

FGF21, which may reflect maternal nutrient status in pregnancy87. By extension, FGF21 has also been 199 

suggested as a biomarker for gestational diabetes mellitus and type 2 diabetes mellitus88.  200 

 201 

Biomarkers and risk factors 202 

This section briefly discusses biomarkers that support the diagnosis of PPCM and could result from 203 

underlying disease mechanisms. Furthermore, while the cause of PPCM is currently unknown, 204 

several risk factors have been proposed, including heart failure-associated genetic defects89, 205 
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ethnicity4,90, hypertensive disorders91, infections92, twin and subsequent pregnancies93, and previous 206 

cancer94. 207 

 208 

Biomarkers 209 

Several studies have determined whether specific biomarkers were associated with PPCM, which 210 

were summarized by Cherubin et al95. The authors evaluated 117 biomarkers from 31 case-control 211 

studies. Several biomarkers were identified as be independent risk factors for PPCM. See Table 1 for 212 

an overview of biomarkers. A quantitative meta-analysis suggested that patients with PPCM had 213 

higher levels of natriuretic peptides, troponin, CRP, and white blood cell counts, but reduced levels 214 

of albumin and selenium compared with healthy controls95. Note that these biomarkers mostly 215 

reflect the presence of cardiomyopathy and appear to be unspecific for PPCM. However, a few 216 

studies investigated potential PPCM-specific biomarkers by comparing patients with PPCM to 217 

patients with other types of heart disease. Increased levels of prolactin96, miR-146a21,97, and PlGF48 218 

were found in patients with PPCM relative to non-pregnancy-related heart failure. Additionally, the 219 

ratio between circulating sFlt-1 levels and PlGF was suggested to have significant diagnostic value for 220 

PPCM48. Identifying more PPCM-specific biomarkers is a great unmet need and will significantly 221 

improve diagnosis and prognosis as targeted treatments can be started sooner. 222 

 223 

Table 1 – Biomarkers as risk factors for PPCM. 224 

Biomarker Odds Ratio 95% confidence interval 
B1R and M2R98 18.786 1.926 – 183.262 
antimyocardial IgG99 2.68 1.19 – 4.85 
NT-proBNP100 1.92 1.12 – 4.15 
CRP99,100 1.86 1.08-4.02 
Uric acid101 1.3 1.049 – 1.614 
ACE polymorphism102 0.253 0.114 – 0.558 

B1R: Bradykinin B1 receptor, M2R: M2 muscarinic receptor, IgG: Immunoglobulin G, NT-proBNP: N-terminal pro b-type 225 
natriuretic peptide, CRP: C-reactive, ACE: angiotensin converting enzyme. 226 

 227 

Genetics 228 
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As PPCM and dilated cardiomyopathy (DCM) have similar clinical characteristics, and it may be that 229 

PPCM is part of the spectrum of DCM. Some patients diagnosed with PPCM may have had a 230 

previously unrecognised dilated cardiomyopathy, although in the few documented cases where 231 

echocardiography was incidentally available prior to clinical diagnosis of PPCM, ejection fraction was 232 

normal103. Recent studies indicated that genetic variants of in Titin (TTN)89,104–107,  cardiac Troponin C 233 

(TNNC1)108, Desmoplakin (DSP)89,107, Lamin A/C (LMNA)89,107, BAG Cochaperone 3 (BAG3)89,107, Filamin 234 

C (FLNC), Myosin Heavy Chain 6 and 7 (MYH6 and MYH7)89, and Vinculin (VCL)89,107 were identified in 235 

both PPCM and DCM. Truncating variants of TTN were found in 10% of patients with PPCM.  236 

Mutations in DSP, FLNC, and BAG3 which were previously associated with DCM have now also been 237 

confirmed in PPCM patients89,106,107. in addition, the frequencies with which mutations in each of 238 

these genes are found in patients with PPCM closely mirrors the same frequencies in patients with 239 

DCM, underscoring the similarity of genetic predispositions to both diseases. The association of 240 

BAG3 variants and PPCM has also prompted the hypothesis that various classes of molecular 241 

chaperones (e.g., heat-shock proteins) could be involved in the pathogenesis of PPCM109. A small 242 

genome wide association study identified enrichment of a single nucleotide polymorphism near the 243 

Parathyroid Hormone Like Hormone (PTHLH) gene in 79 PPCM patients, although this observation 244 

requires confirmation110. PPCM and DCM may be caused by similar gene variants, of which TTN 245 

mutations seem to be most prevalent. However, how these various mutations converge and lead to 246 

PPCM remains to be investigated.  247 

 248 

Geographical variation 249 

Very little is known about the geographical variation on PPCM, despite global initiatives like the ESC 250 

EORP. Most studies did not select patients using consecutive screening (i.e., patients were selected 251 

based on PPCM diagnosis) and too few countries were affiliated with these studies. Ideally, a registry 252 

could be started that includes patients based on consecutive screening (e.g., include all pregnant 253 

women and note incidence of PPCM) and is performed consistently in as many countries as possible. 254 



12 
 

However, this is an ambitious endeavour that is has not been initiated yet and conclusive data on 255 

incidence rates remains limited by regional studies. Consequently, this section summarizes what is 256 

known from local studies (with non-consecutive screening) and indicates which factors could be 257 

considered if a global registry is initiated with consecutive patient inclusion. 258 

Recent studies demonstrated that the incidence of PPCM varies among geographical regions, with 259 

the lowest reported rates in several European and Asian countries10. PPCM incidence is highest in 260 

Nigeria and Haiti13,14,111. These geographical hotspots support the hypothesis that a specific genetic 261 

background may underlie the disease although environmental factors are also likely. The recently 262 

concluded PEACE registry in Nigeria was a national consecutive study and indicated that selenium 263 

deficiency and malnutrition were significantly associated with PPCM111,112 and selenium 264 

supplementation could be beneficial in the treatment of PPCM113. Micronutrient deficiency and 265 

malnutrition in general are examples environmental factors that could predispose to heart failure114 266 

and could trigger PPCM. Selenium deficiency is also common in neighbouring regions of Nigeria and 267 

in the Keshan region in China, but PPCM incidence rates are unknown for these regions. In contrast, 268 

studies from the USA that encompass a diverse population within the same healthcare system 269 

corroborate that race is an important risk factor. Multiple nationwide studies from the USA have 270 

demonstrated that over 40% of patients were African-American and 35% were Caucasian18,90,115,116, 271 

in contrast to population estimates of 60.3% non-Hispanic Caucasian and 13.4% African American117. 272 

Two independent US studies demonstrated fundamental differences between Caucasian and African 273 

American patients, as African American patients were younger, had a higher prevalence of 274 

gestational hypertension, had a lower LVEF at diagnosis, and functional recovery was less likely or 275 

more slowly in African American patients compared with Caucasians118,119.  276 

 277 

Socio-economic status 278 

Since the ESC EORP is a global study, healthcare systems differ among included countries which may 279 

skew the results. An interim report of the ESC EORP indicated that patients from countries with 280 
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middle to high health expenditure were 64.6% Caucasian compared with 5.1% Black120. However, 281 

patients from countries with a predominantly low health expenditure were Black or Asian (45.2% 282 

and 39.4% respectively)120. In this regard, low socio-economic status (specifically lower education) 283 

was associated with worse outcomes independent of race121. Despite marked differences in socio-284 

economic background, the mode of presentation was largely similar. Isogai et al. compared PPCM 285 

incidence with all-cause maternal mortality per country and found a significant correlation 286 

(Spearman correlation: 0.80)10. PPCM is a major cause for maternal death and likely drives such 287 

increased maternal mortality rates. In general, maternal mortality rates are relatively high in low-288 

income countries due to suboptimal treatment regimens and low hospitalization rates. Additionally, 289 

birth rates are lower for high-income countries versus low-income countries. Suboptimal healthcare 290 

(i.e., lack of genetic screening), more subsequent pregnancies, and a lack of contraception and 291 

family planning may indirectly contribute to the high incidence of PPCM in specific regions122,123.  292 

 293 

Pre-eclampsia and vascular dysfunction 294 

Pregnancy-associated hypertension and its more severe form pre-eclampsia, and PPCM are both 295 

cardiovascular diseases that can affect women during late-gestation. Pre-eclampsia is defined as 296 

new-onset hypertension and proteinuria or new-onset hypertension with end-organ dysfunction 297 

with or without proteinuria after 20 weeks of gestation. The exact relationship between PPCM and 298 

pre-eclampsia is not fully understood, but pre-eclampsia strongly predisposes to PPCM124,125. 299 

Whether the increased cardiovascular risk is due to direct consequences of the underlying cause of 300 

pre-eclampsia or due to shared risk factors is currently unknown91,126,127. A substudy of the ESC EORP 301 

described the differences in phenotypes and outcomes of PPCM patients with and without 302 

hypertensive disorders, including pre-eclampsia91. Patients with PPCM and pre-eclampsia presented 303 

with worse symptoms, but the LVEF of women with both diseases was more likely to recover than in 304 

PPCM patients without hypertension91. Patients with PPCM  and pre-eclampsia were more likely to 305 

have peripheral oedema, pulmonary rales, a high body mass index (BMI), short QRS durations, and 306 
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New York Heart Association (NYHA) class IV symptoms91. One reason for improved outcomes in 307 

patients with PPCM and pre-eclampsia may be that these patients are diagnosed and treated earlier 308 

in disease progression128. 309 

Pre-eclampsia is in part caused by impaired placental function resulting in excessive levels of 310 

circulating angiostatic factors such as sFlt-1 and placental growth factor (PlGF) secreted by the 311 

placenta46,129. An excess of sFlt-1 was shown to inhibit vascular endothelial growth factor (VEGF)-312 

induced vasodilation, reduce capillary density, and cause endothelial dysfunction20,46,130. Similarly, 313 

increased levels of sFlt-1 and 16kDa prolactin were also associated with PPCM patients20,131. Mouse 314 

models for PPCM have indicated that the levels of 16kDa prolactin induced similar vascular 315 

dysfunction19,20. However, this mechanism remains to be confirmed in humans.  316 

 317 

Immune responses 318 

PPCM is also associated with specific immune responses (possibly following viral infections132) that 319 

may increase susceptibility or result in worse outcomes. Serum markers related to inflammation 320 

(i.e., C-reactive protein [CRP], tumor necrosis factor-alpha [TNF-α], and interleukin 6 [IL-6]) were 321 

significantly increased in PPCM patients compared with controls133. A recent substudy of the IPAC 322 

study determined that IL-22 and TNF-α were associated with adverse outcome and IL-22 and IL-17 323 

corresponded with disease severity, whereas IL-2 and IL-4 correlated with recovered LVEF at 12 324 

months postpartum134. Circulating NK cells were reduced while specific subsets of T cells were 325 

increased early postpartum in PPCM patients versus pregnancy matched controls135. Recovery of 326 

immune cell levels was generally quick, but recovery of NK cells was delayed particularly in black 327 

women135. Additionally, autoantibodies against troponin I or cardiac sarcomeric myosin were also 328 

found in patients and correlated with lower LVEF and reduced cardiac recovery at follow-up136. 329 

Notably, the cause for (auto)immune responses can be variable and remains to be specified. 330 

 331 

Subsequent pregnancies 332 
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Subsequent pregnancies pose an increased risk for recurrence or worsening of heart failure in 333 

patients with PPCM137,138. Unrecovered left ventricular function at the time of a subsequent 334 

pregnancy was associated with a higher risk of a fatal outcome regardless of age, gravidity, parity, 335 

hypertension, and smoking138. Study parameters varied among studies, but the consensus is that all 336 

subsequent pregnancies were associated with significantly reduced LVEF regardless of LVEF recovery 337 

after the index pregnancy138,139. Mortality following the subsequent pregnancy was significantly 338 

higher in women with persistently impaired LVEF (<50%) compared with women with recovered 339 

LVEF138,139. Therefore, PPCM could result in persisting subclinical cardiac dysfunction and subsequent 340 

pregnancies may aggravate cardiac function recurrently. It is not clear to which extent this 341 

deterioration continues, but is likely that cardiac function will decline continuously with each 342 

subsequent pregnancy140,141. 343 

 344 

Cancer 345 

The prevalence of cancer was also indicated to be 16-fold higher in PPCM patients compared to age-346 

matched women94. 57% of patients were diagnosed with cancer prior to PPCM presentation of 347 

which 92% were treated with cardiotoxic cancer therapies, which likely contributed to deterioration 348 

of LV function when PPCM developed and delayed full cardiac recovery therafter94. Whole exome 349 

sequencing revealed that 6 out of 14 screened patients carried potential pathogenic gene variants 350 

associated with cardiomyopathy or cancer predisposition syndromes94. However, in a large South 351 

African PPCM cohort there was no association of cancer diagnoses with PPCM diagnosis 352 

(unpublished data). Thus, it is not yet clear whether screening for genetic variants and for cancer in 353 

PPCM patients is warranted. 354 

 355 

Pathophysiology 356 
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Very little is known about the pathophysiology of PPCM in humans. The previously described risk 357 

factors provide some insight into the state of patients with PPCM at the time of diagnosis and at 358 

different times of follow up, but these data do not support inference regarding pathological 359 

mechanisms that eventually precipitate into PPCM. Most mechanistic data were obtained from 360 

animal models that presented a phenotype that is similar to PPCM in humans. While these models 361 

helped shape some of the clinical guidelines and pathogenic hypotheses, most putative mechanisms 362 

remain to be confirmed in humans.  363 

 364 

Mouse models for PPCM 365 

The two main mouse models used to study PPCM were based on cardiac-specific deletion of the 366 

Stat3 or Ppargc1a gene19,20. Mice with either genotype developed severe heart failure postpartum 367 

that closely resembled PPCM with increasing severity in subsequent pregnancies19,20. Abrogation of 368 

STAT3 or PGC-1α-mediated signalling pathways resulted in an impaired response to oxidative stress 369 

related to late pregnancy and early postpartum19,20,142. The PI3K-Akt pathway is thought to be 370 

cardioprotective during, but transgenic overexpression of Akt in concert with Stat3 knockout could 371 

not prevent the onset of PPCM143. Consequently, stressed cardiomyocytes secreted the ubiquitous 372 

lysosomal protease cathepsin D following hypoxic stress, mechanical stretch, and oxidative stress in 373 

addition to regulated exocytosis19,144,145. Extracellular cathepsin D exhibited proteolytic cleavage of 374 

the nursing hormone prolactin during the peripartum period19,146,147. The produced fragment is a 375 

peptide known as 16 kDa prolactin and is classified as a vasoinhibin and part of a family of peptides 376 

that elicit antiangiogenic effects148. Subsequently, the 16 kDa prolactin fragment interacted with the 377 

urokinase plasminogen activator surface receptor (uPAR) on the cell membrane of adjacent 378 

endothelial cells and endocytosis was induced by circulating plasminogen activator inhibitor-1 (PAI-379 

1)21,23,149. This mechanism effectively inhibited migration and cell cycle progression, and induced 380 

apoptosis in endothelial cells, subsequently disrupting the cardiac microvasculature150–152. 381 

Consequently, endothelial cells secreted exosomes loaded with microRNA-146a (miR-146a), which 382 
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were taken up by surrounding cardiomyocytes21. MiR1-146a effectively decreased protein levels of 383 

Erb-B2 Receptor Tyrosine Kinase 4 (ERBB4) and neuroblastoma RAS viral (v-ras) oncogene homolog 384 

(NRAS) in cardiomyocytes21,153. The effects on NRAS-mediated mechanisms were minimal as NRAS 385 

expression is low in cardiomyocytes. In contrast, ERBB4 mediates cardiac development and 386 

metabolic processes, but its role in PPCM pathogenesis remain undefined154,155. In addition, PGC-1α 387 

regulates the expression and production of VEGF and, therefore, facilitates angiogenesis. This 388 

pathway likely offsets the antiangiogenic effects of high sFlt-1 levels at term and cardiac deletion of 389 

PGC-1α predisposes mice to cardiomyopathy even in the absence of pregnancy20,156. Thus, impaired 390 

STAT3 and PGC-1α-mediated mechanisms resulted in striking PPCM phenotypes in mice via an 391 

induced angiogenic imbalance and abnormal metabolic regulation. See Figure 3 for a summary of 392 

these molecular mechanisms. 393 

 394 

Translating pathophysiology from mice to humans 395 

The previous section focused on the potential pathogenic pathways leading to PPCM in mouse 396 

models, but these mechanisms remain to be confirmed in humans. Results from these mouse 397 

models provided a strong basis for clinical trials of bromocriptine to study the inhibition of prolactin 398 

release in PPCM patients, which showed promising outcomes157,158. Bromocriptine is a dopamine 399 

agonist that supresses prolactin release from the pituitary gland and was hypothesized to ameliorate 400 

the adverse effects of 16 kDa prolactin. However, translating the findings from mice to the human 401 

situation has proven difficult as several caveats exist. For example, the mouse models were based on 402 

cardiac-specific deletion of Stat3 and Ppargc1a, which is not representative for PPCM patients. 403 

However, STAT3 is a main regulator of inflammation and STAT3 activation and protein levels were 404 

greatly reduced in hearts of patients with dilated cardiomyopathy or PPCM, which suggests that 405 

STAT3 is essential to mount an adequate response upon cardiac stress19,159. One study also showed 406 

that circulating prolactin levels were elevated in PPCM patients versus pregnancy-matched control 407 

while both groups were nursing96, but these results remain to be replicated. A study in a German 408 
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cohort demonstrated that serum levels of cathepsin D and miR-146a were also significantly elevated 409 

in PPCM patients97. Normal levels of circulating miR-146a were observed in all PPCM patients who 410 

had already received early bromocriptine treatment97. Additionally, the antiangiogenic effects of 16 411 

kDa prolactin is central to the proposed pathophysiology and increased circulating levels have been 412 

shown in a few PPCM patients19. Due to the lack of quantitative assays for vasoinhibins, no reference 413 

ranges or serum levels in disease have been determined. While prolactin, cathepsin D, and miR-146a 414 

were shown to be elevated in PPCM, the role of 16 kDa prolactin remains a topic of debate since 415 

cathepsin D produces five distinct vasoinhibins of which four are potent antiangiogenic agents and 416 

should be investigated further147,160. Moreover, human prolactin is not readily cleaved by cathepsin 417 

D in most extracellular conditions, mostly dependent on pH161,162. 418 

Extrapolations from animal models may be difficult regarding the specific role of prolactin, but the 419 

notion of angiogenic imbalance in PPCM pathophysiology remains promising163. The systemic 420 

antiangiogenic state during late pregnancy and early postpartum is negated by local VEGF 421 

production in the hearts of mice20. The effects of excessive levels of sFlt-1 were significantly 422 

associated with vascular dysfunction and pre-eclampsia in humans130, which supports the hypothesis 423 

that PPCM may be a predominantly vascular disease of the heart. While angiogenic therapies were 424 

beneficial in pre-eclamptic rats and PPCM mouse models, clinical studies cannot be conducted yet as 425 

human pregnancies take much longer and trials will be complicated by vast interindividual 426 

differences20,164. PPCM onset is generally later than pre-eclampsia, but angiogenic imbalance may be 427 

pivotal in both diseases. Serum levels of sFlt-1, PlGF, and the sFlt-1/PlGF ratio are used to diagnose 428 

pre-eclampsia and may also be used in the diagnosis of PPCM47,48. Therefore, from a vascular 429 

perspective, PPCM and pre-eclampsia may be part of a spectrum of cardiovascular diseases 430 

associated with a vascular dysfunction. 431 

 432 

Metabolic contribution to PPCM   433 
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Pregnancy has evolved as a tightly regulated process with major consequences for both the mother 434 

and child when certain aspects are disrupted. Insight into specific aberrant metabolic pathways in 435 

PPCM patients is scarce. Specific genetic factors have recently been associated with PPCM recently 436 

and it is hypothesized that an underlying (genetic) factor may cause cardiovascular distress that 437 

results in PPCM. A recent study examined the differences between hiPSC-derived cardiomyocytes 438 

from typical PPCM patients and their respective familial controls24. To mimic pregnancy-related 439 

cardiac volume overload, cyclic mechanical stretch was applied to cultured cardiomyocytes. While 440 

mechanical stretch caused differential expression of 2647 genes, of which 1248 specific to the PPCM 441 

cardiomyocytes, computational pathway analysis was ambiguous. This suggested that mechanical 442 

stretch did not elicit pathological effects in PPCM cardiomyocytes. In contrast, 95 genes were 443 

differentially expressed in all stretched cardiomyocytes and in static PPCM cardiomyocytes, but not 444 

static cardiomyocytes derived from controls. The majority of enriched pathways was found to be 445 

related to lipid metabolism. Cardiac lipid metabolism is known to be reduced during cardiac stress 446 

and disease49,50,165. However, aberrant pathways related to lipid metabolism in static PPCM 447 

cardiomyocytes indicated a specific predisposition that was also functionally confirmed in vitro in 448 

these hiPSC-derived cardiomyocytes and in isolated cardiomyocytes from cardiac specific STAT3 449 

knockout mice. Further analysis indicated that the majority of differentially expressed genes are 450 

controlled by several shared transcription factors, including nuclear transcription factor Y (NFY), Sp1 451 

transcription factor (SP1), and sterol regulatory element-binding transcription factor 1 (SREBP1). 452 

Considering these experimental results, there might be a link between unstable metabolism and 453 

endocrine regulation of cardiac metabolism during pregnancy. Most PPCM patients had no 454 

indication of cardiovascular disease prior to the onset of PPCM. Moreover, mutations in the TTN 455 

gene may result in metabolic abnormalities as well. Truncating variants of TTN mutations have been 456 

associated with PPCM89,106,166 and were shown to have pleiotropically detrimental to cardiac 457 

function167. A recent study compared cardiomyopathy patients with and without truncating TTN 458 

variants and showed that these TTN variants were associated with cardiac fibrosis and mitochondrial 459 
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dysfunction168. Various were enriched based on genome-wide transcriptome analysis in patients 460 

with truncating TTN variants versus patients without, including oxidative phosphorylation, carbon 461 

metabolism, pyruvate metabolism, glycolysis, and PPAR signalling168. Additionally, mutations in the 462 

sarcomeric proteins troponin T and C have been shown to modify the calcium binding affinity during 463 

contraction, which resulted altered ATP consumption and increased energetic demands169,170. 464 

Destabilizing mutations in the MYH7 gene were shown to have detrimental effects on cardiac 465 

function as well, but specifically on metabolic remodelling, glycolysis, and overall mitochondrial 466 

function171. It is unknown how these sarcomeric alterations might induce PPCM, but they could be 467 

considered to predispose to the disease. Pregnancy gradually introduces various cardiovascular 468 

stresses. The steady increase of stress might be slow enough for the cardiovascular system to cope 469 

with these changes, but perhaps the sudden reversal of most pregnancy-related changes after 470 

delivery presents an overwhelming challenge. In contrast, the conditions of late pregnancy may 471 

present a specific challenge in itself, which might explain the onset of PPCM during the last 472 

trimester. For example, high levels of progesterone and FGF21 could disrupt the metabolic balance 473 

in heart, leading to cardiac distress26,57. Fluctuations of prolactin-derived vasoinhibins might impair 474 

the delicate angiogenic balance as well, leading to impaired vascular function that may be mediated 475 

through miR-146a20,21. Since vascular function is related to the supply of metabolic substrates and 476 

hypoxia, this could induce cardiac metabolic stress as well172.  477 

 478 

Translational opportunities and future studies 479 

The majority of studies pertaining to PPCM resulted in correlations of clinical characteristics and 480 

biomarkers. A great unmet need remains to determine how these correlations are related to the 481 

underlying pathophysiology of PPCM. Since pregnancy is a defining aspect of PPCM, future studies 482 

will be limited to an in vivo design. However, it is very difficult to develop a representative animal 483 

model for a putative “multiple-hit” disease; especially PPCM considering the variety of risk factors. 484 

Determining pathological genetic factors are also limited by a varying disease definition among 485 
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countries, which will dictate the nature of patients included in cohort studies. This will be a dynamic 486 

and adaptive process before a definitive disease definition can be reached. However, studies 487 

performed by Mizuno et al. and Murashige et al. determined which metabolic substrates are used in 488 

the heart in a healthy and a diseased state49,50. Such studies could be repeated in PPCM patients at 489 

the time of diagnosis, and analyses could be expanded beyond metabolomics to also include 490 

(targeted) proteomics to determine hormone levels and levels of other endocrine factors. This could 491 

be repeated during and after recovery of PPCM in order to elucidate the changes in molecular 492 

circulating profiles. Such studies would be mildly invasive and will likely be limited to postpartum 493 

PPCM patients. Additionally, since cardiac biopsies are often unobtainable, molecular mechanisms 494 

could be studied in other tissues instead, like in the skeletal muscle. While significantly different in 495 

various respects, some essential pathways are shared among skeletal tissues and could provide 496 

valuable information. Further genetic screening can be done to discover genetic variants in coding 497 

and non-coding genes. Currently, such studies are hampered by high costs, sample availability, 498 

technological, and statistical limitations. Several genetic variations have been associated with PPCM, 499 

but the combination of genetic variation differs among individuals, number of identified genes, and 500 

scarcity of PPCM patients greatly limits the statistical power to improve genetic screening at this 501 

time. Once a potential pathological factor has been identified, animal models could be developed 502 

depending on the nature of that factor. For example, some animal models are more suitable for 503 

epigenetic studies, pregnancy studies, or hormone homology. Importantly, most molecular aspects 504 

of pregnancy are conserved in placental mammals, but duration and placentation differs greatly 505 

among species. Mouse models may be unsuitable to study analogous mechanisms from human and 506 

animals with a longer gestation would be required.  507 

 508 

Conclusions 509 

PPCM is a complex disease with many risk factors and hypothesized aetiologies. Clear guidelines 510 

have been proposed and are regularly updated to reflect novel insights and observations.1 Since the 511 
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pathogenesis of PPCM is still largely unconfirmed in humans, diagnosis is difficult and targeted 512 

screening is advised to be started early upon suspicion of PPCM. Extensive cohort studies like the 513 

ESC EORP are crucial to gain a better understanding of the clinical presentation, risk factors, and 514 

prognosis,4 but a registry on a global scale with consecutive patient selection will be highly 515 

incremental to our knowledge regarding geographical variation and incidence rates among 516 

countries. Moreover, recent insights into associated genetic factors and predisposition to PPCM 517 

indicated that these may predict a worse prognosis and have relevant clinical implications. Genetic 518 

evaluation may, therefore, be advisable for patients with a family history of cardiomyopathies. 519 

Moreover, little is known about the relationship between PPCM and pre-eclampsia. Disease 520 

definitions suggest that the diseases are fundamentally different, but the initial clinical symptoms 521 

may be indicative for both and have historically been a reason for a delayed diagnosis. However, 522 

while high blood pressure is required for pre-eclampsia, it is not for PPCM, which is characterized by 523 

a significant decline in LV function. Typically, PPCM occurs in the first months after delivery, whereas 524 

pre-eclampsia is seen in the second half of gestation and is effectively treated by removing the 525 

placenta. Pre-eclampsia may be a distinct entity, but it was repeatedly shown to be a risk factor to 526 

develop PPCM, which may suggest that pre-eclampsia may cause lasting damage to the maternal 527 

vasculature. The cardiovascular system undergoes fundamentally different changes in late 528 

pregnancy compared with the early postpartum period and the underlying cause for PPCM may be 529 

related to each period or the transition caused by delivery. From a mechanistic perspective, PPCM 530 

appears to result in heart failure secondary to vascular dysfunction. The two principal mouse models 531 

have demonstrated that regulation of angiogenesis during the peripartum period is tightly regulated 532 

and remarkably sensitive to detrimental stimuli19,20. Currently, these animal models are the basis for 533 

several clinical studies and clinical recommendations, despite the uncertainty of how well findings in 534 

animals can be extrapolated to human patients. Hence, there is a great need for mechanistic studies 535 

in humans with PPCM in order to gain more insight into the pathophysiology of PPCM. In light of 536 

this, it was recently shown that hiPSC-derived cardiomyocytes from PPCM patients were 537 
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metabolically impaired in vitro24. Pregnancy hormones extensively orchestrate maternal metabolism 538 

and angiogenesis during and after pregnancy. Alternatively, mutations in several genes have been 539 

associated with PPCM, some of which may also cause metabolic distress. However, it is unclear how 540 

these dysfunctional gene variants could interact with the mechanisms of pregnancy at specific times. 541 

It is known that placental hormones can cause pre-eclampsia; it remains unclear if a specific 542 

hormone profile can be distinctly linked to PPCM pathogenesis. Taken together, pregnancy 543 

hormones might link the delicately balanced angiogenic state to potentially unstable metabolic 544 

processes in the heart of PPCM patients.   545 
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948 

Figure legends 949 

Figure 1 – Pregnancy hormone levels correlated to the cardiac bioenergetic profile. Fluctuating 950 

hormone levels correlate with changes in cardiac metabolic substrate during the progression of 951 

pregnancy. Late gestation is associated with increased utilization of free fatty acids and ketones, 952 

while pyruvate and lactate usage is reduced. The yellow line denotes childbirth and red gradients 953 

highlight general time of PPCM onset. 954 

955 

Figure 2 – Pregnancy hormones elicit tissue-specific effects. The pregnancy hormones prolactin 956 

(and its cleavage product 16 kDa prolactin), oestrogens, FGF21, and progesterone have pleiotropic 957 

effects in the vasculature and in cardiomyocytes related to apoptosis, angiogenesis, metabolism, 958 

vascular function, cardiac hypertrophy, and oxidative stress. 959 

960 
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Figure 3 – hypothesized pathogenic pathways of PPCM. During early gestation, the placenta 961 

secretes high levels of vascular endothelial growth factor (VEGF) and placental growth factor (PlGF) 962 

into the maternal circulation, which stimulate vascularization and organ perfusion. As pregnancy 963 

progresses, circulating levels of VEGF and PlGF rise in concert with the increased secretion of the 964 

angiostatic soluble VEGF receptor-1 (sFlt-1). Alternatively, cardiomyocyte stress induces the 965 

exocytosis of the proteolytic enzyme cathepsin D (CTSD), which cleaves prolactin into 16 kDa 966 

fragment that is cytotoxic to endothelial cells. Consequently, endothelial cells secrete exosomes 967 

loaded with microRNA-146a (miR-146a) and inhibits various cardiomyocyte processes, including 968 

ERBB4-mediated metabolism. Both mechanisms have a central role for the vasculature in the heart 969 

and may lead to the development of PPCM. 970 

971 

Key points 972 

1. Physiological cardiovascular changes during pregnancy appear to uniquely boost PPCM973 

development in predisposed women.974 

2. PPCM onset typically overlaps with the most profound changes in hormone levels.975 

3. Models for PPCM indicate disruption of metabolic flexibility and angiogenic balance, possibly976 

due to aberrant hormonal signaling.977 

4. Most mechanisms derived from animal models remain to be confirmed in humans but form978 

the basis for current clinical guidelines and future experiments.979 

5. Registries should be based on consecutive screening and help to determine actual980 

geographic variation of incidence rates.981 
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