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Abstract 

Drug coated balloons (DCBs) are used commonly for delivering drug into diseased arteries. When 

applied on the inner surface of an artery, drug is transported from the balloon into the multilayer 

arterial wall through diffusion and advection, where it is ultimately absorbed through binding 

reactions. Mathematical modeling of these mass transport processes has the potential to help 

understand and optimize balloon-based drug delivery, thereby ensuring both safety and efficacy. 

The present work derives a closed-form solution for the multilayer cylindrical convection-

diffusion-reaction (CDR) transport problem that occurs in balloon-based endovascular drug 

delivery. The model is presented for an arbitrary number of layers, and accounts for various 

transport processes in terms of relevant non-dimensional numbers. Quasi-orthogonality for this 

multilayer problem is derived. Closed-form expressions for the amounts of drug delivered by the 

balloon, bound in each arterial layer and lost from the external surfaces are derived. It is shown 

that only a small fraction of drug from the balloon is actually delivered into the artery during the 

short exposure time, which is influenced strongly by the diffusion coefficient of the inner-most 

layer. Further, binding of the drug is found to depend strongly on the reaction coefficient, 

expressed in terms of the Damköhler number. It is shown that boundary conditions on the inner 

and outer surfaces, expressed in terms of Sherwood numbers, play a role in drug uptake over a 

longer time period. The model is general enough to be applicable for a wide variety of scenarios 

and operational conditions, including an arbitrary number of layers. Results from this work provide 

fundamental insights into drug transport and uptake processes. In addition, these results can help 

improve the safety and efficacy of balloon-based drug delivery. 

Keywords: Endovascular Drug Delivery; Drug Coated Balloon; Convection-Diffusion-Reaction 

Equation; Theoretical Modeling. 
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Nomenclature 

a coefficient appearing in velocity term (m2s-1) 

b balloon 

c concentration (molm-3) 

𝐷 diffusion coefficient (m2s-1) 

𝐷ഥ non-dimensional diffusion coefficienth convective mass transfer coefficient (ms-1) 

k interfacial mass transfer conductance (ms-1) 

𝑘ത non-dimensional interfacial mass transfer conductance 

M number of layers 

N eigenfunction norm 

Pe Péclet numberR radius (m) 

r radial coordinate (m) 

Sh Sherwood number 

t time (s) 

𝛽 reaction coefficient (s-1) 

𝛽̅ non-dimensional reaction coefficient 

𝛾 non-dimensional interface location 

τ non-dimensional time 

𝜓 cumulative fraction of drug delivered 

𝜒 cumulative fraction of drug absorbed 

𝜌 fraction of drug remaining 

θ, ϕ non-dimensional concentrations in Stages A and B, respectively. 

𝜉 non-dimensional radial coordinate 

𝜆 non-dimensional eigenvalue 

𝜎 drug partition coefficient 
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Subscripts 

m layer number 

ref reference value 

0,in inner (luminal) wall 

out outer (perivascular) wall 
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1. Introduction 

 

Coronary angioplasty is a common, minimally invasive procedure used to treat obstructive 

coronary artery disease (CAD) [1].  Historically, angioplasty consisted of deploying a balloon on 

the back of a catheter to the site of the obstruction and widening the lumen through inflation of the 

balloon. Nowadays, the majority of CAD patients will also receive a tiny mesh structure called a 

drug-eluting stent (DES), in what is known as Percutaneous Coronary Intervention (PCI). The 

purpose of the stent is to act as a scaffold, allowing blood flow to be maintained in the lumen, 

while the role of drug elution is to combat the biological response which can lead to excessive 

neointimal growth and further obstruction to blood flow, a phenomenon known as in-stent 

restenosis (ISR) [2].  While DES have been extraordinary successful, there is growing interest in 

the potential of Drug Coated Balloon (DCB) technology [3,4], particularly when faced with ISR 

where a stent has previously been deployed, and increasingly in the context of treating less severe 

de novo atherosclerotic lesions. While DES have been mathematically and computationally 

modelled extensively in the literature [5], there is a relative lack of modelling studies related to 

DCB technology. 

DES tend to release drug in a controlled and sustained fashion over a period of weeks to 

months, which is thought to be broadly consistent with the healing time of the artery following 

device deployment [5]. However, DCB typically release their payload over a matter of seconds or 

minutes, with around 60 seconds being representative of current practice. Figure 1 shows a 

schematic of balloon deployment inside an artery [1]. It is important to note that the DCB obstructs 

the artery during delivery: inflating for longer than necessary could therefore have serious 

consequences for the patient. This tiny time window for drug delivery makes device design 
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particularly challenging. In other words, one must deliver a sufficient amount of drug rapidly: too 

much drug could result in toxicity, while too little drug could either be completely ineffective or 

result in drug action waning before healing is complete. Given the drastically different release 

kinetics between DCB and DES, it is of interest to mathematically model drug release from a DCB 

and subsequent distribution within the arterial, with a view to extracting insight that could be useful 

in optimizing their design. 

A handful of numerical studies related to DCB are available in the literature [6-11]. 

Numerical studies are typically computationally expensive and make a number of (different) 

assumptions to enable solutions to be obtained in a reasonable time frame. Drug delivery from the 

DCB is typically modeled as either a constant concentration for a finite time [11] or a time-

dependent flux [6-10]. All of the aforementioned numerical models assume that drug is transported 

through the arterial wall due to diffusion: only two models [8,9] account for advective transport 

due to the known pressure gradient across the arterial wall. Drug binding is dependent on the 

physio-chemical properties of the particular drug and is handled in different ways in these models, 

ranging from linear reversible binding kinetics through to multiple phases of nonlinear reversible 

binding [12].  While most of these models assume a healthy artery, two of these models account 

for the presence of a homogeneous atherosclerotic plaque within 3D [11] and 2D [9] geometries: 

however, the healthy portion of the arterial wall is assumed to be a homogeneous material with the 

same properties. A major limitation of each of these numerical models is that they do not consider 

the multi-layer nature of the arterial wall. Analysis of drug delivery in a multi-layer artery has been 

reported in a limited number of papers, however, such work is either specific to a two-layer 

geometry [13,14], neglects curvature of the artery [15] or is completely numerical in nature [16]. 
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Further, most of the literature, both single-layer and multi-layer, addresses stent-based 

[5,14,15,17], and not balloon-based drug delivery. 

While an analytical closed-form solution for the stent drug delivery problem has been 

presented [17], no such solution exists for the balloon problem, which is fundamentally distinct 

from the stent problem. Such a solution has the potential to provide key insights into the problem 

and may allow for rapid evaluation of the influence of various model parameters on key quantities 

of interest, such as drug concentration and retention in the tissue. Moreover, analytical solutions 

are highly important in providing partial validation for more complex numerical models. While 

simplifications of the problem are necessary to enable analytical progress, often the key physical 

processes can be captured with reasonable accuracy. 

From a mass transfer perspective, this problem is a multilayer Convection-Diffusion-

Reaction (CDR) problem, where, in addition to radial diffusion, transvascular plasma flow causes 

convection and drug binding in the artery causes reaction. CDR problems have been widely 

investigated [14,15,18], although only a smaller subset of papers addresses general multilayer 

CDR problems [18]. Key analytical techniques used for solving such problems include separation 

of variables [14] and Laplace transformation [19]. In addition, numerical solution of CDR 

problems has also been carried out [20,21]. It has been shown that multilayer CDR problems may 

admit imaginary eigenvalues [18], which is why theoretical analysis of such problems is 

particularly important.  

In this paper, a closed-form analytical solution is derived for drug delivery from a DCB 

and subsequent drug transport and retention in the arterial wall. The model incorporates each of 

the key physical processes at play, namely drug diffusion, transport through advection and drug 
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binding and retention within a multi-layered arterial wall, as shown schematically in Figure 2. The 

analytical solution helps understand the impact of various diffusion, convection and binding 

parameters on the extent of drug delivered by the balloon and bound in the artery as functions of 

time. Expressions for key safety and efficacy indicators are derived. When compared to similar 

past work on modeling of endovascular drug delivery, the key novelty of the present work lies in 

accounting for the multilayer, cylindrical nature of the artery, along with the coupled effects of 

diffusion, advection and reaction involved in balloon-based drug delivery. Unlike several past 

papers, this work is completely analytical, generalized to an arbitrary number of layers and results 

in closed-form equations for key parameters related to safety and efficacy of drug delivery. Results 

presented here help understand the fundamentals of the drug delivery process, and may help in the 

design and optimization of drug carrying balloons towards improved safety and efficacy. 

The next section defines, non-dimensionalizes and solves the mass transport problem in a 

general M-layered artery. Section 3 defines and derives expressions for various key safety and 

efficacy indicators. Results are discussed in detail in Section 4, including expressions for the 

special case of a homogeneous artery. 

2. A General M-layer Arterial Model 

2.1. Problem Definition 

Consider the process of endovascular drug delivery by a drug-coated balloon adhered to 

the luminal wall of an artery for a short duration, typically 60-120 seconds in practice [9,11]. 

During this time, the balloon delivers drug to the luminal wall, from where, drug transport within 

the arterial layers occurs due to diffusion as well as advection driven by flow of plasma in response 
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to the transmural pressure gradient. Some of the drug is also absorbed within the artery due to 

binding reactions, which are thought to occur predominantly in the media layer where the majority 

of the target smooth muscle cells reside [16,22]. Finally, the drug may also be lost to the 

perivascular region from the outer wall. Once the balloon is withdrawn after a short application 

period, transport and binding processes continue until all the drug has been either bound within 

the artery or has been lost to the outside medium through the luminal or perivascular wall. It is of 

interest to develop a mathematical model to predict the drug concentration distribution within the 

arterial wall as a function of space and time. Specifically, parameters related to safety and efficacy, 

such as the peak drug distribution in the tissue and the fraction of drug bound in the medial layer 

as a function of time are of interest to device manufacturers and clinicians. Given the short duration 

of application of the balloon, it is also of interest to determine how much drug is delivered into the 

artery in that time – such information could help inform drug loading on the balloon. A 

mathematical model for this balloon-based drug delivery must account for the physical processes 

described above, as well as the multilayered nature of the artery. 

In this work, the generalized case of an M-layered artery is considered first. The special 

case of a homogeneous artery is then presented in the following section.  

Figure 2 presents a schematic of the geometry, boundary conditions and transport/binding 

processes in this problem. The multilayer artery is assumed to be sufficiently long relative to its 

radius and axisymmetric, so that the problem is one-dimensional in the radial direction. A 

cylindrical coordinate system, with origin at the center axis of the annular cylindrical artery is 

used, so that the curvature of the artery is accounted for. The artery is modeled as an M-layer 

annular cylindrical body of inner radius R0, in which the mth layer is an annular cylinder between 
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r=Rm-1 and r=Rm, m=1,2..M. The diffusion coefficient of the drug in the mth layer is given by Dm, 

assumed to be constant and uniform. Binding reactions in each layer are modeled through first-

order reaction kinetics, with a reaction constant of 𝛽௠in the mth layer.  This assumption is valid 

when binding is non-saturable and the time scale associated with the unbinding process is much 

greater than that associated with binding. Existing literature suggests that non-saturable linear 

binding models may be appropriate for drugs such as heparin [23]. Moreover, for highly lipophilic 

drugs such as sirolimus, while binding to specific target receptors may be saturable at the typical 

doses delivered, when non-specific binding is taken into account, total bound drug is likely to be 

non-saturable at these drug doses [16,22]. In addition, drugs typically coated on DCBs are known 

to be strongly retained. A flow field Um(r) driven by transmural pressure difference between the 

luminal and perivascular regions is also assumed in each layer. In order for the flow field to obey 

mass conservation, Um(r) must be inversely proportional to r [17], i.e., Um(r)=am/r. A general 

convective mass transfer boundary condition, represented by a mass transfer coefficient hout is 

assumed on the perivascular of the artery, r=rM. The value of hout=0 corresponds to an impermeable 

wall, whereas hout tending to infinity represents a constant concentration boundary condition at 

r=rM. Drug concentration in the balloon, cb, is applied to the luminal wall up to time tb.  

Two distinct stages are considered over time, as shown in Figure 2. In Stage A, 0<t<tb, the 

balloon is applied on the luminal wall, r=R0, which is modeled by a constant concentration 

boundary condition based on cb, the drug concentration in the balloon. In Stage B, t ≥ tb, the balloon 

is removed, so that convective mass transfer to luminal blood flow may also occur at r=R0, which 

is modeled by a convective mass transfer coefficient hin on the luminal wall.  
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Based on this problem statement and assumptions, the following governing mass 

conservation equation for concentration distribution in the mth layer, cm(r,t) may be written as 

follows: 

 𝜕𝑐௠
𝜕𝑡

ൌ 𝐷௠
1
𝑟
𝜕
𝜕𝑟 ൬

𝑟
𝜕𝑐௠
𝜕𝑟 ൰

െ
𝑎௠
𝑟
𝜕𝑐௠
𝜕𝑟

െ 𝛽௠𝑐௠ 𝑅௠ିଵ ൏ 𝑟 ൏ 𝑅௠ 

(m=1,2,3…M)       (1) 

which represents a balance between diffusion, convection and reaction terms to determine the 

evolution of the concentration field over time. 

 The associated boundary condition on the luminal boundary is 

 𝑐ଵ ൌ 𝑐௕ ሺ0 ൏ 𝑡 ൏ 𝑡௕ሻ  ሺStage Aሻ

െ𝐷ଵ
𝜕𝑐ଵ
𝜕𝑟

൅
𝑎ଵ
𝑟
𝑐ଵ ൅ ℎ௜௡𝑐ଵ ൌ 0 ሺ𝑡 ൒ 𝑡௕ሻ  ሺStage Bሻ

 𝑎𝑡 𝑟 ൌ 𝑅଴ (2) 

On the perivascular surface, one may write 

 
𝐷ெ

𝜕𝑐ெ
𝜕𝑟

െ
𝑎ெ
𝑟
𝑐ெ ൅ ℎ௢௨௧𝑐ெ ൌ 0 𝑎𝑡 𝑟 ൌ 𝑅ெ  (3) 

where the outside concentration is taken to be zero for reference.  

The following conditions apply at the interfaces 

 
െ𝐷௠

𝜕𝑐௠
𝜕𝑟

൅
𝑎௠
𝑟
𝑐௠ ൌ െ𝐷௠ାଵ

𝜕𝑐௠ାଵ

𝜕𝑟
൅
𝑎௠ାଵ

𝑟
𝑐௠ାଵ at 𝑟 ൌ 𝑅௠  

(m=1,2…M-1) (4) 
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െ𝐷௠

𝜕𝑐௠
𝜕𝑟

൅
𝑎௠
𝑟
𝑐௠ ൌ 𝑘௠ሺ𝑐௠ െ 𝑐௠ାଵሻ 

at 𝑟 ൌ 𝑅௠  
(m=1,2…M-1) (5) 

where km is the mass transfer conductance at the interface between mth and (m+1)th layers. 

It is assumed that there is no drug present in the artery initially, i.e.,  

 𝑐௠ ൌ 0 𝑎𝑡 𝑡 ൌ 0 (m=1,2,3…M)       (6) 

Note that the boundary condition at the luminal surface, equation (2), changes from a 

constant concentration condition during Stage A to a convective mass transfer condition during 

Stage B. The distinct nature of these boundary conditions presents challenges in modeling. For 

example, while equation (2) can be modeled, in principle, with a time-varying step-function ℎ௜௡, 

which is infinite during Stage A, time-varying convective coefficients are, in general, very difficult 

to handle, especially in a multilayer geometry [24]. Instead, the problem is solved separately and 

sequentially, such that the solution at the end of Stage A serves as the initial condition for Stage 

B. Before this is carried out, however, it is important to non-dimensionalize this problem for ease 

and generality of analysis. 

2.2. Non-dimensionalization  

The following non-dimensionalization is carried out: 

 𝜃௠ ൌ ௖೘
௖್

 (Stage A), 𝜙௠ ൌ ௖೘
௖್

 (Stage B), 𝜉 ൌ ௥
ோಾ

, 𝜏 ൌ ஽ಾ௧
ோಾ
మ , 𝛾௠ ൌ ோ೘

ோಾ
, 𝛾଴ ൌ

ோబ
ோಾ

, 𝐷ഥ௠ ൌ ஽೘
஽ಾ

, 𝛽̅௠ ൌ

ఉ೘ோಾ
మ

஽ಾ
; 𝑃𝑒௠ ൌ ௔೘

஽ಾ
; 𝑘ത௠ ൌ ௞೘ோಾ

஽ಾ
; 𝑆ℎ௢௨௧ ൌ

௛೚ೠ೟∙ோಾ
஽ಾ

;  𝑆ℎ௜௡ ൌ
௛೔೙∙ோಾ
஽ಾ

; 𝜏௕ ൌ
஽ಾ௧್
ோಾ
మ . 
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Note that 𝑃𝑒௠ and 𝛽̅௠ are the Péclet and Damköhler numbers in the mth layer, defined as 

the ratios of advection and reaction rates, respectively, relative to the diffusion rate. 𝑆ℎ௢௨௧ is the 

Sherwood number on the perivascular surface. A very large value of 𝑆ℎ௢௨௧ corresponds to a zero 

concentration, i.e., infinite sink condition. 𝑆ℎ௜௡ is the Sherwood number at the luminal surface, 

relevant only for Stage B. The Péclet number here is based on the coefficient 𝑎௠ instead of the 

velocity 𝑈௠, because the velocity is not a constant, but rather a function of the radial coordinate 

due to mass conservation in a radial, pressure-driven flow [17]. 

Based on this non-dimensionalization, the following two sub-sections define and solve the 

drug concentration problem in Stages A and B. 

2.3. Stage A: While Balloon is Applied (0<τ< τb) 

During Stage A, the balloon present on the luminal wall of the artery is modeled as a 

constant concentration source, as described in the first part of equation (2). The following non-

dimensional set of governing equations for Stage A may be written as follows: 

 𝜕𝜃௠
𝜕𝜏

ൌ
𝐷ഥ௠
𝜉

𝜕
𝜕𝜉 ൬

𝜉
𝜕𝜃௠
𝜕𝜉 ൰

െ
𝑃𝑒௠
𝜉

𝜕𝜃௠
𝜕𝜉

െ 𝛽̅௠𝜃௠ 
𝛾௠ିଵ ൏ 𝜉 ൏ 𝛾௠; 0 ൏ 𝜏 ൏ 𝜏௕ 

(m=1,2,3…M)       (7) 

subject to 

 𝜃ଵ ൌ 1 at 𝜉 ൌ 𝛾଴ (8) 
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 𝜕𝜃ெ
𝜕𝜉

െ
𝑃𝑒ெ𝜃ெ
𝜉

൅ 𝑆ℎ௢௨௧𝜃ெ ൌ 0 at 𝜉 ൌ 1 (9) 

 
െ𝐷ഥ௠

𝜕𝜃௠
𝜕𝜉

൅
𝑃𝑒௠
𝜉

𝜃௠ ൌ െ𝐷ഥ௠ାଵ
𝜕𝜃௠ାଵ

𝜕𝜉
൅
𝑃𝑒௠ାଵ

𝜉
𝜃௠ାଵ at 𝜉 ൌ 𝛾௠ (m=1,2…M-1) (10) 

 
െ𝐷ഥ௠

𝜕𝜃௠
𝜕𝜉

൅
𝑃𝑒௠
𝜉

𝜃௠ ൌ 𝑘ത௠ሺ𝜃௠ െ 𝜃௠ାଵሻ at 𝜉 ൌ 𝛾௠ (m=1,2…M-1) (11) 

along with the following initial condition: 

 𝜃௠ ൌ 0 at τ=0 (m=1,2,..M)       (12) 

Note that 𝜏௕ ൌ
஽ಾ௧್
ோಾ
మ  is the non-dimensional time period of application of the balloon. The 

set of equations (7)-(12) is a multilayer cylindrical convection-diffusion-reaction (CDR) problem 

with the only non-homogeneity present in the boundary condition at 𝜉 ൌ 𝛾଴. In order to account 

for this non-homogeneity, one must split the solution as follows: 

 𝜃௠ሺ𝜉, 𝜏ሻ ൌ 𝑢௠ሺ𝜉, 𝜏ሻ ൅ 𝑣௠ሺ𝜉ሻ (m=1,2,3…M)       (13) 

where 𝑣௠ሺ𝜉ሻ satisfies 

 𝐷ഥ௠
𝜉
ሺ𝜉𝑣௠ᇱ ሻᇱ െ

𝑃𝑒௠
𝜉

𝑣௠ᇱ െ 𝛽̅௠𝜃௠ ൌ 0 
𝛾௠ିଵ ൏ 𝜉 ൏ 𝛾௠(m=1,2,3…M)  

(14) 

along with the boundary and interface conditions 
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 𝑣ଵ ൌ 1 at 𝜉 ൌ 𝛾଴ (15) 

 𝑣ெᇱ െ
𝑃𝑒ெ𝑣ெ
𝜉

൅ 𝑆ℎ௢௨௧𝑣ெ ൌ 0 at 𝜉 ൌ 1 (16) 

 െ𝐷ഥ௠𝑣௠ᇱ ൅
𝑃𝑒௠
𝜉

𝑣௠ ൌ െ𝐷ഥ௠ାଵ𝑣௠ାଵ
ᇱ ൅

𝑃𝑒௠ାଵ

𝜉
𝑣௠ାଵ at 𝜉 ൌ 𝛾௠ (m=1,2…M-1) (17) 

 െ𝐷ഥ௠𝑣௠ᇱ ൅
𝑃𝑒௠
𝜉

𝑣௠ ൌ 𝑘ത௠ሺ𝑣௠ െ 𝑣௠ାଵሻ at 𝜉 ൌ 𝛾௠ (m=1,2…M-1) (18) 

A general solution of equation (14) may be written as 

 𝑣௠ሺ𝜉ሻ ൌ 𝜉ఓ೘ൣ𝐴௩,௠ Iఓ೘ሺ𝜎௠𝜉ሻ ൅ 𝐵௩,௠ Kఓ೘ሺ𝜎௠𝜉ሻ൧ (19) 

where I and K are modified Bessel functions of the first and second kind, respectively [25], and 

𝜇௠ ൌ ௉௘೘
ଶ஽ഥ೘

 is the order of these functions. Further, 𝜎௠ ൌ ඥ𝛽̅௠/𝐷ഥ௠. 

Based on the boundary and interface conditions, the following 2M linear algebraic 

equations may be written for the 2M unknowns – 𝐴௩,௠ and 𝐵௩,௠ (m=1,2,..M): 

 𝛾଴
ఓభൣ𝐴௩,ଵ Iఓభሺ𝜎ଵ𝛾଴ሻ ൅ 𝐵௩,ଵ Kఓభሺ𝜎ଵ𝛾଴ሻ൧ ൌ 1 (20) 

 𝜎ெൣ𝐴𝑣,𝑀 Iఓಾିଵሺ𝜎ெሻ െ 𝐵𝑣,𝑀 Kఓಾିଵሺ𝜎ெሻ൧

൅ ሺ𝑆ℎ𝑜𝑢𝑡 െ 𝑃𝑒𝑀ሻൣ𝐴𝑣,𝑀 Iఓಾሺ𝜎ெሻ ൅ 𝐵𝑣,𝑀 Kఓಾሺ𝜎ெሻ൧ ൌ 0 
(21) 
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 െ𝐷ഥ௠𝜎𝑚𝛾௠
𝜇𝑚 ቂ𝐴௩,௠ I𝜇𝑚ିଵሺ𝜎𝑚𝛾௠ሻ െ 𝐵௩,௠ K𝜇𝑚ିଵሺ𝜎𝑚𝛾௠ሻቃ

൅
𝑃𝑒௠
𝛾௠

𝛾௠
𝜇𝑚 ቂ𝐴௩,௠ I𝜇𝑚ሺ𝜎𝑚𝛾௠ሻ ൅ 𝐵௩,௠ K𝜇𝑚ሺ𝜎𝑚𝛾௠ሻቃ

ൌ െ𝐷ഥ௠ାଵ𝜎𝑚൅1𝛾௠
𝜇𝑚൅1 ቂ𝐴௩,௠ାଵ I𝜇𝑚൅1ିଵ

ሺ𝜎𝑚൅1𝛾௠ሻ

െ 𝐵௩,௠ାଵ K𝜇𝑚൅1ିଵ
ሺ𝜎𝑚൅1𝛾௠ሻቃ

൅
𝑃𝑒௠ାଵ

𝛾௠
𝛾௠
𝜇𝑚൅1 ቂ𝐴௩,௠ାଵ I𝜇𝑚൅1

ሺ𝜎𝑚൅1𝛾௠ሻ ൅ 𝐵௩,௠ାଵ K𝜇𝑚൅1
ሺ𝜎𝑚൅1𝛾௠ሻቃ 

(m=1,2…M-

1) (22) 

 െ𝐷ഥ௠𝜎𝑚𝛾௠
𝜇𝑚 ቂ𝐴௩,௠ I𝜇𝑚ିଵሺ𝜎𝑚𝛾௠ሻ െ 𝐵௩,௠ K𝜇𝑚ିଵሺ𝜎𝑚𝛾௠ሻቃ

൅
𝑃𝑒௠
𝛾௠

𝛾௠
𝜇𝑚 ቂ𝐴௩,௠ I𝜇𝑚ሺ𝜎𝑚𝛾௠ሻ െ 𝐵௩,௠ K𝜇𝑚ሺ𝜎𝑚𝛾௠ሻቃ

ൌ 𝑘ത௠ ൤𝛾௠
𝜇𝑚 ቂ𝐴௩,௠ I𝜇𝑚ሺ𝜎𝑚𝛾௠ሻ ൅ 𝐵௩,௠ K𝜇𝑚ሺ𝜎𝑚𝛾௠ሻቃ

െ 𝛾௠
𝜇𝑚൅1 ቂ𝐴௩,௠ାଵ I𝜇𝑚൅1

ሺ𝜎𝑚൅1𝛾௠ሻ ൅ 𝐵௩,௠ାଵ K𝜇𝑚൅1
ሺ𝜎𝑚൅1𝛾௠ሻቃ൨ 

(m=1,2…M-

1) (23) 

Solving equations (20)-(23) through matrix inversion results in 𝐴௩,௠ and 𝐵௩,௠, and 

therefore the functions 𝑣௠ሺ𝜉ሻ. 

The governing equation and boundary/interface conditions for the remainder of the 

solution, 𝑢௠ሺ𝜉, 𝜏ሻ are given by 

 𝜕𝑢௠
𝜕𝜏

ൌ
𝐷ഥ௠
𝜉

𝜕
𝜕𝜉 ൬

𝜉
𝜕𝑢௠
𝜕𝜉 ൰

െ
𝑃𝑒௠
𝜉

𝜕𝑢௠
𝜕𝜉

െ 𝛽̅௠𝑢௠ 
𝛾௠ିଵ ൏ 𝜉 ൏ 𝛾௠; 0 ൏ 𝜏 ൏ 𝜏௕ 

(m=1,2,3…M)       (24) 

subject to 

 𝑢ଵ ൌ 0 at 𝜉 ൌ 𝛾଴ (25) 
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 𝜕𝑢ெ
𝜕𝜉

െ
𝑃𝑒ெ
𝜉

𝑢ெ ൅ 𝑆ℎ௢௨௧𝑢ெ ൌ 0 at 𝜉 ൌ 1 (26) 

 
െ𝐷ഥ௠

𝜕𝑢௠
𝜕𝜉

൅
𝑃𝑒௠
𝜉

𝑢௠ ൌ െ𝐷ഥ௠ାଵ
𝜕𝑢௠ାଵ

𝜕𝜉
൅
𝑃𝑒௠ାଵ

𝜉
𝑢௠ାଵ at 𝜉 ൌ 𝛾௠ (m=1,2…M-1) (27) 

 
െ𝐷ഥ௠

𝜕𝑢௠
𝜕𝜉

൅
𝑃𝑒௠
𝜉

𝑢௠ ൌ 𝑘ത௠ሺ𝑢௠ െ 𝑢௠ାଵሻ at 𝜉 ൌ 𝛾௠ (m=1,2…M-1) (28) 

along with the following non-homogeneous initial condition: 

 𝑢௠ ൌ െ𝑣௠ሺ𝜉ሻ at τ=0 (m=1,2,..M)       (29) 

Equations (24)-(28) are completely homogeneous, and the only non-homogeneity in the 

𝑢௠ problem appears in the initial condition. Therefore, this multilayer CDR problem may be 

solved using the technique of separation of variables. Specifically, one may write 

 
𝑢௠ሺ𝜉, 𝜏ሻ ൌ ෍𝑔ො௡𝑓௠,௡ሺ𝜉ሻexp ൫െ𝜆መ௡ଶ𝜏൯

ஶ

௡ୀଵ

 (m=1,2,3…M)       (30) 

where 𝑔ො௡ are coefficients to be determined. By separating out the spatial and time-dependent 

terms, and substituting 𝑓௠,௡ሺ𝜉ሻ ൌ 𝜉ఓ೘𝑓መ௠,௡ሺ𝜉ሻ, it can be shown that 𝑓መ௠,௡ሺ𝜉ሻ satisfies the Bessel 

differential equation, and, therefore, 

 𝑓௠,௡ሺ𝜉ሻ ൌ 𝜉ఓ೘ൣ𝐴መ௠,௡ Jఓ೘൫𝜔ෝ௠,௡𝜉൯ ൅ 𝐵෠௠,௡ Yఓ೘൫𝜔ෝ௠,௡𝜉൯൧ (31) 

where, by substituting in the governing energy equation, one may show that 
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𝜔ෝ௠,௡ ൌ ඨ𝜆

መ௡ଶ െ 𝛽̅௠
𝐷ഥ௠

 (m=1,2…M)       (32) 

𝜆መ௡ are the eigenvalues of the problem. Jఔሺ𝑥ሻ and Yఔሺ𝑥ሻ represent Bessel functions of the 

first and second kind, respectively, and of order 𝜈 [25].  

In order to determine the unknown eigenvalues and coefficients, the transient concentration 

distribution given by equation (30) is inserted into boundary and interface conditions given by 

equations (25)-(28). This results in 

 𝐴መଵ,௡ Jఓభ൫𝜔ෝଵ,௡𝛾଴൯ ൅ 𝐵෠ଵ,௡ Yఓభ൫𝜔ෝଵ,௡𝛾଴൯ ൌ 0 (33) 

 𝜔ෝெ,௡ൣ𝐴መெ,௡ Jఓಾିଵ൫𝜔ෝெ,௡൯ ൅ 𝐵෠ெ,௡ Yఓಾିଵ൫𝜔ෝெ,௡൯൧

ൌ ሺെ𝑆ℎ௢௨௧ ൅ 𝑃𝑒ெሻൣ𝐴መெ,௡ Jఓಾ൫𝜔ෝெ,௡൯ ൅ 𝐵෠ெ,௡ Yఓಾ൫𝜔ෝெ,௡൯൧ 
       (34) 

 െ𝐷ഥ௠𝜔ෝ௠,௡𝛾௠𝜇𝑚 ቀ𝐴መ௠,௡ J𝜇𝑚ିଵ൫𝜔ෝ௠,௡𝛾௠൯ ൅ 𝐵෠௠,௡ Y𝜇𝑚ିଵ൫𝜔ෝ௠,௡𝛾௠൯ቁ

൅
𝑃𝑒௠
𝛾௠

𝛾௠𝜇𝑚 ቂ𝐴መ௠,௡ J𝜇𝑚൫𝜔ෝ௠,௡𝛾௠൯ ൅ 𝐵෠௠,௡ Y𝜇𝑚൫𝜔ෝ௠,௡𝛾௠൯ቃ

ൌ െ𝐷ഥ௠ାଵ𝜔ෝ௠ାଵ,௡𝛾௠𝜇𝑚൅1 ቀ𝐴መ௠ାଵ,௡ J𝜇𝑚൅1ିଵ
൫𝜔ෝ௠ାଵ,௡𝛾௠൯

൅ 𝐵෠௠ାଵ,௡ Y𝜇𝑚൅1ିଵ
൫𝜔ෝ௠ାଵ,௡𝛾௠൯ቁ

൅
𝑃𝑒௠ାଵ

𝛾௠
𝛾௠𝜇𝑚൅1 ቂ𝐴መ௠ାଵ,௡ J𝜇𝑚൅1

൫𝜔ෝ௠ାଵ,௡𝛾௠൯ ൅ 𝐵෠௠ାଵ,௡ Y𝜇𝑚൅1
൫𝜔ෝ௠ାଵ,௡𝛾௠൯ቃ 

  

m=1,..M-

1 (35) 
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െ𝐷ഥ௠𝜔ෝ௠,௡𝛾௠𝜇𝑚 ቀ𝐴መ௠,௡ J𝜇𝑚ିଵ൫𝜔ෝ௠,௡𝛾௠൯ ൅ 𝐵෠௠,௡ Y𝜇𝑚ିଵ൫𝜔ෝ௠,௡𝛾௠൯ቁ

൅
𝑃𝑒௠
𝛾௠

𝛾௠𝜇𝑚 ቂ𝐴መ௠,௡ J𝜇𝑚൫𝜔ෝ௠,௡𝛾௠൯ ൅ 𝐵෠௠,௡ Y𝜇𝑚൫𝜔ෝ௠,௡𝛾௠൯ቃ

ൌ 𝑘ത௠ ቂ𝛾௠𝜇𝑚 ቀ𝐴መ௠,௡ J𝜇𝑚൫𝜔ෝ௠,௡𝛾௠൯ ൅ 𝐵෠௠,௡ Y𝜇𝑚൫𝜔ෝ௠,௡𝛾௠൯ቁ

െ 𝛾௠𝜇𝑚൅1 ቀ𝐴መ௠ାଵ,௡ J𝜇𝑚൅1
൫𝜔ෝ௠ାଵ,௡𝛾௠൯ ൅ 𝐵෠௠ାଵ,௡ Y𝜇𝑚൅1

൫𝜔ෝ௠ାଵ,௡𝛾௠൯ቁቃ 

  

m=1,..M-

1(36) 

Equations (33)-(36) represent a set of 2∙M linear homogeneous equations in 2∙M unknowns, 

𝐴෡௠,௡ and 𝐵෡௠,௡ (m=1,2..M). Due to the homogeneous nature of these equations, a non-trivial 

solution is admitted only if the determinant of these equations is zero. This requirement constitutes 

the eigenequation, the roots of which provide the eigenvalues 𝜆መ௡. An explicit expression for the 

eigenequation for the general M-layer case may be derived by carefully manipulating equations 

(33)-(36), as shown in Supplementary Information. The final eigenequation is 

ൣ𝑘തெିଵ𝐷ഥெିଵ𝛾ெିଵఓಾ𝑝ெିଵ,௡
ᇱ ሺ𝛾ெିଵሻYఓಾ൫𝜔ෝெ,௡𝛾ெିଵ൯ െ

𝑘തெିଵ𝑃𝑒ெିଵ𝛾ெିଵఓಾିଵ 𝑝ெିଵ,௡ሺ𝛾ெିଵሻJఓಾ൫𝜔ෝெ,௡𝛾ெିଵ൯ െ𝑘തெିଵ𝐷ഥெ𝜔ෝெ,௡𝛾ெିଵ
ఓಾ𝑝ெିଵ,௡ሺ𝛾ெିଵሻJఓಾିଵ൫𝜔ෝெ,௡𝛾ெିଵ൯ െ

𝐷ഥெିଵ𝐷ഥெ𝜔ෝெ,௡𝛾ெିଵ
ఓಾ𝑝ெିଵ,௡

ᇱ ሺ𝛾ெିଵሻJఓಾିଵ൫𝜔ෝெ,௡𝛾ெିଵ൯ ൅

𝐷ഥெ𝑃𝑒ெିଵ𝜔ෝெ,௡𝛾ெିଵ
ఓಾିଵ𝑝ெିଵ,௡ሺ𝛾ெିଵሻJఓಾିଵ൫𝜔ෝெ,௡𝛾ெିଵ൯ ൅ 𝑘തெିଵ𝑃𝑒ெିଵ𝛾ெିଵఓಾିଵ𝑝ெିଵ,௡ሺ𝛾ெିଵሻJఓಾ൫𝜔ෝெ,௡𝛾ெିଵ൯ ൅

𝐷ഥெିଵ𝑃𝑒ெିଵ𝛾ெିଵఓಾିଵ𝑝ெିଵ,௡
ᇱ ሺ𝛾ெିଵሻJఓಾ൫𝜔ෝெ,௡𝛾ெିଵ൯ െ

𝑃𝑒ெିଵଶ 𝛾ெିଵఓಾିଶ𝑝ெିଵ,௡ሺ𝛾ெିଵሻJఓಾ൫𝜔ෝெ,௡𝛾ெିଵ൯൧ ൣ𝑘തெିଵ𝑃𝑒ெିଵ𝛾ெିଵఓಾିଵ𝑝ெିଵ,௡ሺ𝛾ெିଵሻYఓಾ൫𝜔ෝெ,௡𝛾ெିଵ൯ൗ െ

𝑘തெିଵ𝐷ഥெିଵ𝛾ெିଵఓಾ 𝑝ெିଵ,௡
ᇱ ሺ𝛾ெିଵሻYఓಾ൫𝜔ෝெ,௡𝛾ெିଵ൯ ൅ 𝑘തெିଵ𝐷ഥெ𝜔ෝெ,௡𝛾ெିଵ

ఓಾ 𝑝ெିଵ,௡ሺ𝛾ெିଵሻYఓಾିଵ൫𝜔ෝெ,௡𝛾ெିଵ൯ ൅

𝐷ഥெିଵ𝐷ഥெ𝜔ෝெ,௡𝛾ெିଵ
ఓಾ𝑝ெିଵ,௡

ᇱ ሺ𝛾ெିଵሻYఓಾିଵ൫𝜔ෝெ,௡𝛾ெିଵ൯ െ

𝐷ഥெ𝑃𝑒ெିଵ𝜔ෝெ,௡𝛾ெିଵ
ఓಾିଵ𝑝ெିଵ,௡ሺ𝛾ெିଵሻYఓಾିଵ൫𝜔ෝெ,௡𝛾ெିଵ൯ െ 𝑘തெିଵ𝑃𝑒ெିଵ𝛾ெିଵఓಾିଵ𝑝ெିଵ,௡ሺ𝛾ெିଵሻYఓಾ൫𝜔ෝெ,௡𝛾ெିଵ൯ െ

𝐷ഥெିଵ𝑃𝑒ெିଵ𝛾ெିଵఓಾିଵ𝑝ெିଵ,௡
ᇱ ሺ𝛾ெିଵሻYఓಾ൫𝜔ෝெ,௡𝛾ெିଵ൯ ൅𝑃𝑒ெିଵଶ 𝛾ெିଵఓಾିଶ𝑝ெିଵ,௡ሺ𝛾ெିଵሻYఓಾ൫𝜔ෝெ,௡𝛾ெିଵ൯൧ ൅

ൣ𝜔ෝெ,௡ Jఓಾିଵ൫𝜔ෝெ,௡൯ െ ሺെ𝑆ℎ௢௨௧ ൅ 𝑃𝑒ெሻ Jఓಾ൫𝜔ෝெ,௡൯൧ ൣ𝜔ෝெ,௡ Yఓಾିଵ൫𝜔ෝெ,௡൯ൗ െ ሺെ𝑆ℎ௢௨௧ ൅ 𝑃𝑒ெሻYఓಾିଵ൫𝜔ෝெ,௡൯൧=0   (37) 
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where the ′ sign refers to derivative with respective to 𝜉 and the expression for function 𝑝ெିଵ,௡ሺ𝜉ሻ 

is found in Supplementary Information. 

Once the eigenvalues are determined from the roots of this transcendental equation, thereby 

ensuring that the determinant of the set of equations (33)-(36) is zero, one of the equations in this 

set is redundant. Further, a general solution for the coefficients 𝐴෡௠,௡ and 𝐵෡௠,௡ may be obtained by 

assuming one of the coefficients, say, 𝐴෡ଵ,௡ to be one, and determining all other coefficients in terms 

of 𝐴෡ଵ,௡ from equations (33)-(35). Explicit expressions for 𝐴መ௠,௡ and 𝐵෠௠,௡ are presented in 

Supplementary Information. 

Finally, the initial condition and principle of quasi-orthogonality may be used to determine 

the remaining coefficient 𝑔ො௡. To do so, equation (30) is inserted in the initial conditions given by 

equation (29), resulting in 

 
െ𝑣௠ሺ𝜉ሻ ൌ ෍𝑔ො௡𝜉ఓ೘ൣ𝐴መ𝑚,𝑛 Jఓ೘൫𝜔ෝ௠,௡𝜉൯ ൅ 𝐵෠𝑚,𝑛 Yఓ೘൫𝜔ෝ௠,௡𝜉൯൧

ஶ

௡ୀଵ

 
(m=1,2,3…M)  

(38) 

The statement of principle of quasi-orthogonality for the cylindrical CDR problem is 

considerably more complicated than that of a pure-diffusion problem, specifically in terms of the 

weighing functions associated with each layer. Quasi-orthogonality is proved separately in 

Appendix A. Based on the results in Appendix A, equation (38) is multiplied by 

ଵ
௦೘
ൣ𝐴መ௠,௡ᇲ Jఓ೘൫𝜔ෝ௠,௡ᇲ𝜉൯൅𝐵෠௠,௡ᇲ Yఓ೘൫𝜔ෝ௠,௡ᇲ𝜉൯൧𝜉ଵିఓ೘, where ௦೘శభ

௦೘
ൌ ఊ೘

భషమഋ೘శభ

ఊ೘
భషమഋ೘   (m=1,2..M-1) and 

𝑠ଵ ൌ 𝛾ଵ
ଵିଶఓభ. The resulting expression is integrated from 𝜉 ൌ 𝛾௠ to 𝜉 ൌ 𝛾௠ାଵ. The resulting 
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equations are added, which, with the use of principle of quasi-orthogonality given by equation 

(A.5) in Appendix A, leads to  

 
𝑔ො௡ᇲ ൌ

1
𝑁௡ᇲ

෍
1
𝑠௠

න െ𝑣௠ሺ𝜉ሻ ቂ𝐴መ௠,௡ᇲ J𝜇𝑚൫𝜔ෝ௠,௡ᇲ𝜉൯൅𝐵෠௠,௡ᇲ Y𝜇𝑚൫𝜔ෝ௠,௡ᇲ𝜉൯ቃ 𝜉ଵି𝜇𝑚𝑑𝜉

ఊ೘

ఊ೘షభ

ெ

௠ୀଵ

 (39) 

where the norm 𝑁௡ᇲ is given by 

 
𝑁௡ᇲ ൌ ෍

1
𝑠𝑚

න 𝜉 ቂ𝐴෡𝑚,𝑛′ J𝜇𝑚 ቀ𝜔ෝ𝑚,𝑛′𝜉ቁ൅𝐵෡𝑚,𝑛′ Y𝜇𝑚 ቀ𝜔ෝ𝑚,𝑛′𝜉ቁቃ
2
𝑑𝜉

𝛾𝑚

𝛾𝑚െ1

𝑀

𝑚ൌ1
 (40) 

This completes the solution for Stage A. During this stage, the drug is expected to enter the 

multi-layer artery from the luminal wall. Some of the drug may get absorbed within the artery 

layer and some may be lost from the perivascular wall. The second Stage, in which the balloon has 

been withdrawn is considered in the next section. 

2.4. Stage B: After Balloon is Withdrawn (τ>τb) 

 Once the balloon has been withdrawn, the drug already present within the artery continues 

to diffuse, be convected and bind within the artery. The boundary condition at the perivascular 

wall continues to be characterized by a Sherwood number 𝑆ℎ௢௨௧, whereas, it is assumed that on 

the luminal surface, the constant concentration boundary condition due to the balloon is replaced 

by a general mass transfer boundary condition that models drug loss to the luminal blood flow due 

to convection. This boundary condition may be characterized by another Sherwood number, 
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𝑆ℎ௜௡ ൌ
௛೔೙ோಾ
஽ಾ

. In this framework, the non-dimensional concentration distribution 𝜙௠ሺ𝜉, 𝜏ሻ during 

Stage B is given by 

 𝜕𝜙௠
𝜕𝜏

ൌ
𝐷ഥ௠
𝜉

𝜕
𝜕𝜉 ൬

𝜉
𝜕𝜙௠
𝜕𝜉 ൰ െ

𝑃𝑒௠
𝜉

𝜕𝜙௠
𝜕𝜉

െ 𝛽̅௠𝜙௠ 
𝛾௠ିଵ ൏ 𝜉 ൏ 𝛾௠; 𝜏 ൐ 𝜏௕ 

(m=1,2,3…M)       (41) 

subject to 

 
െ𝐷ഥଵ

𝜕𝜙ଵ
𝜕𝜉

൅
𝑃𝑒ଵ𝜙ଵ
𝜉

൅ 𝑆ℎ௜௡𝜙ଵ ൌ 0 at 𝜉 ൌ 𝛾଴ (42) 

 𝜕𝜙ெ
𝜕𝜉

െ
𝑃𝑒ெ𝜙ெ

𝜉
൅ 𝑆ℎ௢௨௧𝜙ெ ൌ 0 at 𝜉 ൌ 1 (43) 

 
െ𝐷ഥ௠

𝜕𝜙௠
𝜕𝜉

൅ 𝑃𝑒௠𝜙௠ ൌ െ𝐷ഥ௠ାଵ
𝜕𝜙௠ାଵ

𝜕𝜉
൅ 𝑃𝑒௠ାଵ𝜙௠ାଵ at 𝜉 ൌ 𝛾௠ (m=1,2…M-1) (44) 

 
െ𝐷ഥ௠

𝜕𝜙௠
𝜕𝜉

൅ 𝑃𝑒௠𝜙௠ ൌ 𝑘ത௠ሺ𝜙௠ െ 𝜙௠ାଵሻ at 𝜉 ൌ 𝛾௠ (m=1,2…M-1) (45) 

along with the following initial condition: 

 𝜙௠ ൌ 𝜃௠ሺ𝜉, 𝜏ௗሻ at τ=0 (m=1,2,..M)       (46) 

where 𝜃௠ሺ𝜉, 𝜏ௗሻ is the concentration distribution at the end of Stage A, which serves as the initial 

condition for Stage B. Note that the time coordinate associated with 𝜙௠ in these equations begins 

at the time that the balloon is withdrawn. 
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This problem is similar to the 𝑢௠ሺ𝜉, 𝜏ሻ problem encountered in Stage A. A solution may 

be written as follows: 

 
𝜙௠ሺ𝜉, 𝜏ሻ ൌ ෍𝑔෤௡𝜉ఓ೘ൣ𝐴ሚ௠,௡ Jఓ೘൫𝜔෥௠,௡𝜉൯

ஶ

௡ୀଵ

൅ 𝐵෨௠,௡ Yఓ೘൫𝜔෥௠,௡𝜉൯൧exp ൫െ𝜆ሚ௡ଶ𝜏൯ 

(m=1,2,3…M)  

(47) 

where, by substituting in the governing energy equation, one may show that 

 
𝜔෥௠,௡ ൌ ඨ𝜆

ሚ௡ଶ െ 𝛽̅௠
𝐷ഥ௠

 (m=1,2…M)       (48) 

The coefficients 𝐴ሚ௠,௡ and 𝐵෨௠,௡ satisfy boundary and interface conditions similar to 

equations (34)-(36). In addition, due to the change in boundary condition at 𝜉 ൌ 𝛾଴, the cofficients 

satisfy the following equation instead of eq. (33): 

 െ𝜔෥ଵ,௡𝐷ഥଵൣ𝐴ሚଵ,௡ Jఓభିଵ൫𝜔෥ଵ,௡𝛾଴൯ ൅ 𝐵෨ଵ,௡ Yఓభିଵ൫𝜔෥ଵ,௡𝛾଴൯൧

൅ ൬𝑆ℎ௜௡ ൅
𝑃𝑒ଵ
𝛾଴
൰ ൣ𝐴ሚଵ,௡ Jఓభ൫𝜔෥ଵ,௡𝛾଴൯ ൅ 𝐵෨ଵ,௡ Yఓభ൫𝜔෥ଵ,௡𝛾଴൯൧ ൌ 0 

(49) 

 Similar to the process for 𝑢௠ሺ𝜉, 𝜏ሻ, the eigenvalues for Stage B may be determined by 

setting the determinant of equations representing boundary and interface conditions to zero. 

Subsequently, the coefficients 𝐴ሚ௠,௡ and 𝐵෨௠,௡ may be determined by first setting 𝐴ሚଵ,௡ ൌ 1 and 

determining the remaining coefficients from these equations. Supplementary Information provides 

an explicit expression for the eigenequation for Stage B, as well as closed-form recursive 

expressions for 𝐴ሚ௠,௡ and 𝐵෨௠,௡. 
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 Finally, the remaining coefficient 𝑔෤௡ may be determined by using the initial condition 

 
𝜃௠ሺ𝜉, 𝜏ௗሻ ൌ ෍𝑔෤௡𝜉ఓ೘ൣ𝐴ሚ௠,௡ Jఓ೘൫𝜔෥௠,௡𝜉൯ ൅ 𝐵෨௠,௡ Yఓ೘൫𝜔෥௠,௡𝜉൯൧

ஶ

௡ୀଵ

 (m=1,2,3…M)       (50) 

Similar to Stage A, equation (50) is multiplied by 

ଵ
௦೘
ൣ𝐴ሚ௠,௡ᇲ Jఓ೘൫𝜔෥௠,௡ᇲ𝜉൯൅𝐵෨௠,௡ᇲ Yఓ೘൫𝜔෥௠,௡ᇲ𝜉൯൧𝜉ଵିఓ೘. The resulting expression is integrated from 

𝜉 ൌ 𝛾௠ to 𝜉 ൌ 𝛾௠ାଵ. The resulting equations are added, which, with the use of principle of quasi-

orthogonality as outlined in Appendix A leads to  

 
𝑔෤௡ᇲ ൌ

1
𝑁෩௡ᇲ

෍
1
𝑠௠

න 𝜃௠ሺ𝜉, 𝜏ௗሻ ቂ𝐴෩௠,௡ᇲ J𝜇𝑚൫𝜔෥௠,௡ᇲ𝜉൯൅𝐵෩௠,௡ᇲ Y𝜇𝑚൫𝜔෥௠,௡ᇲ𝜉൯ቃ 𝜉ଵି𝜇𝑚𝑑𝜉

ఊ೘

ఊ೘షభ

ெ

௠ୀଵ

 (51) 

where the norm 𝑁෩௡ᇲ is given by 

 
𝑁௡ᇲ ൌ ෍

1
𝑠𝑚

න 𝜉 ቂ𝐴෩𝑚,𝑛′ J𝜇𝑚 ቀ𝜔෥𝑚,𝑛′𝜉ቁ൅𝐵෩𝑚,𝑛′ Y𝜇𝑚 ቀ𝜔෥𝑚,𝑛′𝜉ቁቃ
2
𝑑𝜉

𝛾𝑚

𝛾𝑚െ1

𝑀

𝑚ൌ1
 (52) 

This completes the solution for concentration distribution in Stage B, during which, the 

drug introduced into the artery in Stage A diffuses and binds further, and some of it may also be 

lost from the luminal and perivascular surfaces. 

3. Key safety and efficacy indicators 

Key performance indicators that characterize the safety and efficacy of drug delivery 

include 𝜈̅ሺ𝜏ሻ, the amount of drug delivered up to time 𝜏, 𝜒̅௠ሺ𝜏ሻ, the amount of drug bound in the 
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mth layer up to time 𝜏, 𝜌̅௠ሺ𝜏ሻ, the amount of drug remaining unbound in the mth layer at time 𝜏, 

and 𝜓ത௢௨௧ሺ𝜏ሻ and 𝜓ത௜௡ሺ𝜏ሻ, the amounts of drug lost from the perivascular and luminal surfaces, 

respectively. Note that, by the very definition of the problem, 𝜓ത௜௡ሺ𝜏ሻ is zero during Stage A, when 

drug is being transported from the balloon into the artery – drug loss from the luminal surface only 

begins in Stage B when the balloon has been withdrawn. Definitions for these non-dimensional 

parameters are summarized in Table 1. Closed-form expressions, determined by appropriate 

integration/differentiation of concentration distributions are given in Appendix B. Note that non-

dimensionalization is carried out by dividing the corresponding dimensional quantity by the 

balloon drug concentration and total artery volume. 

 It may be noted that by multiplying the governing conservation equations, given by 

equation (1) by 𝜉, integrating spatially within each layer and over time, and finally adding all 

equations, one may derive the following overall mass conservation relationship between these 

quantities: 

 
𝜈̅ሺ𝜏ሻ ൌ 𝜓ത௢௨௧ሺ𝜏ሻ ൅ 𝜓ത௜௡ሺ𝜏ሻ ൅ ෍ ሾ𝜒̅௠ሺ𝜏ሻ ൅ 𝜌̅௠ሺ𝜏ሻሿ

𝑀

𝑚ൌ1
 (52) 

4. Results and Discussion 

As shown in Section 2, the general solution for concentration distribution in the multilayer 

artery depends on several parameters, including thicknesses, diffusion coefficients, velocities and 

reaction coefficients for each layer and convection coefficients at the boundaries. Values/ranges 

for these parameter values/ranges based on past literature [13,15,16,26] are listed in Table 2. A 

three-layer artery comprising intima, media and adventitia is assumed. Binding reaction is assumed 
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to occur only in the media layer and the intima layer is much thinner and with greater diffusivity 

than the other two layers. While the nominal value of luminal and perivascular Sherwood numbers 

is taken to be 1, these may vary in a broad range between 0 and ∞, representing an impenetrable 

and constant concentration boundary, respectively. For example, following the withdrawal of the 

balloon, the value of 𝑆ℎ௜௡ likely depends on the extent of damage to the inner lining of the arterial 

wall. Similarly, the value of 𝑆ℎ௢௨௧ depends on the nature of tissue surrounding the artery. Since 

these values are not fixed, a broad range of values is considered in the analysis presented in this 

section. 

4.1. Convergence of series solution 

Since the closed-form analytical solution for concentration distribution derived in Section 

2, as well as expressions for various performance parameters derived in Section 3 are all in the 

form of eigenfunction-based infinite series, it is important to determine the number of terms needed 

in the series to ensure accuracy. This is an important consideration because such series solutions 

often converge slowly [27], and yet, computing too many terms in the series may lead to 

unnecessary computational difficulties. Therefore, determining the minimum number of terms 

needed to be computed is important. In the present, since the two key performance parameters are 

𝜈̅ሺ𝜏ሻ ൌ ∑ ሾ𝜒̅௠ሺ𝜏ሻ ൅ 𝜌̅௠ሺ𝜏ሻሿ𝑀
𝑚ൌ1 , the total amount of drug delivered up to a given time and 𝜒̅ଶሺ𝜏ሻ, the 

total amount of drug absorbed in the media layer up to a given time, the variation in these quantities 

with the number of eigenvalues considered is examined. Figure 3 plots 𝜈̅ሺ𝜏 ൌ 0.017ሻ and 

𝜒̅ଶሺ𝜏 ൌ 0.017ሻ as functions of the number of eigenvalues considered. Figure 3 shows that 𝜒̅ଶ 

converges very quickly, within around 20 eigenvalues. However, in contrast, 𝜈̅ converges very 

slowly and takes nearly 1000 eigenvalues to converge. The calculation of such a large number of 
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eigenvalues can be tedious, but in the present case is needed to ensure accuracy. In the present 

work, eigenvalues are computed by identifying intervals in the eigenfunction plot where the curve 

crosses the x axis, followed by successive application of Newton-Raphson iterations to accurately 

determine the root. By automating the process, it is possible to seamlessly compute the eigenvalues 

for any given set of parameter values. All subsequent plots discussed in this work have been 

computed using 1000 eigenvalues. 

4.2. Evolution of the concentration field for a representative problem 

The concentration field in the three-layer artery in response to drug delivery by a balloon 

over a small amount of time is computed for a representative set of parameters, as listed in Table 

2. The concentration distribution is plotted as a function of 𝜉 at several different times during 

Stages A and B in Figures 4(a) and 4(b), respectively. The intima-media interface location is 

indicated in both plots. 

Note that Stage A is relatively short because the balloon is kept in place only for a short 

amount of time, so that the non-dimensional duration of Stage A is only 𝜏ௗ ൌ 4.1 ൈ 10ିହ. Figure 4(a) 

shows that as time passes, the drug supplied by the balloon at the left boundary diffuses farther 

and farther into the artery. However, the total diffusion length into the artery is relatively short due 

to the small time period of Stage A. Drug diffusion clearly crosses over the relatively thin intima 

and into the media, but does not traverse a large distance into the media layer. The total diffusion 

length during Stage A shown in Figure 4(a) is consistent with the diffusion length scale estimate 

based on diffusivities of the intima and media layers. As a result, the average drug concentration 

in the media layer at the time of balloon withdrawal is relatively small. The dynamics of drug 

diffusion and absorption during Stage B, in which the balloon has been withdrawn, are shown in 
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Figure 4(b). This plot shows that the drug continues to diffuse throughout the artery and be 

absorbed in the media layer during this Stage. Drug concentration at 𝜉 ൌ 0 starts to drop during 

Stage B, which is because of drug loss at that boundary, at which, the drug-containing balloon has 

been replaced by a convective boundary condition that represents drug loss to the luminal blood 

flow. As time passes during Stage B, drug concentration in regions close to the lumen reduces and 

in regions close to the perivascular region increases due to outwards diffusion and convective 

transport. Over time, drug loss at the two boundaries as well as drug binding reactions in the media 

layer all contribute towards a gradual reduction in drug concentration, which, at large times, is all 

bound within the media layer. 

4.3. Overall mass balance during Stages A and B 

The amount of drug delivered up to any time may be calculated from knowledge of the 

amount of drug absorbed, still present and lost from the luminal and perivascular surfaces. Section 

3 and Table 1 define and present explicit analytical expressions for each of these quantities. It is 

instructive to examine the evolution of these various quantities over time. Figure 5(a) and 5(b) plot 

these components as functions of time during Stages A and B, respectively. Since drug absorption 

occurs only in the media layer, 𝜒̅ଵ and 𝜒̅ଷ are both zero, and therefore are not plotted. Figure 5(a) 

shows that during Stage A, when the balloon is present, the amount of drug delivered increases 

over time. The increase is relatively rapid at early times and slows down later, which is consistent 

with the nature of diffusion. The amount of drug present in the intima layer rises rapidly due to 

being next to the drug-containing balloon, before saturating. In contrast, the amount of drug in the 

media layer rises slowly throughout the time period. Due to the short amount of time in Stage A 

and the small amount of drug available in the media layer, there is no significant drug absorption 



 

29 
 

in the media layer. The amount of drug lost from the perivascular surface is also approximately 

zero, which is because not much drug has yet reached the perivascular surface. As shown in 

equation (52), up to any given time, the sum of total drug absorbed and present in all layers, as 

well as lost from the luminal and perivascular surfaces must add up to the total amount of drug 

delivered. This total sum is also plotted in Figure 5(a), and is shown to be very close to the total 

amount of drug delivered. The overall mass balance shown by this agreement is encouraging and 

indicates validation of the analysis presented in Section 2. 

A similar plot of evolution of drug delivered, absorbed, present and lost during Stage B is 

presented in Figure 5(b). As expected, the total amount of drug delivered remains flat during Stage 

B, because the balloon has been withdrawn, and no more drug enters the artery. Drug present in 

the three layers of the artery at the start of Stage B continues to diffuse over time, and can be either 

absorbed in the media layer, or lost from the luminal and perivascular boundaries. Figure 5(b) 

clearly shows that during Stage B, the amount of drug present in intima and media layers reduces 

as time passes. These layers were saturated with a high drug content during Stage A. In contrast, 

not much drug diffused into the outer-most adventitia layer during Stage A, which is why, Figure 

5(b) shows that during Stage B, drug available in the adventitia layer first increases due to diffusion 

from the media layer, and then gradually decreases due to drug loss at the perivascular surface. 

The amount of drug lost from the luminal and perivascular surfaces increases and reaches a 

saturation value. Finally, the amount of drug bound in the media layer rises sharply at first, due to 

the large amount of drug available in the media layer, and then saturates as the amount of drug 

available for binding reduces over time. The total amount of drug bound in the media is a small 

fraction of the drug concentration in the balloon. This indicates that despite the application of the 

balloon, the amount of drug actually delivered into the media layer is expected to be relatively 
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small compared to drug concentration in the balloon. The drug loading in the balloon must 

therefore be designed accordingly. Similar to Figure 5(a), the total sum of drug available, bound 

and lost is also plotted as a function of time in Figure 5(b). This sum is found to be close to the 

total amount of drug delivered, which confirms overall mass balance during Stage B. Note that the 

time scale over which Stage B has been computed (approximately 3 days) is much longer 

compared to Stage A (60 seconds, which is the typical period after which the balloon is 

withdrawn). 

In addition to providing validation of the analytical expressions derived in Section 2, 

Figures 5(a) and 5(b) highlight the interesting dynamics between drug diffusion, advection, 

absorption and boundary loss. These plots provide practical insights into the design of balloon 

based balloon drug delivery systems.  

4.4. Impact of reaction coefficient 

The impact of reaction coefficient in the media layer, 𝛽̅ଶ on drug content and amount of 

drug bound in the artery is examined next. Drug content in the artery is the total amount of drug 

present in all layers of the artery, whether bound or not, and is an important indicator of the safety 

of the drug delivery process [22]. Figure 6(a) plots the drug content in the artery as a function of 

time during Stage A for four different values of 𝛽̅ଶ, within the range reported in the literature [15]. 

As expected, there is practically no influence of 𝛽̅ଶ on the amount of drug delivered. This is because 

the amount of drug delivered, and thus contained in the artery mainly depends on the nature of the 

boundary condition at the luminal surface, as well as diffusion properties of the inner-most arterial 

layer. This process is largely unrelated to the reaction coefficient in the media layer, especially 
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since only a small amount of drug diffuses into the media layer during the short time period of 

Stage A.  

In contrast, Figure 6(b) plots the drug bound in the artery as a function of time during Stage 

B, when most of the drug binding process occurs within the media layer. During this Stage, Figure 

6(b) shows that the larger the value of 𝛽̅ଶ, the faster is the drug absorption process, and the larger 

is the amount of drug bound in the artery. This is because a small value of 𝛽̅ଶ results in lesser drug 

binding, and therefore, a greater amount of drug available to diffuse to the boundaries and be lost 

into the luminal blood flow and surrounding perivascular tissue.  

The total drug content in the artery is the sum of bound and unbound drug available in the 

artery. The impact of the reaction coefficient 𝛽̅ଶ on the relative amounts of bound and unbound 

drug is of interest, and is examined in Supplementary Figure 1. These two components as well as 

the total drug content are plotted as functions of 𝛽̅ଶ at 𝜏 ൌ 0.18. This plots shows that most of the 

drug is in the bound state: since 𝜏 ൌ 0.18 corresponds to a relatively long time, much of the drug 

delivered by the balloon has been consumed in binding reactions. Supplementary Figure 1 shows 

that for very small values of 𝛽̅ଶ, there may be some unbound drug still remaining at this time. 

4.5. Impact of luminal and perivascular boundary conditions 

The impact of convective boundary conditions on the luminal and perivascular boundaries, 

as expressed mathematically by equations (2) and (3) is investigated next. These boundary 

conditions are represented by Sherwood numbers – 𝑆ℎ௜௡ and 𝑆ℎ௢௨௧, respectively. The specific value 

of the Sherwood number depends, among other factors, on the physical properties and functionality 

of the arterial tissue at these boundaries. For example, application of the balloon on the luminal 
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surface may damage the endothelial cells at that surface, resulting in reduced rate of convective 

transport at that surface. Further, the nature of tissue surrounding the artery may influence the 

value of 𝑆ℎ௢௨௧. Figures 7(a) and 7(b) plot the amount of drug lost at the luminal and perivascular 

surfaces as functions of time for different values of 𝑆ℎ௜௡ and 𝑆ℎ௢௨௧, respectively. The amount of 

drug lost is expressed as a fraction of the total drug delivered. In both cases, as expected, the greater 

the Sherwood number, the greater is the amount of drug lost. Note that for a large value of 𝑆ℎ௜௡, 

up to around 80% of the drug delivered may be lost at the luminal surface. This strong impact is 

because the luminal surface is close to where most of the drug delivered by the end of Stage A is 

concentrated. Comparing the dynamics of drug loss at the two surfaces, it is seen that while drug 

loss at the luminal surface rises sharply with time, drug loss at the perivascular surface lags behind, 

which is explained by the time taken for the drug to diffuse through the artery to the perivascular 

surface. In contrast, drug is readily available close to the luminal surface because that is where the 

balloon was applied in Stage A. This also explains why the amount of drug lost from the luminal 

surface is nearly an order of magnitude larger than drug lost from the perivascular surface. Over 

the time period considered here, the amount of drug lost at the luminal surface reaches a steady 

value because the drug in the intima layer continues to diffuse radially outwards and towards the 

perivascular surface. This is also the reason why drug lost at the perivascular surface takes longer 

to reach a steady value.  

To investigate this further, Figure 8 plots the amount of drug lost up to a certain time as a 

function of the Sherwood number. Plots for the luminal and perivascular surfaces are presented in 

Figures 8(a) and 8(b), respectively. Similar to Figure 7, the amount of drug lost is expressed as a 

fraction of the total drug delivered. As expected, the amount of drug lost increases with increasing 

value of Sherwood number. A saturation effect is observed in both cases. For example, beyond a 
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value of 100 for 𝑆ℎ௢௨௧, Figure 8(b) shows negligible additional drug loss upon increasing 𝑆ℎ௢௨௧ 

further, indicating that this value is the threshold for reaching an infinite sink boundary condition.  

It is also important to examine the impact of the boundary conditions on drug content in 

the artery. Supplementary Figure 2 plots drug content in the artery as a function of time during 

Stage A for different values of the perivascular Sherwood number, 𝑆ℎ௢௨௧. As expected, 𝑆ℎ௢௨௧ has 

negligible impact on drug content during Stage A. This is because in the short time duration of 

Stage A, drug diffusion into the artery is limited mainly to the intima and media layers, and 

therefore, the boundary condition on the perivascular surface is relatively insignificant. In contrast, 

Figures 9(a) and 9(b) plot drug content as function of time in Stage B for different values of luminal 

and perivascular Sherwood numbers, 𝑆ℎ௜௡ and 𝑆ℎ௢௨௧, respectively. Figure 9(a) shows a very strong 

dependence of drug content in the artery on  𝑆ℎ௜௡. For relatively large value of  𝑆ℎ௜௡, the drug 

content drops dramatically with time. This is because the luminal surface, where  𝑆ℎ௜௡ is applied, 

is located next to the intima, which is rich in drug delivered during Stage A. Therefore, 𝑆ℎ௜௡ 

strongly influences drug content in the artery, and for large values of  𝑆ℎ௜௡, there is significant drug 

loss from the luminal surface. A large value of  𝑆ℎ௜௡ may arise, for example, due to strong 

convective mass transfer to luminal blood flow, facilitated also by possible endothelial damage 

due to the application of the balloon. In contrast, the impact of 𝑆ℎ௢௨௧, which is applied on the 

perivascular surface, is relatively smaller, particularly in the early part of Stage B, as shown in 

Figure 9(b). This is because the perivascular surface is located far from the drug-rich intima, and 

by the time drug diffuses to the perivascular surface, so that the impact of 𝑆ℎ௢௨௧ begins to be felt, 

much of the drug is already bound in the media layer. The five curves shown in Figure 9(b) are 

nearly identical at early times, when not much drug has diffused to the perivascular surface, and 

the influence of 𝑆ℎ௢௨௧ is mainly observed only afterwards.  
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4.6. Impact of diffusion coefficient of the intima 

While each layer in the artery has a distinct diffusion coefficient, that of the intima layer is 

expected to play a key role in determining the drug delivery and binding characteristics. This is 

because the intima layer is adjacent to the drug-carrying balloon. Further, drug diffusion during 

Stage A occurs mainly in the intima layer, and therefore, the total amount of drug delivered before 

the balloon is withdrawn is strongly dependent on the diffusion coefficient of the intima. 

Despite the short duration, Stage A is critical for determining the total amount of drug 

delivered, because the balloon is withdrawn at the end of Stage A, after which, there is no more 

drug entering the artery. In order to investigate the impact of intima diffusion coefficient on drug 

delivery, Figure 10 plots the amount of drug delivered as a function of time during Stage A for 

different values of 𝐷ഥଵ. The parametric range considered here is one order of magnitude lower and 

greater than the nominal value based on past literature [15,16]. Figure 10 shows that the larger the 

value of 𝐷ഥଵ, the greater is the amount of drug delivered. For each case considered here, the drug 

delivery curve becomes approximately linear after a short time. However, the greater the value of 

𝐷ഥଵ, the greater is the initial slope, and thus, the greater is the total amount of drug delivered by the 

end of Stage A. However, there is a saturation effect, in that once 𝐷ഥଵ is reasonably large, further 

increase in  𝐷ഥଵ does not significantly increase the amount of drug delivered. This may be because 

once 𝐷ഥଵ is sufficiently large, drug diffuses very rapidly through the intima, and the overall drug 

delivery process starts to become limited by 𝐷ഥଶ instead. Note that the intima diffusion coefficient 

is assumed to not be influenced by the process of applying the balloon on the luminal surface. 

Drug content and drug bound in the media is plotted as a function of time for different 

values of  𝐷ഥଵ in Figures 11(a) and 11(b), respectively. During Stage B, the drug content reduces 
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with time due to loss from the boundaries, whereas the amount of drug bound increases with time 

because of reactions that convert unbound drug available in the media to a bound state. Figure 

11(a) shows very gradual reduction in the drug content over time since the definition of drug 

content includes both unbound and bound drug.  The intima diffusion coefficient only influences 

the initial drug content at the start of Stage A, and not so much the extent of reduction over time. 

On the other hand, as shown in Figure 11(b), the amount of drug bound in the media layer has a 

strong dependence on  𝐷ഥଵ, particularly in the low range of  𝐷ഥଵ. This is because the greater the value 

of  𝐷ഥଵ, the more rapid is the rate of diffusion of the drug from the drug-rich intima into the media, 

where binding reactions occur. Similar to the effect observed in Figure 10, there is a saturation 

effect, in that beyond a threshold value of  𝐷ഥଵ, further increase in  𝐷ഥଵ does not result in significant 

further increase in the amount of drug bound. 

4.7. Impact of advection 

A key feature of drug transport in this problem is the advection of drug due to radially 

outwards plasma flow. This radial flow is driven by the transmural pressure difference, and the 

velocity has been shown to proportional to 1/r, also depending on the pressure gradient and various 

porous flow properties. The impact of the Péclet number, which represents the magnitude of this 

flow field on drug delivery and binding characteristics is examined next. Supplementary Figures 

3(a) and 3(b) plot the amount of drug delivered during Stage A and amount of drug bound during 

Stage B as functions of time for several different values of Pe, including the baseline value of 

Pe=0 that represents the case of no advection. Note that the range of Pe considered is based on 

estimates derived from existing literature [13]. The plots show that the value of the Péclet number, 

in the range considered here, has minimal impact on drug delivery and binding characteristics. In 
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Stage B, the amount of drug bound in the media layer actually reduces with increasing Péclet 

number. This is likely because as Pe increases, a greater amount of drug is removed from the media 

layer and into the adventitia due to advection than is brought into the media from the intima. Note 

that there are several second-order effects that are not considered in this analysis. For example, the 

application of the balloon is likely to increase the transmural pressure gradient during Stage A. 

Due to the relatively short time duration of Stage A, it is anticipated that the effect on the 

performance indicators considered in this model will be small and, therefore, a constant Péclet 

number is assumed throughout the time duration considered here. Further, the application of the 

balloon may damage endothelial cells in the intima layer, which may impact the nature of porous 

flow through the intima, and therefore, the Péclet number. However, the intima thickness is only 

5% of the overall artery thickness, and therefore, this is also likely to be a small effect.  

4.8. Results for a homogeneous artery 

In some cases, it may be acceptable to neglect the multi-layer nature of the artery, and 

instead treat it as a homogeneous body. The drug transport problem can be considerably simplified 

in such a case. Due to the practical importance of this special case, it is instructive to explicitly 

write the solution for this problem. The governing equations and solution for this problem can be 

derived by setting M=1 in Section 2. These equations and closed-form expressions for 

concentration distribution and various performance indicators for this case are summarized in 

Supplementary Information.  

5. Summary and Conclusions 

Endovascular drug delivery involves complex interactions between several physical and 

biological processes, including diffusion, advection and binding reactions, which is further 
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complicated by the multilayer nature of the artery. Experimental investigation of drug delivery is 

time-consuming, expensive and may raise ethical questions where animals are used, which is why 

mathematical models can provide valuable insights and guidance into appropriate design of 

experiments. The general mathematical model presented in this work may fulfil this role for arterial 

drug delivery from a balloon. Key insights gained from this work include the important role of 

intima diffusion coefficient and medial reaction rate in determining the amount of drug delivered 

and bound, respectively. The model also highlights the key role played by the nature of boundary 

conditions in this process. Such insights can be used to balance safety and efficacy. 

It is important to re-emphasize the key assumptions made here, necessarily employed to 

enable a closed-form analytical solution. Only one linear, non-saturable binding reaction is 

assumed to occur. Boundary conditions, as well as transvascular pressure, which influences the 

Péclet number, are assumed to not be influenced by balloon application or withdrawal. All 

properties are assumed to be uniform and independent of concentration. For a broad range of 

practical scenarios, these assumptions are reasonable. Further, note that while values of various 

properties were taken from existing literature, an integrated effort to measure these properties in 

the same arterial system, and to study possible variations in these values, may help further improve 

the accuracy of model predictions. 

In addition to the practical insights into the endovascular drug delivery problem, this work 

also contributes towards theoretical heat/mass transfer by presenting an analytical solution for the 

multilayer cylindrical CDR problem, including the nature of quasi-orthogonality in this problem. 
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Appendix A: Quasi-orthogonality of eigenfunctions for the general M-layer cylinder case 
with diffusion, convection and reaction 

For pure-diffusion multilayer problems, quasi-orthogonality of eigenequations is well-known, and 
has been widely used for solving standard problems. In the present problem, however, due to the 
presence of advection and reaction terms in addition to diffusion, the quasi-orthogonality 
relationship between eigenfunctions is not obvious. This Appendix derives an orthogonality 
relationship that accounts for these transport processes. 

For the general M-layer cylindrical geometry considered in this work, the spatial component of the 
solution, fm,n for the mth layer is given by equation (31). For two distinct numbers n and j, fm,n and 
fm,j satisfy 

 
𝑓௠,௡
ᇱᇱ ൅ ൬1 െ
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൅
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𝐷ഥ௠
𝑓௠,௡ ൌ 0             (A.1) 
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For each m, multiply equations (A.1) & (A.2) by 𝑓௠,௝𝜉ଵିଶఓ೘ and 𝑓௠,௡𝜉ଵିଶఓ೘, then subtract to 
obtain 

ൣ൫𝑓௠,௡
ᇱ 𝑓௠,௝ െ 𝑓௠,௝

ᇱ 𝑓௠,௡൯𝜉ଵିଶఓ೘൧
ᇱ ൌ െ

൫𝜆௡ଶ െ 𝜆௝ଶ൯
𝐷ഥ௠

𝑓௠,௡𝑓௠,௝𝜉ଵିଶఓ೘    (A.3) 
 

Now, for each layer, m, equation (A.3) is divided by 𝑢௠, where ௨೘శభ
௨೘

ൌ ఊ೘భషమഋ೘శభ

ఊ೘భషమഋ೘
 (m=1,2,..M-1) 

and 𝑢ଵ ൌ 𝛾ଵଵିଶఓభ . Each of the resulting equations is integrated within the respective layer, and 
added, to result in  
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(A.4) 

The first term on the left hand side of equation (A.4) is zero because from the boundary condition 
at 𝜉 ൌ 𝛾଴ during Stage A, 𝑓ଵ,௡ሺ𝛾଴ሻ ൌ 𝑓ଵ,௡ሺ𝛾଴ሻ ൌ 0. Similarly, the second term in the left-hand side 
of equation (A.4) may be shown to be zero, based on the boundary condition at 𝜉 ൌ 1.  

Focusing on the remaining terms on the left hand side, each term within the square bracket inside 
the summation pertains to the interface between the (m-1)th and mth layer (m=2,..M). Each term in 
this summation can be shown to be zero as follows: From the interface condition at 𝜉 ൌ 𝛾௠ିଵ given 
by equations (10), 𝐷ഥ௠ିଵ𝑓௠ିଵ,௡

ᇱ ൌ 𝐷ഥ௠𝑓௠,௡
ᇱ െ 𝑃𝑒௠𝑓௠,௡ ൅ 𝑃𝑒௠ିଵ𝑓௠ିଵ,௡ and 𝐷ഥ௠ିଵ𝑓௠ିଵ,௝

ᇱ ൌ
𝐷ഥ௠𝑓௠,௝

ᇱ െ 𝑃𝑒௠𝑓௠,௝ ൅ 𝑃𝑒௠ିଵ𝑓௠ିଵ,௝. Further, from equation (11), 𝐷ഥ௠ିଵ𝑓௠ିଵ,௡
ᇱ ൌ 𝑃𝑒௠ିଵ𝑓௠ିଵ,௡ െ

𝑘ത௠ିଵ൫𝑓௠,௡ െ 𝑓௠ିଵ,௡൯ and 𝐷ഥ௠ିଵ𝑓௠ିଵ,௝
ᇱ ൌ 𝑃𝑒௠ିଵ𝑓௠ିଵ,௝ െ 𝑘ത௠ିଵ൫𝑓௠,௝ െ 𝑓௠ିଵ,௝൯. Here, all 

functions are evaluated at 𝜉 ൌ 𝛾௠ିଵ. Using these relationships, each term within square bracket 
inside the summation on the left hand side of equation (A.4) can be re-arranged as 
𝑃𝑒௠ିଵ𝑓௠ିଵ,௝𝑓௠ିଵ,௡ െ 𝑘ത௠ିଵ൫𝑓௠,௡ െ 𝑓௠ିଵ,௡൯𝑓௠ିଵ,௝ െ 𝑃𝑒௠ିଵ𝑓௠ିଵ,௝𝑓௠ିଵ,௡ ൅ 𝑘ത௠ିଵ൫𝑓௠,௡ െ
𝑓௠ିଵ,௝൯𝑓௠ିଵ,௡ െ ൫𝑓௠,௡

ᇱ 𝑓௠,௝ െ 𝑓௠,௝
ᇱ 𝑓௠,௡൯, which can be further simplified to 𝑘ത௠ିଵ൫𝑓௠,௝𝑓௠ିଵ,௡ െ
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𝑓௠ିଵ,௝൯𝑓௠,௡൯, which is zero.  

This shows that the left hand side of equation (A.4) is zero. Therefore, for distinct n and j, the 
following relationship between the spatial eigenfunctions may be written: 
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This orthogonality relationship differs from the standard orthogonality for pure-diffusion 
multilayer problems in the 𝜉ଵିଶఓ೘ term as well as the definition of 𝑢௠. Equation (A.5) plays an 
important role in deriving an expression for the last remaining coefficient, 𝑔ො௡ of the problem. 

Along similar lines, it can be shown that the orthogonality relationship given by equation (A.5) 
also holds for the eigenfunctions for Stage B.  
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Appendix B: Explicit expressions for parameters 

By inserting equations (13) and (46) in the definitions for various performance parameters 
given in Table 1, one may derive the following explicit expressions: 

Stage A: 
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𝛾௠ିଵ
𝜇𝑚ାଵ

𝜎𝑚

൅෍
𝑔ො௡
𝜔ෝ௠,௡

ቂቀ𝐴መ௠,௡ J𝜇𝑚ାଵ൫𝜔ෝ௠,௡𝛾௠൯ ൅ 𝐵෠௠,௡ Y𝜇𝑚ାଵ൫𝜔ෝ௠,௡𝛾௠൯ቁ 𝛾௠
𝜇𝑚ାଵ

ஶ

௡ୀଵ

െ ቀ𝐴መ௠,௡ J𝜇𝑚ାଵ൫𝜔ෝ௠,௡𝛾௠ିଵ൯ ൅ 𝐵෠௠,௡ Y𝜇𝑚ାଵ൫𝜔ෝ௠,௡𝛾௠ିଵ൯ቁ 𝛾௠ିଵ
𝜇𝑚ାଵቃ exp ൫െ𝜆መ௡ଶ𝜏൯቏ 

(B.3) 

𝜓ത௢௨௧ሺ𝜏ሻ ൌ
2𝑆ℎ௢௨௧
1 െ 𝛾଴ଶ

቎ൣ𝐴௩,ெ Iఓಾሺ𝜎ெሻ ൅ 𝐵௩,ெ Kఓಾሺ𝜎ெሻ൧𝜏

൅෍𝑔ො௡ൣ𝐴መெ,௡ Jఓಾ൫𝜔ෝெ,௡൯ ൅ 𝐵෠ெ,௡ Yఓಾ൫𝜔ෝெ,௡൯൧ ቆ
1 െ exp ൫െ𝜆መ௡ଶ𝜏൯

𝜆መ௡ଶ
ቇ

ஶ

௡ୀଵ

቏ 

 

(B.4) 

𝜓ത௜௡ሺ𝜏ሻ ൌ 0 (B.5) 
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Stage B: 

 

𝜈̅ሺ𝜏ሻ ൌ
െ2𝛾଴

1 െ 𝛾଴ଶ
቎ൣ𝐴௩,ଵ Iఓభିଵሺ𝜎ଵ𝛾଴ሻ െ 𝐵௩,ଵ Kఓభିଵሺ𝜎ଵ𝛾଴ሻ൧𝜎ଵ𝛾଴

ఓభ𝜏ௗ

൅෍𝑔ො௡൫𝐴መଵ,௡ Jఓభିଵ൫𝜔ෝଵ,௡𝛾଴൯ ൅ 𝐵෠ଵ,௡ Yఓభିଵ൫𝜔ෝଵ,௡𝛾଴൯൯𝜔ෝଵ,௡𝛾଴
ఓభ ቆ

1 െ exp ൫െ𝜆መ௡ଶ𝜏ௗ൯
𝜆መ௡ଶ

ቇ
ஶ

௡ୀଵ

቏ 

 

(B.6) 

𝜒̅௠ሺ𝜏ሻ ൌ
2𝛽̅௠

1 െ 𝛾଴ଶ
቎ൣ𝐴௩,௠ Iఓ೘ାଵሺ𝜎௠𝛾௠ሻ െ 𝐵௩,௠ Kఓ೘ାଵሺ𝜎௠𝛾௠ሻ൧

𝛾௠
ఓ೘ାଵ

𝜎௠
𝜏ௗ

െ ൣ𝐴௩,௠ Iఓ೘ାଵሺ𝜎௠𝛾௠ିଵሻ െ 𝐵௩,௠ Kఓ೘ାଵሺ𝜎௠𝛾௠ିଵሻ൧
𝛾௠ିଵ
ఓ೘ାଵ

𝜎௠
𝜏ௗ

൅෍
𝑔ො௡
𝜔ෝ௠,௡

ൣ൫𝐴መ௠,௡ Jఓ೘ାଵ൫𝜔ෝ௠,௡𝛾௠൯ ൅ 𝐵෠௠,௡ Yఓ೘ାଵ൫𝜔ෝ௠,௡𝛾௠൯൯𝛾௠
ఓ೘ାଵ

ஶ

௡ୀଵ

െ ൫𝐴መ௠,௡ Jఓ೘ାଵ൫𝜔ෝ௠,௡𝛾௠ିଵ൯ ൅ 𝐵෠௠,௡ Yఓ೘ାଵ൫𝜔ෝ௠,௡𝛾௠ିଵ൯൯𝛾௠ିଵ
ఓ೘ାଵ൧ ቆ

1 െ exp൫െ𝜆መ௡ଶ𝜏ௗ൯
𝜆መ௡ଶ

ቇ

൅෍
𝑔෤௡
𝜔෥௠,௡

ൣ൫𝐴ሚ௠,௡ Jఓ೘ାଵ൫𝜔෥௠,௡𝛾௠൯ ൅ 𝐵෨௠,௡ Yఓ೘ାଵ൫𝜔෥௠,௡𝛾௠൯൯𝛾௠
ఓ೘ାଵ

ஶ

௡ୀଵ

െ ൫𝐴ሚ௠,௡ Jఓ೘ାଵ൫𝜔෥௠,௡𝛾௠ିଵ൯ ൅ 𝐵෨௠,௡ Yఓ೘ାଵ൫𝜔෥௠,௡𝛾௠ିଵ൯൯𝛾௠ିଵ
ఓ೘ାଵ൧ ቆ

1 െ exp൫െ𝜆ሚ௡ଶ𝜏൯
𝜆ሚ௡ଶ

ቇ቏ 

(B.7) 

𝜌̅௠ሺ𝜏ሻ ൌ
2

1 െ 𝛾଴ଶ
൥෍

𝑔෤௡
𝜔෥௠,௡

ቂቀ𝐴ሚ௠,௡ J𝜇𝑚ାଵ൫𝜔෥௠,௡𝛾௠൯ ൅ 𝐵෨௠,௡ Y𝜇𝑚ାଵ൫𝜔෥௠,௡𝛾௠൯ቁ 𝛾௠
𝜇𝑚ାଵ

ஶ

௡ୀଵ

െ ቀ𝐴ሚ௠,௡ J𝜇𝑚ାଵ൫𝜔෥௠,௡𝛾௠ିଵ൯ ൅ 𝐵෨௠,௡ Y𝜇𝑚ାଵ൫𝜔෥௠,௡𝛾௠ିଵ൯ቁ 𝛾௠ିଵ
𝜇𝑚ାଵቃ exp൫െ𝜆ሚ௡ଶ𝜏൯൩ 

(B.8) 

𝜓ത௢௨௧ሺ𝜏ሻ ൌ
2𝑆ℎ௢௨௧
1 െ 𝛾଴ଶ

቎ൣ𝐴௩,ெ Iఓಾሺ𝜎ெሻ ൅ 𝐵௩,ெ Kఓಾሺ𝜎ெሻ൧𝜏ௗ

൅෍𝑔ො௡ൣ𝐴መெ,௡ Jఓಾ൫𝜔ෝெ,௡൯ ൅ 𝐵෠ெ,௡ Yఓಾ൫𝜔ෝெ,௡൯൧ ቆ
1 െ exp ൫െ𝜆መ௡ଶ𝜏ௗ൯

𝜆መ௡ଶ
ቇ

ஶ

௡ୀଵ

൅෍𝑔෤௡ൣ𝐴ሚெ,௡ Jఓಾ൫𝜔෥ெ,௡൯ ൅ 𝐵෨ெ,௡ Yఓಾ൫𝜔෥ெ,௡൯൧ ቆ
1 െ exp ൫െ𝜆ሚ௡ଶ𝜏ௗ൯

𝜆ሚ௡ଶ
ቇ

ஶ

௡ୀଵ

቏ 

 

(B.9) 

𝜓ത௜௡ሺ𝜏ሻ ൌ
2𝛾଴𝑆ℎ௜௡
1 െ 𝛾଴ଶ

൥෍𝑔෤௡ൣ𝐴ሚଵ,௡ Jఓభ൫𝜔෥ଵ,௡𝛾଴൯ ൅ 𝐵෨ଵ,௡ Yఓభ൫𝜔෥ଵ,௡𝛾଴൯൧𝛾଴ఓభ ቆ
1 െ exp ൫െ𝜆ሚ௡ଶ𝜏൯

𝜆ሚ௡ଶ
ቇ

ஶ

௡ୀଵ

൩ (B.10) 
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Figure 1. Picture showing the application of a balloon on the luminal surface of an artery for drug 
delivery. (Reproduced with permission from [1]). 

Figure 2. Schematic of the geometry and boundary conditions for the balloon-driven drug delivery 
problem for a multi-layer artery. (a) shows Stage A during which the balloon is applied on the 
luminal surface of the artery, and (b) shows Stage B during which the balloon has been withdrawn. 

(REVISED) Figure 3 – Effect of number of eigenvalues: Total drug delivered (𝜈̅) at the end of 
Stage A and total drug absorbed in medial layer (𝜒̅ଶ) at 𝜏 ൌ 0.017 as functions of number of 
eigenvalues considered. 

(REVISED) Figure 4 – Plots showing evolution of concentration distribution with time during (a) 
Stage A; (b) Stage B. Values of other parameters are listed in Table 2. Intima-media interface 
location is indicated in both plots.  

(REVISED) Figure 5 – Overall mass balance plots: Amount of drug delivered, lost from the two 
boundaries, remaining in each of the three layers and absorbed in media layer as functions of time 
for (a) Stage A, (b) Stage B. Total sum of drug lost, absorbed and remaining is also shown to 
demonstrate overall mass balance. Values of other parameters are listed in Table 2 

(REVISED) Figure 6 – Effect of reaction coefficient in media layer: (a) Drug content in artery as 
a function of time during Stage A, and (a) Drug bound in artery as a function of time during 
Stage B, both for different values of 𝛽̅ଶ. Values of other parameters are listed in Table 2. 

(REVISED) Figure 7. Impact of luminal and perivascular boundary conditions: Drug lost (as a 
fraction of total drug delivered) as function of time at (a) luminal surface for different values of 
𝑆ℎ௜௡, (b) perivascular surface for different values of 𝑆ℎ௢௨௧. 

(REVISED) Figure 8. Impact of luminal and perivascular boundary conditions: Drug lost up to 
𝜏 ൌ 0.18 as a fraction of total drug delivered (a) at luminal surface as a function of 𝑆ℎ௜௡, (a) at 
perivascular surface as a function of 𝑆ℎ௢௨௧. 

(REVISED) Figure 9. Effect of luminal and perivascular boundary conditions on drug content: 
Drug content in artery as a function of time for different values of (a) 𝑆ℎ௜௡, (b) 𝑆ℎ௢௨௧. 

(REVISED) Figure10. Effect of intima diffusion coefficient: Drug delivered as a function of time 
during Stage A for different values of 𝐷ഥଵ. Values of other parameters are listed in Table 2. 

(REVISED) Figure 11. Effect of intima diffusion coefficient: (a) Drug content and (b) Drug 
absorbed as functions of time during Stage B for different values of 𝐷ഥଵ. Values of other parameters 
are listed in Table 2. 

Table 1. Definitions and explicit expressions for various drug delivery and absorption parameters. 

Table 2. Values of various problem parameters.



 

46 
 

Table 1. Definitions and explicit expressions for various drug delivery and absorption parameters 

 

 Parameter 
Stage A Stage B 

Integral definition Expression Integral definition Expression 

1 
Amount delivered 
up to time 𝜏 

𝜈ሺ𝜏ሻ ൌ
2𝛾଴

1 െ 𝛾଴ଶ
නቆെ𝐷ഥଵ ൬

𝜕𝜃ଵ
𝜕𝜉

൰
కୀఊబ

ఛ

଴

൅
𝑃𝑒ଵ
𝛾଴
ቇ𝑑𝜏∗ 

Eq. (B.1) in 
Appendix B 𝜈ሺ𝜏ሻ ൌ

െ2𝛾଴
1 െ 𝛾଴ଶ

න ቆെ𝐷ഥଵ ൬
𝜕𝜃ଵ
𝜕𝜉

൰
కୀఊబ

൅
𝑃𝑒ଵ
𝛾଴
ቇ𝑑𝜏∗

ఛ೏

଴

 
Eq. (B.6) in 
Appendix B 

2 
Amount absorbed 
in  mth layer up to 
time 𝜏 

𝜒௠ሺ𝜏ሻ ൌ
2𝛽௠

1 െ 𝛾଴ଶ
න න 𝜉𝜃௠ሺ𝜉, 𝜏∗ሻ𝑑𝜉

ఊ೘

ఊ೘షభ

𝑑𝜏∗
ఛ

଴

 
Eq. (B.2) in 
Appendix B 

𝜒௠ሺ𝜏ሻ ൌ
2𝛽௠

1 െ 𝛾଴ଶ
቎න න 𝜉𝜃௠ሺ𝜉, 𝜏∗ሻ𝑑𝜉

ఊ೘

ఊ೘షభ

𝑑𝜏∗
ఛ೏

଴

൅ න න 𝜉𝜙௠ሺ𝜉, 𝜏∗ሻ𝑑𝜉

ఊ೘

ఊ೘షభ

𝑑𝜏∗
ఛ

଴

቏ 

Eq. (B.7) in 
Appendix B 

5 
Amount 
remaining in mth 
layer at time 𝜏 

𝜌௠ሺ𝜏ሻ ൌ
2

1 െ 𝛾଴ଶ
න 𝜉𝜃௠ሺ𝜉, 𝜏ሻ𝑑𝜉

ఊ೘

ఊ೘షభ

 
Eq. (B.3) in 
Appendix B 

𝜌௠ሺ𝜏ሻ ൌ
2

1 െ 𝛾଴ଶ
න 𝜉𝜙௠ሺ𝜉, 𝜏ሻ𝑑𝜉

ఊ೘

ఊ೘షభ

 
Eq. (B.8) in 
Appendix B 

3 
Amount lost from 
the perivascular 
surface 

𝜓ത௢௨௧ሺ𝜏ሻ ൌ
2𝑆ℎ௢௨௧
1 െ 𝛾଴ଶ

න𝜃ெሺ1, 𝜏∗ሻ𝑑𝜏∗
ఛ

଴

 
Eq. (B.4) in 
Appendix B 

𝜓ത௢௨௧ሺ𝜏ሻ ൌ
2𝑆ℎ௢௨௧
1 െ 𝛾଴ଶ

቎න 𝜃ெሺ1, 𝜏∗ሻ𝑑𝜏∗
ఛ೏

଴

൅ න𝜙ெሺ1, 𝜏∗ሻ𝑑𝜏∗
ఛ

଴

቏ 

Eq. (B.9) in 
Appendix B 

4 Amount lost from 
luminal surface 

𝜓ത௜௡ሺ𝜏ሻ =0 
Eq. (B.5) in 
Appendix B 

𝜓ത௜௡ሺ𝜏ሻ ൌ
2𝛾଴𝑆ℎ௜௡
1 െ 𝛾଴ଶ

න𝜙ଵሺ𝛾଴, 𝜏∗ሻ𝑑𝜏∗
ఛ

଴

 
Eq. (B.10) in 
Appendix B 
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Table 2. Values of various problem parameters based on past work [13, 15, 16, 26]. 

 

Symbol Definition Value Unit Source 

𝑅଴ Lumen radius 1.5×10-3 m [21] 

ℎ௜௡* Luminal mass transfer coefficient 0 to ∞ ms-1 [25] 

ℎ௢௨௧ Perivascular mass transfer coefficient 0 to ∞ ms-1 [21] 

Pe Péclet number for fluid flow 0-4  [25] 

M Number of arterial layers 3   [15] 

𝐷ଵ,𝐷ଶ,𝐷ଷ ** Diffusivity in arterial layers 1.67×10-11, 7×10-12, 4×10-12 m2s-1 [15]; [21] 

𝑅ଵ െ 𝑅଴, 𝑅ଶ െ 𝑅ଵ, 𝑅ଷ െ 𝑅ଶ Arterial layer thicknesses 10×10-6, 500×10-6, 400×10-6 m [21] 

𝑘ଵ, 𝑘ଶ Interfacial mass transfer conductance 9.6×10-6 ms-1 [21]; [26] 

𝛽ଵ, 𝛽ଶ, 𝛽ଷ Reaction coefficient in artery 0, 10-4, 0 s-1 [15] 
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Figure 1. Picture showing the application of a balloon on the luminal surface of an artery for drug delivery. (Reproduced from [1]). 
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Figure 2. Schematic of the geometry and boundary conditions for the balloon-driven drug delivery problem for a multi-layer artery. (a) 
shows Stage A during which the balloon is applied on the luminal surface of the artery, and (b) shows Stage B during which the 

balloon has been withdrawn. 
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(REVISED) Figure 3 – Effect of number of eigenvalues: Total drug delivered (𝜈) at the end of Stage A and total drug bound in medial 
layer (𝜒ଶ) at 𝜏 ൌ 0.017 as functions of number of eigenvalues considered. 
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(REVISED) Figure 4 – Plots showing evolution of concentration distribution with time during (a) Stage A; (b) Stage B. Values of 
other parameters are listed in Table 2. Intima-media interface location is indicated in both plots.  
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(REVISED) Figure 5 – Overall mass balance plots: Amount of drug delivered, lost from the two boundaries, remaining in each of the 
three layers and absorbed in media layer as functions of time for (a) Stage A, (b) Stage B. Total sum of drug lost, absorbed and 

remaining is also shown to demonstrate overall mass balance. Values of other parameters are listed in Table 2. Due to space 
constraint, a single legend for both plots is shown in part (b). 
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(REVISED) Figure 6 – Effect of reaction coefficient in media layer: (a) Drug content in artery as a function of time during Stage A, 
and (a) Drug bound in artery as a function of time during Stage B, both for different values of 𝛽ଶ . Values of other parameters are 

listed in Table 2. 
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(REVISED) Figure 7. Impact of luminal and perivascular boundary conditions: Drug lost (as a fraction of total drug delivered) as 
function of time at (a) luminal surface for different values of 𝑆ℎ௜௡, (b) perivascular surface for different values of 𝑆ℎ௢௨௧. 
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(REVISED) Figure 8. Impact of luminal and perivascular boundary conditions: Drug lost up to 𝜏 ൌ 0.18 as a fraction of total drug 
delivered (a) at luminal surface as a function of 𝑆ℎ௜௡, (a) at perivascular surface as a function of 𝑆ℎ௢௨௧. 
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(REVISED) Figure 9. Effect of luminal and perivascular boundary conditions on drug content: Drug content in artery as a function of 
time for different values of (a) 𝑆ℎ௜௡, (b) 𝑆ℎ௢௨௧. 
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(REVISED) Figure 10. Effect of intima diffusion coefficient: Drug delivered as a function of time during Stage A for different values 
of 𝐷ഥଵ. Values of other parameters are listed in Table 2.  
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(REVISED) Figure 11. Effect of intima diffusion coefficient: (a) Drug content and (b) Drug absorbed as functions of time during 
Stage B for different values of 𝐷ഥଵ. Values of other parameters are listed in Table 2.  
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