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Abstract: 

1. Quantifying current and future overlap between human activities and wildlife is a core 

and growing aim of ecological study, spurring ever more spatial data collection and 

diversification of observation techniques (surveys, telemetry, citizen science etc.).  

2. To meet this aim, data collected via multiple platforms, across different geographical and 

temporal regions, may need to be integrated, yet many ecologists remain unclear about the 

relationships between data types and therefore how they can be combined.  

3. In seabird research, these applied questions can be particularly pressing because many 

human activities (e.g. tidal and wind renewables, fishing, shipping, etc.) are concentrated 

in coastal waters, where many seabirds also aggregate, especially while breeding. In 

addition, seabird coloniality and density dependence present unique analytical challenges. 

4. We review the relevant literature on data integration and illustrate it with example 

models and data (in an accompanying R-library and vignette (J Matthiopoulos et al., 

2022)), to derive methodological and quantitative guidelines for best practice in conducting 

joint inference for multi-platform data. We use systematic survey data to motivate the key 

arguments, but also overview developments in integration with other data (e.g., telemetry 

tracking, citizen science, mark-recapture). 

5. We make recommendations on (1) the use of response and explanatory data, (2) the 

treatment of survey design and observation errors, (3) exploiting dependencies across 

space and time, (4) accounting for biological phenomena, such as commuting costs from 

the colony (i.e., accessibility) and density dependence, and (5) the choice of statistical 

framework.  

6. Synthesis and application: Integrated analysis of multi-platform data turns many of the 

seabird-specific challenges into opportunities for inferring habitat associations and 

predicting future distributions. Our review proposes practical recommendations for data 



   
 

collection and analysis that will allow seabird conservation to derive maximal benefits 

from these opportunities.  

Keywords: Accessibility constraints, Hierarchical models, Point process models, Marine 

renewables, Model transferability,  Observation models, Spatial modelling, Species 

distribution modelling 

INTRODUCTION 

The fundamental questions in spatial ecology are reassuringly stable (Aarts, MacKenzie, 

McConnell, Fedak, & Matthiopoulos, 2008; Jason Matthiopoulos, Fieberg, & Aarts, 2020). 

How many individuals are within a survey area (abundance estimation), where are they 

(population distribution), why are they there (habitat, intraspecific and interspecific 

associations), where else might they be, and where might they go if the environment 

changes (spatial extrapolation and forecasting)? Within this setting, seabirds present us with 

particular applied challenges. Their seasonal connection to the coast, often in colonial 

networks, their capabilities for far-ranging travel (Egevang et al., 2010) contrasted with their 

often strong philopatry and breeding site fidelity (Steiner & Gaston, 2005), their sensitivity 

to changing wind fields and currents (Weimerskirch, Louzao, De Grissac, & Delord, 2012), 

and their vulnerability to energetic deficits and commuting costs (Elliott et al., 2013) make 

the investigation of accessibility constraints and density dependence particularly 

complicated, compared to other taxa.  

   Seabird conservation imperatives increasingly influence marine spatial planning and 

environmental policy for renewable energy, oil decommissioning, shipping and fishing 

(Pittman et al., 2021), posing a surfeit of difficult spatial questions on issues such as critical 

habitat, collisions, spatial displacement, barrier effects and secondary metapopulation 

effects. This has prompted a rapid increase in Species Distribution Models (SDMs) for 



   
 

seabirds, drawing independent inferences from multi-platform data such as ship-board and 

aerial (Waggitt et al., 2019), ship-board and tracking (Carroll et al., 2019; Perrow, Harwood, 

Skeate, Praca, & Eglington, 2015) and ship-board, aerial and tracking (Sansom, Wilson, 

Caldow, & Bolton, 2018) . At the same time, there is a strong trend in ecology towards 

integration of such multi-platform data (Fletcher et al., 2019; Isaac et al., 2020; Miller, 

Pacifici, Sanderlin, & Reich, 2019; Pacifici et al., 2017).   

   Integration across data types lends power to analyses because each observation platform 

can provide a different view of a species’ underlying distribution. Embedding different data 

into a joint likelihood framework greatly improves the explanatory and predictive ability of 

species distribution models (Fletcher, McCleery, Greene, & Tye, 2016; Nelli, Ferguson, & 

Matthiopoulos, 2019; Pacifici et al., 2017; Peel et al., 2019). Integrated analyses also improve 

model precision (by increasing the effective sample size), model accuracy (by ameliorating 

the biases of one data type via corroboration with another), and the aggregated 

spatiotemporal extent and transferability of model estimates and predictions (a natural 

consequence of pooling study areas and times). Hence, data integration is particularly 

helpful for ameliorating two types of risk inherent in marine planning. First, by increasing 

precision we may find that the contracted confidence intervals around estimated impacts no 

longer include negative effects on wildlife. We may thus avoid unnecessary refusals of 

environmentally benign developments under the precautionary principle. Second, by 

reducing the bias in estimates of impact, we may find that the expected anthropogenic 

effects are, in fact, detrimental. We may therefore be able to act to lower the risk of 

extirpation of protected populations. Furthermore, seabird survey methodologies have 

developed over time from ship-based, to aerial and digital-aerial (Stephen T. Buckland et al., 

2012), meaning that long-term trends simply cannot be investigated without some form of 

multi-platform integration. 



   
 

   Here, we argue that the challenges posed by seabird biology and multi-platform datasets 

can be turned into opportunities for inference, leading to distinct recommendations for best 

analytical practice. Our proposed data-integration workflow navigates the difficulties posed 

by seabird natural history, differences in observation method, overlaps and separation in 

effort amount and distribution between methods, the imperfections of explanatory data, and 

the need for statistical robustness. The current state of the literature reviewed here primarily 

contains examples of integration of different survey types, systematic (i.e., designed 

scientific surveys) or opportunistic (e.g., citizen science). To introduce several of the key 

ideas and challenges, we have opted to structure the main body of our paper around 

integration of different types of systematic surveys. However, we conclude with an 

overview of emerging possibilities for integration between more diverse data types such as 

tracking, mark-recapture and multispecies data. To ensure our final recommendations point 

to a feasible workflow, we experimented with simulations bringing together different 

suggestions from the literature. We collected our example datasets, simulation functions and 

Bayesian models into the R-package JointSurvey, together with a supplementary vignette 

and manual(J Matthiopoulos et al., 2022). The package is instructive, rather than utilitarian 

(as we discuss below, spatial model fitting in optimised packages is less transparent, but 

much faster than our illustrative models). We refer to relevant sections of this vignette 

throughout our review and ensure that we designate sections and recommendations as 

either seabird-specific, or more general.  

PROCESS AND OBSERVATION MODELS 

Species distribution data are the combined result of an underlying biological process and an 

observation procedure. Process models describe the occurrence of animals in space, while 

observation models describe the way that distribution data are collected. Two assumptions 



   
 

allow data sets from multiple surveys to be combined. The first, is that the set of all seabird 

occurrences (whether observed or not) can be treated as a point process (see section 2.1 in 

supplementary vignette (J Matthiopoulos et al., 2022)). Underlying any spatial data set, we 

may envisage a heterogeneous surface that represents the rate of occurrence of seabirds. The 

actual locations of population members at any given time can then be thought of as a 

probabilistic realisation from this underlying intensity surface. This statistical formalism, 

known as the Inhomogeneous Point Process (IPP) has emerged (Aarts, Fieberg, & 

Matthiopoulos, 2012; Chakraborty et al., 2011; Fithian & Hastie, 2013; Fletcher et al., 2019; 

Isaac et al., 2020; Miller et al., 2019; Warton, Shepherd, & others, 2010) as a unifying 

framework that allows flexible modelling of covariates, spatiotemporal autocorrelation, 

observation effort, mechanistic details of ecology and behaviour, hierarchical grouping and 

transferability (Jason Matthiopoulos, Fieberg, & Aarts, 2020). In addition, it has been argued 

conclusively that the IPP encompasses all classical approaches to the analysis of animal 

distribution data (Aarts et al., 2012; Fithian & Hastie, 2013; Warton et al., 2010) and that 

widely-used spatial modelling packages such as MAXENT, are IPP models (Fithian & 

Hastie, 2013; Renner & Warton, 2013).  

   The second assumption is that all transect data can ultimately be analysed as if they came 

from strip transects (see section 3 in supplementary vignette). Strip transect methods assume 

that all individuals within a particular distance band are detected with equal probability, 

and no detections are recorded outside that band. Many historical seabird datasets come in 

this form (Jespersen, 1924; Tasker, Jones, Dixon, & Blake, 1984) and strip transects are still 

used for shipboard observations of birds in flight and aerial digital image capture 

(Oedekoven, Mackenzie, Scott-Hayward, & Rexstad, 2012). The alternative, continuous or 

punctuated records from line transect surveys (K. C. J. Camphuysen, Fox, Leopold, & 

Petersen, 2004; Oedekoven et al., 2012), are analysed by distance sampling methods (S.T. 



   
 

Buckland et al., 2001; S T Buckland, Anderson, Burnham, & Laake, 2008), to effectively bring 

them into line with the assumptions of strip transect surveys.  

   By unifying the data-generating process across surveys and quantifying the effort implicit 

in different survey methods, it is possible to simply pool data from different surveys on a 

shared point process platform, allowing the model’s offset term to account for effort. 

CHALLENGES AND OPPORTUNITIES IN MULTI-SURVEY MODELLING 

The sections below impinge on data integration approaches for all species, but the section on 

accessibility and density dependence is particularly relevant to central place aggregations, 

such as seabird colonies.  

Imperfect observations 
Biases and imprecisions inherent in different survey methodologies may be amplified by 

seabird behaviour. For example, the localised strong attraction of scavenging seabirds to 

boats (Bodey et al., 2014) can cause heterogeneities in detectability from on-board observers. 

Additionally, variation in observer ability to detect, identify and accurately count seabirds 

can be considerable (C. J. Camphuysen et al., 1995). False negatives and positives in 

detection will bias the intercept of the eventual SDM. For instance, if two species are easily 

mistaken for each other (e.g., red-throated and black-throated divers), then the bias will be 

positive (a large intercept) or negative (a small intercept) depending on whether the true 

prevalence of the focal species is respectively smaller or larger than the prevalence of the 

non-focal species. It is also possible for imperfect detection to affect the inferred 

relationships (i.e. slopes) with covariates (Lahoz-Monfort, Guillera-Arroita, & Wintle, 2014).  

   Errors in the detection and identification of individuals may vary temporally (Furnas, 

Newton, Capehart, & Barrows, 2019) or according to ambient conditions (Frair et al., 2010) 

making it impossible to use counts as a relative index of abundance (e.g. Oppel et al. 2012) 



   
 

without a correction to the effective strip width and the baseline probability of detection, or 

much better, incorporation of these covariates in the distance-sampling analysis (S T 

Buckland et al., 2008).  When both the probability of detection and the abundance of a 

species depend on the same environmental covariate, teasing apart its effects depends on 

whether repeat visits to the same location, by the same data collection method, occurred 

within a short time window (Guillera-Arroita & Lahoz-Monfort, 2012). For most situations, 

multiple concurrent visits to any location by the same observation platform are unlikely, and 

quantifying the magnitude and covariates of detection errors must rely on the species 

responding similarly to similar habitats surveyed at different places or times (Lele, Moreno, 

& Bayne, 2012) .  

   Heterogeneity in observation effort can generate many of the patterns seen in survey data, 

potentially confounding true biological processes. Hence, observation covariates may need 

to be included in the intensity function of an IPP (Chakraborty et al., 2011).  

Accessibility and density dependence: A feature of colonial species 
For at least some parts of the year, breeding adults and some non-breeding/immature 

seabirds are central-place foragers from the breeding colony. Colony accessibility shapes the 

distributions of colonial species (Aarts et al., 2008; Lewis, Sherratt, Hamer, & Wanless, 2001; 

Jason Matthiopoulos, 2003; Jason Matthiopoulos, Fieberg, Aarts, Barraquand, & Kendall, 

2020; Thaxter et al., 2012; Waggitt et al., 2019; E. D. E. D. Wakefield et al., 2011), leading to 

potential resource depletion in the regions surrounding the colonies (Ashmole, 1963; Lewis 

et al., 2001). Ultimately, the use of particular locations at sea is a trade-off between 

commuting costs (including the risks of provisioning chicks) and foraging benefits 

(including depletion by conspecifics).  

   Both accessibility and depletion/interference may be thought of as functions of travel 

distance from the colony, but they are complex, non-linear processes for distinct reasons (see 



   
 

section 2.2. of supplementary vignette and abridged explanations in Box 1). Many seabird 

species avoid flying over land, may take circuitous routes dictated by wind conditions and 

avoid anthropogenic structures. It is important that these effects are accounted for in 

measures of distance. To capture declines in accessibility with distance, it is possible, as a 

first approximation, to introduce a distance-decay function, parameterised identically for 

different colonies (Jason Matthiopoulos, Mcconnell, Duck, & Fedak, 2004). However, the fact 

that the available area of water around each colony will depend on coastal morphology, 

means that the resulting marine distribution from such a function would not allocate equal 

numbers of birds at units of area that are the same distance from different colonies (E. D. 

Wakefield et al., 2017). These behaviours will also depend on age and breeding stage. 

Seabird populations include a high proportion of immatures that are less competitive or 

constrained compared to provisioning adults, so may tend to go further away from colonies 

(Fayet et al., 2015). So, we can expect some ‘infilling’ of marine areas away from large 

colonies by immatures, especially younger age classes (Ashmole, 1963; Votier et al., 2017). 

   Density dependence is primarily driven by resource competition between colony members 

(Lewis et al., 2001). As the size of the colony grows, individuals need to travel further to 

escape the density-dependent effects of depletion.  Depletion from neighbouring colonies 

can also lead to the appearance of home ranging behaviour at the colony level (Aarts et al., 

2021; E. D. Wakefield et al., 2013). In addition, seabirds may experience interspecific 

competition (Petalas, Lazarus, Lavoie, Elliott, & Guigueno, 2021) leading to asymmetries in 

colony domains, driven by relative colony sizes, trophic niche overlap and competitive 

dominance between species.  

   The sophistication that is used for modelling accessibility and density dependence will 

determine computational feasibility. A parsimonious approach (see Box 1 and further details 

and numerical examples in section 2.2. of supplementary vignette) must include the key 



   
 

features of accessibility and competition (intra-colony, inter-colony and inter-specific). This 

approach allows the strength of accessibility and density dependence for a particular species 

to be quantified. Hence, fitting it simultaneously with environmental covariates should 

allow intrinsic and environmental regulation of spatial usage to be teased apart. 

Autocorrelation 
A common assumption of SDMs is that their residuals (conditional on the covariates 

included) are independent (Dormann et al., 2007). Residual spatial autocorrelation can result 

from missing or mis-specified covariates, or from social clustering. Unmodelled 

heterogeneity generated by spatial autocorrelation can lead to overdispersion in the 

residuals. Seabird analyses, commonly capture this with overdispersed likelihoods (e.g. 

Lieske et al. 2014) or zero-inflated models (e.g. Oppel et al. 2012, Waggitt et al. 2019), making 

the unlikely assumption that nearby residuals are uncorrelated (see example model in 

section 5.1 of supplementary vignette). It is generally more informative to model spatial 

autocorrelation explicitly by using flexible functions of latitude and longitude (Mendel et al., 

2019), using density as a local autocovariate (Augustin, Mugglestone, & Buckland, 1996), or 

including an autocorrelated random effect within the error structure of a hierarchical model 

(Beale, Lennon, Yearsley, Brewer, & Elston, 2010). We present an illustration of the structure 

and application of such a model in section 5.2 of the supplementary vignette. It is important 

to note that none of these approaches can distinguish between extrinsically driven spatial 

autocorrelation (e.g., unmodelled environmental covariates) and intrinsically driven 

clustering (e.g., social aggregations at sea), both of which are likely to be features of seabird 

distributions.  

   Temporal dependence offers us valuable opportunities for exploiting multi-survey data 

that have been collected at different times. Currently, investigation of multiannual trends 

and relative changes in usage usually falls beyond the scope of seabird SDMs (Perrow et al., 



   
 

2015), but such features are essential to correctly integrate multiannual survey data. Counts 

from two surveys conducted over the same region and season in different years should be 

expected to be more similar, the closer the two years were. Within the range of 

spatiotemporal autocorrelation, a model should be able to acquire additional support from 

the fact that even when two surveys do not exactly coincide in time and space, they can 

share similar information depending on their spatiotemporal proximity (Hothorn, Müller, 

Schröder, Kneib, & Brandl, 2011). Therefore, for multi-survey SDMs, modelling spatial and 

temporal autocorrelation explicitly can be an asset (Fig. 2), within the spatiotemporal frame 

of the pooled survey data. 

Model transferability 
Due to rapid anthropogenic change, ecologists are increasingly tasked with predicting 

outside the spatiotemporal frame of their data (Yates et al., 2018). An ideal dataset for 

empirical modelling in this context includes sampling effort spanning a wide range of 

covariate values, and combinations thereof (Oedekoven et al., 2012), criteria that can 

potentially be met cost-effectively by combining multiple surveys as distinct sampling 

instances in a functional response framework. Functional responses broadly describe how 

organisms change their use of a habitat as the availabilities of that, and all other habitats 

change and have been shown to bring considerable gains in predictive power for 

environmental scenarios that are within the range of environmental values observed in the 

pooled data (Holbrook et al., 2019; Jason Matthiopoulos, Hebblewhite, Aarts, & Fieberg, 

2011; Paton & Matthiopoulos, 2018). 

   Extrapolations outside the observed spatiotemporal and environmental window (i.e. the 

environmental profiles used for model-training) are more problematic (Sinclair, White, & 

Newell, 2010) and yet form the main objective of anticipatory ecological modelling. 

Arguably, increasing the mechanistic content of SDMs increases predictive ability. Hence, 



   
 

there is now a clear tendency in the literature to consider species’ distributions in the 

contexts of their population dynamics (Ehrlén & Morris, 2015; Jason Matthiopoulos et al., 

2015; Mcloughlin, Morris, Fortin, Vander Wal, & Contasti, 2010) and wider ecological 

communities (Fleming et al., 2014; Ovaskainen, Abrego, Halme, & Dunson, 2016). 

Computational efficiency 
Spatially autoregressive models, particularly combined with non-linear predictors, are 

computationally very expensive so approximations are necessary to make them tractable 

(e.g. the “covariate” model in Pacifici et al. (2017), or the list of four methods cited 

Chakraborty et al. (2011)). For seabirds, the key challenge lies in simultaneously estimating 

biologically important parameters (e.g. pertaining to density dependence) and accounting 

for spatial and temporal autocorrelation. Computation has been revolutionised by 

approximate Bayesian methods that either deal with fully non-linear models (as in 

Approximate Bayesian Computation - (Beaumont, 2010) or deal with linearised versions of 

these models (as in Integrated Nested Laplace Approximation – INLA - (Bachl, Lindgren, 

Borchers, & Illian, 2019; Rue, Martino, & Chopin, 2009). ABC methods have yet to meet with 

broad application in SDMs, but INLA methodology, developed specifically for IPPs, is ideal 

for the purposes of SDMs, particularly since it may soon be possible to fit mildly non-linear 

models (such as those of Box 1 and the model “spatial” in the supplementary vignette) 

within the inlabru package (Bachl et al., 2019).  

BEST PRACTICE FOR MULTI-SURVEY ANALYSES OF SEABIRD DISTRIBUTIONS  

Building upon the above literature, and practical experimentation with simulated data 

(Supplements), we make the following practical recommendations for multi-survey 

analyses. Recommendations under category 4, below, are particularly relevant to seabirds. 

1) Response and explanatory variables  



   
 

Keep data in their highest-information form: Thresholding abundance data into occupancy 

represents considerable information loss and precludes predictions of spatial distribution 

(yielding instead, surfaces for the probability of presence). If individual detections are 

available, we should use these in preference to spatially aggregated counts.  

Analyse even low-information data as if originating from abundance: Irrespective of how 

detailed our species observations are, the underlying biological variable is the abundance of 

a species. Hence, although some data sets solely record occupancy, we should still model the 

underlying data-generating process as an intensity surface. Such approaches will work 

particularly well if some abundance records (from different surveys) are also integrated into 

the analysis (Fletcher et al., 2019). 

Avoid inflated error structures until the end of modelling: Zero-inflated and over-

dispersed data are the norm in spatial ecology. However, covariates will generally explain 

some of that variability, and use of spatially and temporally autocorrelated fixed or random 

effects will better describe unexplained high or low density regions in the underlying 

seabird distribution.  

2) Treatment of survey design attributes and observation errors  
Prioritise cross-calibration between surveys: Surveys for which the detectability errors 

have been quantified (e.g., multiple observer platforms), are highly desirable because, 

within a joint analysis, they can cross-calibrate other, less detailed surveys. The overlap 

required for such cross-calibration may not need to be exact or complete, in explicitly 

spatiotemporal models (i.e. models that can recognise temporal and spatial proximity 

between observations via autocorrelated structures, see below). 

3) Treatment of space time 
Use point process models: IPP approaches subsume all valid approaches to species 

distribution modelling and are fast becoming the benchmark for spatiotemporal analyses 



   
 

Their implementation in speed-optimised frameworks such as INLA favours their use in 

wildlife management, which often requires time-limited decision making. 

Use autocorrelated structures: Spatially and temporally autocorrelated error terms can 

account for wholly or partly missing covariates (hence explaining residual overdispersion). 

In multi-survey data, they can be used to exploit spatiotemporal proximity between 

observations so that, even if exact replication is not part of the survey design, an indirect 

form of replication can be achieved. 

Take complex dynamics into account: If we need to account for multi-survey data that 

include before-and-after control impact, it is important to account for temporal trends. In 

some cases, non-linearity in the responses of a species can be captured by simple extensions 

such as statistical interaction terms in the linear predictors of models. In other cases, a more 

explicitly biological model or autoregressive error structures may be required. 

4) Accessibility and density dependence 
Use biologically relevant travel distance measures: For colonial species, accessibility and 

density dependence in spatial usage are most often represented as non-linear 

transformations of distance between points at sea and colonies. Therefore, using distance 

measures that avoid obstacles is essential if birds do not transit between locations in straight 

lines. 

For the present, use simplified models of density dependence: Currently, the 

computational demands of a fully spatially explicit model of intra-colony, inter-colony and 

interspecific competition are prohibitive for the purposes of applied SDMs. Models such as 

those of Box 1 may be crude approximations of the truth, but even such relatively simple 

formulations are currently missing from most seabird SDM approaches.  



   
 

In the future, consider spatially explicit models for density dependence: As computational 

approaches (particularly ABC and INLA) become more widespread in the field of SDMs, it 

may become possible to model competition in an explicitly spatial way. Modelling multiple, 

coupled response variables would allow the spatial interactions of different colonies to be 

captured as part of simultaneous regression where the animals from any given colony are 

allowed to affect (and be affected by) the distributions of members of other colonies and 

species.  

5) Statistical Frameworks 
Use hierarchical models: Three important features of multi-survey models described above 

rely on hierarchical models: cross-calibration of observation models, covariate imputation 

and latency and use of spatiotemporal proximity to allow the predictions to borrow strength 

from multiple surveys.  

Use Bayesian approaches: Computer-intensive Bayesian model-fitting is implemented in 

flexible software frameworks (such as JAGS or Stan), that allow state-space and hierarchical 

structures. Bayesian inference permits the elicitation of expert opinion in the form of 

parameter priors. INLA is Bayesian by design, so attention could be given to expert 

specification of priors in its application. 

Fully propagate uncertainty to the final predictions: Currently, the majority of published 

marine SDM studies do not report the amount of uncertainty derived from data deficiencies 

and model parameters (94% of papers reviewed by Robinson et al. 2017). Above, we have 

reviewed several areas where this could lead to unnecessarily optimistic or conservative 

conclusions. For example, unmodelled spatial and temporal autocorrelation in the data may 

artificially inflate apparent sample sizes. Such concerns about pseudoreplication apply 

particularly for multi-survey analyses because different surveys may have overlapped in 



   
 

space or in time. Alternatively, uncertainty contained in the pre-analysis of transects, if not 

propagated to the final results, may under-represent uncertainty in distribution.  

FUTURE EXTENSIONS  

All the challenges and opportunities discussed above apply beyond the strict assumptions of 

transect surveys, into other types of seabird distribution data. The key difficulty to 

extending integration between other types of data is in formulating appropriate observation 

models (e.g., to take account of observation effort in citizen science protocols) and joining 

together very different likelihood models (e.g., step selection functions for telemetry data 

with resource selection functions for tracking data). 

 The different methodologies of data collection might, at first sight, imply an overwhelming 

number of data integration frameworks (Fig. 3a). However, from a statistical point of view, 

the simplifying assumptions discussed above on process and observation models lead to a 

considerably simpler picture (Fig. 3b), essentially requiring the integration between different 

types of surveys (e.g., line, point transect, citizen science data) and qualitatively different 

data types (e.g., multi-species data, telemetry, and mark-recapture). We review 

developments in these areas below.  

Multi-species surveys 
Surveys at sea usually record multiple species. This is an alternative interpretation of the 

multi-survey idea, where the same platform provides multiple datasets. Interest in hotspots 

of biodiversity has led to the idea of stacking single-species SDMs (Calabrese, Certain, 

Kraan, & Dormann, 2014). Although stacking is not an integrated analysis in the sense 

outlined here, it has been useful in demonstrating the magnitude and duration of seabird 

aggregations or partitioning in the open sea from both survey (Nur et al., 2011; E. D. 

Wakefield et al., 2021) and tracking (Davies et al., 2021; Grecian et al., 2016; Jones et al., 2015) 



   
 

data. An interesting research direction lies in allowing data sets from multiple species to 

gain strength from each other. We outlined earlier how spatiotemporal proximity can be 

used to borrow strength by jointly analysing a collection of surveys. The same idea could be 

extended to develop hierarchical models using taxonomic or functional proximity 

(Kindsvater et al., 2018). Multispecies SDMs could be developed to quantify the (apparent) 

associations between species (Ovaskainen et al., 2016; Tikhonov et al., 2020), and these could 

be used to reconstruct the distribution for any-and-all of the species participating in the 

model. By exploiting niche differentiation between species, this approach also has potential 

in modelling unknown observation effort (Peel et al., 2019) because an apparent absence of a 

species in a region can be better diagnosed as a true absence if it is known that we have 

recorded other species there.  

Combination with vantage point data 
Several data collection methods could come under this category, most commonly, 

observations made from onshore stations (e.g., by theodolite/distancer). These could be 

important sources of information for near-shore distribution. Their combination with line 

transect survey data is straightforward since both data types belong to the broader class of 

transect methods (S.T. Buckland et al., 2001). Nesting habitat preferences for seabirds are a 

considerably less studied aspect of their biology, but one that is particularly pertinent for 

determining the placement of potential new colonies. Of particular relevance for studying 

human-seabird interactions is the terrestrial distribution of scavenging species such as gulls, 

which frequently switch between marine and terrestrial foraging.  

Combination with citizen science data 
Citizen science programmes are flourishing in ecology and new statistical methods are being 

developed to deal with the resulting data (Bird et al., 2014), which are often of variable 

quality (Hochachka et al., 2012). The main issue with citizen scientist data is that often we 



   
 

have limited information on the spatial and temporal distribution of survey effort and the 

heterogeneity in bias or imprecision in species identification across individual observers 

(Dickinson, Zuckerberg, & Bonter, 2010). Such gaps in knowledge often need to be 

supplemented by proxies (such as plausible assumptions about the behaviour and 

distribution of citizen observers).  

Combination with telemetry data 
The combination of survey data with tracking data has proved particularly challenging. 

Studies that have attempted this marriage in the seabird literature have often inflicted heavy 

censoring on the data (Louzao et al., 2009) or taken a comparative (rather than integrative) 

approach (e.g. Carroll et al. 2019). The default analysis frameworks used for each data type 

are a major obstacle to joint inference. Telemetry data are most conveniently analysed via 

step selection functions (SSFs), while resource selection functions (RSFs) are most 

appropriate for survey data. These two analytical approaches do not, by default, lead to the 

same results (Signer, Fieberg, & Avgar, 2017). A promising development in this area is the 

convergence between the frameworks of resource selection and step selection analyses 

(Michelot, Blackwell, & Matthiopoulos, 2019). This work has established the conditions 

under which SSF and RSF frameworks agree, and has begun to derive methods for joint 

inference (Michelot, Blackwell, Chamaillé-Jammes, & Matthiopoulos, 2019).  

Combination with mark-recapture data 
Mark-recapture data have rarely been used to map seabird distributions and fit habitat 

models (K. C. J. Camphuysen et al., 2004), however they are a potentially valuable 

repository of spatial data that are also individually referenced (e.g. colour-ringing). In a 

sense therefore, mark-recapture data carry intermediate information between point transects 

and telemetry tracking and could, in the longer-term benefit from current developments in 

the integration between these two.  
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BOX 1: SIMPLE FORMULATIONS OF SEABIRD COLONIALITY FOR STATISTICAL 

MODELS OF SPACE USE  

Different features of seabird biology can be incorporated into mathematically simple 

expressions of incremental sophistication for modelling the expected intensity of use 𝜆𝜆(𝒔𝒔) of a 

point at sea. We aim to keep the number of parameters and levels of nonlinearity low, so that 

model fitting is feasible. 

Accessibility of any point at sea 𝒔𝒔 , from the ith colony located at a point 𝒔𝒔𝒊𝒊 may be treated as a 

function of distance 𝑑𝑑𝑖𝑖(𝒔𝒔) = |𝒔𝒔𝑖𝑖 − 𝒔𝒔|. Euclidean distance may be used, or distance measures 

based on at-sea travel (Jason Matthiopoulos, 2003). Unlike other model covariates, these 

distances should be calculated as spatial layers, specific to each colony and could be replaced 

by more elaborate measures of accessibility, incorporating landscape resistance (e.g. due to 

prevailing wind fields)(Zeller, Vickers, Ernest, & Boyce, 2017). We can use the following simple 

model, closely linked to log-linear regression.  

𝜆𝜆(𝒔𝒔) = exp (𝛼𝛼0 − 𝑐𝑐0𝑑𝑑𝑖𝑖(𝒔𝒔))                                                          (1) 

Graphs of this function for different parameterisations ranging from unconstrained (dark 

green) to highly constrained (yellow to white) ranges of flight are shown in Fig. 1a. Note that 

the estimated value of 𝑐𝑐0  will depend on the openness afforded to each colony by the 

surrounding coastline (small island colonies will have a higher value than colonies at inlets). 

Intra-colony competition may be modelled by making the decline of 𝜆𝜆(𝒔𝒔) with distance slower 

for larger colonies. Building on eq. (1), we may introduce an interaction term between distance 



   
 

and colony size (𝑁𝑁𝑖𝑖) (Fig. 1b) 

𝜆𝜆(𝒔𝒔) = exp (𝛼𝛼0 − 𝑐𝑐0𝑑𝑑𝑖𝑖(𝒔𝒔) + 𝑐𝑐1𝑑𝑑𝑖𝑖(𝒔𝒔)𝑁𝑁𝑖𝑖)                                               (2) 

This function lacks biological realism at high values of 𝑐𝑐1  where it becomes a positive 

relationship with distance, implying that individuals lose the central-place constraint. A non-

monotonic relationship would allow total usage to initially increase with distance, and then 

eventually decay (Fig. 1c). One way to achieve this is by a nonlinear extension of eq. (2) 

𝜆𝜆(𝒔𝒔) = exp (𝛼𝛼0 − 𝑐𝑐0𝑑𝑑𝑖𝑖(𝒔𝒔) + 𝑐𝑐1𝑑𝑑𝑖𝑖(𝒔𝒔)𝑁𝑁𝑖𝑖
𝟏𝟏+𝑐𝑐2𝑑𝑑𝑖𝑖(𝒔𝒔))                                                 (3) 

The parameter 𝑐𝑐2  controls how far from the colony the effect of density dependence is 

surpassed by the commuting costs of flying that far. 

Inter-colony competition. Eq. (3) can be extended to account for the effects of other colonies. 

The effect on the usage of a given marine point by a focal colony will depend on the distance 

of that point from the competing jth colony (as well as the competing colony’s size 𝑁𝑁𝑗𝑗).  

𝜆𝜆(𝒔𝒔) = exp (𝛼𝛼0 − 𝑐𝑐0𝑑𝑑𝑖𝑖(𝒔𝒔) + ∑ 𝑐𝑐1𝑑𝑑𝑗𝑗(𝒔𝒔)𝑁𝑁𝑗𝑗
𝟏𝟏+𝑐𝑐2𝑑𝑑𝑗𝑗(𝒔𝒔)𝒋𝒋 )                                                 (4). 

Inter-colony, interspecific competition could be dealt with in the same way as intraspecific 

competition between colonies, allowing for asymmetric effects due to differences in species, as 

well as differences in colony size. Although biologically, the differences between species are 

important, from a mathematical viewpoint, all that is required to capture these effects is a 

reparameterization of eq. (4) for the jth colony of the kth species: 



   
 

𝜆𝜆(𝒔𝒔) = exp (𝛼𝛼0 − 𝑐𝑐0𝑑𝑑𝑖𝑖(𝒔𝒔) + ∑ ∑ 𝑐𝑐1,𝑘𝑘𝑑𝑑𝑘𝑘,𝑗𝑗(𝒔𝒔)𝑁𝑁𝑘𝑘,𝑗𝑗

𝟏𝟏+𝑐𝑐2,𝑘𝑘𝑑𝑑𝑘𝑘,𝑗𝑗(𝒔𝒔)𝒋𝒋𝒌𝒌 )                                                 (5) 
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