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Abstract

Active debris removal (ADR) allows for the disposal of inactive satellites and larger objects, preventing
the build-up of space junk and allowing to replace aging agents in a constellation. To make ADR missions
more commercially viable, the removal and disposal of multiple debris objects using a single spacecraft are
investigated. This paper proposes the use of artificial neural networks (ANNs) to quickly estimate the cost
and duration of the transfers to de-orbit a range of debris objects, so that it is possible to identify the optimal
sequence of objects which minimizes the cost and/or the duration of the mission, for the maximum number
of de-orbited objects. To this end, the ANN is integrated within a sequence search algorithm based on a tree
search. The performance of the proposed methodology is assessed by analyzing three distinctive sequences
of multiple space debris removals. A near-term low-thrust propulsion technology enables to dispose of up to
13 debris objects within 10 years, when the optimal design parameters are chosen. The use of ANN allows
for this solution to be found 26 times faster than current methods, while enabling the selection of faster and
less expensive (being the propellant mass required lower) options.

Keywords: Space Debris, Debris Removal, Artificial Neural Network, Machine Learning, Astrodynamics,
Low thrust

1. Introduction

Active debris removal (ADR) is the process to dispose inactive objects from space, preventing the build-
up of junk, such as non-functional spacecraft, abandoned launch vehicle stages and other large objects, and
replace faulty agents in satellite constellations [1, 2]. ADR can be particularly useful for those larger debris
objects that would not de-orbit naturally in a short timeframe (for example due to their altitude), or those
which may pose a threat to active satellites; collisions of larger objects also cause a sudden growth of the
debris population due to fragmentation, which could eventually lead to the Kessler syndrome [3, 4]. ADR is
currently being investigated and demonstrator missions are being designed and flown. The RemoveDEBRIS
mission, led by the University of Surrey, is a satellite research project to demonstrate various space debris
removal technologies for ADR (e.g., net and harpoon capture) [5]. The ADR demonstration mission ELSA-d
was launched by Astroscale in April 2021 to test the magnetic capture mechanism which they have developed,
and it is currently in orbit.2 Also, the European Space Agency (ESA) with its CleanSpace initiative is looking
at the required technology developmentsx to capture debris. The ClearSpace-1 mission aims at de-orbiting
a Vega upper stage by 2025.3 Interest is also emerging in the removal of multiple debris objects in a single
ADR mission [6, 7]. This can provide significant advantages not only from a financial prospective, but also
from a timing prospective, especially in cases where it is necessary to remove multiple objects within a

1Corresponding author: g.viavattene.1@research.gla.ac.uk
2https://astroscale.com/astroscale-celebrates-successful-launch-of-elsa-d/
3https://www.esa.int/Safety_Security/Clean_Space/ESA_commissions_world_s_first_space_debris_removal
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limited time frame [2, 8]. This study proposes a new methodology which uses machine learning techniques
to efficiently design missions for the disposal of multiple debris objects using a single spacecraft (referred
to as the chaser throughout the paper). This approach can reduce the overall launch cost and significantly
reduce the computational time involved during the design phase.

In this work, it is assumed that several debris objects are tracked and identified for disposal. A subset
of them is selected in an ordered sequence, based on the transfer cost and duration to reach and de-orbit
them, for the ADR mission. The ADR mission profile involves the chaser to rendezvous and dock with
the first debris object in the sequence, and lower the perigee altitude to a drag-dominated region, i.e., to a
disposal low Earth orbit (LEO), where the object is released for de-orbiting and re-entry. Then, the chaser
transfers to the next target object and the procedure repeats until the propellant is depleted. A schematic
representation of the mission scenario is provided in Figure 1, where Di with i = 1, 2, ... indicates each of
the debris objects located at different altitudes and ∆Ω is the difference in right ascension of the ascending
node between debris orbits.

It is worth noting that, when the debris object is released in a low-altitude disposal orbit, the debris
will re-enter by spiraling down due to atmospheric drag [9]. Re-entries of large debris objects shall be
controlled and aiming at uninhabited areas, such as the South Pacific Ocean Uninhabited Area (SPOUA).
Semi controlled reentries are currently under study as they could allow de-orbitation with low thrust in the
future.

The purpose of this study is to find sequences of debris objects to be disposed of from a given set, and
design multiple ADR missions which are optimal in terms of propellant mass consumption (or equivalently
∆V ). To this end, the following challenges need to be addressed. First, the selection of the debris objects
to be disposed of, and their sequence, shall be identified so that the overall trajectory cost is minimized.
Second, the orbital transfers between a debris orbit and the disposal orbit, and vice-versa, shall be designed
so that the required propellant mass (mprop) and/or time-of-flight (TOF) are minimized. It should be
stressed that two problems cannot be solved independently of each other, because the first one, which is
combinatorial, requires various inputs, such as duration and cost of each transfer, which are obtained by
solving the second problem, and vice-versa.

Rendezvousing and de-orbiting multiple debris objects in a single mission is highly demanding in terms
of energy. For this reason, an efficient propulsion system is required to keep the propellant mass ratio low.
A low-thrust technology, such as the solar electric propulsion (SEP) system, is a good candidate because of
its high specific impulse [10, 11].

To identify the best sequence of objects, all the combinations of debris should be explored and evaluated.
Above 80% of the trackable objects in near-Earth space are space debris.45 Scientific models estimate the
total number of space debris objects in Earth orbit to be in the order of 36,000 for sizes larger than 10 cm,
990,000 for sizes larger than 1 cm, and more than 135 millions for sizes larger than 1 mm. The selection of
space debris to remove should account for the size of the debris, the collision risk with active satellites, the
availability of useful orbital slots, and the type of capture mechanism.

Considering just the largest objects as candidates for removal [12], billions of permutations would need
to be investigated to identify the most convenient ADR mission. Since trajectory optimization, and specifi-
cally low-thrust transfers, are notoriously computationally demanding, we propose to use machine learning,
allowing for a significant reduction of the computational time.

In the past, machine learning was applied successfully to solve complex problems in aerospace sciences.
Artificial neural networks (ANNs) were employed by Dachwald (2004) [13], Hennes et al. (2016) [14] and
Mereta et al. (2017) [15] to compute the low-thrust trajectories to asteroids, demonstrating that machine
learning techniques can explore the trajectory space search more exhaustively than traditional optimal
control methods. Other applications include the accurate computation of pinpoint landing [16] and orbit
prediction [17]. ANNs were successfully used in the preliminary design of multiple asteroid rendezvous
missions [18–20].

4www.space-track.org, visited on 25 September 2021
5www.ucsusa.org/resources/satellite-database, visited on 25 September 2021
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Figure 1: Schematic representation of the mission scenario.

The goal of this study is to provide a method for a fast optimization of ADR missions for multiple debris
removal, when numerous candidate objects are available. An ANN is trained to quickly estimate the cost
of a trajectory in terms of mprop and TOF, given the debris orbits, so that the most effective sequences of
debris to be disposed of can be identified. The ANN is integrated within a sequence search algorithm which
computes the feasible debris sequences. The candidate sequences which minimize the objective function
(e.g., mprop and/or TOF) can be selected and further refined through optimal control problem solvers.

The paper is organized as follows. Section 2 describes the dynamics of the system. The ANN design
is detailed in Section 3, where the generation of the training database is also discussed. In Section 4, the
sequence search algorithm is described and the logic is explained. Three debris sequences with minimum cost,
which are identified by the sequence search and ANN (SS-ANN) platform, are analyzed and the performance
of the proposed methodology assessed. Finally, Section 5 provides a summary of the methodology and the
findings.

2. Dynamics of the System

To identify the mission plan for the multiple debris removals, the propellant mass and duration of each
of the listed phases need to be estimated. In this section, the dynamics of the system is presented, where
the chaser is modeled as a point mass with continuous low-thrust.

The dynamics of the spacecraft and debris objects are described and propagated using modified equinoc-
tial elements [21]: p the semi-latus rectum, f and g the elements describing the eccentricity, h and k the
elements describing the inclination, and L the true longitude. This avoids numerical singularities for zero
eccentricity and inclination of the classical Keplerian elements.

The dynamics of the space objects can be described using the following differential equation:

ẋ(t) = A(x)a+ b(x) (1)

where the state vector x is defined by the modified equinoctial elements, i.e., x = (p, f, g, h, k, L), a is the
perturbing acceleration in radial, transversal, out-of-plane components, and A(x) and b(x) are the matrix
and the vector of the dynamics, respectively. The matrix A(x) can be fully formulated as follows [22]:
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A =


0 a1,2 0

a2,1 a2,2 a2,3
a3,1 a3,2 a3,3
0 0 a4,3
0 0 a5,3
0 0 a6,3

 (2)

where:

a1,2 =
2p

q

√
p

µ
(3a)

a2,1 =

√
p

µ
sin(L) (3b)

a2,2 =

√
p

µ

1

q
((q + 1) cos(L) + f) (3c)

a2,3 = −
√

p

µ

g

q
(h sin(L)− k cos(L)) (3d)

a3,1 =

√
p

µ
cos(L) (3e)

a3,2 =

√
p

µ

1

q
((q + 1) sin(L) + g) (3f)

a3,3 =

√
p

µ

f

q
(h sin(L)− k cos(L)) (3g)

a4,3 =

√
p

µ

s2 sin(L)

2q
(3h)

a5,3 =

√
p

µ

s2 cos(L)

2q
(3i)

a6,3 =

√
p

µ
(h sin(L)− k cos(L)) (3j)

while the vector b(x) can be fully formulated as follows [22]:

b =



0
0
0
0
0

√
µp

(
q
p

)2


(4)

where

q = 1 + f cos(L) + g sin(L) (5)

s2 = 1 + χ2 (6)

χ =
√
h2 + k2 (7)
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2.1. Perturbing Accelerations

The perturbing acceleration, a, is given by (i) the acceleration due to the thrust aT, (ii) the acceleration
due to the oblateness of the Earth ag and (iii) the acceleration due to atmospheric drag aD, i.e.:

a = aT + ag + aD (8)

The motion of the debris objects are also propagated starting from given initial conditions considering
the same dynamics with gravitational and atmospheric perturbations (but no thrust).

2.1.1. Thrust

The acceleration on the chaser spacecraft due to the thrust aT is given as:

aT =
Tmax

m
N (9)

where Tmax is the maximum thrust that the propulsion system can generate, m is the mass of the system
(chaser and, if docked, debris object) and N = [Nr, Nθ, Nh]

T indicates the acceleration direction and mag-
nitude vector in radial, transverse, and out-of-plane coordinates. The mass of the system m decreases with
time due to the propellant consumption as described by the following mass differential equation:

ṁ = −Tmax|N|
Ispge

(10)

where |N| is the magnitude of N, which accounts for the thrust throttling, Isp is the specific impulse of the
propulsion system and ge the gravitational acceleration at the Earth’s surface. The propulsive acceleration
is provided by the chaser spacecraft only.

2.1.2. Non-spherical Gravitational Acceleration

The gravitational acceleration is experienced by both the chaser and debris objects, due to the Earth’s
oblateness, and generally mass density distribution, can be defined as follows [23]:

ag = QT
r δg (11)

where Qr = [iriθih] is the transformation matrix from the rotating local-vertical-local-horizontal frame to
the Earth-centered inertial (ECI) frame, whose components are:

ir =
r

||r||
, iθ = ih × ir, ih =

r× v

||r× v||
(12)

with r and v being, respectively, the position and velocity vectors of the spacecraft in the ECI frame. The
perturbation acceleration δg is formulated as:

δg = δgnin − δgrir (13)

where in is the local north direction:

in =
en − (eTn ir)ir

||en − (eTn ir)ir||
(14)

and

δgn = −µ cos(ϕ)

r2

n∑
k=2

(
Re

r

)k

P ′
k(sin(ϕ))Jk (15)

δgr = − µ

r2

n∑
k=2

(k + 1)

(
Re

r

)k

Pk(sin(ϕ))Jk (16)
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Table 1: Constants and system parameters.

Constant Value

ge 9.8066 m/s2

µ 3.9860 · 1014 m3/s2

Re 6378.14 · 103 m
J2 1082.639 · 10−6

J3 -2.565 · 10−6

J4 -1.608 · 10−6

Parameter Value

Tmax 21 mN
Isp 2000 s
m0 400 kg
CD 2.2
S 8 m2

with en = [0, 0, 1], Re the equatorial radius of the Earth, r = p/q, Pk sin(ϕ) representing the k-th degree
Legendre polynomial whose derivative with respect sin(ϕ) is P ′

k sin(ϕ), and Jk being the zonal harmonic
coefficient for k = {2, 3, 4}.

2.1.3. Atmospheric Drag

The acceleration due to the atmospheric drag in the radial, transverse and normal components can be
defined as:

aD = [aDr aDθ
0] (17)

where the out-of-plane component of aD is negligible, as the net plane change is close to zero. The radial
and transverse components are defined as follows:

aDr
= −0.5ρSCDvvr (18)

aDθ
= −0.5ρSCDvvθ (19)

where ρ is the atmospheric density, which can be estimated using the Exponential Atmospheric Model [24].
Also, S is the aerodynamic surface area, CD is the drag coefficient and v is the velocity magnitude, with vr
and vθ being its radial and tangential components:

vr =

√
µ

p
(f sin(L)− g cos(L)) (20)

vθ =

√
µ

p
(1 + f cos(L) + g sin(L)) (21)

The numerical values of the physical parameters, which are used in this study, are detailed in Table 1.

2.2. Transfer Model

Current satellite constellations are often on circular orbits, at the same inclination and spaced in RAAN.
However, they might be at different altitude, for example, due to malfunctioning of the thruster or to the
depletion of their fuel and hence started to de-orbit. For this reason, this work uses a set of debris objects
on circular orbits at the same inclination; thus, the rendezvous transfers to and from space debris objects
require the chaser to match the altitude and right ascension of the ascending node Ω (RAAN) of the orbit of
the arrival body (Debris 2, or D2) at the arrival epoch, while departing from the departure body (Debris 1,
or D1). Additionally, the phasing along the orbit between the chaser and debris is neglected in the transfer

6



model. The low-thrust transfer legs exhibit a large number of revolutions, thus the correct phasing can be
attained with minimal propulsive effort, and often with little additional transfer time. These assumptions
are chosen to keep the transfer model simple to minimize the computational time of the training database,
and demonstrate the ANN capabilities. However, they are representative of a real mission and, therefore,
they can be easily varied for future use-cases.

In order to minimize the propellant consumption and guarantee that a larger number of debris can
be disposed for the given propellant mass, it is chosen to use the thrust to obtain the change in altitude
and to exploit the Earth’s oblateness gravitational perturbation (J2) to achieve the change in Ω through
RAAN-phasing orbits. The orbital-averaged RAAN variation rate is given by the Gauss equations as follows
[25]:

Ω̇ = −
[
3

2

J2
√
µR2

a7/2(1− e2)2
cos(i)

]
(22)

which is experienced by both the chaser and the debris objects.
As shown in Figure 1, the mission scenario requires multiple orbital transfers for the chaser to rendezvous

each debris object and transfer it into the disposal orbit (which is circular and at the same inclination of
the debris objects’ orbits). This suggests an iterative procedure, starting from a state where the chaser is
docked to D1, where each iteration comprises of:

• A de-orbiting transfer from D1’s orbit to the disposal orbit (with duration T1), for releasing of the
object

• A transfer from the disposal orbit to the most convenient RAAN-phasing orbit (with duration T2,a)

• A RAAN-phasing orbit (with duration Tp)

• A transfer from the phasing orbit to D2’s orbit (with duration T2,b)

• A stay time at D2’s orbit, for rendezvous and docking operations (with duration Ts)

Given the initial RAAN of D1 and D2, Ω1,0 and Ω2,0, and their RAAN variation rate, Ω̇1 and Ω̇2,
respectively, it is possible to compute the RAAN of D2, Ω2,f , and of the chaser, ΩSC,f , at time tf when the
chaser is rendezvousing D2:

Ω2,f = Ω2,0 + Ω̇2(T1 + T2 + Tp) (23)

ΩSC,f = Ω1,0 + Ω̇T1T1 + Ω̇T2T2 + Ω̇pTp (24)

where T2 = T2,a+T2,b, and Ω̇T1, Ω̇T2 and Ω̇p are the RAAN variation rates experienced by the chaser along
T1, T2 and Tp, respectively.

For the chaser to match the D2’s orbit, we require that Ω2,f = ΩSC,f , and this can be solved for the
RAAN-phasing time TP :

TP =
∆ΩP

Ω̇P + Ω̇2

(25)

where ∆ΩP = Ω1,0 + Ω̇T1T1 + Ω̇T2T2 +Ω2,0 + Ω̇2 (T1 + T2).
As an example, Fig. 2 shows the changes in altitude, RAAN, burn maneuvers and mass as function

of time for the full transfer from D1 (hD1
= 504.96 km, ΩD1

= 158.72 deg, mD1
= 270.37 kg) to D2

(hD2 = 1077.40 km, ΩD2 = 149.33 deg, mD2 = 156.50 kg). The chaser starts at altitude hD1 with ΩD1 ,
docked with D1, and carries it down to a disposal orbit and releases it. Once completed, the transfer to the
next object starts, and chaser transfers to the RAAN-phasing orbit (which in this example coincides with
the disposal orbit, thus T2,a = 0 s). Once the chaser reaches the required RAAN, it transfers to D2’s orbit
by matching hD2

and ΩD2,f
(shown by the first subplot and second subplot). Finally, a fixed stay time,
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Figure 2: Transfer model.

Ts = 30 days (to allow for phasing and docking) is considered where the altitude is fixed and equal to hD2
.

Since during Tp and Ts there is no change in altitude, the thrust does not operate, as illustrate in the third
subplot. The mass of the system (forth subplot), which comprises of chaser and D1’s mass during T1, drops
at the end of T1 when the debris object is released. Over time, the mass decreases due to thrusting during
the transfers.

2.2.1. Thrust Model

The chaser’s SEP system is powered by solar arrays which are subject to blackout periods during solar
eclipse conditions. This causes a discontinuity in power (and thrust) available to the chaser, which needs to
be taken into account in the thrust model.

In the eclipse model, for which a schematic representation is presented in Fig. 3, the Earth is assumed
to be spherical and to project a cylindrical shadow region in the direction opposing the sun, within the
equatorial plane. The shadow region is defined by the angle θ, which is the angle between the equator and
the intersection of the edge of the eclipse and the orbit of the chaser. It is assumed that the chaser cannot
thrust while traveling through the shadow region. To allow the tangential accelerations to change the orbit’s
semimajor axis with negligible change in eccentricity, it is required that the chaser thrusts along opposing
arcs on the orbit. This also allows two duty cycles of the thruster per orbit. For these reasons, it is assumed
that the chaser thrusts only outside of the two opposing arcs of angle 2θ indicated in Fig. 3.

To account for a suitable duty-cycle, the thrusters of the chaser are considered to be off for 40% of the
time, which is assumed to be correspondent to when travelling through the shadow region. From this, the
angle θ results equal to 36 deg, i.e., eclipse angle 2θ = 72 deg.

2.2.2. Optimal RAAN-Phasing Orbit

Considering the perturbing accelerations which act on the chaser and space debris continuously, the
altitude of the RAAN-phasing orbit is chosen as a trade off between (i) time TPT required to reach the
phasing altitude and the phasing time and (ii) ∆VPT to perform the change of altitude and the one required
to counteract the drag action while phasing:
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Figure 4: Optimal altitude hopt as function of α when the arrival debris is located at a lower altitude or higher altitude.

∆VPT = ∆VP +∆Vd→p +∆Vp→D2 (26)

TPT = TP + Td→p + Tp→D2 (27)

where the indices P , d → p and p → D2 indicate the RAAN-phasing orbit, the transfer from the disposal
orbit to the phasing orbit, and the transfer from the phasing orbit to D2, respectively. The minimum altitude
of the phasing orbit is set to be the disposal altitude.

The objective function used for the selection of the optimal phasing altitude can be defined as follows:

J = α∆VPT + (1− α)TPT (28)

with α ∈ [0, 1] being a weighting factor which can be chosen be the mission designer, compromising between
propellant mass and time of flight.

Figures 4, 5 and 6 show how the optimal altitude, the phasing time TP and ∆VP due to the drag, TPT

and ∆VPT vary for different values of α chosen by the mission designer, respectively. It can be noticed
that these variations also depend on the altitude of the arrival debris, in this case a lower altitude of 500
km shown in subfigures (a) and a higher altitude of 1000 km in subfigures (b) (with ∆Ω around 360 deg).
Shorter phasing time is generally required when the difference in altitude between the phasing and D2 orbit
is maximized in order to match the RAAN of the arrival debris quicker. In case of low altitude of D2, it is
convenient to wait at higher orbit. However, Figure 4 shows that there is a maximum altitude above which
it becomes inconvenient to wait due to the longer transfer time to reach those altitudes. The ∆V due to
the drag is smaller for higher phasing orbits, however reaching higher altitudes may require additional ∆V
due to longer transfers.
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It is noticed that Figures 4, 5 and 6 are highly dependent on the characteristics of the debris objects. For
instance, if the objects are in an near-optimal RAAN-phasing condition after the orbital transfers, it can
be more convenient to stay for a short amount of time at the disposal orbit to achieve the optimal RAAN
instead of transferring to RAAN-phasing orbit with altitude higher than the one of D2 (as Figure 4(a) would
suggest for lower altitudes).

Once the chaser reaches the target debris orbit of D2, a fixed capture time of 30 days is considered where
the altitude is equal to D2’s altitude to allow for the orbital phasing and capture operations to take place.

Figure 7(a) shows the variation of the phasing time TP and the ∆VP due to the drag on the phasing
orbit, while increasing its altitude hP , as a function of the ∆ΩP raising from 0 to 360 deg (h2 = 1000 km,
α = 0.5). As hP increases, TP increases exponentially, with lower phasing orbit being preferred to maximize
the difference between the RAAN variation rates at hP and h2. For larger ∆ΩP , the curve shifts towards
higher values of TP and ∆VP . In this plot, the red markers indicate the values of TP and ∆VP at the
optimal phasing orbit hP,opt. Figure 7(b) describes TP and ∆VP as function of ∆ΩP at the optimal altitude
hP,opt. As expected, while ∆ΩP increases, both the phasing time and the ∆VP due to the drag increase
almost linearly. However, ∆VP presents a discontinuity at ∆ΩP = 250 deg because over this value it is more
convenient to phase at a slightly higher altitude (hP = 400 km) than the disposal altitude as the reduction
in ∆VP is preferred over the marginally lower phasing time.

3. ANN for Multiple Debris Removal

Multi-layered feedforward ANNs can approximate any non-linear mapping yt = f(x) to any degree of
accuracy [26]. A feedforward ANN is structured in layers, each presenting a number of neurons. The
information travels from the input layer through the hidden layers to the output layer.

In order for the network to approximate the desired function (network function) appropriately, the
network needs to be trained with a database containing the corresponding inputs and desired outputs (or
targets). The network function is intended to minimize the network error, i.e., the mean square error (MSE)
between the outputs generated by the network y and the targets yt:

EMSE =
1

N

N∑
i=1

||yi − yt,i||2 (29)

with N being the number of outputs.

3.1. Training Database

The training database contains the inputs and the desired outputs, which are used during the training of
the network. The input vector x contains the orbital characteristics of the departure and arrival orbits, the
mass of the departure debris mD1, which needs to be carried to disposal, and the initial mass of the chaser
mSC , which varies during the mission due to the propellant consumption. The output vector y includes the
propellant mass expenditure mprop, which is related to ∆V by the Tsiolkovsky rocket equation, and the
TOF t0,f of the transfer between the departure (D1) and arrival debris (D2). This yields:

x = [hD1,ΩD1,mD1, hD2,ΩD2,mSC ] (30)

y = [mprop, t0,f ] (31)

where h and Ω are the altitude and right ascension of the ascending node of the debris.
To generate the database 300 debris objects are considered, with altitudes between 500 and 1500 km

with an inclination fixed to 87.9 deg, Ω between 0 and 360 deg, and mass between 100 and 300 kg. It should
be noted that the most densely populated, thus critical, region in LEO is around 750–1000 km altitude with
an inclination between 60 deg and 95 deg [8, 27]. Debris at other altitudes can be considered for removal for
Space Traffic Management operation purposes. The disposal orbit is at an altitude of 390 km, which is also
fixed. The chaser mass can vary from 300 kg to 400 kg, with the latter being the starting mass, since the
on-board propellant mass is 100 kg. The training database comprises a total of 89,700 low-thrust transfers.
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Figure 8: ANN regression and performance analysis.
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Figure 9: ANN error analysis.

For the training process the database is divided into three sets: training, validation and test. The training
set is used to train the network. The validation set is used to eventually evidence the presence of overfitting
during the training. The test set is used only after the training process to evaluate the final performance
of the network. Since the validation set has samples which are not included in the training database, the
validation-set MSE is often used as a performance indicator.

3.2. Performance Analysis

Figure 8 represents the performance of the trained network. The regression plot (a) shows how well
the network outputs (Y-axis) fit the targets (X-axis) with respect to the training, validation, test sets and
overall. A perfect fit, indicating an ideal performance of the network, is obtained when the data fall along

12



Table 2: Comparison of the proposed methodology SS-ANN against a current methods employed in the industry [28].

Method No. Debris No. Captures Computational Time, min Sequence mprop, kg TOF, days

Industry 100 4 240 24, 1, 29, 54 30.7 2307
SS-ANN 100 4 9.37 44, 24, 38, 69 28.56 1559

the line with a unit slope and zero y-intercept, i.e., when the correlation R is 1. This means that the
relationship between the outputs and the targets is y = x. The performance plot (b) shows how the MSE
decreases during the training epochs until the performance goal is met. The final correlation achieved of
0.99 and the final validation-set MSE of 0.04 suggest a very accurate overall performance of the trained
network.

An error analysis of the network output is performed and presented in Figure 9. The error is calculated
as the mean percentage error between the output and the target, i.e.:

Ey =
1

N

N∑
i=1

yi − yt,i
yt,i

· 100 (32)

where y can be either the propellant mass or the time of flight. The maximum error experienced is of around
±10% and ±20% for mprop and TOF, respectively, with a mean value of 1.27% and 4.02%. The performance
and error analyses suggest that the training of the network was successful, thus the network can predict the
propellant mass expenditure and TOF to dispose a sequence of debris with a high accuracy.

4. Sequence Search and Results

The following sequence search (SS) algorithm is implemented to identify the most promising sequences
of debris to rendezvous, dock and de-orbit. The logic of the algorithm is based on a tree-search method
and breadth-first criterion, which is schematically illustrated in Fig. 10. Each node of the tree represents a
trajectory and how one proceeds through its branches depends on the mission objective which, in this case,
is the TOF and mprop minimization.

A database of N = 5000 fictitious debris objects is generated. Objects are a randomly created set with
random mass mD ∈ [100, 300] kg, RAAN ΩD ∈ [0, 360] deg and altitude hD ∈ [500, 1500] km. The SS works
by selecting Dj as departure point and Di as arrival point, with j and i ∈ [1, N ] so that all the possible
permutations between objects can be evaluated. The trained ANN is embedded within the SS algorithm
to calculate the mprop and TOF of each low-thrust transfer. The NS = 100 trajectories with the shorter
transfer time are stored and a fixed capture time tstay = 30 days is added at each object to ensure enough
time for rendezvous and docking. At this point, the arrival object becomes the departure object of the
following leg and the same procedure is iterated. The sequence is complete once the total mission duration
exceeds 10 years (or until the depletion of the propellant mass).

In the following Sec. 4.1, the performance of the proposed methodology with the SS algorithm and the
integrated ANN (SS-ANN) is assessed in terms of computational time, by comparing the results with those
obtained through traditional methods. Then, in Sec. 4.2, the performance of the SS-ANN method is shown
in term of the accuracy to identify the most convenient transfers and, thus, debris objects to de-orbit within
a sequence.

4.1. Computational Time Analysis

The methodology SS-ANN is assessed, by comparing the performance with current methods employed in
the industry [28], consisting of an industry expert processing the same input and providing the best solution
possible within 4 hours via an iterative approach. For the comparison, the same set of input data (database
of 100 debris objects with characteristics that are randomly generated, as mentioned above, number of
captures and propellant system) and the same assumptions are used.
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Figure 10: Sequence search algorithm.

Table 2 presents the results of this analysis. The sequence refers to the index of the objects from the
database to be captured and the order in which they should be captured. For the same input data the
computational time required by SS-ANN is more than 26 times faster than the time required for the current
methods employed in the industry [28]. This result is obtained when 100 debris objects are considered, and
it is expected that the benefits of using the SS-ANN method become even more important when a larger
set of satellites is considered. Additionally, the mprop and TOF found by the industry greatly exceed those
found by the SS-ANN platform by 7% and 47%, respectively. It can be concluded that the benefits of the
SS-ANN platform are not only in terms of the computational speed to select a solution, but also in terms
of the optimality of the selected solution.

4.2. ADR Mission Design

To validate the outcome of the sequence search algorithm with a larger database of 5000 objects, the
SS-AAN platform is run and three sequences are selected and their dynamics is fully solved for a SEP system
with characteristics specified in Table 1. Three sequence searches are run for α = {0, 0.95, 1}, and for each
simulation the best sequence in terms of maximum number of debris objects disposed are selected.

Sequence A, obtained using α = 0, allows for the disposal of 13 debris in 9.73 years with a required
propellant mass of 84.97 kg. Sequence B, obtained using α = 0.95, allows for the disposal of 11 debris in
10.87 years with a required propellant mass of 60.76 kg. Sequence C, obtained using α = 1, allows for the
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Table 3: Characteristics of the debris disposed in the selected sequences A (α = 0), B (α = 0.95) and C (α = 1).

Seq. A h, km RAAN, deg m, kg mprop, kg Emprop
, % TOF, days ETOF , %

D1 637.16 287.50 163.40 N/A N/A N/A N/A
D2 512.37 283 275.27 7.02 3.99 333.51 6.44
D3 585.17 275.30 138.41 5.26 4.58 188.44 8.89
D4 533.43 280.31 155.50 8.58 4.92 201.72 15.80
D5 644.38 256.52 212.14 7.14 6.79 398.12 6.37
D6 738.66 230.86 176.71 9.04 7.55 321.09 9.02
D7 501.13 274.57 106.99 7.34 3.35 251.63 3.86
D8 557.63 253.73 179.98 5.15 4.82 330.29 4.39
D9 516.09 259.77 105.56 5.82 8.27 347.93 5.66
D10 705.37 186.35 170.46 6.57 7.53 349.41 7.58
D11 588.68 221.62 191.09 7.61 1.87 290.43 7.05
D12 600.20 208.13 171.12 6.69 10.63 337.32 15.46
D13 526.06 244.28 175.02 8.74 8.37 205.03 1.37

Seq. B h, km RAAN, deg m, kg mprop, kg Emprop , % TOF, days ETOF , %

D1 661.73 162.03 131.24 N/A N/A N/A N/A
D2 504.96 158.72 270.37 6.63 9.77 311.92 10.41
D3 577.40 149.33 163.74 5.04 6.59 302.34 6.24
D4 534.05 145.48 256.27 6.35 3.73 517.09 3.88
D5 517.24 145.16 253.91 4.82 1.25 237.76 5.80
D6 514.14 138.62 139.19 6.02 7.03 460.15 3.59
D7 534.61 128.19 213.67 4.35 9.42 305.27 4.23
D8 667.95 84.76 222.82 5.21 1.40 95.18 8.00
D9 694.88 66.66 200.81 7.97 11.66 361.76 12.72
D10 517.45 123.32 171.80 9.39 9.77 768.67 6.66
D11 588.01 88.94 213.15 4.95 2.33 309.09 8.16

Seq. C h, km RAAN, deg m, kg mprop, kg Emprop
, % TOF, days ETOF , %

D1 533.43 280.31 155.50 N/A N/A N/A N/A
D2 512.37 283 275.27 4.71 4.53 878.50 8.30
D3 585.17 275.30 138.41 5.07 10.86 1216.67 15.49
D4 543.71 288.64 172.30 5.33 4.43 1009.69 2.05
D5 517.31 303.68 291.92 4.93 5.25 960.91 7.10

disposal of 5 debris in 11.10 years with a required propellant mass of 20 kg. Figure 11 shows the change in
altitude and propellant mass along the Sequences A, B and C.

As expected from the analysis of Figure 6, the choice of the weighting parameter α, thus of the phasing
altitude, can have a significant impact on the propellant mass consumption and duration of the mission. As
α increases, the TOF increases, while mprop decreases. This is particularly noticeable for the case of α = 1,
when the TOF sharply raises compared to the cases of α = 0 and 0.95, resulting in a sensible reduction of
number of debris which can be de-orbited in about 10 years. Table 3 presents the characteristics (altitude
h, RAAN, and mass m) of the space debris de-orbited as part of the Sequences A, B and C and the mission
characteristics (propellant mass mprop and TOF) of sequences obtained by solving the dynamics of the
system.

Although for α = 1, slightly less propellant mass is required to de-orbit a single debris (compared to,
for example, the case of α = 0.95), the duration of each transfer increases consistently. Overall, the modest
reduction of used propellant mass does not seem to justify the steep increase in TOF. As also shown in
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Figure 11: Altitude and propellant mass for sequences A, B and C.

16



Figure 6, varying the value of α between 0 and 0.95 allows to reduce the ∆V (and propellant mass) at the
cost of a reasonable increase of TOF, while for 0.95 < α < 1 the TOF dramatically raises.

Table 3 also shows the percentage errors of three sequences between the values computed by the ANN
and those obtained by solving the dynamics of the system. As expected, the percentage errors are generally
lower that 10% for the propellant mass consumption and 15% for the TOF, with a final mean error of 6.04%
for the mprop estimation and 7.89% for the TOF estimation. It can be concluded that the trained network is
able to estimate with reasonable accuracy the cost and duration of transfers to de-orbit space debris objects.

5. Conclusions

The proposed methodology uses an artificial neural network (ANN) to quickly estimate the cost and
duration of low-thrust transfers for the disposal of multiple space debris. The ANN is trained with a
training database of 90,000 samples and reaches a correlation of almost 0.99, which indicate an accurate
performance. The network is integrated with a sequence search (SS) algorithm which, based on a tree-search
method and and breadth-first criterion, can compute the most convenient sequences in terms of cost (i.e.,
propellant mass consumption) and duration of the mission.

The choice of the phasing altitude hP has an impact on the final cost and duration of the mission and,
consequently, on the number of debris which can be disposed in a given time frame. An objective function
is defined to select the appropriate hP , where the weighting factor α defines the trade-off between (i) the
time required to reach the phasing altitude and the phasing time and (ii) the cost to perform the change of
altitude and to counteract the drag action while phasing.

Three sequences have been selected to verify the performance of the proposed methodology. It is shown
that up to 13 debris can be disposed of within 10 years while using less than 100 kg of the propellant mass,
if the optimal RAAN-phasing orbit is selected.

Employing machine learning techniques within the sequence search algorithm (SS-ANN) greatly reduces
the computational time by 26 times, when 100 debris are considered. The benefit derived from the speed of
the algorithm increases further compared to traditional methods when a larger set of debris is considered. It
is also shown that the SS-ANN methodology can select sequences which are shorter and less expensive (being
the propellant mass required lower). Additionally, the proposed methodology ensures a high accuracy with
an average percentage error of about 6.04% and 7.89% with respect to the target values of the propellant
mass and time of flight.

It is important to underline that, despite the simple transfer model used in this work, selected to keep
the computational time low, an ANN could be trained to estimate a more complex transfer model (i.e.,
with fully-optimal low-thrust legs) at the same cost in terms of computational time (after network training),
which is a fraction of the time that a traditional optimizer would require.
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